| Index: third_party/sqlite/src/src/util.c
|
| diff --git a/third_party/sqlite/src/src/util.c b/third_party/sqlite/src/src/util.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1c9b401f898a9a671f55f8b75be199720d68a27d
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/util.c
|
| @@ -0,0 +1,1150 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** Utility functions used throughout sqlite.
|
| +**
|
| +** This file contains functions for allocating memory, comparing
|
| +** strings, and stuff like that.
|
| +**
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include <stdarg.h>
|
| +#ifdef SQLITE_HAVE_ISNAN
|
| +# include <math.h>
|
| +#endif
|
| +
|
| +/*
|
| +** Routine needed to support the testcase() macro.
|
| +*/
|
| +#ifdef SQLITE_COVERAGE_TEST
|
| +void sqlite3Coverage(int x){
|
| + static unsigned dummy = 0;
|
| + dummy += (unsigned)x;
|
| +}
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/*
|
| +** Return true if the floating point value is Not a Number (NaN).
|
| +**
|
| +** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
|
| +** Otherwise, we have our own implementation that works on most systems.
|
| +*/
|
| +int sqlite3IsNaN(double x){
|
| + int rc; /* The value return */
|
| +#if !defined(SQLITE_HAVE_ISNAN)
|
| + /*
|
| + ** Systems that support the isnan() library function should probably
|
| + ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
|
| + ** found that many systems do not have a working isnan() function so
|
| + ** this implementation is provided as an alternative.
|
| + **
|
| + ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
|
| + ** On the other hand, the use of -ffast-math comes with the following
|
| + ** warning:
|
| + **
|
| + ** This option [-ffast-math] should never be turned on by any
|
| + ** -O option since it can result in incorrect output for programs
|
| + ** which depend on an exact implementation of IEEE or ISO
|
| + ** rules/specifications for math functions.
|
| + **
|
| + ** Under MSVC, this NaN test may fail if compiled with a floating-
|
| + ** point precision mode other than /fp:precise. From the MSDN
|
| + ** documentation:
|
| + **
|
| + ** The compiler [with /fp:precise] will properly handle comparisons
|
| + ** involving NaN. For example, x != x evaluates to true if x is NaN
|
| + ** ...
|
| + */
|
| +#ifdef __FAST_MATH__
|
| +# error SQLite will not work correctly with the -ffast-math option of GCC.
|
| +#endif
|
| + volatile double y = x;
|
| + volatile double z = y;
|
| + rc = (y!=z);
|
| +#else /* if defined(SQLITE_HAVE_ISNAN) */
|
| + rc = isnan(x);
|
| +#endif /* SQLITE_HAVE_ISNAN */
|
| + testcase( rc );
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_OMIT_FLOATING_POINT */
|
| +
|
| +/*
|
| +** Compute a string length that is limited to what can be stored in
|
| +** lower 30 bits of a 32-bit signed integer.
|
| +**
|
| +** The value returned will never be negative. Nor will it ever be greater
|
| +** than the actual length of the string. For very long strings (greater
|
| +** than 1GiB) the value returned might be less than the true string length.
|
| +*/
|
| +int sqlite3Strlen30(const char *z){
|
| + const char *z2 = z;
|
| + if( z==0 ) return 0;
|
| + while( *z2 ){ z2++; }
|
| + return 0x3fffffff & (int)(z2 - z);
|
| +}
|
| +
|
| +/*
|
| +** Set the most recent error code and error string for the sqlite
|
| +** handle "db". The error code is set to "err_code".
|
| +**
|
| +** If it is not NULL, string zFormat specifies the format of the
|
| +** error string in the style of the printf functions: The following
|
| +** format characters are allowed:
|
| +**
|
| +** %s Insert a string
|
| +** %z A string that should be freed after use
|
| +** %d Insert an integer
|
| +** %T Insert a token
|
| +** %S Insert the first element of a SrcList
|
| +**
|
| +** zFormat and any string tokens that follow it are assumed to be
|
| +** encoded in UTF-8.
|
| +**
|
| +** To clear the most recent error for sqlite handle "db", sqlite3Error
|
| +** should be called with err_code set to SQLITE_OK and zFormat set
|
| +** to NULL.
|
| +*/
|
| +void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
| + if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
| + db->errCode = err_code;
|
| + if( zFormat ){
|
| + char *z;
|
| + va_list ap;
|
| + va_start(ap, zFormat);
|
| + z = sqlite3VMPrintf(db, zFormat, ap);
|
| + va_end(ap);
|
| + sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
| + }else{
|
| + sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
| +** The following formatting characters are allowed:
|
| +**
|
| +** %s Insert a string
|
| +** %z A string that should be freed after use
|
| +** %d Insert an integer
|
| +** %T Insert a token
|
| +** %S Insert the first element of a SrcList
|
| +**
|
| +** This function should be used to report any error that occurs whilst
|
| +** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
| +** last thing the sqlite3_prepare() function does is copy the error
|
| +** stored by this function into the database handle using sqlite3Error().
|
| +** Function sqlite3Error() should be used during statement execution
|
| +** (sqlite3_step() etc.).
|
| +*/
|
| +void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
| + char *zMsg;
|
| + va_list ap;
|
| + sqlite3 *db = pParse->db;
|
| + va_start(ap, zFormat);
|
| + zMsg = sqlite3VMPrintf(db, zFormat, ap);
|
| + va_end(ap);
|
| + if( db->suppressErr ){
|
| + sqlite3DbFree(db, zMsg);
|
| + }else{
|
| + pParse->nErr++;
|
| + sqlite3DbFree(db, pParse->zErrMsg);
|
| + pParse->zErrMsg = zMsg;
|
| + pParse->rc = SQLITE_ERROR;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Convert an SQL-style quoted string into a normal string by removing
|
| +** the quote characters. The conversion is done in-place. If the
|
| +** input does not begin with a quote character, then this routine
|
| +** is a no-op.
|
| +**
|
| +** The input string must be zero-terminated. A new zero-terminator
|
| +** is added to the dequoted string.
|
| +**
|
| +** The return value is -1 if no dequoting occurs or the length of the
|
| +** dequoted string, exclusive of the zero terminator, if dequoting does
|
| +** occur.
|
| +**
|
| +** 2002-Feb-14: This routine is extended to remove MS-Access style
|
| +** brackets from around identifers. For example: "[a-b-c]" becomes
|
| +** "a-b-c".
|
| +*/
|
| +int sqlite3Dequote(char *z){
|
| + char quote;
|
| + int i, j;
|
| + if( z==0 ) return -1;
|
| + quote = z[0];
|
| + switch( quote ){
|
| + case '\'': break;
|
| + case '"': break;
|
| + case '`': break; /* For MySQL compatibility */
|
| + case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
| + default: return -1;
|
| + }
|
| + for(i=1, j=0; ALWAYS(z[i]); i++){
|
| + if( z[i]==quote ){
|
| + if( z[i+1]==quote ){
|
| + z[j++] = quote;
|
| + i++;
|
| + }else{
|
| + break;
|
| + }
|
| + }else{
|
| + z[j++] = z[i];
|
| + }
|
| + }
|
| + z[j] = 0;
|
| + return j;
|
| +}
|
| +
|
| +/* Convenient short-hand */
|
| +#define UpperToLower sqlite3UpperToLower
|
| +
|
| +/*
|
| +** Some systems have stricmp(). Others have strcasecmp(). Because
|
| +** there is no consistency, we will define our own.
|
| +**
|
| +** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
|
| +** applications and extensions to compare the contents of two buffers
|
| +** containing UTF-8 strings in a case-independent fashion, using the same
|
| +** definition of case independence that SQLite uses internally when
|
| +** comparing identifiers.
|
| +*/
|
| +int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
| + register unsigned char *a, *b;
|
| + a = (unsigned char *)zLeft;
|
| + b = (unsigned char *)zRight;
|
| + while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
| + return UpperToLower[*a] - UpperToLower[*b];
|
| +}
|
| +int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
|
| + register unsigned char *a, *b;
|
| + a = (unsigned char *)zLeft;
|
| + b = (unsigned char *)zRight;
|
| + while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
| + return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
| +}
|
| +
|
| +/*
|
| +** The string z[] is an text representation of a real number.
|
| +** Convert this string to a double and write it into *pResult.
|
| +**
|
| +** The string z[] is length bytes in length (bytes, not characters) and
|
| +** uses the encoding enc. The string is not necessarily zero-terminated.
|
| +**
|
| +** Return TRUE if the result is a valid real number (or integer) and FALSE
|
| +** if the string is empty or contains extraneous text. Valid numbers
|
| +** are in one of these formats:
|
| +**
|
| +** [+-]digits[E[+-]digits]
|
| +** [+-]digits.[digits][E[+-]digits]
|
| +** [+-].digits[E[+-]digits]
|
| +**
|
| +** Leading and trailing whitespace is ignored for the purpose of determining
|
| +** validity.
|
| +**
|
| +** If some prefix of the input string is a valid number, this routine
|
| +** returns FALSE but it still converts the prefix and writes the result
|
| +** into *pResult.
|
| +*/
|
| +int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + int incr = (enc==SQLITE_UTF8?1:2);
|
| + const char *zEnd = z + length;
|
| + /* sign * significand * (10 ^ (esign * exponent)) */
|
| + int sign = 1; /* sign of significand */
|
| + i64 s = 0; /* significand */
|
| + int d = 0; /* adjust exponent for shifting decimal point */
|
| + int esign = 1; /* sign of exponent */
|
| + int e = 0; /* exponent */
|
| + int eValid = 1; /* True exponent is either not used or is well-formed */
|
| + double result;
|
| + int nDigits = 0;
|
| +
|
| + *pResult = 0.0; /* Default return value, in case of an error */
|
| +
|
| + if( enc==SQLITE_UTF16BE ) z++;
|
| +
|
| + /* skip leading spaces */
|
| + while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
| + if( z>=zEnd ) return 0;
|
| +
|
| + /* get sign of significand */
|
| + if( *z=='-' ){
|
| + sign = -1;
|
| + z+=incr;
|
| + }else if( *z=='+' ){
|
| + z+=incr;
|
| + }
|
| +
|
| + /* skip leading zeroes */
|
| + while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
|
| +
|
| + /* copy max significant digits to significand */
|
| + while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
|
| + s = s*10 + (*z - '0');
|
| + z+=incr, nDigits++;
|
| + }
|
| +
|
| + /* skip non-significant significand digits
|
| + ** (increase exponent by d to shift decimal left) */
|
| + while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
|
| + if( z>=zEnd ) goto do_atof_calc;
|
| +
|
| + /* if decimal point is present */
|
| + if( *z=='.' ){
|
| + z+=incr;
|
| + /* copy digits from after decimal to significand
|
| + ** (decrease exponent by d to shift decimal right) */
|
| + while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
|
| + s = s*10 + (*z - '0');
|
| + z+=incr, nDigits++, d--;
|
| + }
|
| + /* skip non-significant digits */
|
| + while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
|
| + }
|
| + if( z>=zEnd ) goto do_atof_calc;
|
| +
|
| + /* if exponent is present */
|
| + if( *z=='e' || *z=='E' ){
|
| + z+=incr;
|
| + eValid = 0;
|
| + if( z>=zEnd ) goto do_atof_calc;
|
| + /* get sign of exponent */
|
| + if( *z=='-' ){
|
| + esign = -1;
|
| + z+=incr;
|
| + }else if( *z=='+' ){
|
| + z+=incr;
|
| + }
|
| + /* copy digits to exponent */
|
| + while( z<zEnd && sqlite3Isdigit(*z) ){
|
| + e = e*10 + (*z - '0');
|
| + z+=incr;
|
| + eValid = 1;
|
| + }
|
| + }
|
| +
|
| + /* skip trailing spaces */
|
| + if( nDigits && eValid ){
|
| + while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
| + }
|
| +
|
| +do_atof_calc:
|
| + /* adjust exponent by d, and update sign */
|
| + e = (e*esign) + d;
|
| + if( e<0 ) {
|
| + esign = -1;
|
| + e *= -1;
|
| + } else {
|
| + esign = 1;
|
| + }
|
| +
|
| + /* if 0 significand */
|
| + if( !s ) {
|
| + /* In the IEEE 754 standard, zero is signed.
|
| + ** Add the sign if we've seen at least one digit */
|
| + result = (sign<0 && nDigits) ? -(double)0 : (double)0;
|
| + } else {
|
| + /* attempt to reduce exponent */
|
| + if( esign>0 ){
|
| + while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
|
| + }else{
|
| + while( !(s%10) && e>0 ) e--,s/=10;
|
| + }
|
| +
|
| + /* adjust the sign of significand */
|
| + s = sign<0 ? -s : s;
|
| +
|
| + /* if exponent, scale significand as appropriate
|
| + ** and store in result. */
|
| + if( e ){
|
| + double scale = 1.0;
|
| + /* attempt to handle extremely small/large numbers better */
|
| + if( e>307 && e<342 ){
|
| + while( e%308 ) { scale *= 1.0e+1; e -= 1; }
|
| + if( esign<0 ){
|
| + result = s / scale;
|
| + result /= 1.0e+308;
|
| + }else{
|
| + result = s * scale;
|
| + result *= 1.0e+308;
|
| + }
|
| + }else{
|
| + /* 1.0e+22 is the largest power of 10 than can be
|
| + ** represented exactly. */
|
| + while( e%22 ) { scale *= 1.0e+1; e -= 1; }
|
| + while( e>0 ) { scale *= 1.0e+22; e -= 22; }
|
| + if( esign<0 ){
|
| + result = s / scale;
|
| + }else{
|
| + result = s * scale;
|
| + }
|
| + }
|
| + } else {
|
| + result = (double)s;
|
| + }
|
| + }
|
| +
|
| + /* store the result */
|
| + *pResult = result;
|
| +
|
| + /* return true if number and no extra non-whitespace chracters after */
|
| + return z>=zEnd && nDigits>0 && eValid;
|
| +#else
|
| + return !sqlite3Atoi64(z, pResult, length, enc);
|
| +#endif /* SQLITE_OMIT_FLOATING_POINT */
|
| +}
|
| +
|
| +/*
|
| +** Compare the 19-character string zNum against the text representation
|
| +** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
| +** if zNum is less than, equal to, or greater than the string.
|
| +** Note that zNum must contain exactly 19 characters.
|
| +**
|
| +** Unlike memcmp() this routine is guaranteed to return the difference
|
| +** in the values of the last digit if the only difference is in the
|
| +** last digit. So, for example,
|
| +**
|
| +** compare2pow63("9223372036854775800", 1)
|
| +**
|
| +** will return -8.
|
| +*/
|
| +static int compare2pow63(const char *zNum, int incr){
|
| + int c = 0;
|
| + int i;
|
| + /* 012345678901234567 */
|
| + const char *pow63 = "922337203685477580";
|
| + for(i=0; c==0 && i<18; i++){
|
| + c = (zNum[i*incr]-pow63[i])*10;
|
| + }
|
| + if( c==0 ){
|
| + c = zNum[18*incr] - '8';
|
| + testcase( c==(-1) );
|
| + testcase( c==0 );
|
| + testcase( c==(+1) );
|
| + }
|
| + return c;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Convert zNum to a 64-bit signed integer.
|
| +**
|
| +** If the zNum value is representable as a 64-bit twos-complement
|
| +** integer, then write that value into *pNum and return 0.
|
| +**
|
| +** If zNum is exactly 9223372036854665808, return 2. This special
|
| +** case is broken out because while 9223372036854665808 cannot be a
|
| +** signed 64-bit integer, its negative -9223372036854665808 can be.
|
| +**
|
| +** If zNum is too big for a 64-bit integer and is not
|
| +** 9223372036854665808 then return 1.
|
| +**
|
| +** length is the number of bytes in the string (bytes, not characters).
|
| +** The string is not necessarily zero-terminated. The encoding is
|
| +** given by enc.
|
| +*/
|
| +int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
|
| + int incr = (enc==SQLITE_UTF8?1:2);
|
| + u64 u = 0;
|
| + int neg = 0; /* assume positive */
|
| + int i;
|
| + int c = 0;
|
| + const char *zStart;
|
| + const char *zEnd = zNum + length;
|
| + if( enc==SQLITE_UTF16BE ) zNum++;
|
| + while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
|
| + if( zNum<zEnd ){
|
| + if( *zNum=='-' ){
|
| + neg = 1;
|
| + zNum+=incr;
|
| + }else if( *zNum=='+' ){
|
| + zNum+=incr;
|
| + }
|
| + }
|
| + zStart = zNum;
|
| + while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
|
| + for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
|
| + u = u*10 + c - '0';
|
| + }
|
| + if( u>LARGEST_INT64 ){
|
| + *pNum = SMALLEST_INT64;
|
| + }else if( neg ){
|
| + *pNum = -(i64)u;
|
| + }else{
|
| + *pNum = (i64)u;
|
| + }
|
| + testcase( i==18 );
|
| + testcase( i==19 );
|
| + testcase( i==20 );
|
| + if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
|
| + /* zNum is empty or contains non-numeric text or is longer
|
| + ** than 19 digits (thus guaranteeing that it is too large) */
|
| + return 1;
|
| + }else if( i<19*incr ){
|
| + /* Less than 19 digits, so we know that it fits in 64 bits */
|
| + assert( u<=LARGEST_INT64 );
|
| + return 0;
|
| + }else{
|
| + /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
|
| + c = compare2pow63(zNum, incr);
|
| + if( c<0 ){
|
| + /* zNum is less than 9223372036854775808 so it fits */
|
| + assert( u<=LARGEST_INT64 );
|
| + return 0;
|
| + }else if( c>0 ){
|
| + /* zNum is greater than 9223372036854775808 so it overflows */
|
| + return 1;
|
| + }else{
|
| + /* zNum is exactly 9223372036854775808. Fits if negative. The
|
| + ** special case 2 overflow if positive */
|
| + assert( u-1==LARGEST_INT64 );
|
| + assert( (*pNum)==SMALLEST_INT64 );
|
| + return neg ? 0 : 2;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** If zNum represents an integer that will fit in 32-bits, then set
|
| +** *pValue to that integer and return true. Otherwise return false.
|
| +**
|
| +** Any non-numeric characters that following zNum are ignored.
|
| +** This is different from sqlite3Atoi64() which requires the
|
| +** input number to be zero-terminated.
|
| +*/
|
| +int sqlite3GetInt32(const char *zNum, int *pValue){
|
| + sqlite_int64 v = 0;
|
| + int i, c;
|
| + int neg = 0;
|
| + if( zNum[0]=='-' ){
|
| + neg = 1;
|
| + zNum++;
|
| + }else if( zNum[0]=='+' ){
|
| + zNum++;
|
| + }
|
| + while( zNum[0]=='0' ) zNum++;
|
| + for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
| + v = v*10 + c;
|
| + }
|
| +
|
| + /* The longest decimal representation of a 32 bit integer is 10 digits:
|
| + **
|
| + ** 1234567890
|
| + ** 2^31 -> 2147483648
|
| + */
|
| + testcase( i==10 );
|
| + if( i>10 ){
|
| + return 0;
|
| + }
|
| + testcase( v-neg==2147483647 );
|
| + if( v-neg>2147483647 ){
|
| + return 0;
|
| + }
|
| + if( neg ){
|
| + v = -v;
|
| + }
|
| + *pValue = (int)v;
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** Return a 32-bit integer value extracted from a string. If the
|
| +** string is not an integer, just return 0.
|
| +*/
|
| +int sqlite3Atoi(const char *z){
|
| + int x = 0;
|
| + if( z ) sqlite3GetInt32(z, &x);
|
| + return x;
|
| +}
|
| +
|
| +/*
|
| +** The variable-length integer encoding is as follows:
|
| +**
|
| +** KEY:
|
| +** A = 0xxxxxxx 7 bits of data and one flag bit
|
| +** B = 1xxxxxxx 7 bits of data and one flag bit
|
| +** C = xxxxxxxx 8 bits of data
|
| +**
|
| +** 7 bits - A
|
| +** 14 bits - BA
|
| +** 21 bits - BBA
|
| +** 28 bits - BBBA
|
| +** 35 bits - BBBBA
|
| +** 42 bits - BBBBBA
|
| +** 49 bits - BBBBBBA
|
| +** 56 bits - BBBBBBBA
|
| +** 64 bits - BBBBBBBBC
|
| +*/
|
| +
|
| +/*
|
| +** Write a 64-bit variable-length integer to memory starting at p[0].
|
| +** The length of data write will be between 1 and 9 bytes. The number
|
| +** of bytes written is returned.
|
| +**
|
| +** A variable-length integer consists of the lower 7 bits of each byte
|
| +** for all bytes that have the 8th bit set and one byte with the 8th
|
| +** bit clear. Except, if we get to the 9th byte, it stores the full
|
| +** 8 bits and is the last byte.
|
| +*/
|
| +int sqlite3PutVarint(unsigned char *p, u64 v){
|
| + int i, j, n;
|
| + u8 buf[10];
|
| + if( v & (((u64)0xff000000)<<32) ){
|
| + p[8] = (u8)v;
|
| + v >>= 8;
|
| + for(i=7; i>=0; i--){
|
| + p[i] = (u8)((v & 0x7f) | 0x80);
|
| + v >>= 7;
|
| + }
|
| + return 9;
|
| + }
|
| + n = 0;
|
| + do{
|
| + buf[n++] = (u8)((v & 0x7f) | 0x80);
|
| + v >>= 7;
|
| + }while( v!=0 );
|
| + buf[0] &= 0x7f;
|
| + assert( n<=9 );
|
| + for(i=0, j=n-1; j>=0; j--, i++){
|
| + p[i] = buf[j];
|
| + }
|
| + return n;
|
| +}
|
| +
|
| +/*
|
| +** This routine is a faster version of sqlite3PutVarint() that only
|
| +** works for 32-bit positive integers and which is optimized for
|
| +** the common case of small integers. A MACRO version, putVarint32,
|
| +** is provided which inlines the single-byte case. All code should use
|
| +** the MACRO version as this function assumes the single-byte case has
|
| +** already been handled.
|
| +*/
|
| +int sqlite3PutVarint32(unsigned char *p, u32 v){
|
| +#ifndef putVarint32
|
| + if( (v & ~0x7f)==0 ){
|
| + p[0] = v;
|
| + return 1;
|
| + }
|
| +#endif
|
| + if( (v & ~0x3fff)==0 ){
|
| + p[0] = (u8)((v>>7) | 0x80);
|
| + p[1] = (u8)(v & 0x7f);
|
| + return 2;
|
| + }
|
| + return sqlite3PutVarint(p, v);
|
| +}
|
| +
|
| +/*
|
| +** Bitmasks used by sqlite3GetVarint(). These precomputed constants
|
| +** are defined here rather than simply putting the constant expressions
|
| +** inline in order to work around bugs in the RVT compiler.
|
| +**
|
| +** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
|
| +**
|
| +** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
|
| +*/
|
| +#define SLOT_2_0 0x001fc07f
|
| +#define SLOT_4_2_0 0xf01fc07f
|
| +
|
| +
|
| +/*
|
| +** Read a 64-bit variable-length integer from memory starting at p[0].
|
| +** Return the number of bytes read. The value is stored in *v.
|
| +*/
|
| +u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
|
| + u32 a,b,s;
|
| +
|
| + a = *p;
|
| + /* a: p0 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + *v = a;
|
| + return 1;
|
| + }
|
| +
|
| + p++;
|
| + b = *p;
|
| + /* b: p1 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + a &= 0x7f;
|
| + a = a<<7;
|
| + a |= b;
|
| + *v = a;
|
| + return 2;
|
| + }
|
| +
|
| + /* Verify that constants are precomputed correctly */
|
| + assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
|
| + assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
|
| +
|
| + p++;
|
| + a = a<<14;
|
| + a |= *p;
|
| + /* a: p0<<14 | p2 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + a &= SLOT_2_0;
|
| + b &= 0x7f;
|
| + b = b<<7;
|
| + a |= b;
|
| + *v = a;
|
| + return 3;
|
| + }
|
| +
|
| + /* CSE1 from below */
|
| + a &= SLOT_2_0;
|
| + p++;
|
| + b = b<<14;
|
| + b |= *p;
|
| + /* b: p1<<14 | p3 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + b &= SLOT_2_0;
|
| + /* moved CSE1 up */
|
| + /* a &= (0x7f<<14)|(0x7f); */
|
| + a = a<<7;
|
| + a |= b;
|
| + *v = a;
|
| + return 4;
|
| + }
|
| +
|
| + /* a: p0<<14 | p2 (masked) */
|
| + /* b: p1<<14 | p3 (unmasked) */
|
| + /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| + /* moved CSE1 up */
|
| + /* a &= (0x7f<<14)|(0x7f); */
|
| + b &= SLOT_2_0;
|
| + s = a;
|
| + /* s: p0<<14 | p2 (masked) */
|
| +
|
| + p++;
|
| + a = a<<14;
|
| + a |= *p;
|
| + /* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + /* we can skip these cause they were (effectively) done above in calc'ing s */
|
| + /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
| + /* b &= (0x7f<<14)|(0x7f); */
|
| + b = b<<7;
|
| + a |= b;
|
| + s = s>>18;
|
| + *v = ((u64)s)<<32 | a;
|
| + return 5;
|
| + }
|
| +
|
| + /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| + s = s<<7;
|
| + s |= b;
|
| + /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| +
|
| + p++;
|
| + b = b<<14;
|
| + b |= *p;
|
| + /* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + /* we can skip this cause it was (effectively) done above in calc'ing s */
|
| + /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
| + a &= SLOT_2_0;
|
| + a = a<<7;
|
| + a |= b;
|
| + s = s>>18;
|
| + *v = ((u64)s)<<32 | a;
|
| + return 6;
|
| + }
|
| +
|
| + p++;
|
| + a = a<<14;
|
| + a |= *p;
|
| + /* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + a &= SLOT_4_2_0;
|
| + b &= SLOT_2_0;
|
| + b = b<<7;
|
| + a |= b;
|
| + s = s>>11;
|
| + *v = ((u64)s)<<32 | a;
|
| + return 7;
|
| + }
|
| +
|
| + /* CSE2 from below */
|
| + a &= SLOT_2_0;
|
| + p++;
|
| + b = b<<14;
|
| + b |= *p;
|
| + /* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + b &= SLOT_4_2_0;
|
| + /* moved CSE2 up */
|
| + /* a &= (0x7f<<14)|(0x7f); */
|
| + a = a<<7;
|
| + a |= b;
|
| + s = s>>4;
|
| + *v = ((u64)s)<<32 | a;
|
| + return 8;
|
| + }
|
| +
|
| + p++;
|
| + a = a<<15;
|
| + a |= *p;
|
| + /* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
| +
|
| + /* moved CSE2 up */
|
| + /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
| + b &= SLOT_2_0;
|
| + b = b<<8;
|
| + a |= b;
|
| +
|
| + s = s<<4;
|
| + b = p[-4];
|
| + b &= 0x7f;
|
| + b = b>>3;
|
| + s |= b;
|
| +
|
| + *v = ((u64)s)<<32 | a;
|
| +
|
| + return 9;
|
| +}
|
| +
|
| +/*
|
| +** Read a 32-bit variable-length integer from memory starting at p[0].
|
| +** Return the number of bytes read. The value is stored in *v.
|
| +**
|
| +** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
|
| +** integer, then set *v to 0xffffffff.
|
| +**
|
| +** A MACRO version, getVarint32, is provided which inlines the
|
| +** single-byte case. All code should use the MACRO version as
|
| +** this function assumes the single-byte case has already been handled.
|
| +*/
|
| +u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
| + u32 a,b;
|
| +
|
| + /* The 1-byte case. Overwhelmingly the most common. Handled inline
|
| + ** by the getVarin32() macro */
|
| + a = *p;
|
| + /* a: p0 (unmasked) */
|
| +#ifndef getVarint32
|
| + if (!(a&0x80))
|
| + {
|
| + /* Values between 0 and 127 */
|
| + *v = a;
|
| + return 1;
|
| + }
|
| +#endif
|
| +
|
| + /* The 2-byte case */
|
| + p++;
|
| + b = *p;
|
| + /* b: p1 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + /* Values between 128 and 16383 */
|
| + a &= 0x7f;
|
| + a = a<<7;
|
| + *v = a | b;
|
| + return 2;
|
| + }
|
| +
|
| + /* The 3-byte case */
|
| + p++;
|
| + a = a<<14;
|
| + a |= *p;
|
| + /* a: p0<<14 | p2 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + /* Values between 16384 and 2097151 */
|
| + a &= (0x7f<<14)|(0x7f);
|
| + b &= 0x7f;
|
| + b = b<<7;
|
| + *v = a | b;
|
| + return 3;
|
| + }
|
| +
|
| + /* A 32-bit varint is used to store size information in btrees.
|
| + ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
|
| + ** A 3-byte varint is sufficient, for example, to record the size
|
| + ** of a 1048569-byte BLOB or string.
|
| + **
|
| + ** We only unroll the first 1-, 2-, and 3- byte cases. The very
|
| + ** rare larger cases can be handled by the slower 64-bit varint
|
| + ** routine.
|
| + */
|
| +#if 1
|
| + {
|
| + u64 v64;
|
| + u8 n;
|
| +
|
| + p -= 2;
|
| + n = sqlite3GetVarint(p, &v64);
|
| + assert( n>3 && n<=9 );
|
| + if( (v64 & SQLITE_MAX_U32)!=v64 ){
|
| + *v = 0xffffffff;
|
| + }else{
|
| + *v = (u32)v64;
|
| + }
|
| + return n;
|
| + }
|
| +
|
| +#else
|
| + /* For following code (kept for historical record only) shows an
|
| + ** unrolling for the 3- and 4-byte varint cases. This code is
|
| + ** slightly faster, but it is also larger and much harder to test.
|
| + */
|
| + p++;
|
| + b = b<<14;
|
| + b |= *p;
|
| + /* b: p1<<14 | p3 (unmasked) */
|
| + if (!(b&0x80))
|
| + {
|
| + /* Values between 2097152 and 268435455 */
|
| + b &= (0x7f<<14)|(0x7f);
|
| + a &= (0x7f<<14)|(0x7f);
|
| + a = a<<7;
|
| + *v = a | b;
|
| + return 4;
|
| + }
|
| +
|
| + p++;
|
| + a = a<<14;
|
| + a |= *p;
|
| + /* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
| + if (!(a&0x80))
|
| + {
|
| + /* Values between 268435456 and 34359738367 */
|
| + a &= SLOT_4_2_0;
|
| + b &= SLOT_4_2_0;
|
| + b = b<<7;
|
| + *v = a | b;
|
| + return 5;
|
| + }
|
| +
|
| + /* We can only reach this point when reading a corrupt database
|
| + ** file. In that case we are not in any hurry. Use the (relatively
|
| + ** slow) general-purpose sqlite3GetVarint() routine to extract the
|
| + ** value. */
|
| + {
|
| + u64 v64;
|
| + u8 n;
|
| +
|
| + p -= 4;
|
| + n = sqlite3GetVarint(p, &v64);
|
| + assert( n>5 && n<=9 );
|
| + *v = (u32)v64;
|
| + return n;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes that will be needed to store the given
|
| +** 64-bit integer.
|
| +*/
|
| +int sqlite3VarintLen(u64 v){
|
| + int i = 0;
|
| + do{
|
| + i++;
|
| + v >>= 7;
|
| + }while( v!=0 && ALWAYS(i<9) );
|
| + return i;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Read or write a four-byte big-endian integer value.
|
| +*/
|
| +u32 sqlite3Get4byte(const u8 *p){
|
| + return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
| +}
|
| +void sqlite3Put4byte(unsigned char *p, u32 v){
|
| + p[0] = (u8)(v>>24);
|
| + p[1] = (u8)(v>>16);
|
| + p[2] = (u8)(v>>8);
|
| + p[3] = (u8)v;
|
| +}
|
| +
|
| +
|
| +
|
| +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
| +/*
|
| +** Translate a single byte of Hex into an integer.
|
| +** This routine only works if h really is a valid hexadecimal
|
| +** character: 0..9a..fA..F
|
| +*/
|
| +static u8 hexToInt(int h){
|
| + assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
| +#ifdef SQLITE_ASCII
|
| + h += 9*(1&(h>>6));
|
| +#endif
|
| +#ifdef SQLITE_EBCDIC
|
| + h += 9*(1&~(h>>4));
|
| +#endif
|
| + return (u8)(h & 0xf);
|
| +}
|
| +#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
| +
|
| +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
| +/*
|
| +** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
| +** value. Return a pointer to its binary value. Space to hold the
|
| +** binary value has been obtained from malloc and must be freed by
|
| +** the calling routine.
|
| +*/
|
| +void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
| + char *zBlob;
|
| + int i;
|
| +
|
| + zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
| + n--;
|
| + if( zBlob ){
|
| + for(i=0; i<n; i+=2){
|
| + zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
| + }
|
| + zBlob[i/2] = 0;
|
| + }
|
| + return zBlob;
|
| +}
|
| +#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
| +
|
| +/*
|
| +** Log an error that is an API call on a connection pointer that should
|
| +** not have been used. The "type" of connection pointer is given as the
|
| +** argument. The zType is a word like "NULL" or "closed" or "invalid".
|
| +*/
|
| +static void logBadConnection(const char *zType){
|
| + sqlite3_log(SQLITE_MISUSE,
|
| + "API call with %s database connection pointer",
|
| + zType
|
| + );
|
| +}
|
| +
|
| +/*
|
| +** Check to make sure we have a valid db pointer. This test is not
|
| +** foolproof but it does provide some measure of protection against
|
| +** misuse of the interface such as passing in db pointers that are
|
| +** NULL or which have been previously closed. If this routine returns
|
| +** 1 it means that the db pointer is valid and 0 if it should not be
|
| +** dereferenced for any reason. The calling function should invoke
|
| +** SQLITE_MISUSE immediately.
|
| +**
|
| +** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
| +** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
| +** open properly and is not fit for general use but which can be
|
| +** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
| +*/
|
| +int sqlite3SafetyCheckOk(sqlite3 *db){
|
| + u32 magic;
|
| + if( db==0 ){
|
| + logBadConnection("NULL");
|
| + return 0;
|
| + }
|
| + magic = db->magic;
|
| + if( magic!=SQLITE_MAGIC_OPEN ){
|
| + if( sqlite3SafetyCheckSickOrOk(db) ){
|
| + testcase( sqlite3GlobalConfig.xLog!=0 );
|
| + logBadConnection("unopened");
|
| + }
|
| + return 0;
|
| + }else{
|
| + return 1;
|
| + }
|
| +}
|
| +int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
| + u32 magic;
|
| + magic = db->magic;
|
| + if( magic!=SQLITE_MAGIC_SICK &&
|
| + magic!=SQLITE_MAGIC_OPEN &&
|
| + magic!=SQLITE_MAGIC_BUSY ){
|
| + testcase( sqlite3GlobalConfig.xLog!=0 );
|
| + logBadConnection("invalid");
|
| + return 0;
|
| + }else{
|
| + return 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Attempt to add, substract, or multiply the 64-bit signed value iB against
|
| +** the other 64-bit signed integer at *pA and store the result in *pA.
|
| +** Return 0 on success. Or if the operation would have resulted in an
|
| +** overflow, leave *pA unchanged and return 1.
|
| +*/
|
| +int sqlite3AddInt64(i64 *pA, i64 iB){
|
| + i64 iA = *pA;
|
| + testcase( iA==0 ); testcase( iA==1 );
|
| + testcase( iB==-1 ); testcase( iB==0 );
|
| + if( iB>=0 ){
|
| + testcase( iA>0 && LARGEST_INT64 - iA == iB );
|
| + testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
|
| + if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
|
| + *pA += iB;
|
| + }else{
|
| + testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
|
| + testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
|
| + if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
|
| + *pA += iB;
|
| + }
|
| + return 0;
|
| +}
|
| +int sqlite3SubInt64(i64 *pA, i64 iB){
|
| + testcase( iB==SMALLEST_INT64+1 );
|
| + if( iB==SMALLEST_INT64 ){
|
| + testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
|
| + if( (*pA)>=0 ) return 1;
|
| + *pA -= iB;
|
| + return 0;
|
| + }else{
|
| + return sqlite3AddInt64(pA, -iB);
|
| + }
|
| +}
|
| +#define TWOPOWER32 (((i64)1)<<32)
|
| +#define TWOPOWER31 (((i64)1)<<31)
|
| +int sqlite3MulInt64(i64 *pA, i64 iB){
|
| + i64 iA = *pA;
|
| + i64 iA1, iA0, iB1, iB0, r;
|
| +
|
| + iA1 = iA/TWOPOWER32;
|
| + iA0 = iA % TWOPOWER32;
|
| + iB1 = iB/TWOPOWER32;
|
| + iB0 = iB % TWOPOWER32;
|
| + if( iA1*iB1 != 0 ) return 1;
|
| + assert( iA1*iB0==0 || iA0*iB1==0 );
|
| + r = iA1*iB0 + iA0*iB1;
|
| + testcase( r==(-TWOPOWER31)-1 );
|
| + testcase( r==(-TWOPOWER31) );
|
| + testcase( r==TWOPOWER31 );
|
| + testcase( r==TWOPOWER31-1 );
|
| + if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
|
| + r *= TWOPOWER32;
|
| + if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
|
| + *pA = r;
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Compute the absolute value of a 32-bit signed integer, of possible. Or
|
| +** if the integer has a value of -2147483648, return +2147483647
|
| +*/
|
| +int sqlite3AbsInt32(int x){
|
| + if( x>=0 ) return x;
|
| + if( x==(int)0x80000000 ) return 0x7fffffff;
|
| + return -x;
|
| +}
|
|
|