| Index: third_party/sqlite/src/src/date.c
|
| diff --git a/third_party/sqlite/src/src/date.c b/third_party/sqlite/src/src/date.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b81049aa6531de3158c3f6656024b36011f419c4
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/date.c
|
| @@ -0,0 +1,1093 @@
|
| +/*
|
| +** 2003 October 31
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains the C functions that implement date and time
|
| +** functions for SQLite.
|
| +**
|
| +** There is only one exported symbol in this file - the function
|
| +** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
|
| +** All other code has file scope.
|
| +**
|
| +** SQLite processes all times and dates as Julian Day numbers. The
|
| +** dates and times are stored as the number of days since noon
|
| +** in Greenwich on November 24, 4714 B.C. according to the Gregorian
|
| +** calendar system.
|
| +**
|
| +** 1970-01-01 00:00:00 is JD 2440587.5
|
| +** 2000-01-01 00:00:00 is JD 2451544.5
|
| +**
|
| +** This implemention requires years to be expressed as a 4-digit number
|
| +** which means that only dates between 0000-01-01 and 9999-12-31 can
|
| +** be represented, even though julian day numbers allow a much wider
|
| +** range of dates.
|
| +**
|
| +** The Gregorian calendar system is used for all dates and times,
|
| +** even those that predate the Gregorian calendar. Historians usually
|
| +** use the Julian calendar for dates prior to 1582-10-15 and for some
|
| +** dates afterwards, depending on locale. Beware of this difference.
|
| +**
|
| +** The conversion algorithms are implemented based on descriptions
|
| +** in the following text:
|
| +**
|
| +** Jean Meeus
|
| +** Astronomical Algorithms, 2nd Edition, 1998
|
| +** ISBM 0-943396-61-1
|
| +** Willmann-Bell, Inc
|
| +** Richmond, Virginia (USA)
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include <stdlib.h>
|
| +#include <assert.h>
|
| +#include <time.h>
|
| +
|
| +#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
| +
|
| +/*
|
| +** On recent Windows platforms, the localtime_s() function is available
|
| +** as part of the "Secure CRT". It is essentially equivalent to
|
| +** localtime_r() available under most POSIX platforms, except that the
|
| +** order of the parameters is reversed.
|
| +**
|
| +** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
|
| +**
|
| +** If the user has not indicated to use localtime_r() or localtime_s()
|
| +** already, check for an MSVC build environment that provides
|
| +** localtime_s().
|
| +*/
|
| +#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
|
| + defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
|
| +#define HAVE_LOCALTIME_S 1
|
| +#endif
|
| +
|
| +/*
|
| +** A structure for holding a single date and time.
|
| +*/
|
| +typedef struct DateTime DateTime;
|
| +struct DateTime {
|
| + sqlite3_int64 iJD; /* The julian day number times 86400000 */
|
| + int Y, M, D; /* Year, month, and day */
|
| + int h, m; /* Hour and minutes */
|
| + int tz; /* Timezone offset in minutes */
|
| + double s; /* Seconds */
|
| + char validYMD; /* True (1) if Y,M,D are valid */
|
| + char validHMS; /* True (1) if h,m,s are valid */
|
| + char validJD; /* True (1) if iJD is valid */
|
| + char validTZ; /* True (1) if tz is valid */
|
| +};
|
| +
|
| +
|
| +/*
|
| +** Convert zDate into one or more integers. Additional arguments
|
| +** come in groups of 5 as follows:
|
| +**
|
| +** N number of digits in the integer
|
| +** min minimum allowed value of the integer
|
| +** max maximum allowed value of the integer
|
| +** nextC first character after the integer
|
| +** pVal where to write the integers value.
|
| +**
|
| +** Conversions continue until one with nextC==0 is encountered.
|
| +** The function returns the number of successful conversions.
|
| +*/
|
| +static int getDigits(const char *zDate, ...){
|
| + va_list ap;
|
| + int val;
|
| + int N;
|
| + int min;
|
| + int max;
|
| + int nextC;
|
| + int *pVal;
|
| + int cnt = 0;
|
| + va_start(ap, zDate);
|
| + do{
|
| + N = va_arg(ap, int);
|
| + min = va_arg(ap, int);
|
| + max = va_arg(ap, int);
|
| + nextC = va_arg(ap, int);
|
| + pVal = va_arg(ap, int*);
|
| + val = 0;
|
| + while( N-- ){
|
| + if( !sqlite3Isdigit(*zDate) ){
|
| + goto end_getDigits;
|
| + }
|
| + val = val*10 + *zDate - '0';
|
| + zDate++;
|
| + }
|
| + if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
|
| + goto end_getDigits;
|
| + }
|
| + *pVal = val;
|
| + zDate++;
|
| + cnt++;
|
| + }while( nextC );
|
| +end_getDigits:
|
| + va_end(ap);
|
| + return cnt;
|
| +}
|
| +
|
| +/*
|
| +** Parse a timezone extension on the end of a date-time.
|
| +** The extension is of the form:
|
| +**
|
| +** (+/-)HH:MM
|
| +**
|
| +** Or the "zulu" notation:
|
| +**
|
| +** Z
|
| +**
|
| +** If the parse is successful, write the number of minutes
|
| +** of change in p->tz and return 0. If a parser error occurs,
|
| +** return non-zero.
|
| +**
|
| +** A missing specifier is not considered an error.
|
| +*/
|
| +static int parseTimezone(const char *zDate, DateTime *p){
|
| + int sgn = 0;
|
| + int nHr, nMn;
|
| + int c;
|
| + while( sqlite3Isspace(*zDate) ){ zDate++; }
|
| + p->tz = 0;
|
| + c = *zDate;
|
| + if( c=='-' ){
|
| + sgn = -1;
|
| + }else if( c=='+' ){
|
| + sgn = +1;
|
| + }else if( c=='Z' || c=='z' ){
|
| + zDate++;
|
| + goto zulu_time;
|
| + }else{
|
| + return c!=0;
|
| + }
|
| + zDate++;
|
| + if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
|
| + return 1;
|
| + }
|
| + zDate += 5;
|
| + p->tz = sgn*(nMn + nHr*60);
|
| +zulu_time:
|
| + while( sqlite3Isspace(*zDate) ){ zDate++; }
|
| + return *zDate!=0;
|
| +}
|
| +
|
| +/*
|
| +** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
|
| +** The HH, MM, and SS must each be exactly 2 digits. The
|
| +** fractional seconds FFFF can be one or more digits.
|
| +**
|
| +** Return 1 if there is a parsing error and 0 on success.
|
| +*/
|
| +static int parseHhMmSs(const char *zDate, DateTime *p){
|
| + int h, m, s;
|
| + double ms = 0.0;
|
| + if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
|
| + return 1;
|
| + }
|
| + zDate += 5;
|
| + if( *zDate==':' ){
|
| + zDate++;
|
| + if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
|
| + return 1;
|
| + }
|
| + zDate += 2;
|
| + if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
|
| + double rScale = 1.0;
|
| + zDate++;
|
| + while( sqlite3Isdigit(*zDate) ){
|
| + ms = ms*10.0 + *zDate - '0';
|
| + rScale *= 10.0;
|
| + zDate++;
|
| + }
|
| + ms /= rScale;
|
| + }
|
| + }else{
|
| + s = 0;
|
| + }
|
| + p->validJD = 0;
|
| + p->validHMS = 1;
|
| + p->h = h;
|
| + p->m = m;
|
| + p->s = s + ms;
|
| + if( parseTimezone(zDate, p) ) return 1;
|
| + p->validTZ = (p->tz!=0)?1:0;
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
|
| +** that the YYYY-MM-DD is according to the Gregorian calendar.
|
| +**
|
| +** Reference: Meeus page 61
|
| +*/
|
| +static void computeJD(DateTime *p){
|
| + int Y, M, D, A, B, X1, X2;
|
| +
|
| + if( p->validJD ) return;
|
| + if( p->validYMD ){
|
| + Y = p->Y;
|
| + M = p->M;
|
| + D = p->D;
|
| + }else{
|
| + Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
|
| + M = 1;
|
| + D = 1;
|
| + }
|
| + if( M<=2 ){
|
| + Y--;
|
| + M += 12;
|
| + }
|
| + A = Y/100;
|
| + B = 2 - A + (A/4);
|
| + X1 = 36525*(Y+4716)/100;
|
| + X2 = 306001*(M+1)/10000;
|
| + p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
|
| + p->validJD = 1;
|
| + if( p->validHMS ){
|
| + p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
|
| + if( p->validTZ ){
|
| + p->iJD -= p->tz*60000;
|
| + p->validYMD = 0;
|
| + p->validHMS = 0;
|
| + p->validTZ = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Parse dates of the form
|
| +**
|
| +** YYYY-MM-DD HH:MM:SS.FFF
|
| +** YYYY-MM-DD HH:MM:SS
|
| +** YYYY-MM-DD HH:MM
|
| +** YYYY-MM-DD
|
| +**
|
| +** Write the result into the DateTime structure and return 0
|
| +** on success and 1 if the input string is not a well-formed
|
| +** date.
|
| +*/
|
| +static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
| + int Y, M, D, neg;
|
| +
|
| + if( zDate[0]=='-' ){
|
| + zDate++;
|
| + neg = 1;
|
| + }else{
|
| + neg = 0;
|
| + }
|
| + if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
|
| + return 1;
|
| + }
|
| + zDate += 10;
|
| + while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
|
| + if( parseHhMmSs(zDate, p)==0 ){
|
| + /* We got the time */
|
| + }else if( *zDate==0 ){
|
| + p->validHMS = 0;
|
| + }else{
|
| + return 1;
|
| + }
|
| + p->validJD = 0;
|
| + p->validYMD = 1;
|
| + p->Y = neg ? -Y : Y;
|
| + p->M = M;
|
| + p->D = D;
|
| + if( p->validTZ ){
|
| + computeJD(p);
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/*
|
| +** Set the time to the current time reported by the VFS
|
| +*/
|
| +static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
|
| + sqlite3 *db = sqlite3_context_db_handle(context);
|
| + sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD);
|
| + p->validJD = 1;
|
| +}
|
| +
|
| +/*
|
| +** Attempt to parse the given string into a Julian Day Number. Return
|
| +** the number of errors.
|
| +**
|
| +** The following are acceptable forms for the input string:
|
| +**
|
| +** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
|
| +** DDDD.DD
|
| +** now
|
| +**
|
| +** In the first form, the +/-HH:MM is always optional. The fractional
|
| +** seconds extension (the ".FFF") is optional. The seconds portion
|
| +** (":SS.FFF") is option. The year and date can be omitted as long
|
| +** as there is a time string. The time string can be omitted as long
|
| +** as there is a year and date.
|
| +*/
|
| +static int parseDateOrTime(
|
| + sqlite3_context *context,
|
| + const char *zDate,
|
| + DateTime *p
|
| +){
|
| + double r;
|
| + if( parseYyyyMmDd(zDate,p)==0 ){
|
| + return 0;
|
| + }else if( parseHhMmSs(zDate, p)==0 ){
|
| + return 0;
|
| + }else if( sqlite3StrICmp(zDate,"now")==0){
|
| + setDateTimeToCurrent(context, p);
|
| + return 0;
|
| + }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
|
| + p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
|
| + p->validJD = 1;
|
| + return 0;
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** Compute the Year, Month, and Day from the julian day number.
|
| +*/
|
| +static void computeYMD(DateTime *p){
|
| + int Z, A, B, C, D, E, X1;
|
| + if( p->validYMD ) return;
|
| + if( !p->validJD ){
|
| + p->Y = 2000;
|
| + p->M = 1;
|
| + p->D = 1;
|
| + }else{
|
| + Z = (int)((p->iJD + 43200000)/86400000);
|
| + A = (int)((Z - 1867216.25)/36524.25);
|
| + A = Z + 1 + A - (A/4);
|
| + B = A + 1524;
|
| + C = (int)((B - 122.1)/365.25);
|
| + D = (36525*C)/100;
|
| + E = (int)((B-D)/30.6001);
|
| + X1 = (int)(30.6001*E);
|
| + p->D = B - D - X1;
|
| + p->M = E<14 ? E-1 : E-13;
|
| + p->Y = p->M>2 ? C - 4716 : C - 4715;
|
| + }
|
| + p->validYMD = 1;
|
| +}
|
| +
|
| +/*
|
| +** Compute the Hour, Minute, and Seconds from the julian day number.
|
| +*/
|
| +static void computeHMS(DateTime *p){
|
| + int s;
|
| + if( p->validHMS ) return;
|
| + computeJD(p);
|
| + s = (int)((p->iJD + 43200000) % 86400000);
|
| + p->s = s/1000.0;
|
| + s = (int)p->s;
|
| + p->s -= s;
|
| + p->h = s/3600;
|
| + s -= p->h*3600;
|
| + p->m = s/60;
|
| + p->s += s - p->m*60;
|
| + p->validHMS = 1;
|
| +}
|
| +
|
| +/*
|
| +** Compute both YMD and HMS
|
| +*/
|
| +static void computeYMD_HMS(DateTime *p){
|
| + computeYMD(p);
|
| + computeHMS(p);
|
| +}
|
| +
|
| +/*
|
| +** Clear the YMD and HMS and the TZ
|
| +*/
|
| +static void clearYMD_HMS_TZ(DateTime *p){
|
| + p->validYMD = 0;
|
| + p->validHMS = 0;
|
| + p->validTZ = 0;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_LOCALTIME
|
| +/*
|
| +** Compute the difference (in milliseconds)
|
| +** between localtime and UTC (a.k.a. GMT)
|
| +** for the time value p where p is in UTC.
|
| +*/
|
| +static sqlite3_int64 localtimeOffset(DateTime *p){
|
| + DateTime x, y;
|
| + time_t t;
|
| + x = *p;
|
| + computeYMD_HMS(&x);
|
| + if( x.Y<1971 || x.Y>=2038 ){
|
| + x.Y = 2000;
|
| + x.M = 1;
|
| + x.D = 1;
|
| + x.h = 0;
|
| + x.m = 0;
|
| + x.s = 0.0;
|
| + } else {
|
| + int s = (int)(x.s + 0.5);
|
| + x.s = s;
|
| + }
|
| + x.tz = 0;
|
| + x.validJD = 0;
|
| + computeJD(&x);
|
| + t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
|
| +#ifdef HAVE_LOCALTIME_R
|
| + {
|
| + struct tm sLocal;
|
| + localtime_r(&t, &sLocal);
|
| + y.Y = sLocal.tm_year + 1900;
|
| + y.M = sLocal.tm_mon + 1;
|
| + y.D = sLocal.tm_mday;
|
| + y.h = sLocal.tm_hour;
|
| + y.m = sLocal.tm_min;
|
| + y.s = sLocal.tm_sec;
|
| + }
|
| +#elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S
|
| + {
|
| + struct tm sLocal;
|
| + localtime_s(&sLocal, &t);
|
| + y.Y = sLocal.tm_year + 1900;
|
| + y.M = sLocal.tm_mon + 1;
|
| + y.D = sLocal.tm_mday;
|
| + y.h = sLocal.tm_hour;
|
| + y.m = sLocal.tm_min;
|
| + y.s = sLocal.tm_sec;
|
| + }
|
| +#else
|
| + {
|
| + struct tm *pTm;
|
| + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
| + pTm = localtime(&t);
|
| + y.Y = pTm->tm_year + 1900;
|
| + y.M = pTm->tm_mon + 1;
|
| + y.D = pTm->tm_mday;
|
| + y.h = pTm->tm_hour;
|
| + y.m = pTm->tm_min;
|
| + y.s = pTm->tm_sec;
|
| + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
| + }
|
| +#endif
|
| + y.validYMD = 1;
|
| + y.validHMS = 1;
|
| + y.validJD = 0;
|
| + y.validTZ = 0;
|
| + computeJD(&y);
|
| + return y.iJD - x.iJD;
|
| +}
|
| +#endif /* SQLITE_OMIT_LOCALTIME */
|
| +
|
| +/*
|
| +** Process a modifier to a date-time stamp. The modifiers are
|
| +** as follows:
|
| +**
|
| +** NNN days
|
| +** NNN hours
|
| +** NNN minutes
|
| +** NNN.NNNN seconds
|
| +** NNN months
|
| +** NNN years
|
| +** start of month
|
| +** start of year
|
| +** start of week
|
| +** start of day
|
| +** weekday N
|
| +** unixepoch
|
| +** localtime
|
| +** utc
|
| +**
|
| +** Return 0 on success and 1 if there is any kind of error.
|
| +*/
|
| +static int parseModifier(const char *zMod, DateTime *p){
|
| + int rc = 1;
|
| + int n;
|
| + double r;
|
| + char *z, zBuf[30];
|
| + z = zBuf;
|
| + for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
|
| + z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
|
| + }
|
| + z[n] = 0;
|
| + switch( z[0] ){
|
| +#ifndef SQLITE_OMIT_LOCALTIME
|
| + case 'l': {
|
| + /* localtime
|
| + **
|
| + ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
|
| + ** show local time.
|
| + */
|
| + if( strcmp(z, "localtime")==0 ){
|
| + computeJD(p);
|
| + p->iJD += localtimeOffset(p);
|
| + clearYMD_HMS_TZ(p);
|
| + rc = 0;
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case 'u': {
|
| + /*
|
| + ** unixepoch
|
| + **
|
| + ** Treat the current value of p->iJD as the number of
|
| + ** seconds since 1970. Convert to a real julian day number.
|
| + */
|
| + if( strcmp(z, "unixepoch")==0 && p->validJD ){
|
| + p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
|
| + clearYMD_HMS_TZ(p);
|
| + rc = 0;
|
| + }
|
| +#ifndef SQLITE_OMIT_LOCALTIME
|
| + else if( strcmp(z, "utc")==0 ){
|
| + sqlite3_int64 c1;
|
| + computeJD(p);
|
| + c1 = localtimeOffset(p);
|
| + p->iJD -= c1;
|
| + clearYMD_HMS_TZ(p);
|
| + p->iJD += c1 - localtimeOffset(p);
|
| + rc = 0;
|
| + }
|
| +#endif
|
| + break;
|
| + }
|
| + case 'w': {
|
| + /*
|
| + ** weekday N
|
| + **
|
| + ** Move the date to the same time on the next occurrence of
|
| + ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
|
| + ** date is already on the appropriate weekday, this is a no-op.
|
| + */
|
| + if( strncmp(z, "weekday ", 8)==0
|
| + && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
|
| + && (n=(int)r)==r && n>=0 && r<7 ){
|
| + sqlite3_int64 Z;
|
| + computeYMD_HMS(p);
|
| + p->validTZ = 0;
|
| + p->validJD = 0;
|
| + computeJD(p);
|
| + Z = ((p->iJD + 129600000)/86400000) % 7;
|
| + if( Z>n ) Z -= 7;
|
| + p->iJD += (n - Z)*86400000;
|
| + clearYMD_HMS_TZ(p);
|
| + rc = 0;
|
| + }
|
| + break;
|
| + }
|
| + case 's': {
|
| + /*
|
| + ** start of TTTTT
|
| + **
|
| + ** Move the date backwards to the beginning of the current day,
|
| + ** or month or year.
|
| + */
|
| + if( strncmp(z, "start of ", 9)!=0 ) break;
|
| + z += 9;
|
| + computeYMD(p);
|
| + p->validHMS = 1;
|
| + p->h = p->m = 0;
|
| + p->s = 0.0;
|
| + p->validTZ = 0;
|
| + p->validJD = 0;
|
| + if( strcmp(z,"month")==0 ){
|
| + p->D = 1;
|
| + rc = 0;
|
| + }else if( strcmp(z,"year")==0 ){
|
| + computeYMD(p);
|
| + p->M = 1;
|
| + p->D = 1;
|
| + rc = 0;
|
| + }else if( strcmp(z,"day")==0 ){
|
| + rc = 0;
|
| + }
|
| + break;
|
| + }
|
| + case '+':
|
| + case '-':
|
| + case '0':
|
| + case '1':
|
| + case '2':
|
| + case '3':
|
| + case '4':
|
| + case '5':
|
| + case '6':
|
| + case '7':
|
| + case '8':
|
| + case '9': {
|
| + double rRounder;
|
| + for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
|
| + if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
|
| + rc = 1;
|
| + break;
|
| + }
|
| + if( z[n]==':' ){
|
| + /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
|
| + ** specified number of hours, minutes, seconds, and fractional seconds
|
| + ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
|
| + ** omitted.
|
| + */
|
| + const char *z2 = z;
|
| + DateTime tx;
|
| + sqlite3_int64 day;
|
| + if( !sqlite3Isdigit(*z2) ) z2++;
|
| + memset(&tx, 0, sizeof(tx));
|
| + if( parseHhMmSs(z2, &tx) ) break;
|
| + computeJD(&tx);
|
| + tx.iJD -= 43200000;
|
| + day = tx.iJD/86400000;
|
| + tx.iJD -= day*86400000;
|
| + if( z[0]=='-' ) tx.iJD = -tx.iJD;
|
| + computeJD(p);
|
| + clearYMD_HMS_TZ(p);
|
| + p->iJD += tx.iJD;
|
| + rc = 0;
|
| + break;
|
| + }
|
| + z += n;
|
| + while( sqlite3Isspace(*z) ) z++;
|
| + n = sqlite3Strlen30(z);
|
| + if( n>10 || n<3 ) break;
|
| + if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
|
| + computeJD(p);
|
| + rc = 0;
|
| + rRounder = r<0 ? -0.5 : +0.5;
|
| + if( n==3 && strcmp(z,"day")==0 ){
|
| + p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
|
| + }else if( n==4 && strcmp(z,"hour")==0 ){
|
| + p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
|
| + }else if( n==6 && strcmp(z,"minute")==0 ){
|
| + p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
|
| + }else if( n==6 && strcmp(z,"second")==0 ){
|
| + p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
|
| + }else if( n==5 && strcmp(z,"month")==0 ){
|
| + int x, y;
|
| + computeYMD_HMS(p);
|
| + p->M += (int)r;
|
| + x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
|
| + p->Y += x;
|
| + p->M -= x*12;
|
| + p->validJD = 0;
|
| + computeJD(p);
|
| + y = (int)r;
|
| + if( y!=r ){
|
| + p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
|
| + }
|
| + }else if( n==4 && strcmp(z,"year")==0 ){
|
| + int y = (int)r;
|
| + computeYMD_HMS(p);
|
| + p->Y += y;
|
| + p->validJD = 0;
|
| + computeJD(p);
|
| + if( y!=r ){
|
| + p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
|
| + }
|
| + }else{
|
| + rc = 1;
|
| + }
|
| + clearYMD_HMS_TZ(p);
|
| + break;
|
| + }
|
| + default: {
|
| + break;
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Process time function arguments. argv[0] is a date-time stamp.
|
| +** argv[1] and following are modifiers. Parse them all and write
|
| +** the resulting time into the DateTime structure p. Return 0
|
| +** on success and 1 if there are any errors.
|
| +**
|
| +** If there are zero parameters (if even argv[0] is undefined)
|
| +** then assume a default value of "now" for argv[0].
|
| +*/
|
| +static int isDate(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv,
|
| + DateTime *p
|
| +){
|
| + int i;
|
| + const unsigned char *z;
|
| + int eType;
|
| + memset(p, 0, sizeof(*p));
|
| + if( argc==0 ){
|
| + setDateTimeToCurrent(context, p);
|
| + }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
|
| + || eType==SQLITE_INTEGER ){
|
| + p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
|
| + p->validJD = 1;
|
| + }else{
|
| + z = sqlite3_value_text(argv[0]);
|
| + if( !z || parseDateOrTime(context, (char*)z, p) ){
|
| + return 1;
|
| + }
|
| + }
|
| + for(i=1; i<argc; i++){
|
| + if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** The following routines implement the various date and time functions
|
| +** of SQLite.
|
| +*/
|
| +
|
| +/*
|
| +** julianday( TIMESTRING, MOD, MOD, ...)
|
| +**
|
| +** Return the julian day number of the date specified in the arguments
|
| +*/
|
| +static void juliandayFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + DateTime x;
|
| + if( isDate(context, argc, argv, &x)==0 ){
|
| + computeJD(&x);
|
| + sqlite3_result_double(context, x.iJD/86400000.0);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** datetime( TIMESTRING, MOD, MOD, ...)
|
| +**
|
| +** Return YYYY-MM-DD HH:MM:SS
|
| +*/
|
| +static void datetimeFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + DateTime x;
|
| + if( isDate(context, argc, argv, &x)==0 ){
|
| + char zBuf[100];
|
| + computeYMD_HMS(&x);
|
| + sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
|
| + x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
|
| + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** time( TIMESTRING, MOD, MOD, ...)
|
| +**
|
| +** Return HH:MM:SS
|
| +*/
|
| +static void timeFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + DateTime x;
|
| + if( isDate(context, argc, argv, &x)==0 ){
|
| + char zBuf[100];
|
| + computeHMS(&x);
|
| + sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
|
| + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** date( TIMESTRING, MOD, MOD, ...)
|
| +**
|
| +** Return YYYY-MM-DD
|
| +*/
|
| +static void dateFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + DateTime x;
|
| + if( isDate(context, argc, argv, &x)==0 ){
|
| + char zBuf[100];
|
| + computeYMD(&x);
|
| + sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
|
| + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
|
| +**
|
| +** Return a string described by FORMAT. Conversions as follows:
|
| +**
|
| +** %d day of month
|
| +** %f ** fractional seconds SS.SSS
|
| +** %H hour 00-24
|
| +** %j day of year 000-366
|
| +** %J ** Julian day number
|
| +** %m month 01-12
|
| +** %M minute 00-59
|
| +** %s seconds since 1970-01-01
|
| +** %S seconds 00-59
|
| +** %w day of week 0-6 sunday==0
|
| +** %W week of year 00-53
|
| +** %Y year 0000-9999
|
| +** %% %
|
| +*/
|
| +static void strftimeFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + DateTime x;
|
| + u64 n;
|
| + size_t i,j;
|
| + char *z;
|
| + sqlite3 *db;
|
| + const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
|
| + char zBuf[100];
|
| + if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
|
| + db = sqlite3_context_db_handle(context);
|
| + for(i=0, n=1; zFmt[i]; i++, n++){
|
| + if( zFmt[i]=='%' ){
|
| + switch( zFmt[i+1] ){
|
| + case 'd':
|
| + case 'H':
|
| + case 'm':
|
| + case 'M':
|
| + case 'S':
|
| + case 'W':
|
| + n++;
|
| + /* fall thru */
|
| + case 'w':
|
| + case '%':
|
| + break;
|
| + case 'f':
|
| + n += 8;
|
| + break;
|
| + case 'j':
|
| + n += 3;
|
| + break;
|
| + case 'Y':
|
| + n += 8;
|
| + break;
|
| + case 's':
|
| + case 'J':
|
| + n += 50;
|
| + break;
|
| + default:
|
| + return; /* ERROR. return a NULL */
|
| + }
|
| + i++;
|
| + }
|
| + }
|
| + testcase( n==sizeof(zBuf)-1 );
|
| + testcase( n==sizeof(zBuf) );
|
| + testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
|
| + testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
|
| + if( n<sizeof(zBuf) ){
|
| + z = zBuf;
|
| + }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + sqlite3_result_error_toobig(context);
|
| + return;
|
| + }else{
|
| + z = sqlite3DbMallocRaw(db, (int)n);
|
| + if( z==0 ){
|
| + sqlite3_result_error_nomem(context);
|
| + return;
|
| + }
|
| + }
|
| + computeJD(&x);
|
| + computeYMD_HMS(&x);
|
| + for(i=j=0; zFmt[i]; i++){
|
| + if( zFmt[i]!='%' ){
|
| + z[j++] = zFmt[i];
|
| + }else{
|
| + i++;
|
| + switch( zFmt[i] ){
|
| + case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
|
| + case 'f': {
|
| + double s = x.s;
|
| + if( s>59.999 ) s = 59.999;
|
| + sqlite3_snprintf(7, &z[j],"%06.3f", s);
|
| + j += sqlite3Strlen30(&z[j]);
|
| + break;
|
| + }
|
| + case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
|
| + case 'W': /* Fall thru */
|
| + case 'j': {
|
| + int nDay; /* Number of days since 1st day of year */
|
| + DateTime y = x;
|
| + y.validJD = 0;
|
| + y.M = 1;
|
| + y.D = 1;
|
| + computeJD(&y);
|
| + nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
|
| + if( zFmt[i]=='W' ){
|
| + int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
|
| + wd = (int)(((x.iJD+43200000)/86400000)%7);
|
| + sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
|
| + j += 2;
|
| + }else{
|
| + sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
|
| + j += 3;
|
| + }
|
| + break;
|
| + }
|
| + case 'J': {
|
| + sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
|
| + j+=sqlite3Strlen30(&z[j]);
|
| + break;
|
| + }
|
| + case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
|
| + case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
|
| + case 's': {
|
| + sqlite3_snprintf(30,&z[j],"%lld",
|
| + (i64)(x.iJD/1000 - 21086676*(i64)10000));
|
| + j += sqlite3Strlen30(&z[j]);
|
| + break;
|
| + }
|
| + case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
|
| + case 'w': {
|
| + z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
|
| + break;
|
| + }
|
| + case 'Y': {
|
| + sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
|
| + break;
|
| + }
|
| + default: z[j++] = '%'; break;
|
| + }
|
| + }
|
| + }
|
| + z[j] = 0;
|
| + sqlite3_result_text(context, z, -1,
|
| + z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
|
| +}
|
| +
|
| +/*
|
| +** current_time()
|
| +**
|
| +** This function returns the same value as time('now').
|
| +*/
|
| +static void ctimeFunc(
|
| + sqlite3_context *context,
|
| + int NotUsed,
|
| + sqlite3_value **NotUsed2
|
| +){
|
| + UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
| + timeFunc(context, 0, 0);
|
| +}
|
| +
|
| +/*
|
| +** current_date()
|
| +**
|
| +** This function returns the same value as date('now').
|
| +*/
|
| +static void cdateFunc(
|
| + sqlite3_context *context,
|
| + int NotUsed,
|
| + sqlite3_value **NotUsed2
|
| +){
|
| + UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
| + dateFunc(context, 0, 0);
|
| +}
|
| +
|
| +/*
|
| +** current_timestamp()
|
| +**
|
| +** This function returns the same value as datetime('now').
|
| +*/
|
| +static void ctimestampFunc(
|
| + sqlite3_context *context,
|
| + int NotUsed,
|
| + sqlite3_value **NotUsed2
|
| +){
|
| + UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
| + datetimeFunc(context, 0, 0);
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
|
| +
|
| +#ifdef SQLITE_OMIT_DATETIME_FUNCS
|
| +/*
|
| +** If the library is compiled to omit the full-scale date and time
|
| +** handling (to get a smaller binary), the following minimal version
|
| +** of the functions current_time(), current_date() and current_timestamp()
|
| +** are included instead. This is to support column declarations that
|
| +** include "DEFAULT CURRENT_TIME" etc.
|
| +**
|
| +** This function uses the C-library functions time(), gmtime()
|
| +** and strftime(). The format string to pass to strftime() is supplied
|
| +** as the user-data for the function.
|
| +*/
|
| +static void currentTimeFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + time_t t;
|
| + char *zFormat = (char *)sqlite3_user_data(context);
|
| + sqlite3 *db;
|
| + sqlite3_int64 iT;
|
| + char zBuf[20];
|
| +
|
| + UNUSED_PARAMETER(argc);
|
| + UNUSED_PARAMETER(argv);
|
| +
|
| + db = sqlite3_context_db_handle(context);
|
| + sqlite3OsCurrentTimeInt64(db->pVfs, &iT);
|
| + t = iT/1000 - 10000*(sqlite3_int64)21086676;
|
| +#ifdef HAVE_GMTIME_R
|
| + {
|
| + struct tm sNow;
|
| + gmtime_r(&t, &sNow);
|
| + strftime(zBuf, 20, zFormat, &sNow);
|
| + }
|
| +#else
|
| + {
|
| + struct tm *pTm;
|
| + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
| + pTm = gmtime(&t);
|
| + strftime(zBuf, 20, zFormat, pTm);
|
| + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
|
| + }
|
| +#endif
|
| +
|
| + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** This function registered all of the above C functions as SQL
|
| +** functions. This should be the only routine in this file with
|
| +** external linkage.
|
| +*/
|
| +void sqlite3RegisterDateTimeFunctions(void){
|
| + static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
|
| +#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
| + FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
|
| + FUNCTION(date, -1, 0, 0, dateFunc ),
|
| + FUNCTION(time, -1, 0, 0, timeFunc ),
|
| + FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
|
| + FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
|
| + FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
|
| + FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
|
| + FUNCTION(current_date, 0, 0, 0, cdateFunc ),
|
| +#else
|
| + STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
|
| + STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
|
| + STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
|
| +#endif
|
| + };
|
| + int i;
|
| + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
| + FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
|
| +
|
| + for(i=0; i<ArraySize(aDateTimeFuncs); i++){
|
| + sqlite3FuncDefInsert(pHash, &aFunc[i]);
|
| + }
|
| +}
|
|
|