| Index: third_party/sqlite/src/src/mem5.c
|
| diff --git a/third_party/sqlite/src/src/mem5.c b/third_party/sqlite/src/src/mem5.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..783cef6176c59cbf30914631095a1a54f4e42e08
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/mem5.c
|
| @@ -0,0 +1,581 @@
|
| +/*
|
| +** 2007 October 14
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains the C functions that implement a memory
|
| +** allocation subsystem for use by SQLite.
|
| +**
|
| +** This version of the memory allocation subsystem omits all
|
| +** use of malloc(). The application gives SQLite a block of memory
|
| +** before calling sqlite3_initialize() from which allocations
|
| +** are made and returned by the xMalloc() and xRealloc()
|
| +** implementations. Once sqlite3_initialize() has been called,
|
| +** the amount of memory available to SQLite is fixed and cannot
|
| +** be changed.
|
| +**
|
| +** This version of the memory allocation subsystem is included
|
| +** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
|
| +**
|
| +** This memory allocator uses the following algorithm:
|
| +**
|
| +** 1. All memory allocations sizes are rounded up to a power of 2.
|
| +**
|
| +** 2. If two adjacent free blocks are the halves of a larger block,
|
| +** then the two blocks are coalesed into the single larger block.
|
| +**
|
| +** 3. New memory is allocated from the first available free block.
|
| +**
|
| +** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
|
| +** Concerning Dynamic Storage Allocation". Journal of the Association for
|
| +** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
|
| +**
|
| +** Let n be the size of the largest allocation divided by the minimum
|
| +** allocation size (after rounding all sizes up to a power of 2.) Let M
|
| +** be the maximum amount of memory ever outstanding at one time. Let
|
| +** N be the total amount of memory available for allocation. Robson
|
| +** proved that this memory allocator will never breakdown due to
|
| +** fragmentation as long as the following constraint holds:
|
| +**
|
| +** N >= M*(1 + log2(n)/2) - n + 1
|
| +**
|
| +** The sqlite3_status() logic tracks the maximum values of n and M so
|
| +** that an application can, at any time, verify this constraint.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** This version of the memory allocator is used only when
|
| +** SQLITE_ENABLE_MEMSYS5 is defined.
|
| +*/
|
| +#ifdef SQLITE_ENABLE_MEMSYS5
|
| +
|
| +/*
|
| +** A minimum allocation is an instance of the following structure.
|
| +** Larger allocations are an array of these structures where the
|
| +** size of the array is a power of 2.
|
| +**
|
| +** The size of this object must be a power of two. That fact is
|
| +** verified in memsys5Init().
|
| +*/
|
| +typedef struct Mem5Link Mem5Link;
|
| +struct Mem5Link {
|
| + int next; /* Index of next free chunk */
|
| + int prev; /* Index of previous free chunk */
|
| +};
|
| +
|
| +/*
|
| +** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
|
| +** mem5.szAtom is always at least 8 and 32-bit integers are used,
|
| +** it is not actually possible to reach this limit.
|
| +*/
|
| +#define LOGMAX 30
|
| +
|
| +/*
|
| +** Masks used for mem5.aCtrl[] elements.
|
| +*/
|
| +#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
|
| +#define CTRL_FREE 0x20 /* True if not checked out */
|
| +
|
| +/*
|
| +** All of the static variables used by this module are collected
|
| +** into a single structure named "mem5". This is to keep the
|
| +** static variables organized and to reduce namespace pollution
|
| +** when this module is combined with other in the amalgamation.
|
| +*/
|
| +static SQLITE_WSD struct Mem5Global {
|
| + /*
|
| + ** Memory available for allocation
|
| + */
|
| + int szAtom; /* Smallest possible allocation in bytes */
|
| + int nBlock; /* Number of szAtom sized blocks in zPool */
|
| + u8 *zPool; /* Memory available to be allocated */
|
| +
|
| + /*
|
| + ** Mutex to control access to the memory allocation subsystem.
|
| + */
|
| + sqlite3_mutex *mutex;
|
| +
|
| + /*
|
| + ** Performance statistics
|
| + */
|
| + u64 nAlloc; /* Total number of calls to malloc */
|
| + u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
|
| + u64 totalExcess; /* Total internal fragmentation */
|
| + u32 currentOut; /* Current checkout, including internal fragmentation */
|
| + u32 currentCount; /* Current number of distinct checkouts */
|
| + u32 maxOut; /* Maximum instantaneous currentOut */
|
| + u32 maxCount; /* Maximum instantaneous currentCount */
|
| + u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
|
| +
|
| + /*
|
| + ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
|
| + ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
|
| + ** and so forth.
|
| + */
|
| + int aiFreelist[LOGMAX+1];
|
| +
|
| + /*
|
| + ** Space for tracking which blocks are checked out and the size
|
| + ** of each block. One byte per block.
|
| + */
|
| + u8 *aCtrl;
|
| +
|
| +} mem5;
|
| +
|
| +/*
|
| +** Access the static variable through a macro for SQLITE_OMIT_WSD
|
| +*/
|
| +#define mem5 GLOBAL(struct Mem5Global, mem5)
|
| +
|
| +/*
|
| +** Assuming mem5.zPool is divided up into an array of Mem5Link
|
| +** structures, return a pointer to the idx-th such lik.
|
| +*/
|
| +#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
|
| +
|
| +/*
|
| +** Unlink the chunk at mem5.aPool[i] from list it is currently
|
| +** on. It should be found on mem5.aiFreelist[iLogsize].
|
| +*/
|
| +static void memsys5Unlink(int i, int iLogsize){
|
| + int next, prev;
|
| + assert( i>=0 && i<mem5.nBlock );
|
| + assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
| + assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
| +
|
| + next = MEM5LINK(i)->next;
|
| + prev = MEM5LINK(i)->prev;
|
| + if( prev<0 ){
|
| + mem5.aiFreelist[iLogsize] = next;
|
| + }else{
|
| + MEM5LINK(prev)->next = next;
|
| + }
|
| + if( next>=0 ){
|
| + MEM5LINK(next)->prev = prev;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Link the chunk at mem5.aPool[i] so that is on the iLogsize
|
| +** free list.
|
| +*/
|
| +static void memsys5Link(int i, int iLogsize){
|
| + int x;
|
| + assert( sqlite3_mutex_held(mem5.mutex) );
|
| + assert( i>=0 && i<mem5.nBlock );
|
| + assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
| + assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
| +
|
| + x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
|
| + MEM5LINK(i)->prev = -1;
|
| + if( x>=0 ){
|
| + assert( x<mem5.nBlock );
|
| + MEM5LINK(x)->prev = i;
|
| + }
|
| + mem5.aiFreelist[iLogsize] = i;
|
| +}
|
| +
|
| +/*
|
| +** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
| +** will already be held (obtained by code in malloc.c) if
|
| +** sqlite3GlobalConfig.bMemStat is true.
|
| +*/
|
| +static void memsys5Enter(void){
|
| + sqlite3_mutex_enter(mem5.mutex);
|
| +}
|
| +static void memsys5Leave(void){
|
| + sqlite3_mutex_leave(mem5.mutex);
|
| +}
|
| +
|
| +/*
|
| +** Return the size of an outstanding allocation, in bytes. The
|
| +** size returned omits the 8-byte header overhead. This only
|
| +** works for chunks that are currently checked out.
|
| +*/
|
| +static int memsys5Size(void *p){
|
| + int iSize = 0;
|
| + if( p ){
|
| + int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
|
| + assert( i>=0 && i<mem5.nBlock );
|
| + iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
|
| + }
|
| + return iSize;
|
| +}
|
| +
|
| +/*
|
| +** Find the first entry on the freelist iLogsize. Unlink that
|
| +** entry and return its index.
|
| +*/
|
| +static int memsys5UnlinkFirst(int iLogsize){
|
| + int i;
|
| + int iFirst;
|
| +
|
| + assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
| + i = iFirst = mem5.aiFreelist[iLogsize];
|
| + assert( iFirst>=0 );
|
| + while( i>0 ){
|
| + if( i<iFirst ) iFirst = i;
|
| + i = MEM5LINK(i)->next;
|
| + }
|
| + memsys5Unlink(iFirst, iLogsize);
|
| + return iFirst;
|
| +}
|
| +
|
| +/*
|
| +** Return a block of memory of at least nBytes in size.
|
| +** Return NULL if unable. Return NULL if nBytes==0.
|
| +**
|
| +** The caller guarantees that nByte positive.
|
| +**
|
| +** The caller has obtained a mutex prior to invoking this
|
| +** routine so there is never any chance that two or more
|
| +** threads can be in this routine at the same time.
|
| +*/
|
| +static void *memsys5MallocUnsafe(int nByte){
|
| + int i; /* Index of a mem5.aPool[] slot */
|
| + int iBin; /* Index into mem5.aiFreelist[] */
|
| + int iFullSz; /* Size of allocation rounded up to power of 2 */
|
| + int iLogsize; /* Log2 of iFullSz/POW2_MIN */
|
| +
|
| + /* nByte must be a positive */
|
| + assert( nByte>0 );
|
| +
|
| + /* Keep track of the maximum allocation request. Even unfulfilled
|
| + ** requests are counted */
|
| + if( (u32)nByte>mem5.maxRequest ){
|
| + mem5.maxRequest = nByte;
|
| + }
|
| +
|
| + /* Abort if the requested allocation size is larger than the largest
|
| + ** power of two that we can represent using 32-bit signed integers.
|
| + */
|
| + if( nByte > 0x40000000 ){
|
| + return 0;
|
| + }
|
| +
|
| + /* Round nByte up to the next valid power of two */
|
| + for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
|
| +
|
| + /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
|
| + ** block. If not, then split a block of the next larger power of
|
| + ** two in order to create a new free block of size iLogsize.
|
| + */
|
| + for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
|
| + if( iBin>LOGMAX ){
|
| + testcase( sqlite3GlobalConfig.xLog!=0 );
|
| + sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
|
| + return 0;
|
| + }
|
| + i = memsys5UnlinkFirst(iBin);
|
| + while( iBin>iLogsize ){
|
| + int newSize;
|
| +
|
| + iBin--;
|
| + newSize = 1 << iBin;
|
| + mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
|
| + memsys5Link(i+newSize, iBin);
|
| + }
|
| + mem5.aCtrl[i] = iLogsize;
|
| +
|
| + /* Update allocator performance statistics. */
|
| + mem5.nAlloc++;
|
| + mem5.totalAlloc += iFullSz;
|
| + mem5.totalExcess += iFullSz - nByte;
|
| + mem5.currentCount++;
|
| + mem5.currentOut += iFullSz;
|
| + if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
|
| + if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
|
| +
|
| + /* Return a pointer to the allocated memory. */
|
| + return (void*)&mem5.zPool[i*mem5.szAtom];
|
| +}
|
| +
|
| +/*
|
| +** Free an outstanding memory allocation.
|
| +*/
|
| +static void memsys5FreeUnsafe(void *pOld){
|
| + u32 size, iLogsize;
|
| + int iBlock;
|
| +
|
| + /* Set iBlock to the index of the block pointed to by pOld in
|
| + ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
|
| + */
|
| + iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
|
| +
|
| + /* Check that the pointer pOld points to a valid, non-free block. */
|
| + assert( iBlock>=0 && iBlock<mem5.nBlock );
|
| + assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
|
| + assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
|
| +
|
| + iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
|
| + size = 1<<iLogsize;
|
| + assert( iBlock+size-1<(u32)mem5.nBlock );
|
| +
|
| + mem5.aCtrl[iBlock] |= CTRL_FREE;
|
| + mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
|
| + assert( mem5.currentCount>0 );
|
| + assert( mem5.currentOut>=(size*mem5.szAtom) );
|
| + mem5.currentCount--;
|
| + mem5.currentOut -= size*mem5.szAtom;
|
| + assert( mem5.currentOut>0 || mem5.currentCount==0 );
|
| + assert( mem5.currentCount>0 || mem5.currentOut==0 );
|
| +
|
| + mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
| + while( ALWAYS(iLogsize<LOGMAX) ){
|
| + int iBuddy;
|
| + if( (iBlock>>iLogsize) & 1 ){
|
| + iBuddy = iBlock - size;
|
| + }else{
|
| + iBuddy = iBlock + size;
|
| + }
|
| + assert( iBuddy>=0 );
|
| + if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
|
| + if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
|
| + memsys5Unlink(iBuddy, iLogsize);
|
| + iLogsize++;
|
| + if( iBuddy<iBlock ){
|
| + mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
|
| + mem5.aCtrl[iBlock] = 0;
|
| + iBlock = iBuddy;
|
| + }else{
|
| + mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
| + mem5.aCtrl[iBuddy] = 0;
|
| + }
|
| + size *= 2;
|
| + }
|
| + memsys5Link(iBlock, iLogsize);
|
| +}
|
| +
|
| +/*
|
| +** Allocate nBytes of memory
|
| +*/
|
| +static void *memsys5Malloc(int nBytes){
|
| + sqlite3_int64 *p = 0;
|
| + if( nBytes>0 ){
|
| + memsys5Enter();
|
| + p = memsys5MallocUnsafe(nBytes);
|
| + memsys5Leave();
|
| + }
|
| + return (void*)p;
|
| +}
|
| +
|
| +/*
|
| +** Free memory.
|
| +**
|
| +** The outer layer memory allocator prevents this routine from
|
| +** being called with pPrior==0.
|
| +*/
|
| +static void memsys5Free(void *pPrior){
|
| + assert( pPrior!=0 );
|
| + memsys5Enter();
|
| + memsys5FreeUnsafe(pPrior);
|
| + memsys5Leave();
|
| +}
|
| +
|
| +/*
|
| +** Change the size of an existing memory allocation.
|
| +**
|
| +** The outer layer memory allocator prevents this routine from
|
| +** being called with pPrior==0.
|
| +**
|
| +** nBytes is always a value obtained from a prior call to
|
| +** memsys5Round(). Hence nBytes is always a non-negative power
|
| +** of two. If nBytes==0 that means that an oversize allocation
|
| +** (an allocation larger than 0x40000000) was requested and this
|
| +** routine should return 0 without freeing pPrior.
|
| +*/
|
| +static void *memsys5Realloc(void *pPrior, int nBytes){
|
| + int nOld;
|
| + void *p;
|
| + assert( pPrior!=0 );
|
| + assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
|
| + assert( nBytes>=0 );
|
| + if( nBytes==0 ){
|
| + return 0;
|
| + }
|
| + nOld = memsys5Size(pPrior);
|
| + if( nBytes<=nOld ){
|
| + return pPrior;
|
| + }
|
| + memsys5Enter();
|
| + p = memsys5MallocUnsafe(nBytes);
|
| + if( p ){
|
| + memcpy(p, pPrior, nOld);
|
| + memsys5FreeUnsafe(pPrior);
|
| + }
|
| + memsys5Leave();
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Round up a request size to the next valid allocation size. If
|
| +** the allocation is too large to be handled by this allocation system,
|
| +** return 0.
|
| +**
|
| +** All allocations must be a power of two and must be expressed by a
|
| +** 32-bit signed integer. Hence the largest allocation is 0x40000000
|
| +** or 1073741824 bytes.
|
| +*/
|
| +static int memsys5Roundup(int n){
|
| + int iFullSz;
|
| + if( n > 0x40000000 ) return 0;
|
| + for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
|
| + return iFullSz;
|
| +}
|
| +
|
| +/*
|
| +** Return the ceiling of the logarithm base 2 of iValue.
|
| +**
|
| +** Examples: memsys5Log(1) -> 0
|
| +** memsys5Log(2) -> 1
|
| +** memsys5Log(4) -> 2
|
| +** memsys5Log(5) -> 3
|
| +** memsys5Log(8) -> 3
|
| +** memsys5Log(9) -> 4
|
| +*/
|
| +static int memsys5Log(int iValue){
|
| + int iLog;
|
| + for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
|
| + return iLog;
|
| +}
|
| +
|
| +/*
|
| +** Initialize the memory allocator.
|
| +**
|
| +** This routine is not threadsafe. The caller must be holding a mutex
|
| +** to prevent multiple threads from entering at the same time.
|
| +*/
|
| +static int memsys5Init(void *NotUsed){
|
| + int ii; /* Loop counter */
|
| + int nByte; /* Number of bytes of memory available to this allocator */
|
| + u8 *zByte; /* Memory usable by this allocator */
|
| + int nMinLog; /* Log base 2 of minimum allocation size in bytes */
|
| + int iOffset; /* An offset into mem5.aCtrl[] */
|
| +
|
| + UNUSED_PARAMETER(NotUsed);
|
| +
|
| + /* For the purposes of this routine, disable the mutex */
|
| + mem5.mutex = 0;
|
| +
|
| + /* The size of a Mem5Link object must be a power of two. Verify that
|
| + ** this is case.
|
| + */
|
| + assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
|
| +
|
| + nByte = sqlite3GlobalConfig.nHeap;
|
| + zByte = (u8*)sqlite3GlobalConfig.pHeap;
|
| + assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
|
| +
|
| + /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
|
| + nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
|
| + mem5.szAtom = (1<<nMinLog);
|
| + while( (int)sizeof(Mem5Link)>mem5.szAtom ){
|
| + mem5.szAtom = mem5.szAtom << 1;
|
| + }
|
| +
|
| + mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
|
| + mem5.zPool = zByte;
|
| + mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
|
| +
|
| + for(ii=0; ii<=LOGMAX; ii++){
|
| + mem5.aiFreelist[ii] = -1;
|
| + }
|
| +
|
| + iOffset = 0;
|
| + for(ii=LOGMAX; ii>=0; ii--){
|
| + int nAlloc = (1<<ii);
|
| + if( (iOffset+nAlloc)<=mem5.nBlock ){
|
| + mem5.aCtrl[iOffset] = ii | CTRL_FREE;
|
| + memsys5Link(iOffset, ii);
|
| + iOffset += nAlloc;
|
| + }
|
| + assert((iOffset+nAlloc)>mem5.nBlock);
|
| + }
|
| +
|
| + /* If a mutex is required for normal operation, allocate one */
|
| + if( sqlite3GlobalConfig.bMemstat==0 ){
|
| + mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Deinitialize this module.
|
| +*/
|
| +static void memsys5Shutdown(void *NotUsed){
|
| + UNUSED_PARAMETER(NotUsed);
|
| + mem5.mutex = 0;
|
| + return;
|
| +}
|
| +
|
| +#ifdef SQLITE_TEST
|
| +/*
|
| +** Open the file indicated and write a log of all unfreed memory
|
| +** allocations into that log.
|
| +*/
|
| +void sqlite3Memsys5Dump(const char *zFilename){
|
| + FILE *out;
|
| + int i, j, n;
|
| + int nMinLog;
|
| +
|
| + if( zFilename==0 || zFilename[0]==0 ){
|
| + out = stdout;
|
| + }else{
|
| + out = fopen(zFilename, "w");
|
| + if( out==0 ){
|
| + fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
| + zFilename);
|
| + return;
|
| + }
|
| + }
|
| + memsys5Enter();
|
| + nMinLog = memsys5Log(mem5.szAtom);
|
| + for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
|
| + for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
|
| + fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
|
| + }
|
| + fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
|
| + fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
|
| + fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
|
| + fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
|
| + fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
|
| + fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
|
| + fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
|
| + fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
|
| + memsys5Leave();
|
| + if( out==stdout ){
|
| + fflush(stdout);
|
| + }else{
|
| + fclose(out);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** This routine is the only routine in this file with external
|
| +** linkage. It returns a pointer to a static sqlite3_mem_methods
|
| +** struct populated with the memsys5 methods.
|
| +*/
|
| +const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
|
| + static const sqlite3_mem_methods memsys5Methods = {
|
| + memsys5Malloc,
|
| + memsys5Free,
|
| + memsys5Realloc,
|
| + memsys5Size,
|
| + memsys5Roundup,
|
| + memsys5Init,
|
| + memsys5Shutdown,
|
| + 0
|
| + };
|
| + return &memsys5Methods;
|
| +}
|
| +
|
| +#endif /* SQLITE_ENABLE_MEMSYS5 */
|
|
|