| Index: third_party/sqlite/src/src/build.c
|
| diff --git a/third_party/sqlite/src/src/build.c b/third_party/sqlite/src/src/build.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..25a74ca7ed250873d1e31614772656bba0d06938
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/build.c
|
| @@ -0,0 +1,3757 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains C code routines that are called by the SQLite parser
|
| +** when syntax rules are reduced. The routines in this file handle the
|
| +** following kinds of SQL syntax:
|
| +**
|
| +** CREATE TABLE
|
| +** DROP TABLE
|
| +** CREATE INDEX
|
| +** DROP INDEX
|
| +** creating ID lists
|
| +** BEGIN TRANSACTION
|
| +** COMMIT
|
| +** ROLLBACK
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** This routine is called when a new SQL statement is beginning to
|
| +** be parsed. Initialize the pParse structure as needed.
|
| +*/
|
| +void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
| + pParse->explain = (u8)explainFlag;
|
| + pParse->nVar = 0;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_SHARED_CACHE
|
| +/*
|
| +** The TableLock structure is only used by the sqlite3TableLock() and
|
| +** codeTableLocks() functions.
|
| +*/
|
| +struct TableLock {
|
| + int iDb; /* The database containing the table to be locked */
|
| + int iTab; /* The root page of the table to be locked */
|
| + u8 isWriteLock; /* True for write lock. False for a read lock */
|
| + const char *zName; /* Name of the table */
|
| +};
|
| +
|
| +/*
|
| +** Record the fact that we want to lock a table at run-time.
|
| +**
|
| +** The table to be locked has root page iTab and is found in database iDb.
|
| +** A read or a write lock can be taken depending on isWritelock.
|
| +**
|
| +** This routine just records the fact that the lock is desired. The
|
| +** code to make the lock occur is generated by a later call to
|
| +** codeTableLocks() which occurs during sqlite3FinishCoding().
|
| +*/
|
| +void sqlite3TableLock(
|
| + Parse *pParse, /* Parsing context */
|
| + int iDb, /* Index of the database containing the table to lock */
|
| + int iTab, /* Root page number of the table to be locked */
|
| + u8 isWriteLock, /* True for a write lock */
|
| + const char *zName /* Name of the table to be locked */
|
| +){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + int i;
|
| + int nBytes;
|
| + TableLock *p;
|
| + assert( iDb>=0 );
|
| +
|
| + for(i=0; i<pToplevel->nTableLock; i++){
|
| + p = &pToplevel->aTableLock[i];
|
| + if( p->iDb==iDb && p->iTab==iTab ){
|
| + p->isWriteLock = (p->isWriteLock || isWriteLock);
|
| + return;
|
| + }
|
| + }
|
| +
|
| + nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
|
| + pToplevel->aTableLock =
|
| + sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
|
| + if( pToplevel->aTableLock ){
|
| + p = &pToplevel->aTableLock[pToplevel->nTableLock++];
|
| + p->iDb = iDb;
|
| + p->iTab = iTab;
|
| + p->isWriteLock = isWriteLock;
|
| + p->zName = zName;
|
| + }else{
|
| + pToplevel->nTableLock = 0;
|
| + pToplevel->db->mallocFailed = 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Code an OP_TableLock instruction for each table locked by the
|
| +** statement (configured by calls to sqlite3TableLock()).
|
| +*/
|
| +static void codeTableLocks(Parse *pParse){
|
| + int i;
|
| + Vdbe *pVdbe;
|
| +
|
| + pVdbe = sqlite3GetVdbe(pParse);
|
| + assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
|
| +
|
| + for(i=0; i<pParse->nTableLock; i++){
|
| + TableLock *p = &pParse->aTableLock[i];
|
| + int p1 = p->iDb;
|
| + sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
|
| + p->zName, P4_STATIC);
|
| + }
|
| +}
|
| +#else
|
| + #define codeTableLocks(x)
|
| +#endif
|
| +
|
| +/*
|
| +** This routine is called after a single SQL statement has been
|
| +** parsed and a VDBE program to execute that statement has been
|
| +** prepared. This routine puts the finishing touches on the
|
| +** VDBE program and resets the pParse structure for the next
|
| +** parse.
|
| +**
|
| +** Note that if an error occurred, it might be the case that
|
| +** no VDBE code was generated.
|
| +*/
|
| +void sqlite3FinishCoding(Parse *pParse){
|
| + sqlite3 *db;
|
| + Vdbe *v;
|
| +
|
| + db = pParse->db;
|
| + if( db->mallocFailed ) return;
|
| + if( pParse->nested ) return;
|
| + if( pParse->nErr ) return;
|
| +
|
| + /* Begin by generating some termination code at the end of the
|
| + ** vdbe program
|
| + */
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( !pParse->isMultiWrite
|
| + || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
|
| + if( v ){
|
| + sqlite3VdbeAddOp0(v, OP_Halt);
|
| +
|
| + /* The cookie mask contains one bit for each database file open.
|
| + ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
| + ** set for each database that is used. Generate code to start a
|
| + ** transaction on each used database and to verify the schema cookie
|
| + ** on each used database.
|
| + */
|
| + if( pParse->cookieGoto>0 ){
|
| + yDbMask mask;
|
| + int iDb;
|
| + sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
|
| + for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
|
| + if( (mask & pParse->cookieMask)==0 ) continue;
|
| + sqlite3VdbeUsesBtree(v, iDb);
|
| + sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
|
| + if( db->init.busy==0 ){
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + sqlite3VdbeAddOp3(v, OP_VerifyCookie,
|
| + iDb, pParse->cookieValue[iDb],
|
| + db->aDb[iDb].pSchema->iGeneration);
|
| + }
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + {
|
| + int i;
|
| + for(i=0; i<pParse->nVtabLock; i++){
|
| + char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
|
| + sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
|
| + }
|
| + pParse->nVtabLock = 0;
|
| + }
|
| +#endif
|
| +
|
| + /* Once all the cookies have been verified and transactions opened,
|
| + ** obtain the required table-locks. This is a no-op unless the
|
| + ** shared-cache feature is enabled.
|
| + */
|
| + codeTableLocks(pParse);
|
| +
|
| + /* Initialize any AUTOINCREMENT data structures required.
|
| + */
|
| + sqlite3AutoincrementBegin(pParse);
|
| +
|
| + /* Finally, jump back to the beginning of the executable code. */
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
|
| + }
|
| + }
|
| +
|
| +
|
| + /* Get the VDBE program ready for execution
|
| + */
|
| + if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
|
| +#ifdef SQLITE_DEBUG
|
| + FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
| + sqlite3VdbeTrace(v, trace);
|
| +#endif
|
| + assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
|
| + /* A minimum of one cursor is required if autoincrement is used
|
| + * See ticket [a696379c1f08866] */
|
| + if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
|
| + sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
|
| + pParse->nTab, pParse->nMaxArg, pParse->explain,
|
| + pParse->isMultiWrite && pParse->mayAbort);
|
| + pParse->rc = SQLITE_DONE;
|
| + pParse->colNamesSet = 0;
|
| + }else{
|
| + pParse->rc = SQLITE_ERROR;
|
| + }
|
| + pParse->nTab = 0;
|
| + pParse->nMem = 0;
|
| + pParse->nSet = 0;
|
| + pParse->nVar = 0;
|
| + pParse->cookieMask = 0;
|
| + pParse->cookieGoto = 0;
|
| +}
|
| +
|
| +/*
|
| +** Run the parser and code generator recursively in order to generate
|
| +** code for the SQL statement given onto the end of the pParse context
|
| +** currently under construction. When the parser is run recursively
|
| +** this way, the final OP_Halt is not appended and other initialization
|
| +** and finalization steps are omitted because those are handling by the
|
| +** outermost parser.
|
| +**
|
| +** Not everything is nestable. This facility is designed to permit
|
| +** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
|
| +** care if you decide to try to use this routine for some other purposes.
|
| +*/
|
| +void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
| + va_list ap;
|
| + char *zSql;
|
| + char *zErrMsg = 0;
|
| + sqlite3 *db = pParse->db;
|
| +# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
|
| + char saveBuf[SAVE_SZ];
|
| +
|
| + if( pParse->nErr ) return;
|
| + assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
| + va_start(ap, zFormat);
|
| + zSql = sqlite3VMPrintf(db, zFormat, ap);
|
| + va_end(ap);
|
| + if( zSql==0 ){
|
| + return; /* A malloc must have failed */
|
| + }
|
| + pParse->nested++;
|
| + memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
|
| + memset(&pParse->nVar, 0, SAVE_SZ);
|
| + sqlite3RunParser(pParse, zSql, &zErrMsg);
|
| + sqlite3DbFree(db, zErrMsg);
|
| + sqlite3DbFree(db, zSql);
|
| + memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
|
| + pParse->nested--;
|
| +}
|
| +
|
| +/*
|
| +** Locate the in-memory structure that describes a particular database
|
| +** table given the name of that table and (optionally) the name of the
|
| +** database containing the table. Return NULL if not found.
|
| +**
|
| +** If zDatabase is 0, all databases are searched for the table and the
|
| +** first matching table is returned. (No checking for duplicate table
|
| +** names is done.) The search order is TEMP first, then MAIN, then any
|
| +** auxiliary databases added using the ATTACH command.
|
| +**
|
| +** See also sqlite3LocateTable().
|
| +*/
|
| +Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
| + Table *p = 0;
|
| + int i;
|
| + int nName;
|
| + assert( zName!=0 );
|
| + nName = sqlite3Strlen30(zName);
|
| + /* All mutexes are required for schema access. Make sure we hold them. */
|
| + assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
| + for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
| + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
| + if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
| + assert( sqlite3SchemaMutexHeld(db, j, 0) );
|
| + p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
|
| + if( p ) break;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Locate the in-memory structure that describes a particular database
|
| +** table given the name of that table and (optionally) the name of the
|
| +** database containing the table. Return NULL if not found. Also leave an
|
| +** error message in pParse->zErrMsg.
|
| +**
|
| +** The difference between this routine and sqlite3FindTable() is that this
|
| +** routine leaves an error message in pParse->zErrMsg where
|
| +** sqlite3FindTable() does not.
|
| +*/
|
| +Table *sqlite3LocateTable(
|
| + Parse *pParse, /* context in which to report errors */
|
| + int isView, /* True if looking for a VIEW rather than a TABLE */
|
| + const char *zName, /* Name of the table we are looking for */
|
| + const char *zDbase /* Name of the database. Might be NULL */
|
| +){
|
| + Table *p;
|
| +
|
| + /* Read the database schema. If an error occurs, leave an error message
|
| + ** and code in pParse and return NULL. */
|
| + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| + return 0;
|
| + }
|
| +
|
| + p = sqlite3FindTable(pParse->db, zName, zDbase);
|
| + if( p==0 ){
|
| + const char *zMsg = isView ? "no such view" : "no such table";
|
| + if( zDbase ){
|
| + sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
|
| + }else{
|
| + sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
|
| + }
|
| + pParse->checkSchema = 1;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Locate the in-memory structure that describes
|
| +** a particular index given the name of that index
|
| +** and the name of the database that contains the index.
|
| +** Return NULL if not found.
|
| +**
|
| +** If zDatabase is 0, all databases are searched for the
|
| +** table and the first matching index is returned. (No checking
|
| +** for duplicate index names is done.) The search order is
|
| +** TEMP first, then MAIN, then any auxiliary databases added
|
| +** using the ATTACH command.
|
| +*/
|
| +Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
| + Index *p = 0;
|
| + int i;
|
| + int nName = sqlite3Strlen30(zName);
|
| + /* All mutexes are required for schema access. Make sure we hold them. */
|
| + assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
| + for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
| + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
| + Schema *pSchema = db->aDb[j].pSchema;
|
| + assert( pSchema );
|
| + if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
| + assert( sqlite3SchemaMutexHeld(db, j, 0) );
|
| + p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
|
| + if( p ) break;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Reclaim the memory used by an index
|
| +*/
|
| +static void freeIndex(sqlite3 *db, Index *p){
|
| +#ifndef SQLITE_OMIT_ANALYZE
|
| + sqlite3DeleteIndexSamples(db, p);
|
| +#endif
|
| + sqlite3DbFree(db, p->zColAff);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** For the index called zIdxName which is found in the database iDb,
|
| +** unlike that index from its Table then remove the index from
|
| +** the index hash table and free all memory structures associated
|
| +** with the index.
|
| +*/
|
| +void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
| + Index *pIndex;
|
| + int len;
|
| + Hash *pHash;
|
| +
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + pHash = &db->aDb[iDb].pSchema->idxHash;
|
| + len = sqlite3Strlen30(zIdxName);
|
| + pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
|
| + if( ALWAYS(pIndex) ){
|
| + if( pIndex->pTable->pIndex==pIndex ){
|
| + pIndex->pTable->pIndex = pIndex->pNext;
|
| + }else{
|
| + Index *p;
|
| + /* Justification of ALWAYS(); The index must be on the list of
|
| + ** indices. */
|
| + p = pIndex->pTable->pIndex;
|
| + while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
|
| + if( ALWAYS(p && p->pNext==pIndex) ){
|
| + p->pNext = pIndex->pNext;
|
| + }
|
| + }
|
| + freeIndex(db, pIndex);
|
| + }
|
| + db->flags |= SQLITE_InternChanges;
|
| +}
|
| +
|
| +/*
|
| +** Erase all schema information from the in-memory hash tables of
|
| +** a single database. This routine is called to reclaim memory
|
| +** before the database closes. It is also called during a rollback
|
| +** if there were schema changes during the transaction or if a
|
| +** schema-cookie mismatch occurs.
|
| +**
|
| +** If iDb<0 then reset the internal schema tables for all database
|
| +** files. If iDb>=0 then reset the internal schema for only the
|
| +** single file indicated.
|
| +*/
|
| +void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
|
| + int i, j;
|
| + assert( iDb<db->nDb );
|
| +
|
| + if( iDb>=0 ){
|
| + /* Case 1: Reset the single schema identified by iDb */
|
| + Db *pDb = &db->aDb[iDb];
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + assert( pDb->pSchema!=0 );
|
| + sqlite3SchemaClear(pDb->pSchema);
|
| +
|
| + /* If any database other than TEMP is reset, then also reset TEMP
|
| + ** since TEMP might be holding triggers that reference tables in the
|
| + ** other database.
|
| + */
|
| + if( iDb!=1 ){
|
| + pDb = &db->aDb[1];
|
| + assert( pDb->pSchema!=0 );
|
| + sqlite3SchemaClear(pDb->pSchema);
|
| + }
|
| + return;
|
| + }
|
| + /* Case 2 (from here to the end): Reset all schemas for all attached
|
| + ** databases. */
|
| + assert( iDb<0 );
|
| + sqlite3BtreeEnterAll(db);
|
| + for(i=0; i<db->nDb; i++){
|
| + Db *pDb = &db->aDb[i];
|
| + if( pDb->pSchema ){
|
| + sqlite3SchemaClear(pDb->pSchema);
|
| + }
|
| + }
|
| + db->flags &= ~SQLITE_InternChanges;
|
| + sqlite3VtabUnlockList(db);
|
| + sqlite3BtreeLeaveAll(db);
|
| +
|
| + /* If one or more of the auxiliary database files has been closed,
|
| + ** then remove them from the auxiliary database list. We take the
|
| + ** opportunity to do this here since we have just deleted all of the
|
| + ** schema hash tables and therefore do not have to make any changes
|
| + ** to any of those tables.
|
| + */
|
| + for(i=j=2; i<db->nDb; i++){
|
| + struct Db *pDb = &db->aDb[i];
|
| + if( pDb->pBt==0 ){
|
| + sqlite3DbFree(db, pDb->zName);
|
| + pDb->zName = 0;
|
| + continue;
|
| + }
|
| + if( j<i ){
|
| + db->aDb[j] = db->aDb[i];
|
| + }
|
| + j++;
|
| + }
|
| + memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
| + db->nDb = j;
|
| + if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
| + memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
| + sqlite3DbFree(db, db->aDb);
|
| + db->aDb = db->aDbStatic;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This routine is called when a commit occurs.
|
| +*/
|
| +void sqlite3CommitInternalChanges(sqlite3 *db){
|
| + db->flags &= ~SQLITE_InternChanges;
|
| +}
|
| +
|
| +/*
|
| +** Delete memory allocated for the column names of a table or view (the
|
| +** Table.aCol[] array).
|
| +*/
|
| +static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
|
| + int i;
|
| + Column *pCol;
|
| + assert( pTable!=0 );
|
| + if( (pCol = pTable->aCol)!=0 ){
|
| + for(i=0; i<pTable->nCol; i++, pCol++){
|
| + sqlite3DbFree(db, pCol->zName);
|
| + sqlite3ExprDelete(db, pCol->pDflt);
|
| + sqlite3DbFree(db, pCol->zDflt);
|
| + sqlite3DbFree(db, pCol->zType);
|
| + sqlite3DbFree(db, pCol->zColl);
|
| + }
|
| + sqlite3DbFree(db, pTable->aCol);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Remove the memory data structures associated with the given
|
| +** Table. No changes are made to disk by this routine.
|
| +**
|
| +** This routine just deletes the data structure. It does not unlink
|
| +** the table data structure from the hash table. But it does destroy
|
| +** memory structures of the indices and foreign keys associated with
|
| +** the table.
|
| +*/
|
| +void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
|
| + Index *pIndex, *pNext;
|
| +
|
| + assert( !pTable || pTable->nRef>0 );
|
| +
|
| + /* Do not delete the table until the reference count reaches zero. */
|
| + if( !pTable ) return;
|
| + if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
|
| +
|
| + /* Delete all indices associated with this table. */
|
| + for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
| + pNext = pIndex->pNext;
|
| + assert( pIndex->pSchema==pTable->pSchema );
|
| + if( !db || db->pnBytesFreed==0 ){
|
| + char *zName = pIndex->zName;
|
| + TESTONLY ( Index *pOld = ) sqlite3HashInsert(
|
| + &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
|
| + );
|
| + assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
| + assert( pOld==pIndex || pOld==0 );
|
| + }
|
| + freeIndex(db, pIndex);
|
| + }
|
| +
|
| + /* Delete any foreign keys attached to this table. */
|
| + sqlite3FkDelete(db, pTable);
|
| +
|
| + /* Delete the Table structure itself.
|
| + */
|
| + sqliteDeleteColumnNames(db, pTable);
|
| + sqlite3DbFree(db, pTable->zName);
|
| + sqlite3DbFree(db, pTable->zColAff);
|
| + sqlite3SelectDelete(db, pTable->pSelect);
|
| +#ifndef SQLITE_OMIT_CHECK
|
| + sqlite3ExprDelete(db, pTable->pCheck);
|
| +#endif
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + sqlite3VtabClear(db, pTable);
|
| +#endif
|
| + sqlite3DbFree(db, pTable);
|
| +}
|
| +
|
| +/*
|
| +** Unlink the given table from the hash tables and the delete the
|
| +** table structure with all its indices and foreign keys.
|
| +*/
|
| +void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
| + Table *p;
|
| + Db *pDb;
|
| +
|
| + assert( db!=0 );
|
| + assert( iDb>=0 && iDb<db->nDb );
|
| + assert( zTabName );
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
|
| + pDb = &db->aDb[iDb];
|
| + p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
|
| + sqlite3Strlen30(zTabName),0);
|
| + sqlite3DeleteTable(db, p);
|
| + db->flags |= SQLITE_InternChanges;
|
| +}
|
| +
|
| +/*
|
| +** Given a token, return a string that consists of the text of that
|
| +** token. Space to hold the returned string
|
| +** is obtained from sqliteMalloc() and must be freed by the calling
|
| +** function.
|
| +**
|
| +** Any quotation marks (ex: "name", 'name', [name], or `name`) that
|
| +** surround the body of the token are removed.
|
| +**
|
| +** Tokens are often just pointers into the original SQL text and so
|
| +** are not \000 terminated and are not persistent. The returned string
|
| +** is \000 terminated and is persistent.
|
| +*/
|
| +char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
|
| + char *zName;
|
| + if( pName ){
|
| + zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
|
| + sqlite3Dequote(zName);
|
| + }else{
|
| + zName = 0;
|
| + }
|
| + return zName;
|
| +}
|
| +
|
| +/*
|
| +** Open the sqlite_master table stored in database number iDb for
|
| +** writing. The table is opened using cursor 0.
|
| +*/
|
| +void sqlite3OpenMasterTable(Parse *p, int iDb){
|
| + Vdbe *v = sqlite3GetVdbe(p);
|
| + sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
|
| + sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
|
| + sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
|
| + if( p->nTab==0 ){
|
| + p->nTab = 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Parameter zName points to a nul-terminated buffer containing the name
|
| +** of a database ("main", "temp" or the name of an attached db). This
|
| +** function returns the index of the named database in db->aDb[], or
|
| +** -1 if the named db cannot be found.
|
| +*/
|
| +int sqlite3FindDbName(sqlite3 *db, const char *zName){
|
| + int i = -1; /* Database number */
|
| + if( zName ){
|
| + Db *pDb;
|
| + int n = sqlite3Strlen30(zName);
|
| + for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
| + if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
|
| + 0==sqlite3StrICmp(pDb->zName, zName) ){
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + return i;
|
| +}
|
| +
|
| +/*
|
| +** The token *pName contains the name of a database (either "main" or
|
| +** "temp" or the name of an attached db). This routine returns the
|
| +** index of the named database in db->aDb[], or -1 if the named db
|
| +** does not exist.
|
| +*/
|
| +int sqlite3FindDb(sqlite3 *db, Token *pName){
|
| + int i; /* Database number */
|
| + char *zName; /* Name we are searching for */
|
| + zName = sqlite3NameFromToken(db, pName);
|
| + i = sqlite3FindDbName(db, zName);
|
| + sqlite3DbFree(db, zName);
|
| + return i;
|
| +}
|
| +
|
| +/* The table or view or trigger name is passed to this routine via tokens
|
| +** pName1 and pName2. If the table name was fully qualified, for example:
|
| +**
|
| +** CREATE TABLE xxx.yyy (...);
|
| +**
|
| +** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
| +** the table name is not fully qualified, i.e.:
|
| +**
|
| +** CREATE TABLE yyy(...);
|
| +**
|
| +** Then pName1 is set to "yyy" and pName2 is "".
|
| +**
|
| +** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
| +** pName2) that stores the unqualified table name. The index of the
|
| +** database "xxx" is returned.
|
| +*/
|
| +int sqlite3TwoPartName(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
| + Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
| + Token **pUnqual /* Write the unqualified object name here */
|
| +){
|
| + int iDb; /* Database holding the object */
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + if( ALWAYS(pName2!=0) && pName2->n>0 ){
|
| + if( db->init.busy ) {
|
| + sqlite3ErrorMsg(pParse, "corrupt database");
|
| + pParse->nErr++;
|
| + return -1;
|
| + }
|
| + *pUnqual = pName2;
|
| + iDb = sqlite3FindDb(db, pName1);
|
| + if( iDb<0 ){
|
| + sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
| + pParse->nErr++;
|
| + return -1;
|
| + }
|
| + }else{
|
| + assert( db->init.iDb==0 || db->init.busy );
|
| + iDb = db->init.iDb;
|
| + *pUnqual = pName1;
|
| + }
|
| + return iDb;
|
| +}
|
| +
|
| +/*
|
| +** This routine is used to check if the UTF-8 string zName is a legal
|
| +** unqualified name for a new schema object (table, index, view or
|
| +** trigger). All names are legal except those that begin with the string
|
| +** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
| +** is reserved for internal use.
|
| +*/
|
| +int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
| + if( !pParse->db->init.busy && pParse->nested==0
|
| + && (pParse->db->flags & SQLITE_WriteSchema)==0
|
| + && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
| + sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
| + return SQLITE_ERROR;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Begin constructing a new table representation in memory. This is
|
| +** the first of several action routines that get called in response
|
| +** to a CREATE TABLE statement. In particular, this routine is called
|
| +** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
| +** flag is true if the table should be stored in the auxiliary database
|
| +** file instead of in the main database file. This is normally the case
|
| +** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
| +** CREATE and TABLE.
|
| +**
|
| +** The new table record is initialized and put in pParse->pNewTable.
|
| +** As more of the CREATE TABLE statement is parsed, additional action
|
| +** routines will be called to add more information to this record.
|
| +** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
| +** is called to complete the construction of the new table record.
|
| +*/
|
| +void sqlite3StartTable(
|
| + Parse *pParse, /* Parser context */
|
| + Token *pName1, /* First part of the name of the table or view */
|
| + Token *pName2, /* Second part of the name of the table or view */
|
| + int isTemp, /* True if this is a TEMP table */
|
| + int isView, /* True if this is a VIEW */
|
| + int isVirtual, /* True if this is a VIRTUAL table */
|
| + int noErr /* Do nothing if table already exists */
|
| +){
|
| + Table *pTable;
|
| + char *zName = 0; /* The name of the new table */
|
| + sqlite3 *db = pParse->db;
|
| + Vdbe *v;
|
| + int iDb; /* Database number to create the table in */
|
| + Token *pName; /* Unqualified name of the table to create */
|
| +
|
| + /* The table or view name to create is passed to this routine via tokens
|
| + ** pName1 and pName2. If the table name was fully qualified, for example:
|
| + **
|
| + ** CREATE TABLE xxx.yyy (...);
|
| + **
|
| + ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
| + ** the table name is not fully qualified, i.e.:
|
| + **
|
| + ** CREATE TABLE yyy(...);
|
| + **
|
| + ** Then pName1 is set to "yyy" and pName2 is "".
|
| + **
|
| + ** The call below sets the pName pointer to point at the token (pName1 or
|
| + ** pName2) that stores the unqualified table name. The variable iDb is
|
| + ** set to the index of the database that the table or view is to be
|
| + ** created in.
|
| + */
|
| + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| + if( iDb<0 ) return;
|
| + if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
|
| + /* If creating a temp table, the name may not be qualified. Unless
|
| + ** the database name is "temp" anyway. */
|
| + sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
| + return;
|
| + }
|
| + if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
| +
|
| + pParse->sNameToken = *pName;
|
| + zName = sqlite3NameFromToken(db, pName);
|
| + if( zName==0 ) return;
|
| + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
| + goto begin_table_error;
|
| + }
|
| + if( db->init.iDb==1 ) isTemp = 1;
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + assert( (isTemp & 1)==isTemp );
|
| + {
|
| + int code;
|
| + char *zDb = db->aDb[iDb].zName;
|
| + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
| + goto begin_table_error;
|
| + }
|
| + if( isView ){
|
| + if( !OMIT_TEMPDB && isTemp ){
|
| + code = SQLITE_CREATE_TEMP_VIEW;
|
| + }else{
|
| + code = SQLITE_CREATE_VIEW;
|
| + }
|
| + }else{
|
| + if( !OMIT_TEMPDB && isTemp ){
|
| + code = SQLITE_CREATE_TEMP_TABLE;
|
| + }else{
|
| + code = SQLITE_CREATE_TABLE;
|
| + }
|
| + }
|
| + if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
| + goto begin_table_error;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Make sure the new table name does not collide with an existing
|
| + ** index or table name in the same database. Issue an error message if
|
| + ** it does. The exception is if the statement being parsed was passed
|
| + ** to an sqlite3_declare_vtab() call. In that case only the column names
|
| + ** and types will be used, so there is no need to test for namespace
|
| + ** collisions.
|
| + */
|
| + if( !IN_DECLARE_VTAB ){
|
| + char *zDb = db->aDb[iDb].zName;
|
| + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| + goto begin_table_error;
|
| + }
|
| + pTable = sqlite3FindTable(db, zName, zDb);
|
| + if( pTable ){
|
| + if( !noErr ){
|
| + sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
| + }else{
|
| + assert( !db->init.busy );
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + }
|
| + goto begin_table_error;
|
| + }
|
| + if( sqlite3FindIndex(db, zName, zDb)!=0 ){
|
| + sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
| + goto begin_table_error;
|
| + }
|
| + }
|
| +
|
| + pTable = sqlite3DbMallocZero(db, sizeof(Table));
|
| + if( pTable==0 ){
|
| + db->mallocFailed = 1;
|
| + pParse->rc = SQLITE_NOMEM;
|
| + pParse->nErr++;
|
| + goto begin_table_error;
|
| + }
|
| + pTable->zName = zName;
|
| + pTable->iPKey = -1;
|
| + pTable->pSchema = db->aDb[iDb].pSchema;
|
| + pTable->nRef = 1;
|
| + pTable->nRowEst = 1000000;
|
| + assert( pParse->pNewTable==0 );
|
| + pParse->pNewTable = pTable;
|
| +
|
| + /* If this is the magic sqlite_sequence table used by autoincrement,
|
| + ** then record a pointer to this table in the main database structure
|
| + ** so that INSERT can find the table easily.
|
| + */
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| + if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + pTable->pSchema->pSeqTab = pTable;
|
| + }
|
| +#endif
|
| +
|
| + /* Begin generating the code that will insert the table record into
|
| + ** the SQLITE_MASTER table. Note in particular that we must go ahead
|
| + ** and allocate the record number for the table entry now. Before any
|
| + ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
| + ** indices to be created and the table record must come before the
|
| + ** indices. Hence, the record number for the table must be allocated
|
| + ** now.
|
| + */
|
| + if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
| + int j1;
|
| + int fileFormat;
|
| + int reg1, reg2, reg3;
|
| + sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( isVirtual ){
|
| + sqlite3VdbeAddOp0(v, OP_VBegin);
|
| + }
|
| +#endif
|
| +
|
| + /* If the file format and encoding in the database have not been set,
|
| + ** set them now.
|
| + */
|
| + reg1 = pParse->regRowid = ++pParse->nMem;
|
| + reg2 = pParse->regRoot = ++pParse->nMem;
|
| + reg3 = ++pParse->nMem;
|
| + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
|
| + sqlite3VdbeUsesBtree(v, iDb);
|
| + j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
|
| + fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
| + 1 : SQLITE_MAX_FILE_FORMAT;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
|
| + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
|
| + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| +
|
| + /* This just creates a place-holder record in the sqlite_master table.
|
| + ** The record created does not contain anything yet. It will be replaced
|
| + ** by the real entry in code generated at sqlite3EndTable().
|
| + **
|
| + ** The rowid for the new entry is left in register pParse->regRowid.
|
| + ** The root page number of the new table is left in reg pParse->regRoot.
|
| + ** The rowid and root page number values are needed by the code that
|
| + ** sqlite3EndTable will generate.
|
| + */
|
| +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
| + if( isView || isVirtual ){
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
|
| + }else
|
| +#endif
|
| + {
|
| + sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
|
| + }
|
| + sqlite3OpenMasterTable(pParse, iDb);
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| + sqlite3VdbeAddOp0(v, OP_Close);
|
| + }
|
| +
|
| + /* Normal (non-error) return. */
|
| + return;
|
| +
|
| + /* If an error occurs, we jump here */
|
| +begin_table_error:
|
| + sqlite3DbFree(db, zName);
|
| + return;
|
| +}
|
| +
|
| +/*
|
| +** This macro is used to compare two strings in a case-insensitive manner.
|
| +** It is slightly faster than calling sqlite3StrICmp() directly, but
|
| +** produces larger code.
|
| +**
|
| +** WARNING: This macro is not compatible with the strcmp() family. It
|
| +** returns true if the two strings are equal, otherwise false.
|
| +*/
|
| +#define STRICMP(x, y) (\
|
| +sqlite3UpperToLower[*(unsigned char *)(x)]== \
|
| +sqlite3UpperToLower[*(unsigned char *)(y)] \
|
| +&& sqlite3StrICmp((x)+1,(y)+1)==0 )
|
| +
|
| +/*
|
| +** Add a new column to the table currently being constructed.
|
| +**
|
| +** The parser calls this routine once for each column declaration
|
| +** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
| +** first to get things going. Then this routine is called for each
|
| +** column.
|
| +*/
|
| +void sqlite3AddColumn(Parse *pParse, Token *pName){
|
| + Table *p;
|
| + int i;
|
| + char *z;
|
| + Column *pCol;
|
| + sqlite3 *db = pParse->db;
|
| + if( (p = pParse->pNewTable)==0 ) return;
|
| +#if SQLITE_MAX_COLUMN
|
| + if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
| + sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
|
| + return;
|
| + }
|
| +#endif
|
| + z = sqlite3NameFromToken(db, pName);
|
| + if( z==0 ) return;
|
| + for(i=0; i<p->nCol; i++){
|
| + if( STRICMP(z, p->aCol[i].zName) ){
|
| + sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
| + sqlite3DbFree(db, z);
|
| + return;
|
| + }
|
| + }
|
| + if( (p->nCol & 0x7)==0 ){
|
| + Column *aNew;
|
| + aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
|
| + if( aNew==0 ){
|
| + sqlite3DbFree(db, z);
|
| + return;
|
| + }
|
| + p->aCol = aNew;
|
| + }
|
| + pCol = &p->aCol[p->nCol];
|
| + memset(pCol, 0, sizeof(p->aCol[0]));
|
| + pCol->zName = z;
|
| +
|
| + /* If there is no type specified, columns have the default affinity
|
| + ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
| + ** be called next to set pCol->affinity correctly.
|
| + */
|
| + pCol->affinity = SQLITE_AFF_NONE;
|
| + p->nCol++;
|
| +}
|
| +
|
| +/*
|
| +** This routine is called by the parser while in the middle of
|
| +** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
| +** been seen on a column. This routine sets the notNull flag on
|
| +** the column currently under construction.
|
| +*/
|
| +void sqlite3AddNotNull(Parse *pParse, int onError){
|
| + Table *p;
|
| + p = pParse->pNewTable;
|
| + if( p==0 || NEVER(p->nCol<1) ) return;
|
| + p->aCol[p->nCol-1].notNull = (u8)onError;
|
| +}
|
| +
|
| +/*
|
| +** Scan the column type name zType (length nType) and return the
|
| +** associated affinity type.
|
| +**
|
| +** This routine does a case-independent search of zType for the
|
| +** substrings in the following table. If one of the substrings is
|
| +** found, the corresponding affinity is returned. If zType contains
|
| +** more than one of the substrings, entries toward the top of
|
| +** the table take priority. For example, if zType is 'BLOBINT',
|
| +** SQLITE_AFF_INTEGER is returned.
|
| +**
|
| +** Substring | Affinity
|
| +** --------------------------------
|
| +** 'INT' | SQLITE_AFF_INTEGER
|
| +** 'CHAR' | SQLITE_AFF_TEXT
|
| +** 'CLOB' | SQLITE_AFF_TEXT
|
| +** 'TEXT' | SQLITE_AFF_TEXT
|
| +** 'BLOB' | SQLITE_AFF_NONE
|
| +** 'REAL' | SQLITE_AFF_REAL
|
| +** 'FLOA' | SQLITE_AFF_REAL
|
| +** 'DOUB' | SQLITE_AFF_REAL
|
| +**
|
| +** If none of the substrings in the above table are found,
|
| +** SQLITE_AFF_NUMERIC is returned.
|
| +*/
|
| +char sqlite3AffinityType(const char *zIn){
|
| + u32 h = 0;
|
| + char aff = SQLITE_AFF_NUMERIC;
|
| +
|
| + if( zIn ) while( zIn[0] ){
|
| + h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
|
| + zIn++;
|
| + if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
| + aff = SQLITE_AFF_TEXT;
|
| + }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
| + aff = SQLITE_AFF_TEXT;
|
| + }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
| + aff = SQLITE_AFF_TEXT;
|
| + }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
| + && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
| + aff = SQLITE_AFF_NONE;
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
| + && aff==SQLITE_AFF_NUMERIC ){
|
| + aff = SQLITE_AFF_REAL;
|
| + }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
| + && aff==SQLITE_AFF_NUMERIC ){
|
| + aff = SQLITE_AFF_REAL;
|
| + }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
| + && aff==SQLITE_AFF_NUMERIC ){
|
| + aff = SQLITE_AFF_REAL;
|
| +#endif
|
| + }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
| + aff = SQLITE_AFF_INTEGER;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return aff;
|
| +}
|
| +
|
| +/*
|
| +** This routine is called by the parser while in the middle of
|
| +** parsing a CREATE TABLE statement. The pFirst token is the first
|
| +** token in the sequence of tokens that describe the type of the
|
| +** column currently under construction. pLast is the last token
|
| +** in the sequence. Use this information to construct a string
|
| +** that contains the typename of the column and store that string
|
| +** in zType.
|
| +*/
|
| +void sqlite3AddColumnType(Parse *pParse, Token *pType){
|
| + Table *p;
|
| + Column *pCol;
|
| +
|
| + p = pParse->pNewTable;
|
| + if( p==0 || NEVER(p->nCol<1) ) return;
|
| + pCol = &p->aCol[p->nCol-1];
|
| + assert( pCol->zType==0 );
|
| + pCol->zType = sqlite3NameFromToken(pParse->db, pType);
|
| + pCol->affinity = sqlite3AffinityType(pCol->zType);
|
| +}
|
| +
|
| +/*
|
| +** The expression is the default value for the most recently added column
|
| +** of the table currently under construction.
|
| +**
|
| +** Default value expressions must be constant. Raise an exception if this
|
| +** is not the case.
|
| +**
|
| +** This routine is called by the parser while in the middle of
|
| +** parsing a CREATE TABLE statement.
|
| +*/
|
| +void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
|
| + Table *p;
|
| + Column *pCol;
|
| + sqlite3 *db = pParse->db;
|
| + p = pParse->pNewTable;
|
| + if( p!=0 ){
|
| + pCol = &(p->aCol[p->nCol-1]);
|
| + if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
|
| + sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
| + pCol->zName);
|
| + }else{
|
| + /* A copy of pExpr is used instead of the original, as pExpr contains
|
| + ** tokens that point to volatile memory. The 'span' of the expression
|
| + ** is required by pragma table_info.
|
| + */
|
| + sqlite3ExprDelete(db, pCol->pDflt);
|
| + pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
|
| + sqlite3DbFree(db, pCol->zDflt);
|
| + pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
| + (int)(pSpan->zEnd - pSpan->zStart));
|
| + }
|
| + }
|
| + sqlite3ExprDelete(db, pSpan->pExpr);
|
| +}
|
| +
|
| +/*
|
| +** Designate the PRIMARY KEY for the table. pList is a list of names
|
| +** of columns that form the primary key. If pList is NULL, then the
|
| +** most recently added column of the table is the primary key.
|
| +**
|
| +** A table can have at most one primary key. If the table already has
|
| +** a primary key (and this is the second primary key) then create an
|
| +** error.
|
| +**
|
| +** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
| +** then we will try to use that column as the rowid. Set the Table.iPKey
|
| +** field of the table under construction to be the index of the
|
| +** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
| +** no INTEGER PRIMARY KEY.
|
| +**
|
| +** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
| +** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
| +*/
|
| +void sqlite3AddPrimaryKey(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pList, /* List of field names to be indexed */
|
| + int onError, /* What to do with a uniqueness conflict */
|
| + int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
| + int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
| +){
|
| + Table *pTab = pParse->pNewTable;
|
| + char *zType = 0;
|
| + int iCol = -1, i;
|
| + if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
|
| + if( pTab->tabFlags & TF_HasPrimaryKey ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "table \"%s\" has more than one primary key", pTab->zName);
|
| + goto primary_key_exit;
|
| + }
|
| + pTab->tabFlags |= TF_HasPrimaryKey;
|
| + if( pList==0 ){
|
| + iCol = pTab->nCol - 1;
|
| + pTab->aCol[iCol].isPrimKey = 1;
|
| + }else{
|
| + for(i=0; i<pList->nExpr; i++){
|
| + for(iCol=0; iCol<pTab->nCol; iCol++){
|
| + if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
| + break;
|
| + }
|
| + }
|
| + if( iCol<pTab->nCol ){
|
| + pTab->aCol[iCol].isPrimKey = 1;
|
| + }
|
| + }
|
| + if( pList->nExpr>1 ) iCol = -1;
|
| + }
|
| + if( iCol>=0 && iCol<pTab->nCol ){
|
| + zType = pTab->aCol[iCol].zType;
|
| + }
|
| + if( zType && sqlite3StrICmp(zType, "INTEGER")==0
|
| + && sortOrder==SQLITE_SO_ASC ){
|
| + pTab->iPKey = iCol;
|
| + pTab->keyConf = (u8)onError;
|
| + assert( autoInc==0 || autoInc==1 );
|
| + pTab->tabFlags |= autoInc*TF_Autoincrement;
|
| + }else if( autoInc ){
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| + sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
| + "INTEGER PRIMARY KEY");
|
| +#endif
|
| + }else{
|
| + Index *p;
|
| + p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
|
| + if( p ){
|
| + p->autoIndex = 2;
|
| + }
|
| + pList = 0;
|
| + }
|
| +
|
| +primary_key_exit:
|
| + sqlite3ExprListDelete(pParse->db, pList);
|
| + return;
|
| +}
|
| +
|
| +/*
|
| +** Add a new CHECK constraint to the table currently under construction.
|
| +*/
|
| +void sqlite3AddCheckConstraint(
|
| + Parse *pParse, /* Parsing context */
|
| + Expr *pCheckExpr /* The check expression */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| +#ifndef SQLITE_OMIT_CHECK
|
| + Table *pTab = pParse->pNewTable;
|
| + if( pTab && !IN_DECLARE_VTAB ){
|
| + pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
|
| + }else
|
| +#endif
|
| + {
|
| + sqlite3ExprDelete(db, pCheckExpr);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Set the collation function of the most recently parsed table column
|
| +** to the CollSeq given.
|
| +*/
|
| +void sqlite3AddCollateType(Parse *pParse, Token *pToken){
|
| + Table *p;
|
| + int i;
|
| + char *zColl; /* Dequoted name of collation sequence */
|
| + sqlite3 *db;
|
| +
|
| + if( (p = pParse->pNewTable)==0 ) return;
|
| + i = p->nCol-1;
|
| + db = pParse->db;
|
| + zColl = sqlite3NameFromToken(db, pToken);
|
| + if( !zColl ) return;
|
| +
|
| + if( sqlite3LocateCollSeq(pParse, zColl) ){
|
| + Index *pIdx;
|
| + p->aCol[i].zColl = zColl;
|
| +
|
| + /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
| + ** then an index may have been created on this column before the
|
| + ** collation type was added. Correct this if it is the case.
|
| + */
|
| + for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + assert( pIdx->nColumn==1 );
|
| + if( pIdx->aiColumn[0]==i ){
|
| + pIdx->azColl[0] = p->aCol[i].zColl;
|
| + }
|
| + }
|
| + }else{
|
| + sqlite3DbFree(db, zColl);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This function returns the collation sequence for database native text
|
| +** encoding identified by the string zName, length nName.
|
| +**
|
| +** If the requested collation sequence is not available, or not available
|
| +** in the database native encoding, the collation factory is invoked to
|
| +** request it. If the collation factory does not supply such a sequence,
|
| +** and the sequence is available in another text encoding, then that is
|
| +** returned instead.
|
| +**
|
| +** If no versions of the requested collations sequence are available, or
|
| +** another error occurs, NULL is returned and an error message written into
|
| +** pParse.
|
| +**
|
| +** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
| +** invokes the collation factory if the named collation cannot be found
|
| +** and generates an error message.
|
| +**
|
| +** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
|
| +*/
|
| +CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
|
| + sqlite3 *db = pParse->db;
|
| + u8 enc = ENC(db);
|
| + u8 initbusy = db->init.busy;
|
| + CollSeq *pColl;
|
| +
|
| + pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
|
| + if( !initbusy && (!pColl || !pColl->xCmp) ){
|
| + pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
|
| + if( !pColl ){
|
| + sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
|
| + }
|
| + }
|
| +
|
| + return pColl;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Generate code that will increment the schema cookie.
|
| +**
|
| +** The schema cookie is used to determine when the schema for the
|
| +** database changes. After each schema change, the cookie value
|
| +** changes. When a process first reads the schema it records the
|
| +** cookie. Thereafter, whenever it goes to access the database,
|
| +** it checks the cookie to make sure the schema has not changed
|
| +** since it was last read.
|
| +**
|
| +** This plan is not completely bullet-proof. It is possible for
|
| +** the schema to change multiple times and for the cookie to be
|
| +** set back to prior value. But schema changes are infrequent
|
| +** and the probability of hitting the same cookie value is only
|
| +** 1 chance in 2^32. So we're safe enough.
|
| +*/
|
| +void sqlite3ChangeCookie(Parse *pParse, int iDb){
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3 *db = pParse->db;
|
| + Vdbe *v = pParse->pVdbe;
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
|
| + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| +}
|
| +
|
| +/*
|
| +** Measure the number of characters needed to output the given
|
| +** identifier. The number returned includes any quotes used
|
| +** but does not include the null terminator.
|
| +**
|
| +** The estimate is conservative. It might be larger that what is
|
| +** really needed.
|
| +*/
|
| +static int identLength(const char *z){
|
| + int n;
|
| + for(n=0; *z; n++, z++){
|
| + if( *z=='"' ){ n++; }
|
| + }
|
| + return n + 2;
|
| +}
|
| +
|
| +/*
|
| +** The first parameter is a pointer to an output buffer. The second
|
| +** parameter is a pointer to an integer that contains the offset at
|
| +** which to write into the output buffer. This function copies the
|
| +** nul-terminated string pointed to by the third parameter, zSignedIdent,
|
| +** to the specified offset in the buffer and updates *pIdx to refer
|
| +** to the first byte after the last byte written before returning.
|
| +**
|
| +** If the string zSignedIdent consists entirely of alpha-numeric
|
| +** characters, does not begin with a digit and is not an SQL keyword,
|
| +** then it is copied to the output buffer exactly as it is. Otherwise,
|
| +** it is quoted using double-quotes.
|
| +*/
|
| +static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
| + unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
| + int i, j, needQuote;
|
| + i = *pIdx;
|
| +
|
| + for(j=0; zIdent[j]; j++){
|
| + if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
| + }
|
| + needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
|
| + if( !needQuote ){
|
| + needQuote = zIdent[j];
|
| + }
|
| +
|
| + if( needQuote ) z[i++] = '"';
|
| + for(j=0; zIdent[j]; j++){
|
| + z[i++] = zIdent[j];
|
| + if( zIdent[j]=='"' ) z[i++] = '"';
|
| + }
|
| + if( needQuote ) z[i++] = '"';
|
| + z[i] = 0;
|
| + *pIdx = i;
|
| +}
|
| +
|
| +/*
|
| +** Generate a CREATE TABLE statement appropriate for the given
|
| +** table. Memory to hold the text of the statement is obtained
|
| +** from sqliteMalloc() and must be freed by the calling function.
|
| +*/
|
| +static char *createTableStmt(sqlite3 *db, Table *p){
|
| + int i, k, n;
|
| + char *zStmt;
|
| + char *zSep, *zSep2, *zEnd;
|
| + Column *pCol;
|
| + n = 0;
|
| + for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
| + n += identLength(pCol->zName) + 5;
|
| + }
|
| + n += identLength(p->zName);
|
| + if( n<50 ){
|
| + zSep = "";
|
| + zSep2 = ",";
|
| + zEnd = ")";
|
| + }else{
|
| + zSep = "\n ";
|
| + zSep2 = ",\n ";
|
| + zEnd = "\n)";
|
| + }
|
| + n += 35 + 6*p->nCol;
|
| + zStmt = sqlite3DbMallocRaw(0, n);
|
| + if( zStmt==0 ){
|
| + db->mallocFailed = 1;
|
| + return 0;
|
| + }
|
| + sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
|
| + k = sqlite3Strlen30(zStmt);
|
| + identPut(zStmt, &k, p->zName);
|
| + zStmt[k++] = '(';
|
| + for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
| + static const char * const azType[] = {
|
| + /* SQLITE_AFF_TEXT */ " TEXT",
|
| + /* SQLITE_AFF_NONE */ "",
|
| + /* SQLITE_AFF_NUMERIC */ " NUM",
|
| + /* SQLITE_AFF_INTEGER */ " INT",
|
| + /* SQLITE_AFF_REAL */ " REAL"
|
| + };
|
| + int len;
|
| + const char *zType;
|
| +
|
| + sqlite3_snprintf(n-k, &zStmt[k], zSep);
|
| + k += sqlite3Strlen30(&zStmt[k]);
|
| + zSep = zSep2;
|
| + identPut(zStmt, &k, pCol->zName);
|
| + assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
|
| + assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
|
| + testcase( pCol->affinity==SQLITE_AFF_TEXT );
|
| + testcase( pCol->affinity==SQLITE_AFF_NONE );
|
| + testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
|
| + testcase( pCol->affinity==SQLITE_AFF_INTEGER );
|
| + testcase( pCol->affinity==SQLITE_AFF_REAL );
|
| +
|
| + zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
|
| + len = sqlite3Strlen30(zType);
|
| + assert( pCol->affinity==SQLITE_AFF_NONE
|
| + || pCol->affinity==sqlite3AffinityType(zType) );
|
| + memcpy(&zStmt[k], zType, len);
|
| + k += len;
|
| + assert( k<=n );
|
| + }
|
| + sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
|
| + return zStmt;
|
| +}
|
| +
|
| +/*
|
| +** This routine is called to report the final ")" that terminates
|
| +** a CREATE TABLE statement.
|
| +**
|
| +** The table structure that other action routines have been building
|
| +** is added to the internal hash tables, assuming no errors have
|
| +** occurred.
|
| +**
|
| +** An entry for the table is made in the master table on disk, unless
|
| +** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
| +** it means we are reading the sqlite_master table because we just
|
| +** connected to the database or because the sqlite_master table has
|
| +** recently changed, so the entry for this table already exists in
|
| +** the sqlite_master table. We do not want to create it again.
|
| +**
|
| +** If the pSelect argument is not NULL, it means that this routine
|
| +** was called to create a table generated from a
|
| +** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
| +** the new table will match the result set of the SELECT.
|
| +*/
|
| +void sqlite3EndTable(
|
| + Parse *pParse, /* Parse context */
|
| + Token *pCons, /* The ',' token after the last column defn. */
|
| + Token *pEnd, /* The final ')' token in the CREATE TABLE */
|
| + Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
| +){
|
| + Table *p;
|
| + sqlite3 *db = pParse->db;
|
| + int iDb;
|
| +
|
| + if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
|
| + return;
|
| + }
|
| + p = pParse->pNewTable;
|
| + if( p==0 ) return;
|
| +
|
| + assert( !db->init.busy || !pSelect );
|
| +
|
| + iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
| +
|
| +#ifndef SQLITE_OMIT_CHECK
|
| + /* Resolve names in all CHECK constraint expressions.
|
| + */
|
| + if( p->pCheck ){
|
| + SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
|
| + NameContext sNC; /* Name context for pParse->pNewTable */
|
| +
|
| + memset(&sNC, 0, sizeof(sNC));
|
| + memset(&sSrc, 0, sizeof(sSrc));
|
| + sSrc.nSrc = 1;
|
| + sSrc.a[0].zName = p->zName;
|
| + sSrc.a[0].pTab = p;
|
| + sSrc.a[0].iCursor = -1;
|
| + sNC.pParse = pParse;
|
| + sNC.pSrcList = &sSrc;
|
| + sNC.isCheck = 1;
|
| + if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
|
| + return;
|
| + }
|
| + }
|
| +#endif /* !defined(SQLITE_OMIT_CHECK) */
|
| +
|
| + /* If the db->init.busy is 1 it means we are reading the SQL off the
|
| + ** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
| + ** So do not write to the disk again. Extract the root page number
|
| + ** for the table from the db->init.newTnum field. (The page number
|
| + ** should have been put there by the sqliteOpenCb routine.)
|
| + */
|
| + if( db->init.busy ){
|
| + p->tnum = db->init.newTnum;
|
| + }
|
| +
|
| + /* If not initializing, then create a record for the new table
|
| + ** in the SQLITE_MASTER table of the database.
|
| + **
|
| + ** If this is a TEMPORARY table, write the entry into the auxiliary
|
| + ** file instead of into the main database file.
|
| + */
|
| + if( !db->init.busy ){
|
| + int n;
|
| + Vdbe *v;
|
| + char *zType; /* "view" or "table" */
|
| + char *zType2; /* "VIEW" or "TABLE" */
|
| + char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( NEVER(v==0) ) return;
|
| +
|
| + sqlite3VdbeAddOp1(v, OP_Close, 0);
|
| +
|
| + /*
|
| + ** Initialize zType for the new view or table.
|
| + */
|
| + if( p->pSelect==0 ){
|
| + /* A regular table */
|
| + zType = "table";
|
| + zType2 = "TABLE";
|
| +#ifndef SQLITE_OMIT_VIEW
|
| + }else{
|
| + /* A view */
|
| + zType = "view";
|
| + zType2 = "VIEW";
|
| +#endif
|
| + }
|
| +
|
| + /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
| + ** statement to populate the new table. The root-page number for the
|
| + ** new table is in register pParse->regRoot.
|
| + **
|
| + ** Once the SELECT has been coded by sqlite3Select(), it is in a
|
| + ** suitable state to query for the column names and types to be used
|
| + ** by the new table.
|
| + **
|
| + ** A shared-cache write-lock is not required to write to the new table,
|
| + ** as a schema-lock must have already been obtained to create it. Since
|
| + ** a schema-lock excludes all other database users, the write-lock would
|
| + ** be redundant.
|
| + */
|
| + if( pSelect ){
|
| + SelectDest dest;
|
| + Table *pSelTab;
|
| +
|
| + assert(pParse->nTab==1);
|
| + sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
|
| + sqlite3VdbeChangeP5(v, 1);
|
| + pParse->nTab = 2;
|
| + sqlite3SelectDestInit(&dest, SRT_Table, 1);
|
| + sqlite3Select(pParse, pSelect, &dest);
|
| + sqlite3VdbeAddOp1(v, OP_Close, 1);
|
| + if( pParse->nErr==0 ){
|
| + pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
|
| + if( pSelTab==0 ) return;
|
| + assert( p->aCol==0 );
|
| + p->nCol = pSelTab->nCol;
|
| + p->aCol = pSelTab->aCol;
|
| + pSelTab->nCol = 0;
|
| + pSelTab->aCol = 0;
|
| + sqlite3DeleteTable(db, pSelTab);
|
| + }
|
| + }
|
| +
|
| + /* Compute the complete text of the CREATE statement */
|
| + if( pSelect ){
|
| + zStmt = createTableStmt(db, p);
|
| + }else{
|
| + n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
|
| + zStmt = sqlite3MPrintf(db,
|
| + "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
|
| + );
|
| + }
|
| +
|
| + /* A slot for the record has already been allocated in the
|
| + ** SQLITE_MASTER table. We just need to update that slot with all
|
| + ** the information we've collected.
|
| + */
|
| + sqlite3NestedParse(pParse,
|
| + "UPDATE %Q.%s "
|
| + "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
|
| + "WHERE rowid=#%d",
|
| + db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
| + zType,
|
| + p->zName,
|
| + p->zName,
|
| + pParse->regRoot,
|
| + zStmt,
|
| + pParse->regRowid
|
| + );
|
| + sqlite3DbFree(db, zStmt);
|
| + sqlite3ChangeCookie(pParse, iDb);
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| + /* Check to see if we need to create an sqlite_sequence table for
|
| + ** keeping track of autoincrement keys.
|
| + */
|
| + if( p->tabFlags & TF_Autoincrement ){
|
| + Db *pDb = &db->aDb[iDb];
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + if( pDb->pSchema->pSeqTab==0 ){
|
| + sqlite3NestedParse(pParse,
|
| + "CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
| + pDb->zName
|
| + );
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Reparse everything to update our internal data structures */
|
| + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
|
| + sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
|
| + }
|
| +
|
| +
|
| + /* Add the table to the in-memory representation of the database.
|
| + */
|
| + if( db->init.busy ){
|
| + Table *pOld;
|
| + Schema *pSchema = p->pSchema;
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
|
| + sqlite3Strlen30(p->zName),p);
|
| + if( pOld ){
|
| + assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
| + db->mallocFailed = 1;
|
| + return;
|
| + }
|
| + pParse->pNewTable = 0;
|
| + db->nTable++;
|
| + db->flags |= SQLITE_InternChanges;
|
| +
|
| +#ifndef SQLITE_OMIT_ALTERTABLE
|
| + if( !p->pSelect ){
|
| + const char *zName = (const char *)pParse->sNameToken.z;
|
| + int nName;
|
| + assert( !pSelect && pCons && pEnd );
|
| + if( pCons->z==0 ){
|
| + pCons = pEnd;
|
| + }
|
| + nName = (int)((const char *)pCons->z - zName);
|
| + p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_VIEW
|
| +/*
|
| +** The parser calls this routine in order to create a new VIEW
|
| +*/
|
| +void sqlite3CreateView(
|
| + Parse *pParse, /* The parsing context */
|
| + Token *pBegin, /* The CREATE token that begins the statement */
|
| + Token *pName1, /* The token that holds the name of the view */
|
| + Token *pName2, /* The token that holds the name of the view */
|
| + Select *pSelect, /* A SELECT statement that will become the new view */
|
| + int isTemp, /* TRUE for a TEMPORARY view */
|
| + int noErr /* Suppress error messages if VIEW already exists */
|
| +){
|
| + Table *p;
|
| + int n;
|
| + const char *z;
|
| + Token sEnd;
|
| + DbFixer sFix;
|
| + Token *pName;
|
| + int iDb;
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + if( pParse->nVar>0 ){
|
| + sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
| + sqlite3SelectDelete(db, pSelect);
|
| + return;
|
| + }
|
| + sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
| + p = pParse->pNewTable;
|
| + if( p==0 || pParse->nErr ){
|
| + sqlite3SelectDelete(db, pSelect);
|
| + return;
|
| + }
|
| + sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| + iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
| + if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
|
| + && sqlite3FixSelect(&sFix, pSelect)
|
| + ){
|
| + sqlite3SelectDelete(db, pSelect);
|
| + return;
|
| + }
|
| +
|
| + /* Make a copy of the entire SELECT statement that defines the view.
|
| + ** This will force all the Expr.token.z values to be dynamically
|
| + ** allocated rather than point to the input string - which means that
|
| + ** they will persist after the current sqlite3_exec() call returns.
|
| + */
|
| + p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
|
| + sqlite3SelectDelete(db, pSelect);
|
| + if( db->mallocFailed ){
|
| + return;
|
| + }
|
| + if( !db->init.busy ){
|
| + sqlite3ViewGetColumnNames(pParse, p);
|
| + }
|
| +
|
| + /* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
| + ** the end.
|
| + */
|
| + sEnd = pParse->sLastToken;
|
| + if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
|
| + sEnd.z += sEnd.n;
|
| + }
|
| + sEnd.n = 0;
|
| + n = (int)(sEnd.z - pBegin->z);
|
| + z = pBegin->z;
|
| + while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
|
| + sEnd.z = &z[n-1];
|
| + sEnd.n = 1;
|
| +
|
| + /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
| + sqlite3EndTable(pParse, 0, &sEnd, 0);
|
| + return;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIEW */
|
| +
|
| +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
| +/*
|
| +** The Table structure pTable is really a VIEW. Fill in the names of
|
| +** the columns of the view in the pTable structure. Return the number
|
| +** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
| +*/
|
| +int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
| + Table *pSelTab; /* A fake table from which we get the result set */
|
| + Select *pSel; /* Copy of the SELECT that implements the view */
|
| + int nErr = 0; /* Number of errors encountered */
|
| + int n; /* Temporarily holds the number of cursors assigned */
|
| + sqlite3 *db = pParse->db; /* Database connection for malloc errors */
|
| + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
| +
|
| + assert( pTable );
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( sqlite3VtabCallConnect(pParse, pTable) ){
|
| + return SQLITE_ERROR;
|
| + }
|
| + if( IsVirtual(pTable) ) return 0;
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_VIEW
|
| + /* A positive nCol means the columns names for this view are
|
| + ** already known.
|
| + */
|
| + if( pTable->nCol>0 ) return 0;
|
| +
|
| + /* A negative nCol is a special marker meaning that we are currently
|
| + ** trying to compute the column names. If we enter this routine with
|
| + ** a negative nCol, it means two or more views form a loop, like this:
|
| + **
|
| + ** CREATE VIEW one AS SELECT * FROM two;
|
| + ** CREATE VIEW two AS SELECT * FROM one;
|
| + **
|
| + ** Actually, the error above is now caught prior to reaching this point.
|
| + ** But the following test is still important as it does come up
|
| + ** in the following:
|
| + **
|
| + ** CREATE TABLE main.ex1(a);
|
| + ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
|
| + ** SELECT * FROM temp.ex1;
|
| + */
|
| + if( pTable->nCol<0 ){
|
| + sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
| + return 1;
|
| + }
|
| + assert( pTable->nCol>=0 );
|
| +
|
| + /* If we get this far, it means we need to compute the table names.
|
| + ** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
| + ** "*" elements in the results set of the view and will assign cursors
|
| + ** to the elements of the FROM clause. But we do not want these changes
|
| + ** to be permanent. So the computation is done on a copy of the SELECT
|
| + ** statement that defines the view.
|
| + */
|
| + assert( pTable->pSelect );
|
| + pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
|
| + if( pSel ){
|
| + u8 enableLookaside = db->lookaside.bEnabled;
|
| + n = pParse->nTab;
|
| + sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
| + pTable->nCol = -1;
|
| + db->lookaside.bEnabled = 0;
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + xAuth = db->xAuth;
|
| + db->xAuth = 0;
|
| + pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
|
| + db->xAuth = xAuth;
|
| +#else
|
| + pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
|
| +#endif
|
| + db->lookaside.bEnabled = enableLookaside;
|
| + pParse->nTab = n;
|
| + if( pSelTab ){
|
| + assert( pTable->aCol==0 );
|
| + pTable->nCol = pSelTab->nCol;
|
| + pTable->aCol = pSelTab->aCol;
|
| + pSelTab->nCol = 0;
|
| + pSelTab->aCol = 0;
|
| + sqlite3DeleteTable(db, pSelTab);
|
| + assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
|
| + pTable->pSchema->flags |= DB_UnresetViews;
|
| + }else{
|
| + pTable->nCol = 0;
|
| + nErr++;
|
| + }
|
| + sqlite3SelectDelete(db, pSel);
|
| + } else {
|
| + nErr++;
|
| + }
|
| +#endif /* SQLITE_OMIT_VIEW */
|
| + return nErr;
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
| +
|
| +#ifndef SQLITE_OMIT_VIEW
|
| +/*
|
| +** Clear the column names from every VIEW in database idx.
|
| +*/
|
| +static void sqliteViewResetAll(sqlite3 *db, int idx){
|
| + HashElem *i;
|
| + assert( sqlite3SchemaMutexHeld(db, idx, 0) );
|
| + if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
| + for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
| + Table *pTab = sqliteHashData(i);
|
| + if( pTab->pSelect ){
|
| + sqliteDeleteColumnNames(db, pTab);
|
| + pTab->aCol = 0;
|
| + pTab->nCol = 0;
|
| + }
|
| + }
|
| + DbClearProperty(db, idx, DB_UnresetViews);
|
| +}
|
| +#else
|
| +# define sqliteViewResetAll(A,B)
|
| +#endif /* SQLITE_OMIT_VIEW */
|
| +
|
| +/*
|
| +** This function is called by the VDBE to adjust the internal schema
|
| +** used by SQLite when the btree layer moves a table root page. The
|
| +** root-page of a table or index in database iDb has changed from iFrom
|
| +** to iTo.
|
| +**
|
| +** Ticket #1728: The symbol table might still contain information
|
| +** on tables and/or indices that are the process of being deleted.
|
| +** If you are unlucky, one of those deleted indices or tables might
|
| +** have the same rootpage number as the real table or index that is
|
| +** being moved. So we cannot stop searching after the first match
|
| +** because the first match might be for one of the deleted indices
|
| +** or tables and not the table/index that is actually being moved.
|
| +** We must continue looping until all tables and indices with
|
| +** rootpage==iFrom have been converted to have a rootpage of iTo
|
| +** in order to be certain that we got the right one.
|
| +*/
|
| +#ifndef SQLITE_OMIT_AUTOVACUUM
|
| +void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
|
| + HashElem *pElem;
|
| + Hash *pHash;
|
| + Db *pDb;
|
| +
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + pDb = &db->aDb[iDb];
|
| + pHash = &pDb->pSchema->tblHash;
|
| + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
| + Table *pTab = sqliteHashData(pElem);
|
| + if( pTab->tnum==iFrom ){
|
| + pTab->tnum = iTo;
|
| + }
|
| + }
|
| + pHash = &pDb->pSchema->idxHash;
|
| + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
| + Index *pIdx = sqliteHashData(pElem);
|
| + if( pIdx->tnum==iFrom ){
|
| + pIdx->tnum = iTo;
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Write code to erase the table with root-page iTable from database iDb.
|
| +** Also write code to modify the sqlite_master table and internal schema
|
| +** if a root-page of another table is moved by the btree-layer whilst
|
| +** erasing iTable (this can happen with an auto-vacuum database).
|
| +*/
|
| +static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
| + Vdbe *v = sqlite3GetVdbe(pParse);
|
| + int r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
|
| + sqlite3MayAbort(pParse);
|
| +#ifndef SQLITE_OMIT_AUTOVACUUM
|
| + /* OP_Destroy stores an in integer r1. If this integer
|
| + ** is non-zero, then it is the root page number of a table moved to
|
| + ** location iTable. The following code modifies the sqlite_master table to
|
| + ** reflect this.
|
| + **
|
| + ** The "#NNN" in the SQL is a special constant that means whatever value
|
| + ** is in register NNN. See grammar rules associated with the TK_REGISTER
|
| + ** token for additional information.
|
| + */
|
| + sqlite3NestedParse(pParse,
|
| + "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
|
| + pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
|
| +#endif
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| +}
|
| +
|
| +/*
|
| +** Write VDBE code to erase table pTab and all associated indices on disk.
|
| +** Code to update the sqlite_master tables and internal schema definitions
|
| +** in case a root-page belonging to another table is moved by the btree layer
|
| +** is also added (this can happen with an auto-vacuum database).
|
| +*/
|
| +static void destroyTable(Parse *pParse, Table *pTab){
|
| +#ifdef SQLITE_OMIT_AUTOVACUUM
|
| + Index *pIdx;
|
| + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| + destroyRootPage(pParse, pTab->tnum, iDb);
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + destroyRootPage(pParse, pIdx->tnum, iDb);
|
| + }
|
| +#else
|
| + /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
| + ** is not defined), then it is important to call OP_Destroy on the
|
| + ** table and index root-pages in order, starting with the numerically
|
| + ** largest root-page number. This guarantees that none of the root-pages
|
| + ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
| + ** following were coded:
|
| + **
|
| + ** OP_Destroy 4 0
|
| + ** ...
|
| + ** OP_Destroy 5 0
|
| + **
|
| + ** and root page 5 happened to be the largest root-page number in the
|
| + ** database, then root page 5 would be moved to page 4 by the
|
| + ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
| + ** a free-list page.
|
| + */
|
| + int iTab = pTab->tnum;
|
| + int iDestroyed = 0;
|
| +
|
| + while( 1 ){
|
| + Index *pIdx;
|
| + int iLargest = 0;
|
| +
|
| + if( iDestroyed==0 || iTab<iDestroyed ){
|
| + iLargest = iTab;
|
| + }
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + int iIdx = pIdx->tnum;
|
| + assert( pIdx->pSchema==pTab->pSchema );
|
| + if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
| + iLargest = iIdx;
|
| + }
|
| + }
|
| + if( iLargest==0 ){
|
| + return;
|
| + }else{
|
| + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| + destroyRootPage(pParse, iLargest, iDb);
|
| + iDestroyed = iLargest;
|
| + }
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** This routine is called to do the work of a DROP TABLE statement.
|
| +** pName is the name of the table to be dropped.
|
| +*/
|
| +void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
| + Table *pTab;
|
| + Vdbe *v;
|
| + sqlite3 *db = pParse->db;
|
| + int iDb;
|
| +
|
| + if( db->mallocFailed ){
|
| + goto exit_drop_table;
|
| + }
|
| + assert( pParse->nErr==0 );
|
| + assert( pName->nSrc==1 );
|
| + if( noErr ) db->suppressErr++;
|
| + pTab = sqlite3LocateTable(pParse, isView,
|
| + pName->a[0].zName, pName->a[0].zDatabase);
|
| + if( noErr ) db->suppressErr--;
|
| +
|
| + if( pTab==0 ){
|
| + if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
| + goto exit_drop_table;
|
| + }
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + assert( iDb>=0 && iDb<db->nDb );
|
| +
|
| + /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
|
| + ** it is initialized.
|
| + */
|
| + if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
| + goto exit_drop_table;
|
| + }
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + {
|
| + int code;
|
| + const char *zTab = SCHEMA_TABLE(iDb);
|
| + const char *zDb = db->aDb[iDb].zName;
|
| + const char *zArg2 = 0;
|
| + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
| + goto exit_drop_table;
|
| + }
|
| + if( isView ){
|
| + if( !OMIT_TEMPDB && iDb==1 ){
|
| + code = SQLITE_DROP_TEMP_VIEW;
|
| + }else{
|
| + code = SQLITE_DROP_VIEW;
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + }else if( IsVirtual(pTab) ){
|
| + code = SQLITE_DROP_VTABLE;
|
| + zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
|
| +#endif
|
| + }else{
|
| + if( !OMIT_TEMPDB && iDb==1 ){
|
| + code = SQLITE_DROP_TEMP_TABLE;
|
| + }else{
|
| + code = SQLITE_DROP_TABLE;
|
| + }
|
| + }
|
| + if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
| + goto exit_drop_table;
|
| + }
|
| + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
| + goto exit_drop_table;
|
| + }
|
| + }
|
| +#endif
|
| + if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
|
| + sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
| + goto exit_drop_table;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_VIEW
|
| + /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
| + ** on a table.
|
| + */
|
| + if( isView && pTab->pSelect==0 ){
|
| + sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
| + goto exit_drop_table;
|
| + }
|
| + if( !isView && pTab->pSelect ){
|
| + sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
| + goto exit_drop_table;
|
| + }
|
| +#endif
|
| +
|
| + /* Generate code to remove the table from the master table
|
| + ** on disk.
|
| + */
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v ){
|
| + Trigger *pTrigger;
|
| + Db *pDb = &db->aDb[iDb];
|
| + sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( IsVirtual(pTab) ){
|
| + sqlite3VdbeAddOp0(v, OP_VBegin);
|
| + }
|
| +#endif
|
| + sqlite3FkDropTable(pParse, pName, pTab);
|
| +
|
| + /* Drop all triggers associated with the table being dropped. Code
|
| + ** is generated to remove entries from sqlite_master and/or
|
| + ** sqlite_temp_master if required.
|
| + */
|
| + pTrigger = sqlite3TriggerList(pParse, pTab);
|
| + while( pTrigger ){
|
| + assert( pTrigger->pSchema==pTab->pSchema ||
|
| + pTrigger->pSchema==db->aDb[1].pSchema );
|
| + sqlite3DropTriggerPtr(pParse, pTrigger);
|
| + pTrigger = pTrigger->pNext;
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| + /* Remove any entries of the sqlite_sequence table associated with
|
| + ** the table being dropped. This is done before the table is dropped
|
| + ** at the btree level, in case the sqlite_sequence table needs to
|
| + ** move as a result of the drop (can happen in auto-vacuum mode).
|
| + */
|
| + if( pTab->tabFlags & TF_Autoincrement ){
|
| + sqlite3NestedParse(pParse,
|
| + "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
|
| + pDb->zName, pTab->zName
|
| + );
|
| + }
|
| +#endif
|
| +
|
| + /* Drop all SQLITE_MASTER table and index entries that refer to the
|
| + ** table. The program name loops through the master table and deletes
|
| + ** every row that refers to a table of the same name as the one being
|
| + ** dropped. Triggers are handled seperately because a trigger can be
|
| + ** created in the temp database that refers to a table in another
|
| + ** database.
|
| + */
|
| + sqlite3NestedParse(pParse,
|
| + "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
|
| + pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
|
| +
|
| + /* Drop any statistics from the sqlite_stat1 table, if it exists */
|
| + if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
|
| + sqlite3NestedParse(pParse,
|
| + "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
|
| + );
|
| + }
|
| +
|
| + if( !isView && !IsVirtual(pTab) ){
|
| + destroyTable(pParse, pTab);
|
| + }
|
| +
|
| + /* Remove the table entry from SQLite's internal schema and modify
|
| + ** the schema cookie.
|
| + */
|
| + if( IsVirtual(pTab) ){
|
| + sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
| + sqlite3ChangeCookie(pParse, iDb);
|
| + }
|
| + sqliteViewResetAll(db, iDb);
|
| +
|
| +exit_drop_table:
|
| + sqlite3SrcListDelete(db, pName);
|
| +}
|
| +
|
| +/*
|
| +** This routine is called to create a new foreign key on the table
|
| +** currently under construction. pFromCol determines which columns
|
| +** in the current table point to the foreign key. If pFromCol==0 then
|
| +** connect the key to the last column inserted. pTo is the name of
|
| +** the table referred to. pToCol is a list of tables in the other
|
| +** pTo table that the foreign key points to. flags contains all
|
| +** information about the conflict resolution algorithms specified
|
| +** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
| +**
|
| +** An FKey structure is created and added to the table currently
|
| +** under construction in the pParse->pNewTable field.
|
| +**
|
| +** The foreign key is set for IMMEDIATE processing. A subsequent call
|
| +** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
| +*/
|
| +void sqlite3CreateForeignKey(
|
| + Parse *pParse, /* Parsing context */
|
| + ExprList *pFromCol, /* Columns in this table that point to other table */
|
| + Token *pTo, /* Name of the other table */
|
| + ExprList *pToCol, /* Columns in the other table */
|
| + int flags /* Conflict resolution algorithms. */
|
| +){
|
| + sqlite3 *db = pParse->db;
|
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| + FKey *pFKey = 0;
|
| + FKey *pNextTo;
|
| + Table *p = pParse->pNewTable;
|
| + int nByte;
|
| + int i;
|
| + int nCol;
|
| + char *z;
|
| +
|
| + assert( pTo!=0 );
|
| + if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
|
| + if( pFromCol==0 ){
|
| + int iCol = p->nCol-1;
|
| + if( NEVER(iCol<0) ) goto fk_end;
|
| + if( pToCol && pToCol->nExpr!=1 ){
|
| + sqlite3ErrorMsg(pParse, "foreign key on %s"
|
| + " should reference only one column of table %T",
|
| + p->aCol[iCol].zName, pTo);
|
| + goto fk_end;
|
| + }
|
| + nCol = 1;
|
| + }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "number of columns in foreign key does not match the number of "
|
| + "columns in the referenced table");
|
| + goto fk_end;
|
| + }else{
|
| + nCol = pFromCol->nExpr;
|
| + }
|
| + nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
| + if( pToCol ){
|
| + for(i=0; i<pToCol->nExpr; i++){
|
| + nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
|
| + }
|
| + }
|
| + pFKey = sqlite3DbMallocZero(db, nByte );
|
| + if( pFKey==0 ){
|
| + goto fk_end;
|
| + }
|
| + pFKey->pFrom = p;
|
| + pFKey->pNextFrom = p->pFKey;
|
| + z = (char*)&pFKey->aCol[nCol];
|
| + pFKey->zTo = z;
|
| + memcpy(z, pTo->z, pTo->n);
|
| + z[pTo->n] = 0;
|
| + sqlite3Dequote(z);
|
| + z += pTo->n+1;
|
| + pFKey->nCol = nCol;
|
| + if( pFromCol==0 ){
|
| + pFKey->aCol[0].iFrom = p->nCol-1;
|
| + }else{
|
| + for(i=0; i<nCol; i++){
|
| + int j;
|
| + for(j=0; j<p->nCol; j++){
|
| + if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
| + pFKey->aCol[i].iFrom = j;
|
| + break;
|
| + }
|
| + }
|
| + if( j>=p->nCol ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "unknown column \"%s\" in foreign key definition",
|
| + pFromCol->a[i].zName);
|
| + goto fk_end;
|
| + }
|
| + }
|
| + }
|
| + if( pToCol ){
|
| + for(i=0; i<nCol; i++){
|
| + int n = sqlite3Strlen30(pToCol->a[i].zName);
|
| + pFKey->aCol[i].zCol = z;
|
| + memcpy(z, pToCol->a[i].zName, n);
|
| + z[n] = 0;
|
| + z += n+1;
|
| + }
|
| + }
|
| + pFKey->isDeferred = 0;
|
| + pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
|
| + pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
|
| +
|
| + assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
|
| + pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
|
| + pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
|
| + );
|
| + if( pNextTo==pFKey ){
|
| + db->mallocFailed = 1;
|
| + goto fk_end;
|
| + }
|
| + if( pNextTo ){
|
| + assert( pNextTo->pPrevTo==0 );
|
| + pFKey->pNextTo = pNextTo;
|
| + pNextTo->pPrevTo = pFKey;
|
| + }
|
| +
|
| + /* Link the foreign key to the table as the last step.
|
| + */
|
| + p->pFKey = pFKey;
|
| + pFKey = 0;
|
| +
|
| +fk_end:
|
| + sqlite3DbFree(db, pFKey);
|
| +#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
| + sqlite3ExprListDelete(db, pFromCol);
|
| + sqlite3ExprListDelete(db, pToCol);
|
| +}
|
| +
|
| +/*
|
| +** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
| +** clause is seen as part of a foreign key definition. The isDeferred
|
| +** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
| +** The behavior of the most recently created foreign key is adjusted
|
| +** accordingly.
|
| +*/
|
| +void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| + Table *pTab;
|
| + FKey *pFKey;
|
| + if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
| + assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
|
| + pFKey->isDeferred = (u8)isDeferred;
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will erase and refill index *pIdx. This is
|
| +** used to initialize a newly created index or to recompute the
|
| +** content of an index in response to a REINDEX command.
|
| +**
|
| +** if memRootPage is not negative, it means that the index is newly
|
| +** created. The register specified by memRootPage contains the
|
| +** root page number of the index. If memRootPage is negative, then
|
| +** the index already exists and must be cleared before being refilled and
|
| +** the root page number of the index is taken from pIndex->tnum.
|
| +*/
|
| +static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
| + Table *pTab = pIndex->pTable; /* The table that is indexed */
|
| + int iTab = pParse->nTab++; /* Btree cursor used for pTab */
|
| + int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
|
| + int addr1; /* Address of top of loop */
|
| + int tnum; /* Root page of index */
|
| + Vdbe *v; /* Generate code into this virtual machine */
|
| + KeyInfo *pKey; /* KeyInfo for index */
|
| + int regIdxKey; /* Registers containing the index key */
|
| + int regRecord; /* Register holding assemblied index record */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| + int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
| +
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
| + db->aDb[iDb].zName ) ){
|
| + return;
|
| + }
|
| +#endif
|
| +
|
| + /* Require a write-lock on the table to perform this operation */
|
| + sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v==0 ) return;
|
| + if( memRootPage>=0 ){
|
| + tnum = memRootPage;
|
| + }else{
|
| + tnum = pIndex->tnum;
|
| + sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
|
| + }
|
| + pKey = sqlite3IndexKeyinfo(pParse, pIndex);
|
| + sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
|
| + (char *)pKey, P4_KEYINFO_HANDOFF);
|
| + if( memRootPage>=0 ){
|
| + sqlite3VdbeChangeP5(v, 1);
|
| + }
|
| + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
|
| + regRecord = sqlite3GetTempReg(pParse);
|
| + regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
|
| + if( pIndex->onError!=OE_None ){
|
| + const int regRowid = regIdxKey + pIndex->nColumn;
|
| + const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
|
| + void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
|
| +
|
| + /* The registers accessed by the OP_IsUnique opcode were allocated
|
| + ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
|
| + ** call above. Just before that function was freed they were released
|
| + ** (made available to the compiler for reuse) using
|
| + ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
|
| + ** opcode use the values stored within seems dangerous. However, since
|
| + ** we can be sure that no other temp registers have been allocated
|
| + ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
|
| + */
|
| + sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
|
| + sqlite3HaltConstraint(
|
| + pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| + sqlite3ReleaseTempReg(pParse, regRecord);
|
| + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + sqlite3VdbeAddOp1(v, OP_Close, iTab);
|
| + sqlite3VdbeAddOp1(v, OP_Close, iIdx);
|
| +}
|
| +
|
| +/*
|
| +** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
| +** and pTblList is the name of the table that is to be indexed. Both will
|
| +** be NULL for a primary key or an index that is created to satisfy a
|
| +** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
| +** as the table to be indexed. pParse->pNewTable is a table that is
|
| +** currently being constructed by a CREATE TABLE statement.
|
| +**
|
| +** pList is a list of columns to be indexed. pList will be NULL if this
|
| +** is a primary key or unique-constraint on the most recent column added
|
| +** to the table currently under construction.
|
| +**
|
| +** If the index is created successfully, return a pointer to the new Index
|
| +** structure. This is used by sqlite3AddPrimaryKey() to mark the index
|
| +** as the tables primary key (Index.autoIndex==2).
|
| +*/
|
| +Index *sqlite3CreateIndex(
|
| + Parse *pParse, /* All information about this parse */
|
| + Token *pName1, /* First part of index name. May be NULL */
|
| + Token *pName2, /* Second part of index name. May be NULL */
|
| + SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
| + ExprList *pList, /* A list of columns to be indexed */
|
| + int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
| + Token *pStart, /* The CREATE token that begins this statement */
|
| + Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
|
| + int sortOrder, /* Sort order of primary key when pList==NULL */
|
| + int ifNotExist /* Omit error if index already exists */
|
| +){
|
| + Index *pRet = 0; /* Pointer to return */
|
| + Table *pTab = 0; /* Table to be indexed */
|
| + Index *pIndex = 0; /* The index to be created */
|
| + char *zName = 0; /* Name of the index */
|
| + int nName; /* Number of characters in zName */
|
| + int i, j;
|
| + Token nullId; /* Fake token for an empty ID list */
|
| + DbFixer sFix; /* For assigning database names to pTable */
|
| + int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
| + sqlite3 *db = pParse->db;
|
| + Db *pDb; /* The specific table containing the indexed database */
|
| + int iDb; /* Index of the database that is being written */
|
| + Token *pName = 0; /* Unqualified name of the index to create */
|
| + struct ExprList_item *pListItem; /* For looping over pList */
|
| + int nCol;
|
| + int nExtra = 0;
|
| + char *zExtra;
|
| +
|
| + assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
|
| + assert( pParse->nErr==0 ); /* Never called with prior errors */
|
| + if( db->mallocFailed || IN_DECLARE_VTAB ){
|
| + goto exit_create_index;
|
| + }
|
| + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| + goto exit_create_index;
|
| + }
|
| +
|
| + /*
|
| + ** Find the table that is to be indexed. Return early if not found.
|
| + */
|
| + if( pTblName!=0 ){
|
| +
|
| + /* Use the two-part index name to determine the database
|
| + ** to search for the table. 'Fix' the table name to this db
|
| + ** before looking up the table.
|
| + */
|
| + assert( pName1 && pName2 );
|
| + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| + if( iDb<0 ) goto exit_create_index;
|
| +
|
| +#ifndef SQLITE_OMIT_TEMPDB
|
| + /* If the index name was unqualified, check if the the table
|
| + ** is a temp table. If so, set the database to 1. Do not do this
|
| + ** if initialising a database schema.
|
| + */
|
| + if( !db->init.busy ){
|
| + pTab = sqlite3SrcListLookup(pParse, pTblName);
|
| + if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
| + iDb = 1;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
|
| + sqlite3FixSrcList(&sFix, pTblName)
|
| + ){
|
| + /* Because the parser constructs pTblName from a single identifier,
|
| + ** sqlite3FixSrcList can never fail. */
|
| + assert(0);
|
| + }
|
| + pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
|
| + pTblName->a[0].zDatabase);
|
| + if( !pTab || db->mallocFailed ) goto exit_create_index;
|
| + assert( db->aDb[iDb].pSchema==pTab->pSchema );
|
| + }else{
|
| + assert( pName==0 );
|
| + pTab = pParse->pNewTable;
|
| + if( !pTab ) goto exit_create_index;
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + }
|
| + pDb = &db->aDb[iDb];
|
| +
|
| + assert( pTab!=0 );
|
| + assert( pParse->nErr==0 );
|
| + if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
|
| + && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
|
| + sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
| + goto exit_create_index;
|
| + }
|
| +#ifndef SQLITE_OMIT_VIEW
|
| + if( pTab->pSelect ){
|
| + sqlite3ErrorMsg(pParse, "views may not be indexed");
|
| + goto exit_create_index;
|
| + }
|
| +#endif
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( IsVirtual(pTab) ){
|
| + sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
| + goto exit_create_index;
|
| + }
|
| +#endif
|
| +
|
| + /*
|
| + ** Find the name of the index. Make sure there is not already another
|
| + ** index or table with the same name.
|
| + **
|
| + ** Exception: If we are reading the names of permanent indices from the
|
| + ** sqlite_master table (because some other process changed the schema) and
|
| + ** one of the index names collides with the name of a temporary table or
|
| + ** index, then we will continue to process this index.
|
| + **
|
| + ** If pName==0 it means that we are
|
| + ** dealing with a primary key or UNIQUE constraint. We have to invent our
|
| + ** own name.
|
| + */
|
| + if( pName ){
|
| + zName = sqlite3NameFromToken(db, pName);
|
| + if( zName==0 ) goto exit_create_index;
|
| + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
| + goto exit_create_index;
|
| + }
|
| + if( !db->init.busy ){
|
| + if( sqlite3FindTable(db, zName, 0)!=0 ){
|
| + sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
| + goto exit_create_index;
|
| + }
|
| + }
|
| + if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
|
| + if( !ifNotExist ){
|
| + sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
| + }else{
|
| + assert( !db->init.busy );
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + }
|
| + goto exit_create_index;
|
| + }
|
| + }else{
|
| + int n;
|
| + Index *pLoop;
|
| + for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
| + zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
|
| + if( zName==0 ){
|
| + goto exit_create_index;
|
| + }
|
| + }
|
| +
|
| + /* Check for authorization to create an index.
|
| + */
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + {
|
| + const char *zDb = pDb->zName;
|
| + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
| + goto exit_create_index;
|
| + }
|
| + i = SQLITE_CREATE_INDEX;
|
| + if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
| + if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
| + goto exit_create_index;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* If pList==0, it means this routine was called to make a primary
|
| + ** key out of the last column added to the table under construction.
|
| + ** So create a fake list to simulate this.
|
| + */
|
| + if( pList==0 ){
|
| + nullId.z = pTab->aCol[pTab->nCol-1].zName;
|
| + nullId.n = sqlite3Strlen30((char*)nullId.z);
|
| + pList = sqlite3ExprListAppend(pParse, 0, 0);
|
| + if( pList==0 ) goto exit_create_index;
|
| + sqlite3ExprListSetName(pParse, pList, &nullId, 0);
|
| + pList->a[0].sortOrder = (u8)sortOrder;
|
| + }
|
| +
|
| + /* Figure out how many bytes of space are required to store explicitly
|
| + ** specified collation sequence names.
|
| + */
|
| + for(i=0; i<pList->nExpr; i++){
|
| + Expr *pExpr = pList->a[i].pExpr;
|
| + if( pExpr ){
|
| + CollSeq *pColl = pExpr->pColl;
|
| + /* Either pColl!=0 or there was an OOM failure. But if an OOM
|
| + ** failure we have quit before reaching this point. */
|
| + if( ALWAYS(pColl) ){
|
| + nExtra += (1 + sqlite3Strlen30(pColl->zName));
|
| + }
|
| + }
|
| + }
|
| +
|
| + /*
|
| + ** Allocate the index structure.
|
| + */
|
| + nName = sqlite3Strlen30(zName);
|
| + nCol = pList->nExpr;
|
| + pIndex = sqlite3DbMallocZero(db,
|
| + sizeof(Index) + /* Index structure */
|
| + sizeof(int)*nCol + /* Index.aiColumn */
|
| + sizeof(int)*(nCol+1) + /* Index.aiRowEst */
|
| + sizeof(char *)*nCol + /* Index.azColl */
|
| + sizeof(u8)*nCol + /* Index.aSortOrder */
|
| + nName + 1 + /* Index.zName */
|
| + nExtra /* Collation sequence names */
|
| + );
|
| + if( db->mallocFailed ){
|
| + goto exit_create_index;
|
| + }
|
| + pIndex->azColl = (char**)(&pIndex[1]);
|
| + pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
|
| + pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
|
| + pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
|
| + pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
|
| + zExtra = (char *)(&pIndex->zName[nName+1]);
|
| + memcpy(pIndex->zName, zName, nName+1);
|
| + pIndex->pTable = pTab;
|
| + pIndex->nColumn = pList->nExpr;
|
| + pIndex->onError = (u8)onError;
|
| + pIndex->autoIndex = (u8)(pName==0);
|
| + pIndex->pSchema = db->aDb[iDb].pSchema;
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| +
|
| + /* Check to see if we should honor DESC requests on index columns
|
| + */
|
| + if( pDb->pSchema->file_format>=4 ){
|
| + sortOrderMask = -1; /* Honor DESC */
|
| + }else{
|
| + sortOrderMask = 0; /* Ignore DESC */
|
| + }
|
| +
|
| + /* Scan the names of the columns of the table to be indexed and
|
| + ** load the column indices into the Index structure. Report an error
|
| + ** if any column is not found.
|
| + **
|
| + ** TODO: Add a test to make sure that the same column is not named
|
| + ** more than once within the same index. Only the first instance of
|
| + ** the column will ever be used by the optimizer. Note that using the
|
| + ** same column more than once cannot be an error because that would
|
| + ** break backwards compatibility - it needs to be a warning.
|
| + */
|
| + for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
|
| + const char *zColName = pListItem->zName;
|
| + Column *pTabCol;
|
| + int requestedSortOrder;
|
| + char *zColl; /* Collation sequence name */
|
| +
|
| + for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
|
| + if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
|
| + }
|
| + if( j>=pTab->nCol ){
|
| + sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
| + pTab->zName, zColName);
|
| + pParse->checkSchema = 1;
|
| + goto exit_create_index;
|
| + }
|
| + pIndex->aiColumn[i] = j;
|
| + /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
|
| + ** the way the "idxlist" non-terminal is constructed by the parser,
|
| + ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
|
| + ** must exist or else there must have been an OOM error. But if there
|
| + ** was an OOM error, we would never reach this point. */
|
| + if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
|
| + int nColl;
|
| + zColl = pListItem->pExpr->pColl->zName;
|
| + nColl = sqlite3Strlen30(zColl) + 1;
|
| + assert( nExtra>=nColl );
|
| + memcpy(zExtra, zColl, nColl);
|
| + zColl = zExtra;
|
| + zExtra += nColl;
|
| + nExtra -= nColl;
|
| + }else{
|
| + zColl = pTab->aCol[j].zColl;
|
| + if( !zColl ){
|
| + zColl = db->pDfltColl->zName;
|
| + }
|
| + }
|
| + if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
|
| + goto exit_create_index;
|
| + }
|
| + pIndex->azColl[i] = zColl;
|
| + requestedSortOrder = pListItem->sortOrder & sortOrderMask;
|
| + pIndex->aSortOrder[i] = (u8)requestedSortOrder;
|
| + }
|
| + sqlite3DefaultRowEst(pIndex);
|
| +
|
| + if( pTab==pParse->pNewTable ){
|
| + /* This routine has been called to create an automatic index as a
|
| + ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
| + ** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
| + ** i.e. one of:
|
| + **
|
| + ** CREATE TABLE t(x PRIMARY KEY, y);
|
| + ** CREATE TABLE t(x, y, UNIQUE(x, y));
|
| + **
|
| + ** Either way, check to see if the table already has such an index. If
|
| + ** so, don't bother creating this one. This only applies to
|
| + ** automatically created indices. Users can do as they wish with
|
| + ** explicit indices.
|
| + **
|
| + ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
|
| + ** (and thus suppressing the second one) even if they have different
|
| + ** sort orders.
|
| + **
|
| + ** If there are different collating sequences or if the columns of
|
| + ** the constraint occur in different orders, then the constraints are
|
| + ** considered distinct and both result in separate indices.
|
| + */
|
| + Index *pIdx;
|
| + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| + int k;
|
| + assert( pIdx->onError!=OE_None );
|
| + assert( pIdx->autoIndex );
|
| + assert( pIndex->onError!=OE_None );
|
| +
|
| + if( pIdx->nColumn!=pIndex->nColumn ) continue;
|
| + for(k=0; k<pIdx->nColumn; k++){
|
| + const char *z1;
|
| + const char *z2;
|
| + if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
| + z1 = pIdx->azColl[k];
|
| + z2 = pIndex->azColl[k];
|
| + if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
|
| + }
|
| + if( k==pIdx->nColumn ){
|
| + if( pIdx->onError!=pIndex->onError ){
|
| + /* This constraint creates the same index as a previous
|
| + ** constraint specified somewhere in the CREATE TABLE statement.
|
| + ** However the ON CONFLICT clauses are different. If both this
|
| + ** constraint and the previous equivalent constraint have explicit
|
| + ** ON CONFLICT clauses this is an error. Otherwise, use the
|
| + ** explicitly specified behaviour for the index.
|
| + */
|
| + if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "conflicting ON CONFLICT clauses specified", 0);
|
| + }
|
| + if( pIdx->onError==OE_Default ){
|
| + pIdx->onError = pIndex->onError;
|
| + }
|
| + }
|
| + goto exit_create_index;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Link the new Index structure to its table and to the other
|
| + ** in-memory database structures.
|
| + */
|
| + if( db->init.busy ){
|
| + Index *p;
|
| + assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
| + p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
| + pIndex->zName, sqlite3Strlen30(pIndex->zName),
|
| + pIndex);
|
| + if( p ){
|
| + assert( p==pIndex ); /* Malloc must have failed */
|
| + db->mallocFailed = 1;
|
| + goto exit_create_index;
|
| + }
|
| + db->flags |= SQLITE_InternChanges;
|
| + if( pTblName!=0 ){
|
| + pIndex->tnum = db->init.newTnum;
|
| + }
|
| + }
|
| +
|
| + /* If the db->init.busy is 0 then create the index on disk. This
|
| + ** involves writing the index into the master table and filling in the
|
| + ** index with the current table contents.
|
| + **
|
| + ** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
| + ** command. db->init.busy is 1 when a database is opened and
|
| + ** CREATE INDEX statements are read out of the master table. In
|
| + ** the latter case the index already exists on disk, which is why
|
| + ** we don't want to recreate it.
|
| + **
|
| + ** If pTblName==0 it means this index is generated as a primary key
|
| + ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
| + ** has just been created, it contains no data and the index initialization
|
| + ** step can be skipped.
|
| + */
|
| + else{ /* if( db->init.busy==0 ) */
|
| + Vdbe *v;
|
| + char *zStmt;
|
| + int iMem = ++pParse->nMem;
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v==0 ) goto exit_create_index;
|
| +
|
| +
|
| + /* Create the rootpage for the index
|
| + */
|
| + sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| + sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
|
| +
|
| + /* Gather the complete text of the CREATE INDEX statement into
|
| + ** the zStmt variable
|
| + */
|
| + if( pStart ){
|
| + assert( pEnd!=0 );
|
| + /* A named index with an explicit CREATE INDEX statement */
|
| + zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
|
| + onError==OE_None ? "" : " UNIQUE",
|
| + pEnd->z - pName->z + 1,
|
| + pName->z);
|
| + }else{
|
| + /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
| + /* zStmt = sqlite3MPrintf(""); */
|
| + zStmt = 0;
|
| + }
|
| +
|
| + /* Add an entry in sqlite_master for this index
|
| + */
|
| + sqlite3NestedParse(pParse,
|
| + "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
|
| + db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
| + pIndex->zName,
|
| + pTab->zName,
|
| + iMem,
|
| + zStmt
|
| + );
|
| + sqlite3DbFree(db, zStmt);
|
| +
|
| + /* Fill the index with data and reparse the schema. Code an OP_Expire
|
| + ** to invalidate all pre-compiled statements.
|
| + */
|
| + if( pTblName ){
|
| + sqlite3RefillIndex(pParse, pIndex, iMem);
|
| + sqlite3ChangeCookie(pParse, iDb);
|
| + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
|
| + sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
|
| + P4_DYNAMIC);
|
| + sqlite3VdbeAddOp1(v, OP_Expire, 0);
|
| + }
|
| + }
|
| +
|
| + /* When adding an index to the list of indices for a table, make
|
| + ** sure all indices labeled OE_Replace come after all those labeled
|
| + ** OE_Ignore. This is necessary for the correct constraint check
|
| + ** processing (in sqlite3GenerateConstraintChecks()) as part of
|
| + ** UPDATE and INSERT statements.
|
| + */
|
| + if( db->init.busy || pTblName==0 ){
|
| + if( onError!=OE_Replace || pTab->pIndex==0
|
| + || pTab->pIndex->onError==OE_Replace){
|
| + pIndex->pNext = pTab->pIndex;
|
| + pTab->pIndex = pIndex;
|
| + }else{
|
| + Index *pOther = pTab->pIndex;
|
| + while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
| + pOther = pOther->pNext;
|
| + }
|
| + pIndex->pNext = pOther->pNext;
|
| + pOther->pNext = pIndex;
|
| + }
|
| + pRet = pIndex;
|
| + pIndex = 0;
|
| + }
|
| +
|
| + /* Clean up before exiting */
|
| +exit_create_index:
|
| + if( pIndex ){
|
| + sqlite3DbFree(db, pIndex->zColAff);
|
| + sqlite3DbFree(db, pIndex);
|
| + }
|
| + sqlite3ExprListDelete(db, pList);
|
| + sqlite3SrcListDelete(db, pTblName);
|
| + sqlite3DbFree(db, zName);
|
| + return pRet;
|
| +}
|
| +
|
| +/*
|
| +** Fill the Index.aiRowEst[] array with default information - information
|
| +** to be used when we have not run the ANALYZE command.
|
| +**
|
| +** aiRowEst[0] is suppose to contain the number of elements in the index.
|
| +** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
| +** number of rows in the table that match any particular value of the
|
| +** first column of the index. aiRowEst[2] is an estimate of the number
|
| +** of rows that match any particular combiniation of the first 2 columns
|
| +** of the index. And so forth. It must always be the case that
|
| +*
|
| +** aiRowEst[N]<=aiRowEst[N-1]
|
| +** aiRowEst[N]>=1
|
| +**
|
| +** Apart from that, we have little to go on besides intuition as to
|
| +** how aiRowEst[] should be initialized. The numbers generated here
|
| +** are based on typical values found in actual indices.
|
| +*/
|
| +void sqlite3DefaultRowEst(Index *pIdx){
|
| + unsigned *a = pIdx->aiRowEst;
|
| + int i;
|
| + unsigned n;
|
| + assert( a!=0 );
|
| + a[0] = pIdx->pTable->nRowEst;
|
| + if( a[0]<10 ) a[0] = 10;
|
| + n = 10;
|
| + for(i=1; i<=pIdx->nColumn; i++){
|
| + a[i] = n;
|
| + if( n>5 ) n--;
|
| + }
|
| + if( pIdx->onError!=OE_None ){
|
| + a[pIdx->nColumn] = 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This routine will drop an existing named index. This routine
|
| +** implements the DROP INDEX statement.
|
| +*/
|
| +void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
| + Index *pIndex;
|
| + Vdbe *v;
|
| + sqlite3 *db = pParse->db;
|
| + int iDb;
|
| +
|
| + assert( pParse->nErr==0 ); /* Never called with prior errors */
|
| + if( db->mallocFailed ){
|
| + goto exit_drop_index;
|
| + }
|
| + assert( pName->nSrc==1 );
|
| + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| + goto exit_drop_index;
|
| + }
|
| + pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
| + if( pIndex==0 ){
|
| + if( !ifExists ){
|
| + sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
| + }else{
|
| + sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
| + }
|
| + pParse->checkSchema = 1;
|
| + goto exit_drop_index;
|
| + }
|
| + if( pIndex->autoIndex ){
|
| + sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
| + "or PRIMARY KEY constraint cannot be dropped", 0);
|
| + goto exit_drop_index;
|
| + }
|
| + iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + {
|
| + int code = SQLITE_DROP_INDEX;
|
| + Table *pTab = pIndex->pTable;
|
| + const char *zDb = db->aDb[iDb].zName;
|
| + const char *zTab = SCHEMA_TABLE(iDb);
|
| + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
| + goto exit_drop_index;
|
| + }
|
| + if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
| + if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
| + goto exit_drop_index;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Generate code to remove the index and from the master table */
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v ){
|
| + sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| + sqlite3NestedParse(pParse,
|
| + "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
|
| + db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
| + pIndex->zName
|
| + );
|
| + if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
|
| + sqlite3NestedParse(pParse,
|
| + "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
|
| + db->aDb[iDb].zName, pIndex->zName
|
| + );
|
| + }
|
| + sqlite3ChangeCookie(pParse, iDb);
|
| + destroyRootPage(pParse, pIndex->tnum, iDb);
|
| + sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
|
| + }
|
| +
|
| +exit_drop_index:
|
| + sqlite3SrcListDelete(db, pName);
|
| +}
|
| +
|
| +/*
|
| +** pArray is a pointer to an array of objects. Each object in the
|
| +** array is szEntry bytes in size. This routine allocates a new
|
| +** object on the end of the array.
|
| +**
|
| +** *pnEntry is the number of entries already in use. *pnAlloc is
|
| +** the previously allocated size of the array. initSize is the
|
| +** suggested initial array size allocation.
|
| +**
|
| +** The index of the new entry is returned in *pIdx.
|
| +**
|
| +** This routine returns a pointer to the array of objects. This
|
| +** might be the same as the pArray parameter or it might be a different
|
| +** pointer if the array was resized.
|
| +*/
|
| +void *sqlite3ArrayAllocate(
|
| + sqlite3 *db, /* Connection to notify of malloc failures */
|
| + void *pArray, /* Array of objects. Might be reallocated */
|
| + int szEntry, /* Size of each object in the array */
|
| + int initSize, /* Suggested initial allocation, in elements */
|
| + int *pnEntry, /* Number of objects currently in use */
|
| + int *pnAlloc, /* Current size of the allocation, in elements */
|
| + int *pIdx /* Write the index of a new slot here */
|
| +){
|
| + char *z;
|
| + if( *pnEntry >= *pnAlloc ){
|
| + void *pNew;
|
| + int newSize;
|
| + newSize = (*pnAlloc)*2 + initSize;
|
| + pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
|
| + if( pNew==0 ){
|
| + *pIdx = -1;
|
| + return pArray;
|
| + }
|
| + *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
|
| + pArray = pNew;
|
| + }
|
| + z = (char*)pArray;
|
| + memset(&z[*pnEntry * szEntry], 0, szEntry);
|
| + *pIdx = *pnEntry;
|
| + ++*pnEntry;
|
| + return pArray;
|
| +}
|
| +
|
| +/*
|
| +** Append a new element to the given IdList. Create a new IdList if
|
| +** need be.
|
| +**
|
| +** A new IdList is returned, or NULL if malloc() fails.
|
| +*/
|
| +IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
|
| + int i;
|
| + if( pList==0 ){
|
| + pList = sqlite3DbMallocZero(db, sizeof(IdList) );
|
| + if( pList==0 ) return 0;
|
| + pList->nAlloc = 0;
|
| + }
|
| + pList->a = sqlite3ArrayAllocate(
|
| + db,
|
| + pList->a,
|
| + sizeof(pList->a[0]),
|
| + 5,
|
| + &pList->nId,
|
| + &pList->nAlloc,
|
| + &i
|
| + );
|
| + if( i<0 ){
|
| + sqlite3IdListDelete(db, pList);
|
| + return 0;
|
| + }
|
| + pList->a[i].zName = sqlite3NameFromToken(db, pToken);
|
| + return pList;
|
| +}
|
| +
|
| +/*
|
| +** Delete an IdList.
|
| +*/
|
| +void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
|
| + int i;
|
| + if( pList==0 ) return;
|
| + for(i=0; i<pList->nId; i++){
|
| + sqlite3DbFree(db, pList->a[i].zName);
|
| + }
|
| + sqlite3DbFree(db, pList->a);
|
| + sqlite3DbFree(db, pList);
|
| +}
|
| +
|
| +/*
|
| +** Return the index in pList of the identifier named zId. Return -1
|
| +** if not found.
|
| +*/
|
| +int sqlite3IdListIndex(IdList *pList, const char *zName){
|
| + int i;
|
| + if( pList==0 ) return -1;
|
| + for(i=0; i<pList->nId; i++){
|
| + if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +/*
|
| +** Expand the space allocated for the given SrcList object by
|
| +** creating nExtra new slots beginning at iStart. iStart is zero based.
|
| +** New slots are zeroed.
|
| +**
|
| +** For example, suppose a SrcList initially contains two entries: A,B.
|
| +** To append 3 new entries onto the end, do this:
|
| +**
|
| +** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
|
| +**
|
| +** After the call above it would contain: A, B, nil, nil, nil.
|
| +** If the iStart argument had been 1 instead of 2, then the result
|
| +** would have been: A, nil, nil, nil, B. To prepend the new slots,
|
| +** the iStart value would be 0. The result then would
|
| +** be: nil, nil, nil, A, B.
|
| +**
|
| +** If a memory allocation fails the SrcList is unchanged. The
|
| +** db->mallocFailed flag will be set to true.
|
| +*/
|
| +SrcList *sqlite3SrcListEnlarge(
|
| + sqlite3 *db, /* Database connection to notify of OOM errors */
|
| + SrcList *pSrc, /* The SrcList to be enlarged */
|
| + int nExtra, /* Number of new slots to add to pSrc->a[] */
|
| + int iStart /* Index in pSrc->a[] of first new slot */
|
| +){
|
| + int i;
|
| +
|
| + /* Sanity checking on calling parameters */
|
| + assert( iStart>=0 );
|
| + assert( nExtra>=1 );
|
| + assert( pSrc!=0 );
|
| + assert( iStart<=pSrc->nSrc );
|
| +
|
| + /* Allocate additional space if needed */
|
| + if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
|
| + SrcList *pNew;
|
| + int nAlloc = pSrc->nSrc+nExtra;
|
| + int nGot;
|
| + pNew = sqlite3DbRealloc(db, pSrc,
|
| + sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
|
| + if( pNew==0 ){
|
| + assert( db->mallocFailed );
|
| + return pSrc;
|
| + }
|
| + pSrc = pNew;
|
| + nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
|
| + pSrc->nAlloc = (u16)nGot;
|
| + }
|
| +
|
| + /* Move existing slots that come after the newly inserted slots
|
| + ** out of the way */
|
| + for(i=pSrc->nSrc-1; i>=iStart; i--){
|
| + pSrc->a[i+nExtra] = pSrc->a[i];
|
| + }
|
| + pSrc->nSrc += (i16)nExtra;
|
| +
|
| + /* Zero the newly allocated slots */
|
| + memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
|
| + for(i=iStart; i<iStart+nExtra; i++){
|
| + pSrc->a[i].iCursor = -1;
|
| + }
|
| +
|
| + /* Return a pointer to the enlarged SrcList */
|
| + return pSrc;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Append a new table name to the given SrcList. Create a new SrcList if
|
| +** need be. A new entry is created in the SrcList even if pTable is NULL.
|
| +**
|
| +** A SrcList is returned, or NULL if there is an OOM error. The returned
|
| +** SrcList might be the same as the SrcList that was input or it might be
|
| +** a new one. If an OOM error does occurs, then the prior value of pList
|
| +** that is input to this routine is automatically freed.
|
| +**
|
| +** If pDatabase is not null, it means that the table has an optional
|
| +** database name prefix. Like this: "database.table". The pDatabase
|
| +** points to the table name and the pTable points to the database name.
|
| +** The SrcList.a[].zName field is filled with the table name which might
|
| +** come from pTable (if pDatabase is NULL) or from pDatabase.
|
| +** SrcList.a[].zDatabase is filled with the database name from pTable,
|
| +** or with NULL if no database is specified.
|
| +**
|
| +** In other words, if call like this:
|
| +**
|
| +** sqlite3SrcListAppend(D,A,B,0);
|
| +**
|
| +** Then B is a table name and the database name is unspecified. If called
|
| +** like this:
|
| +**
|
| +** sqlite3SrcListAppend(D,A,B,C);
|
| +**
|
| +** Then C is the table name and B is the database name. If C is defined
|
| +** then so is B. In other words, we never have a case where:
|
| +**
|
| +** sqlite3SrcListAppend(D,A,0,C);
|
| +**
|
| +** Both pTable and pDatabase are assumed to be quoted. They are dequoted
|
| +** before being added to the SrcList.
|
| +*/
|
| +SrcList *sqlite3SrcListAppend(
|
| + sqlite3 *db, /* Connection to notify of malloc failures */
|
| + SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
|
| + Token *pTable, /* Table to append */
|
| + Token *pDatabase /* Database of the table */
|
| +){
|
| + struct SrcList_item *pItem;
|
| + assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
|
| + if( pList==0 ){
|
| + pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
|
| + if( pList==0 ) return 0;
|
| + pList->nAlloc = 1;
|
| + }
|
| + pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
|
| + if( db->mallocFailed ){
|
| + sqlite3SrcListDelete(db, pList);
|
| + return 0;
|
| + }
|
| + pItem = &pList->a[pList->nSrc-1];
|
| + if( pDatabase && pDatabase->z==0 ){
|
| + pDatabase = 0;
|
| + }
|
| + if( pDatabase ){
|
| + Token *pTemp = pDatabase;
|
| + pDatabase = pTable;
|
| + pTable = pTemp;
|
| + }
|
| + pItem->zName = sqlite3NameFromToken(db, pTable);
|
| + pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
|
| + return pList;
|
| +}
|
| +
|
| +/*
|
| +** Assign VdbeCursor index numbers to all tables in a SrcList
|
| +*/
|
| +void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
| + int i;
|
| + struct SrcList_item *pItem;
|
| + assert(pList || pParse->db->mallocFailed );
|
| + if( pList ){
|
| + for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
| + if( pItem->iCursor>=0 ) break;
|
| + pItem->iCursor = pParse->nTab++;
|
| + if( pItem->pSelect ){
|
| + sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Delete an entire SrcList including all its substructure.
|
| +*/
|
| +void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
|
| + int i;
|
| + struct SrcList_item *pItem;
|
| + if( pList==0 ) return;
|
| + for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
| + sqlite3DbFree(db, pItem->zDatabase);
|
| + sqlite3DbFree(db, pItem->zName);
|
| + sqlite3DbFree(db, pItem->zAlias);
|
| + sqlite3DbFree(db, pItem->zIndex);
|
| + sqlite3DeleteTable(db, pItem->pTab);
|
| + sqlite3SelectDelete(db, pItem->pSelect);
|
| + sqlite3ExprDelete(db, pItem->pOn);
|
| + sqlite3IdListDelete(db, pItem->pUsing);
|
| + }
|
| + sqlite3DbFree(db, pList);
|
| +}
|
| +
|
| +/*
|
| +** This routine is called by the parser to add a new term to the
|
| +** end of a growing FROM clause. The "p" parameter is the part of
|
| +** the FROM clause that has already been constructed. "p" is NULL
|
| +** if this is the first term of the FROM clause. pTable and pDatabase
|
| +** are the name of the table and database named in the FROM clause term.
|
| +** pDatabase is NULL if the database name qualifier is missing - the
|
| +** usual case. If the term has a alias, then pAlias points to the
|
| +** alias token. If the term is a subquery, then pSubquery is the
|
| +** SELECT statement that the subquery encodes. The pTable and
|
| +** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
| +** parameters are the content of the ON and USING clauses.
|
| +**
|
| +** Return a new SrcList which encodes is the FROM with the new
|
| +** term added.
|
| +*/
|
| +SrcList *sqlite3SrcListAppendFromTerm(
|
| + Parse *pParse, /* Parsing context */
|
| + SrcList *p, /* The left part of the FROM clause already seen */
|
| + Token *pTable, /* Name of the table to add to the FROM clause */
|
| + Token *pDatabase, /* Name of the database containing pTable */
|
| + Token *pAlias, /* The right-hand side of the AS subexpression */
|
| + Select *pSubquery, /* A subquery used in place of a table name */
|
| + Expr *pOn, /* The ON clause of a join */
|
| + IdList *pUsing /* The USING clause of a join */
|
| +){
|
| + struct SrcList_item *pItem;
|
| + sqlite3 *db = pParse->db;
|
| + if( !p && (pOn || pUsing) ){
|
| + sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
|
| + (pOn ? "ON" : "USING")
|
| + );
|
| + goto append_from_error;
|
| + }
|
| + p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
|
| + if( p==0 || NEVER(p->nSrc==0) ){
|
| + goto append_from_error;
|
| + }
|
| + pItem = &p->a[p->nSrc-1];
|
| + assert( pAlias!=0 );
|
| + if( pAlias->n ){
|
| + pItem->zAlias = sqlite3NameFromToken(db, pAlias);
|
| + }
|
| + pItem->pSelect = pSubquery;
|
| + pItem->pOn = pOn;
|
| + pItem->pUsing = pUsing;
|
| + return p;
|
| +
|
| + append_from_error:
|
| + assert( p==0 );
|
| + sqlite3ExprDelete(db, pOn);
|
| + sqlite3IdListDelete(db, pUsing);
|
| + sqlite3SelectDelete(db, pSubquery);
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Add an INDEXED BY or NOT INDEXED clause to the most recently added
|
| +** element of the source-list passed as the second argument.
|
| +*/
|
| +void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
|
| + assert( pIndexedBy!=0 );
|
| + if( p && ALWAYS(p->nSrc>0) ){
|
| + struct SrcList_item *pItem = &p->a[p->nSrc-1];
|
| + assert( pItem->notIndexed==0 && pItem->zIndex==0 );
|
| + if( pIndexedBy->n==1 && !pIndexedBy->z ){
|
| + /* A "NOT INDEXED" clause was supplied. See parse.y
|
| + ** construct "indexed_opt" for details. */
|
| + pItem->notIndexed = 1;
|
| + }else{
|
| + pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** When building up a FROM clause in the parser, the join operator
|
| +** is initially attached to the left operand. But the code generator
|
| +** expects the join operator to be on the right operand. This routine
|
| +** Shifts all join operators from left to right for an entire FROM
|
| +** clause.
|
| +**
|
| +** Example: Suppose the join is like this:
|
| +**
|
| +** A natural cross join B
|
| +**
|
| +** The operator is "natural cross join". The A and B operands are stored
|
| +** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
| +** operator with A. This routine shifts that operator over to B.
|
| +*/
|
| +void sqlite3SrcListShiftJoinType(SrcList *p){
|
| + if( p && p->a ){
|
| + int i;
|
| + for(i=p->nSrc-1; i>0; i--){
|
| + p->a[i].jointype = p->a[i-1].jointype;
|
| + }
|
| + p->a[0].jointype = 0;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Begin a transaction
|
| +*/
|
| +void sqlite3BeginTransaction(Parse *pParse, int type){
|
| + sqlite3 *db;
|
| + Vdbe *v;
|
| + int i;
|
| +
|
| + assert( pParse!=0 );
|
| + db = pParse->db;
|
| + assert( db!=0 );
|
| +/* if( db->aDb[0].pBt==0 ) return; */
|
| + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
|
| + return;
|
| + }
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( !v ) return;
|
| + if( type!=TK_DEFERRED ){
|
| + for(i=0; i<db->nDb; i++){
|
| + sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
|
| + sqlite3VdbeUsesBtree(v, i);
|
| + }
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
|
| +}
|
| +
|
| +/*
|
| +** Commit a transaction
|
| +*/
|
| +void sqlite3CommitTransaction(Parse *pParse){
|
| + sqlite3 *db;
|
| + Vdbe *v;
|
| +
|
| + assert( pParse!=0 );
|
| + db = pParse->db;
|
| + assert( db!=0 );
|
| +/* if( db->aDb[0].pBt==0 ) return; */
|
| + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
|
| + return;
|
| + }
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v ){
|
| + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Rollback a transaction
|
| +*/
|
| +void sqlite3RollbackTransaction(Parse *pParse){
|
| + sqlite3 *db;
|
| + Vdbe *v;
|
| +
|
| + assert( pParse!=0 );
|
| + db = pParse->db;
|
| + assert( db!=0 );
|
| +/* if( db->aDb[0].pBt==0 ) return; */
|
| + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
|
| + return;
|
| + }
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v ){
|
| + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This function is called by the parser when it parses a command to create,
|
| +** release or rollback an SQL savepoint.
|
| +*/
|
| +void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
|
| + char *zName = sqlite3NameFromToken(pParse->db, pName);
|
| + if( zName ){
|
| + Vdbe *v = sqlite3GetVdbe(pParse);
|
| +#ifndef SQLITE_OMIT_AUTHORIZATION
|
| + static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
|
| + assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
|
| +#endif
|
| + if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
|
| + sqlite3DbFree(pParse->db, zName);
|
| + return;
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Make sure the TEMP database is open and available for use. Return
|
| +** the number of errors. Leave any error messages in the pParse structure.
|
| +*/
|
| +int sqlite3OpenTempDatabase(Parse *pParse){
|
| + sqlite3 *db = pParse->db;
|
| + if( db->aDb[1].pBt==0 && !pParse->explain ){
|
| + int rc;
|
| + Btree *pBt;
|
| + static const int flags =
|
| + SQLITE_OPEN_READWRITE |
|
| + SQLITE_OPEN_CREATE |
|
| + SQLITE_OPEN_EXCLUSIVE |
|
| + SQLITE_OPEN_DELETEONCLOSE |
|
| + SQLITE_OPEN_TEMP_DB;
|
| +
|
| + rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
|
| + if( rc!=SQLITE_OK ){
|
| + sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
| + "file for storing temporary tables");
|
| + pParse->rc = rc;
|
| + return 1;
|
| + }
|
| + db->aDb[1].pBt = pBt;
|
| + assert( db->aDb[1].pSchema );
|
| + if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
|
| + db->mallocFailed = 1;
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Generate VDBE code that will verify the schema cookie and start
|
| +** a read-transaction for all named database files.
|
| +**
|
| +** It is important that all schema cookies be verified and all
|
| +** read transactions be started before anything else happens in
|
| +** the VDBE program. But this routine can be called after much other
|
| +** code has been generated. So here is what we do:
|
| +**
|
| +** The first time this routine is called, we code an OP_Goto that
|
| +** will jump to a subroutine at the end of the program. Then we
|
| +** record every database that needs its schema verified in the
|
| +** pParse->cookieMask field. Later, after all other code has been
|
| +** generated, the subroutine that does the cookie verifications and
|
| +** starts the transactions will be coded and the OP_Goto P2 value
|
| +** will be made to point to that subroutine. The generation of the
|
| +** cookie verification subroutine code happens in sqlite3FinishCoding().
|
| +**
|
| +** If iDb<0 then code the OP_Goto only - don't set flag to verify the
|
| +** schema on any databases. This can be used to position the OP_Goto
|
| +** early in the code, before we know if any database tables will be used.
|
| +*/
|
| +void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| +
|
| + if( pToplevel->cookieGoto==0 ){
|
| + Vdbe *v = sqlite3GetVdbe(pToplevel);
|
| + if( v==0 ) return; /* This only happens if there was a prior error */
|
| + pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
|
| + }
|
| + if( iDb>=0 ){
|
| + sqlite3 *db = pToplevel->db;
|
| + yDbMask mask;
|
| +
|
| + assert( iDb<db->nDb );
|
| + assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
| + assert( iDb<SQLITE_MAX_ATTACHED+2 );
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + mask = ((yDbMask)1)<<iDb;
|
| + if( (pToplevel->cookieMask & mask)==0 ){
|
| + pToplevel->cookieMask |= mask;
|
| + pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
|
| + if( !OMIT_TEMPDB && iDb==1 ){
|
| + sqlite3OpenTempDatabase(pToplevel);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
|
| +** attached database. Otherwise, invoke it for the database named zDb only.
|
| +*/
|
| +void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
|
| + sqlite3 *db = pParse->db;
|
| + int i;
|
| + for(i=0; i<db->nDb; i++){
|
| + Db *pDb = &db->aDb[i];
|
| + if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
|
| + sqlite3CodeVerifySchema(pParse, i);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate VDBE code that prepares for doing an operation that
|
| +** might change the database.
|
| +**
|
| +** This routine starts a new transaction if we are not already within
|
| +** a transaction. If we are already within a transaction, then a checkpoint
|
| +** is set if the setStatement parameter is true. A checkpoint should
|
| +** be set for operations that might fail (due to a constraint) part of
|
| +** the way through and which will need to undo some writes without having to
|
| +** rollback the whole transaction. For operations where all constraints
|
| +** can be checked before any changes are made to the database, it is never
|
| +** necessary to undo a write and the checkpoint should not be set.
|
| +*/
|
| +void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + sqlite3CodeVerifySchema(pParse, iDb);
|
| + pToplevel->writeMask |= ((yDbMask)1)<<iDb;
|
| + pToplevel->isMultiWrite |= setStatement;
|
| +}
|
| +
|
| +/*
|
| +** Indicate that the statement currently under construction might write
|
| +** more than one entry (example: deleting one row then inserting another,
|
| +** inserting multiple rows in a table, or inserting a row and index entries.)
|
| +** If an abort occurs after some of these writes have completed, then it will
|
| +** be necessary to undo the completed writes.
|
| +*/
|
| +void sqlite3MultiWrite(Parse *pParse){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + pToplevel->isMultiWrite = 1;
|
| +}
|
| +
|
| +/*
|
| +** The code generator calls this routine if is discovers that it is
|
| +** possible to abort a statement prior to completion. In order to
|
| +** perform this abort without corrupting the database, we need to make
|
| +** sure that the statement is protected by a statement transaction.
|
| +**
|
| +** Technically, we only need to set the mayAbort flag if the
|
| +** isMultiWrite flag was previously set. There is a time dependency
|
| +** such that the abort must occur after the multiwrite. This makes
|
| +** some statements involving the REPLACE conflict resolution algorithm
|
| +** go a little faster. But taking advantage of this time dependency
|
| +** makes it more difficult to prove that the code is correct (in
|
| +** particular, it prevents us from writing an effective
|
| +** implementation of sqlite3AssertMayAbort()) and so we have chosen
|
| +** to take the safe route and skip the optimization.
|
| +*/
|
| +void sqlite3MayAbort(Parse *pParse){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + pToplevel->mayAbort = 1;
|
| +}
|
| +
|
| +/*
|
| +** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
|
| +** error. The onError parameter determines which (if any) of the statement
|
| +** and/or current transaction is rolled back.
|
| +*/
|
| +void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
|
| + Vdbe *v = sqlite3GetVdbe(pParse);
|
| + if( onError==OE_Abort ){
|
| + sqlite3MayAbort(pParse);
|
| + }
|
| + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
|
| +}
|
| +
|
| +/*
|
| +** Check to see if pIndex uses the collating sequence pColl. Return
|
| +** true if it does and false if it does not.
|
| +*/
|
| +#ifndef SQLITE_OMIT_REINDEX
|
| +static int collationMatch(const char *zColl, Index *pIndex){
|
| + int i;
|
| + assert( zColl!=0 );
|
| + for(i=0; i<pIndex->nColumn; i++){
|
| + const char *z = pIndex->azColl[i];
|
| + assert( z!=0 );
|
| + if( 0==sqlite3StrICmp(z, zColl) ){
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Recompute all indices of pTab that use the collating sequence pColl.
|
| +** If pColl==0 then recompute all indices of pTab.
|
| +*/
|
| +#ifndef SQLITE_OMIT_REINDEX
|
| +static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
| + Index *pIndex; /* An index associated with pTab */
|
| +
|
| + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
| + if( zColl==0 || collationMatch(zColl, pIndex) ){
|
| + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| + sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| + sqlite3RefillIndex(pParse, pIndex, -1);
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Recompute all indices of all tables in all databases where the
|
| +** indices use the collating sequence pColl. If pColl==0 then recompute
|
| +** all indices everywhere.
|
| +*/
|
| +#ifndef SQLITE_OMIT_REINDEX
|
| +static void reindexDatabases(Parse *pParse, char const *zColl){
|
| + Db *pDb; /* A single database */
|
| + int iDb; /* The database index number */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| + HashElem *k; /* For looping over tables in pDb */
|
| + Table *pTab; /* A table in the database */
|
| +
|
| + assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
|
| + for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
| + assert( pDb!=0 );
|
| + for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
| + pTab = (Table*)sqliteHashData(k);
|
| + reindexTable(pParse, pTab, zColl);
|
| + }
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Generate code for the REINDEX command.
|
| +**
|
| +** REINDEX -- 1
|
| +** REINDEX <collation> -- 2
|
| +** REINDEX ?<database>.?<tablename> -- 3
|
| +** REINDEX ?<database>.?<indexname> -- 4
|
| +**
|
| +** Form 1 causes all indices in all attached databases to be rebuilt.
|
| +** Form 2 rebuilds all indices in all databases that use the named
|
| +** collating function. Forms 3 and 4 rebuild the named index or all
|
| +** indices associated with the named table.
|
| +*/
|
| +#ifndef SQLITE_OMIT_REINDEX
|
| +void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
| + CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
| + char *z; /* Name of a table or index */
|
| + const char *zDb; /* Name of the database */
|
| + Table *pTab; /* A table in the database */
|
| + Index *pIndex; /* An index associated with pTab */
|
| + int iDb; /* The database index number */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| + Token *pObjName; /* Name of the table or index to be reindexed */
|
| +
|
| + /* Read the database schema. If an error occurs, leave an error message
|
| + ** and code in pParse and return NULL. */
|
| + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| + return;
|
| + }
|
| +
|
| + if( pName1==0 ){
|
| + reindexDatabases(pParse, 0);
|
| + return;
|
| + }else if( NEVER(pName2==0) || pName2->z==0 ){
|
| + char *zColl;
|
| + assert( pName1->z );
|
| + zColl = sqlite3NameFromToken(pParse->db, pName1);
|
| + if( !zColl ) return;
|
| + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| + if( pColl ){
|
| + reindexDatabases(pParse, zColl);
|
| + sqlite3DbFree(db, zColl);
|
| + return;
|
| + }
|
| + sqlite3DbFree(db, zColl);
|
| + }
|
| + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
| + if( iDb<0 ) return;
|
| + z = sqlite3NameFromToken(db, pObjName);
|
| + if( z==0 ) return;
|
| + zDb = db->aDb[iDb].zName;
|
| + pTab = sqlite3FindTable(db, z, zDb);
|
| + if( pTab ){
|
| + reindexTable(pParse, pTab, 0);
|
| + sqlite3DbFree(db, z);
|
| + return;
|
| + }
|
| + pIndex = sqlite3FindIndex(db, z, zDb);
|
| + sqlite3DbFree(db, z);
|
| + if( pIndex ){
|
| + sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| + sqlite3RefillIndex(pParse, pIndex, -1);
|
| + return;
|
| + }
|
| + sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Return a dynamicly allocated KeyInfo structure that can be used
|
| +** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
|
| +**
|
| +** If successful, a pointer to the new structure is returned. In this case
|
| +** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
|
| +** pointer. If an error occurs (out of memory or missing collation
|
| +** sequence), NULL is returned and the state of pParse updated to reflect
|
| +** the error.
|
| +*/
|
| +KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
|
| + int i;
|
| + int nCol = pIdx->nColumn;
|
| + int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
|
| + sqlite3 *db = pParse->db;
|
| + KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
|
| +
|
| + if( pKey ){
|
| + pKey->db = pParse->db;
|
| + pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
|
| + assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
|
| + for(i=0; i<nCol; i++){
|
| + char *zColl = pIdx->azColl[i];
|
| + assert( zColl );
|
| + pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
|
| + pKey->aSortOrder[i] = pIdx->aSortOrder[i];
|
| + }
|
| + pKey->nField = (u16)nCol;
|
| + }
|
| +
|
| + if( pParse->nErr ){
|
| + sqlite3DbFree(db, pKey);
|
| + pKey = 0;
|
| + }
|
| + return pKey;
|
| +}
|
|
|