OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2010 February 1 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file contains the implementation of a write-ahead log (WAL) used in |
| 14 ** "journal_mode=WAL" mode. |
| 15 ** |
| 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT |
| 17 ** |
| 18 ** A WAL file consists of a header followed by zero or more "frames". |
| 19 ** Each frame records the revised content of a single page from the |
| 20 ** database file. All changes to the database are recorded by writing |
| 21 ** frames into the WAL. Transactions commit when a frame is written that |
| 22 ** contains a commit marker. A single WAL can and usually does record |
| 23 ** multiple transactions. Periodically, the content of the WAL is |
| 24 ** transferred back into the database file in an operation called a |
| 25 ** "checkpoint". |
| 26 ** |
| 27 ** A single WAL file can be used multiple times. In other words, the |
| 28 ** WAL can fill up with frames and then be checkpointed and then new |
| 29 ** frames can overwrite the old ones. A WAL always grows from beginning |
| 30 ** toward the end. Checksums and counters attached to each frame are |
| 31 ** used to determine which frames within the WAL are valid and which |
| 32 ** are leftovers from prior checkpoints. |
| 33 ** |
| 34 ** The WAL header is 32 bytes in size and consists of the following eight |
| 35 ** big-endian 32-bit unsigned integer values: |
| 36 ** |
| 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 |
| 38 ** 4: File format version. Currently 3007000 |
| 39 ** 8: Database page size. Example: 1024 |
| 40 ** 12: Checkpoint sequence number |
| 41 ** 16: Salt-1, random integer incremented with each checkpoint |
| 42 ** 20: Salt-2, a different random integer changing with each ckpt |
| 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). |
| 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). |
| 45 ** |
| 46 ** Immediately following the wal-header are zero or more frames. Each |
| 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes |
| 48 ** of page data. The frame-header is six big-endian 32-bit unsigned |
| 49 ** integer values, as follows: |
| 50 ** |
| 51 ** 0: Page number. |
| 52 ** 4: For commit records, the size of the database image in pages |
| 53 ** after the commit. For all other records, zero. |
| 54 ** 8: Salt-1 (copied from the header) |
| 55 ** 12: Salt-2 (copied from the header) |
| 56 ** 16: Checksum-1. |
| 57 ** 20: Checksum-2. |
| 58 ** |
| 59 ** A frame is considered valid if and only if the following conditions are |
| 60 ** true: |
| 61 ** |
| 62 ** (1) The salt-1 and salt-2 values in the frame-header match |
| 63 ** salt values in the wal-header |
| 64 ** |
| 65 ** (2) The checksum values in the final 8 bytes of the frame-header |
| 66 ** exactly match the checksum computed consecutively on the |
| 67 ** WAL header and the first 8 bytes and the content of all frames |
| 68 ** up to and including the current frame. |
| 69 ** |
| 70 ** The checksum is computed using 32-bit big-endian integers if the |
| 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it |
| 72 ** is computed using little-endian if the magic number is 0x377f0682. |
| 73 ** The checksum values are always stored in the frame header in a |
| 74 ** big-endian format regardless of which byte order is used to compute |
| 75 ** the checksum. The checksum is computed by interpreting the input as |
| 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The |
| 77 ** algorithm used for the checksum is as follows: |
| 78 ** |
| 79 ** for i from 0 to n-1 step 2: |
| 80 ** s0 += x[i] + s1; |
| 81 ** s1 += x[i+1] + s0; |
| 82 ** endfor |
| 83 ** |
| 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights |
| 85 ** in reverse order (the largest fibonacci weight occurs on the first element |
| 86 ** of the sequence being summed.) The s1 value spans all 32-bit |
| 87 ** terms of the sequence whereas s0 omits the final term. |
| 88 ** |
| 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the |
| 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. |
| 91 ** The VFS.xSync operations serve as write barriers - all writes launched |
| 92 ** before the xSync must complete before any write that launches after the |
| 93 ** xSync begins. |
| 94 ** |
| 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 |
| 96 ** value is randomized. This prevents old and new frames in the WAL from |
| 97 ** being considered valid at the same time and being checkpointing together |
| 98 ** following a crash. |
| 99 ** |
| 100 ** READER ALGORITHM |
| 101 ** |
| 102 ** To read a page from the database (call it page number P), a reader |
| 103 ** first checks the WAL to see if it contains page P. If so, then the |
| 104 ** last valid instance of page P that is a followed by a commit frame |
| 105 ** or is a commit frame itself becomes the value read. If the WAL |
| 106 ** contains no copies of page P that are valid and which are a commit |
| 107 ** frame or are followed by a commit frame, then page P is read from |
| 108 ** the database file. |
| 109 ** |
| 110 ** To start a read transaction, the reader records the index of the last |
| 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value |
| 112 ** for all subsequent read operations. New transactions can be appended |
| 113 ** to the WAL, but as long as the reader uses its original mxFrame value |
| 114 ** and ignores the newly appended content, it will see a consistent snapshot |
| 115 ** of the database from a single point in time. This technique allows |
| 116 ** multiple concurrent readers to view different versions of the database |
| 117 ** content simultaneously. |
| 118 ** |
| 119 ** The reader algorithm in the previous paragraphs works correctly, but |
| 120 ** because frames for page P can appear anywhere within the WAL, the |
| 121 ** reader has to scan the entire WAL looking for page P frames. If the |
| 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, |
| 123 ** and read performance suffers. To overcome this problem, a separate |
| 124 ** data structure called the wal-index is maintained to expedite the |
| 125 ** search for frames of a particular page. |
| 126 ** |
| 127 ** WAL-INDEX FORMAT |
| 128 ** |
| 129 ** Conceptually, the wal-index is shared memory, though VFS implementations |
| 130 ** might choose to implement the wal-index using a mmapped file. Because |
| 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL |
| 132 ** on a network filesystem. All users of the database must be able to |
| 133 ** share memory. |
| 134 ** |
| 135 ** The wal-index is transient. After a crash, the wal-index can (and should |
| 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required |
| 137 ** to either truncate or zero the header of the wal-index when the last |
| 138 ** connection to it closes. Because the wal-index is transient, it can |
| 139 ** use an architecture-specific format; it does not have to be cross-platform. |
| 140 ** Hence, unlike the database and WAL file formats which store all values |
| 141 ** as big endian, the wal-index can store multi-byte values in the native |
| 142 ** byte order of the host computer. |
| 143 ** |
| 144 ** The purpose of the wal-index is to answer this question quickly: Given |
| 145 ** a page number P, return the index of the last frame for page P in the WAL, |
| 146 ** or return NULL if there are no frames for page P in the WAL. |
| 147 ** |
| 148 ** The wal-index consists of a header region, followed by an one or |
| 149 ** more index blocks. |
| 150 ** |
| 151 ** The wal-index header contains the total number of frames within the WAL |
| 152 ** in the the mxFrame field. |
| 153 ** |
| 154 ** Each index block except for the first contains information on |
| 155 ** HASHTABLE_NPAGE frames. The first index block contains information on |
| 156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and |
| 157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and |
| 158 ** first index block are the same size as all other index blocks in the |
| 159 ** wal-index. |
| 160 ** |
| 161 ** Each index block contains two sections, a page-mapping that contains the |
| 162 ** database page number associated with each wal frame, and a hash-table |
| 163 ** that allows readers to query an index block for a specific page number. |
| 164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE |
| 165 ** for the first index block) 32-bit page numbers. The first entry in the |
| 166 ** first index-block contains the database page number corresponding to the |
| 167 ** first frame in the WAL file. The first entry in the second index block |
| 168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in |
| 169 ** the log, and so on. |
| 170 ** |
| 171 ** The last index block in a wal-index usually contains less than the full |
| 172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, |
| 173 ** depending on the contents of the WAL file. This does not change the |
| 174 ** allocated size of the page-mapping array - the page-mapping array merely |
| 175 ** contains unused entries. |
| 176 ** |
| 177 ** Even without using the hash table, the last frame for page P |
| 178 ** can be found by scanning the page-mapping sections of each index block |
| 179 ** starting with the last index block and moving toward the first, and |
| 180 ** within each index block, starting at the end and moving toward the |
| 181 ** beginning. The first entry that equals P corresponds to the frame |
| 182 ** holding the content for that page. |
| 183 ** |
| 184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. |
| 185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the |
| 186 ** hash table for each page number in the mapping section, so the hash |
| 187 ** table is never more than half full. The expected number of collisions |
| 188 ** prior to finding a match is 1. Each entry of the hash table is an |
| 189 ** 1-based index of an entry in the mapping section of the same |
| 190 ** index block. Let K be the 1-based index of the largest entry in |
| 191 ** the mapping section. (For index blocks other than the last, K will |
| 192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block |
| 193 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table |
| 194 ** contain a value of 0. |
| 195 ** |
| 196 ** To look for page P in the hash table, first compute a hash iKey on |
| 197 ** P as follows: |
| 198 ** |
| 199 ** iKey = (P * 383) % HASHTABLE_NSLOT |
| 200 ** |
| 201 ** Then start scanning entries of the hash table, starting with iKey |
| 202 ** (wrapping around to the beginning when the end of the hash table is |
| 203 ** reached) until an unused hash slot is found. Let the first unused slot |
| 204 ** be at index iUnused. (iUnused might be less than iKey if there was |
| 205 ** wrap-around.) Because the hash table is never more than half full, |
| 206 ** the search is guaranteed to eventually hit an unused entry. Let |
| 207 ** iMax be the value between iKey and iUnused, closest to iUnused, |
| 208 ** where aHash[iMax]==P. If there is no iMax entry (if there exists |
| 209 ** no hash slot such that aHash[i]==p) then page P is not in the |
| 210 ** current index block. Otherwise the iMax-th mapping entry of the |
| 211 ** current index block corresponds to the last entry that references |
| 212 ** page P. |
| 213 ** |
| 214 ** A hash search begins with the last index block and moves toward the |
| 215 ** first index block, looking for entries corresponding to page P. On |
| 216 ** average, only two or three slots in each index block need to be |
| 217 ** examined in order to either find the last entry for page P, or to |
| 218 ** establish that no such entry exists in the block. Each index block |
| 219 ** holds over 4000 entries. So two or three index blocks are sufficient |
| 220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 |
| 221 ** comparisons (on average) suffice to either locate a frame in the |
| 222 ** WAL or to establish that the frame does not exist in the WAL. This |
| 223 ** is much faster than scanning the entire 10MB WAL. |
| 224 ** |
| 225 ** Note that entries are added in order of increasing K. Hence, one |
| 226 ** reader might be using some value K0 and a second reader that started |
| 227 ** at a later time (after additional transactions were added to the WAL |
| 228 ** and to the wal-index) might be using a different value K1, where K1>K0. |
| 229 ** Both readers can use the same hash table and mapping section to get |
| 230 ** the correct result. There may be entries in the hash table with |
| 231 ** K>K0 but to the first reader, those entries will appear to be unused |
| 232 ** slots in the hash table and so the first reader will get an answer as |
| 233 ** if no values greater than K0 had ever been inserted into the hash table |
| 234 ** in the first place - which is what reader one wants. Meanwhile, the |
| 235 ** second reader using K1 will see additional values that were inserted |
| 236 ** later, which is exactly what reader two wants. |
| 237 ** |
| 238 ** When a rollback occurs, the value of K is decreased. Hash table entries |
| 239 ** that correspond to frames greater than the new K value are removed |
| 240 ** from the hash table at this point. |
| 241 */ |
| 242 #ifndef SQLITE_OMIT_WAL |
| 243 |
| 244 #include "wal.h" |
| 245 |
| 246 /* |
| 247 ** Trace output macros |
| 248 */ |
| 249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
| 250 int sqlite3WalTrace = 0; |
| 251 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X |
| 252 #else |
| 253 # define WALTRACE(X) |
| 254 #endif |
| 255 |
| 256 /* |
| 257 ** The maximum (and only) versions of the wal and wal-index formats |
| 258 ** that may be interpreted by this version of SQLite. |
| 259 ** |
| 260 ** If a client begins recovering a WAL file and finds that (a) the checksum |
| 261 ** values in the wal-header are correct and (b) the version field is not |
| 262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. |
| 263 ** |
| 264 ** Similarly, if a client successfully reads a wal-index header (i.e. the |
| 265 ** checksum test is successful) and finds that the version field is not |
| 266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite |
| 267 ** returns SQLITE_CANTOPEN. |
| 268 */ |
| 269 #define WAL_MAX_VERSION 3007000 |
| 270 #define WALINDEX_MAX_VERSION 3007000 |
| 271 |
| 272 /* |
| 273 ** Indices of various locking bytes. WAL_NREADER is the number |
| 274 ** of available reader locks and should be at least 3. |
| 275 */ |
| 276 #define WAL_WRITE_LOCK 0 |
| 277 #define WAL_ALL_BUT_WRITE 1 |
| 278 #define WAL_CKPT_LOCK 1 |
| 279 #define WAL_RECOVER_LOCK 2 |
| 280 #define WAL_READ_LOCK(I) (3+(I)) |
| 281 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) |
| 282 |
| 283 |
| 284 /* Object declarations */ |
| 285 typedef struct WalIndexHdr WalIndexHdr; |
| 286 typedef struct WalIterator WalIterator; |
| 287 typedef struct WalCkptInfo WalCkptInfo; |
| 288 |
| 289 |
| 290 /* |
| 291 ** The following object holds a copy of the wal-index header content. |
| 292 ** |
| 293 ** The actual header in the wal-index consists of two copies of this |
| 294 ** object. |
| 295 ** |
| 296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. |
| 297 ** Or it can be 1 to represent a 65536-byte page. The latter case was |
| 298 ** added in 3.7.1 when support for 64K pages was added. |
| 299 */ |
| 300 struct WalIndexHdr { |
| 301 u32 iVersion; /* Wal-index version */ |
| 302 u32 unused; /* Unused (padding) field */ |
| 303 u32 iChange; /* Counter incremented each transaction */ |
| 304 u8 isInit; /* 1 when initialized */ |
| 305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ |
| 306 u16 szPage; /* Database page size in bytes. 1==64K */ |
| 307 u32 mxFrame; /* Index of last valid frame in the WAL */ |
| 308 u32 nPage; /* Size of database in pages */ |
| 309 u32 aFrameCksum[2]; /* Checksum of last frame in log */ |
| 310 u32 aSalt[2]; /* Two salt values copied from WAL header */ |
| 311 u32 aCksum[2]; /* Checksum over all prior fields */ |
| 312 }; |
| 313 |
| 314 /* |
| 315 ** A copy of the following object occurs in the wal-index immediately |
| 316 ** following the second copy of the WalIndexHdr. This object stores |
| 317 ** information used by checkpoint. |
| 318 ** |
| 319 ** nBackfill is the number of frames in the WAL that have been written |
| 320 ** back into the database. (We call the act of moving content from WAL to |
| 321 ** database "backfilling".) The nBackfill number is never greater than |
| 322 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads |
| 323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). |
| 324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from |
| 325 ** mxFrame back to zero when the WAL is reset. |
| 326 ** |
| 327 ** There is one entry in aReadMark[] for each reader lock. If a reader |
| 328 ** holds read-lock K, then the value in aReadMark[K] is no greater than |
| 329 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) |
| 330 ** for any aReadMark[] means that entry is unused. aReadMark[0] is |
| 331 ** a special case; its value is never used and it exists as a place-holder |
| 332 ** to avoid having to offset aReadMark[] indexs by one. Readers holding |
| 333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content |
| 334 ** directly from the database. |
| 335 ** |
| 336 ** The value of aReadMark[K] may only be changed by a thread that |
| 337 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of |
| 338 ** aReadMark[K] cannot changed while there is a reader is using that mark |
| 339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). |
| 340 ** |
| 341 ** The checkpointer may only transfer frames from WAL to database where |
| 342 ** the frame numbers are less than or equal to every aReadMark[] that is |
| 343 ** in use (that is, every aReadMark[j] for which there is a corresponding |
| 344 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the |
| 345 ** largest value and will increase an unused aReadMark[] to mxFrame if there |
| 346 ** is not already an aReadMark[] equal to mxFrame. The exception to the |
| 347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything |
| 348 ** in the WAL has been backfilled into the database) then new readers |
| 349 ** will choose aReadMark[0] which has value 0 and hence such reader will |
| 350 ** get all their all content directly from the database file and ignore |
| 351 ** the WAL. |
| 352 ** |
| 353 ** Writers normally append new frames to the end of the WAL. However, |
| 354 ** if nBackfill equals mxFrame (meaning that all WAL content has been |
| 355 ** written back into the database) and if no readers are using the WAL |
| 356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then |
| 357 ** the writer will first "reset" the WAL back to the beginning and start |
| 358 ** writing new content beginning at frame 1. |
| 359 ** |
| 360 ** We assume that 32-bit loads are atomic and so no locks are needed in |
| 361 ** order to read from any aReadMark[] entries. |
| 362 */ |
| 363 struct WalCkptInfo { |
| 364 u32 nBackfill; /* Number of WAL frames backfilled into DB */ |
| 365 u32 aReadMark[WAL_NREADER]; /* Reader marks */ |
| 366 }; |
| 367 #define READMARK_NOT_USED 0xffffffff |
| 368 |
| 369 |
| 370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at |
| 371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems |
| 372 ** only support mandatory file-locks, we do not read or write data |
| 373 ** from the region of the file on which locks are applied. |
| 374 */ |
| 375 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) |
| 376 #define WALINDEX_LOCK_RESERVED 16 |
| 377 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) |
| 378 |
| 379 /* Size of header before each frame in wal */ |
| 380 #define WAL_FRAME_HDRSIZE 24 |
| 381 |
| 382 /* Size of write ahead log header, including checksum. */ |
| 383 /* #define WAL_HDRSIZE 24 */ |
| 384 #define WAL_HDRSIZE 32 |
| 385 |
| 386 /* WAL magic value. Either this value, or the same value with the least |
| 387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit |
| 388 ** big-endian format in the first 4 bytes of a WAL file. |
| 389 ** |
| 390 ** If the LSB is set, then the checksums for each frame within the WAL |
| 391 ** file are calculated by treating all data as an array of 32-bit |
| 392 ** big-endian words. Otherwise, they are calculated by interpreting |
| 393 ** all data as 32-bit little-endian words. |
| 394 */ |
| 395 #define WAL_MAGIC 0x377f0682 |
| 396 |
| 397 /* |
| 398 ** Return the offset of frame iFrame in the write-ahead log file, |
| 399 ** assuming a database page size of szPage bytes. The offset returned |
| 400 ** is to the start of the write-ahead log frame-header. |
| 401 */ |
| 402 #define walFrameOffset(iFrame, szPage) ( \ |
| 403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ |
| 404 ) |
| 405 |
| 406 /* |
| 407 ** An open write-ahead log file is represented by an instance of the |
| 408 ** following object. |
| 409 */ |
| 410 struct Wal { |
| 411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ |
| 412 sqlite3_file *pDbFd; /* File handle for the database file */ |
| 413 sqlite3_file *pWalFd; /* File handle for WAL file */ |
| 414 u32 iCallback; /* Value to pass to log callback (or 0) */ |
| 415 int nWiData; /* Size of array apWiData */ |
| 416 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ |
| 417 u32 szPage; /* Database page size */ |
| 418 i16 readLock; /* Which read lock is being held. -1 for none */ |
| 419 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ |
| 420 u8 writeLock; /* True if in a write transaction */ |
| 421 u8 ckptLock; /* True if holding a checkpoint lock */ |
| 422 u8 readOnly; /* True if the WAL file is open read-only */ |
| 423 WalIndexHdr hdr; /* Wal-index header for current transaction */ |
| 424 const char *zWalName; /* Name of WAL file */ |
| 425 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ |
| 426 #ifdef SQLITE_DEBUG |
| 427 u8 lockError; /* True if a locking error has occurred */ |
| 428 #endif |
| 429 }; |
| 430 |
| 431 /* |
| 432 ** Candidate values for Wal.exclusiveMode. |
| 433 */ |
| 434 #define WAL_NORMAL_MODE 0 |
| 435 #define WAL_EXCLUSIVE_MODE 1 |
| 436 #define WAL_HEAPMEMORY_MODE 2 |
| 437 |
| 438 /* |
| 439 ** Each page of the wal-index mapping contains a hash-table made up of |
| 440 ** an array of HASHTABLE_NSLOT elements of the following type. |
| 441 */ |
| 442 typedef u16 ht_slot; |
| 443 |
| 444 /* |
| 445 ** This structure is used to implement an iterator that loops through |
| 446 ** all frames in the WAL in database page order. Where two or more frames |
| 447 ** correspond to the same database page, the iterator visits only the |
| 448 ** frame most recently written to the WAL (in other words, the frame with |
| 449 ** the largest index). |
| 450 ** |
| 451 ** The internals of this structure are only accessed by: |
| 452 ** |
| 453 ** walIteratorInit() - Create a new iterator, |
| 454 ** walIteratorNext() - Step an iterator, |
| 455 ** walIteratorFree() - Free an iterator. |
| 456 ** |
| 457 ** This functionality is used by the checkpoint code (see walCheckpoint()). |
| 458 */ |
| 459 struct WalIterator { |
| 460 int iPrior; /* Last result returned from the iterator */ |
| 461 int nSegment; /* Number of entries in aSegment[] */ |
| 462 struct WalSegment { |
| 463 int iNext; /* Next slot in aIndex[] not yet returned */ |
| 464 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ |
| 465 u32 *aPgno; /* Array of page numbers. */ |
| 466 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ |
| 467 int iZero; /* Frame number associated with aPgno[0] */ |
| 468 } aSegment[1]; /* One for every 32KB page in the wal-index */ |
| 469 }; |
| 470 |
| 471 /* |
| 472 ** Define the parameters of the hash tables in the wal-index file. There |
| 473 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the |
| 474 ** wal-index. |
| 475 ** |
| 476 ** Changing any of these constants will alter the wal-index format and |
| 477 ** create incompatibilities. |
| 478 */ |
| 479 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ |
| 480 #define HASHTABLE_HASH_1 383 /* Should be prime */ |
| 481 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ |
| 482 |
| 483 /* |
| 484 ** The block of page numbers associated with the first hash-table in a |
| 485 ** wal-index is smaller than usual. This is so that there is a complete |
| 486 ** hash-table on each aligned 32KB page of the wal-index. |
| 487 */ |
| 488 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) |
| 489 |
| 490 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ |
| 491 #define WALINDEX_PGSZ ( \ |
| 492 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ |
| 493 ) |
| 494 |
| 495 /* |
| 496 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index |
| 497 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are |
| 498 ** numbered from zero. |
| 499 ** |
| 500 ** If this call is successful, *ppPage is set to point to the wal-index |
| 501 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, |
| 502 ** then an SQLite error code is returned and *ppPage is set to 0. |
| 503 */ |
| 504 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ |
| 505 int rc = SQLITE_OK; |
| 506 |
| 507 /* Enlarge the pWal->apWiData[] array if required */ |
| 508 if( pWal->nWiData<=iPage ){ |
| 509 int nByte = sizeof(u32*)*(iPage+1); |
| 510 volatile u32 **apNew; |
| 511 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte); |
| 512 if( !apNew ){ |
| 513 *ppPage = 0; |
| 514 return SQLITE_NOMEM; |
| 515 } |
| 516 memset((void*)&apNew[pWal->nWiData], 0, |
| 517 sizeof(u32*)*(iPage+1-pWal->nWiData)); |
| 518 pWal->apWiData = apNew; |
| 519 pWal->nWiData = iPage+1; |
| 520 } |
| 521 |
| 522 /* Request a pointer to the required page from the VFS */ |
| 523 if( pWal->apWiData[iPage]==0 ){ |
| 524 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ |
| 525 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); |
| 526 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; |
| 527 }else{ |
| 528 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, |
| 529 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] |
| 530 ); |
| 531 } |
| 532 } |
| 533 |
| 534 *ppPage = pWal->apWiData[iPage]; |
| 535 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); |
| 536 return rc; |
| 537 } |
| 538 |
| 539 /* |
| 540 ** Return a pointer to the WalCkptInfo structure in the wal-index. |
| 541 */ |
| 542 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ |
| 543 assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
| 544 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); |
| 545 } |
| 546 |
| 547 /* |
| 548 ** Return a pointer to the WalIndexHdr structure in the wal-index. |
| 549 */ |
| 550 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ |
| 551 assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
| 552 return (volatile WalIndexHdr*)pWal->apWiData[0]; |
| 553 } |
| 554 |
| 555 /* |
| 556 ** The argument to this macro must be of type u32. On a little-endian |
| 557 ** architecture, it returns the u32 value that results from interpreting |
| 558 ** the 4 bytes as a big-endian value. On a big-endian architecture, it |
| 559 ** returns the value that would be produced by intepreting the 4 bytes |
| 560 ** of the input value as a little-endian integer. |
| 561 */ |
| 562 #define BYTESWAP32(x) ( \ |
| 563 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ |
| 564 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ |
| 565 ) |
| 566 |
| 567 /* |
| 568 ** Generate or extend an 8 byte checksum based on the data in |
| 569 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or |
| 570 ** initial values of 0 and 0 if aIn==NULL). |
| 571 ** |
| 572 ** The checksum is written back into aOut[] before returning. |
| 573 ** |
| 574 ** nByte must be a positive multiple of 8. |
| 575 */ |
| 576 static void walChecksumBytes( |
| 577 int nativeCksum, /* True for native byte-order, false for non-native */ |
| 578 u8 *a, /* Content to be checksummed */ |
| 579 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ |
| 580 const u32 *aIn, /* Initial checksum value input */ |
| 581 u32 *aOut /* OUT: Final checksum value output */ |
| 582 ){ |
| 583 u32 s1, s2; |
| 584 u32 *aData = (u32 *)a; |
| 585 u32 *aEnd = (u32 *)&a[nByte]; |
| 586 |
| 587 if( aIn ){ |
| 588 s1 = aIn[0]; |
| 589 s2 = aIn[1]; |
| 590 }else{ |
| 591 s1 = s2 = 0; |
| 592 } |
| 593 |
| 594 assert( nByte>=8 ); |
| 595 assert( (nByte&0x00000007)==0 ); |
| 596 |
| 597 if( nativeCksum ){ |
| 598 do { |
| 599 s1 += *aData++ + s2; |
| 600 s2 += *aData++ + s1; |
| 601 }while( aData<aEnd ); |
| 602 }else{ |
| 603 do { |
| 604 s1 += BYTESWAP32(aData[0]) + s2; |
| 605 s2 += BYTESWAP32(aData[1]) + s1; |
| 606 aData += 2; |
| 607 }while( aData<aEnd ); |
| 608 } |
| 609 |
| 610 aOut[0] = s1; |
| 611 aOut[1] = s2; |
| 612 } |
| 613 |
| 614 static void walShmBarrier(Wal *pWal){ |
| 615 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ |
| 616 sqlite3OsShmBarrier(pWal->pDbFd); |
| 617 } |
| 618 } |
| 619 |
| 620 /* |
| 621 ** Write the header information in pWal->hdr into the wal-index. |
| 622 ** |
| 623 ** The checksum on pWal->hdr is updated before it is written. |
| 624 */ |
| 625 static void walIndexWriteHdr(Wal *pWal){ |
| 626 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); |
| 627 const int nCksum = offsetof(WalIndexHdr, aCksum); |
| 628 |
| 629 assert( pWal->writeLock ); |
| 630 pWal->hdr.isInit = 1; |
| 631 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; |
| 632 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); |
| 633 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); |
| 634 walShmBarrier(pWal); |
| 635 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); |
| 636 } |
| 637 |
| 638 /* |
| 639 ** This function encodes a single frame header and writes it to a buffer |
| 640 ** supplied by the caller. A frame-header is made up of a series of |
| 641 ** 4-byte big-endian integers, as follows: |
| 642 ** |
| 643 ** 0: Page number. |
| 644 ** 4: For commit records, the size of the database image in pages |
| 645 ** after the commit. For all other records, zero. |
| 646 ** 8: Salt-1 (copied from the wal-header) |
| 647 ** 12: Salt-2 (copied from the wal-header) |
| 648 ** 16: Checksum-1. |
| 649 ** 20: Checksum-2. |
| 650 */ |
| 651 static void walEncodeFrame( |
| 652 Wal *pWal, /* The write-ahead log */ |
| 653 u32 iPage, /* Database page number for frame */ |
| 654 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
| 655 u8 *aData, /* Pointer to page data */ |
| 656 u8 *aFrame /* OUT: Write encoded frame here */ |
| 657 ){ |
| 658 int nativeCksum; /* True for native byte-order checksums */ |
| 659 u32 *aCksum = pWal->hdr.aFrameCksum; |
| 660 assert( WAL_FRAME_HDRSIZE==24 ); |
| 661 sqlite3Put4byte(&aFrame[0], iPage); |
| 662 sqlite3Put4byte(&aFrame[4], nTruncate); |
| 663 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); |
| 664 |
| 665 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); |
| 666 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); |
| 667 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); |
| 668 |
| 669 sqlite3Put4byte(&aFrame[16], aCksum[0]); |
| 670 sqlite3Put4byte(&aFrame[20], aCksum[1]); |
| 671 } |
| 672 |
| 673 /* |
| 674 ** Check to see if the frame with header in aFrame[] and content |
| 675 ** in aData[] is valid. If it is a valid frame, fill *piPage and |
| 676 ** *pnTruncate and return true. Return if the frame is not valid. |
| 677 */ |
| 678 static int walDecodeFrame( |
| 679 Wal *pWal, /* The write-ahead log */ |
| 680 u32 *piPage, /* OUT: Database page number for frame */ |
| 681 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
| 682 u8 *aData, /* Pointer to page data (for checksum) */ |
| 683 u8 *aFrame /* Frame data */ |
| 684 ){ |
| 685 int nativeCksum; /* True for native byte-order checksums */ |
| 686 u32 *aCksum = pWal->hdr.aFrameCksum; |
| 687 u32 pgno; /* Page number of the frame */ |
| 688 assert( WAL_FRAME_HDRSIZE==24 ); |
| 689 |
| 690 /* A frame is only valid if the salt values in the frame-header |
| 691 ** match the salt values in the wal-header. |
| 692 */ |
| 693 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ |
| 694 return 0; |
| 695 } |
| 696 |
| 697 /* A frame is only valid if the page number is creater than zero. |
| 698 */ |
| 699 pgno = sqlite3Get4byte(&aFrame[0]); |
| 700 if( pgno==0 ){ |
| 701 return 0; |
| 702 } |
| 703 |
| 704 /* A frame is only valid if a checksum of the WAL header, |
| 705 ** all prior frams, the first 16 bytes of this frame-header, |
| 706 ** and the frame-data matches the checksum in the last 8 |
| 707 ** bytes of this frame-header. |
| 708 */ |
| 709 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); |
| 710 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); |
| 711 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); |
| 712 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) |
| 713 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) |
| 714 ){ |
| 715 /* Checksum failed. */ |
| 716 return 0; |
| 717 } |
| 718 |
| 719 /* If we reach this point, the frame is valid. Return the page number |
| 720 ** and the new database size. |
| 721 */ |
| 722 *piPage = pgno; |
| 723 *pnTruncate = sqlite3Get4byte(&aFrame[4]); |
| 724 return 1; |
| 725 } |
| 726 |
| 727 |
| 728 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
| 729 /* |
| 730 ** Names of locks. This routine is used to provide debugging output and is not |
| 731 ** a part of an ordinary build. |
| 732 */ |
| 733 static const char *walLockName(int lockIdx){ |
| 734 if( lockIdx==WAL_WRITE_LOCK ){ |
| 735 return "WRITE-LOCK"; |
| 736 }else if( lockIdx==WAL_CKPT_LOCK ){ |
| 737 return "CKPT-LOCK"; |
| 738 }else if( lockIdx==WAL_RECOVER_LOCK ){ |
| 739 return "RECOVER-LOCK"; |
| 740 }else{ |
| 741 static char zName[15]; |
| 742 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", |
| 743 lockIdx-WAL_READ_LOCK(0)); |
| 744 return zName; |
| 745 } |
| 746 } |
| 747 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |
| 748 |
| 749 |
| 750 /* |
| 751 ** Set or release locks on the WAL. Locks are either shared or exclusive. |
| 752 ** A lock cannot be moved directly between shared and exclusive - it must go |
| 753 ** through the unlocked state first. |
| 754 ** |
| 755 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. |
| 756 */ |
| 757 static int walLockShared(Wal *pWal, int lockIdx){ |
| 758 int rc; |
| 759 if( pWal->exclusiveMode ) return SQLITE_OK; |
| 760 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, |
| 761 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); |
| 762 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, |
| 763 walLockName(lockIdx), rc ? "failed" : "ok")); |
| 764 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) |
| 765 return rc; |
| 766 } |
| 767 static void walUnlockShared(Wal *pWal, int lockIdx){ |
| 768 if( pWal->exclusiveMode ) return; |
| 769 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, |
| 770 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); |
| 771 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); |
| 772 } |
| 773 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ |
| 774 int rc; |
| 775 if( pWal->exclusiveMode ) return SQLITE_OK; |
| 776 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, |
| 777 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); |
| 778 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, |
| 779 walLockName(lockIdx), n, rc ? "failed" : "ok")); |
| 780 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) |
| 781 return rc; |
| 782 } |
| 783 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ |
| 784 if( pWal->exclusiveMode ) return; |
| 785 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, |
| 786 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); |
| 787 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, |
| 788 walLockName(lockIdx), n)); |
| 789 } |
| 790 |
| 791 /* |
| 792 ** Compute a hash on a page number. The resulting hash value must land |
| 793 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances |
| 794 ** the hash to the next value in the event of a collision. |
| 795 */ |
| 796 static int walHash(u32 iPage){ |
| 797 assert( iPage>0 ); |
| 798 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); |
| 799 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); |
| 800 } |
| 801 static int walNextHash(int iPriorHash){ |
| 802 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); |
| 803 } |
| 804 |
| 805 /* |
| 806 ** Return pointers to the hash table and page number array stored on |
| 807 ** page iHash of the wal-index. The wal-index is broken into 32KB pages |
| 808 ** numbered starting from 0. |
| 809 ** |
| 810 ** Set output variable *paHash to point to the start of the hash table |
| 811 ** in the wal-index file. Set *piZero to one less than the frame |
| 812 ** number of the first frame indexed by this hash table. If a |
| 813 ** slot in the hash table is set to N, it refers to frame number |
| 814 ** (*piZero+N) in the log. |
| 815 ** |
| 816 ** Finally, set *paPgno so that *paPgno[1] is the page number of the |
| 817 ** first frame indexed by the hash table, frame (*piZero+1). |
| 818 */ |
| 819 static int walHashGet( |
| 820 Wal *pWal, /* WAL handle */ |
| 821 int iHash, /* Find the iHash'th table */ |
| 822 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ |
| 823 volatile u32 **paPgno, /* OUT: Pointer to page number array */ |
| 824 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ |
| 825 ){ |
| 826 int rc; /* Return code */ |
| 827 volatile u32 *aPgno; |
| 828 |
| 829 rc = walIndexPage(pWal, iHash, &aPgno); |
| 830 assert( rc==SQLITE_OK || iHash>0 ); |
| 831 |
| 832 if( rc==SQLITE_OK ){ |
| 833 u32 iZero; |
| 834 volatile ht_slot *aHash; |
| 835 |
| 836 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; |
| 837 if( iHash==0 ){ |
| 838 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; |
| 839 iZero = 0; |
| 840 }else{ |
| 841 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; |
| 842 } |
| 843 |
| 844 *paPgno = &aPgno[-1]; |
| 845 *paHash = aHash; |
| 846 *piZero = iZero; |
| 847 } |
| 848 return rc; |
| 849 } |
| 850 |
| 851 /* |
| 852 ** Return the number of the wal-index page that contains the hash-table |
| 853 ** and page-number array that contain entries corresponding to WAL frame |
| 854 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages |
| 855 ** are numbered starting from 0. |
| 856 */ |
| 857 static int walFramePage(u32 iFrame){ |
| 858 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; |
| 859 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) |
| 860 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) |
| 861 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) |
| 862 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) |
| 863 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) |
| 864 ); |
| 865 return iHash; |
| 866 } |
| 867 |
| 868 /* |
| 869 ** Return the page number associated with frame iFrame in this WAL. |
| 870 */ |
| 871 static u32 walFramePgno(Wal *pWal, u32 iFrame){ |
| 872 int iHash = walFramePage(iFrame); |
| 873 if( iHash==0 ){ |
| 874 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; |
| 875 } |
| 876 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; |
| 877 } |
| 878 |
| 879 /* |
| 880 ** Remove entries from the hash table that point to WAL slots greater |
| 881 ** than pWal->hdr.mxFrame. |
| 882 ** |
| 883 ** This function is called whenever pWal->hdr.mxFrame is decreased due |
| 884 ** to a rollback or savepoint. |
| 885 ** |
| 886 ** At most only the hash table containing pWal->hdr.mxFrame needs to be |
| 887 ** updated. Any later hash tables will be automatically cleared when |
| 888 ** pWal->hdr.mxFrame advances to the point where those hash tables are |
| 889 ** actually needed. |
| 890 */ |
| 891 static void walCleanupHash(Wal *pWal){ |
| 892 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ |
| 893 volatile u32 *aPgno = 0; /* Page number array for hash table */ |
| 894 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ |
| 895 int iLimit = 0; /* Zero values greater than this */ |
| 896 int nByte; /* Number of bytes to zero in aPgno[] */ |
| 897 int i; /* Used to iterate through aHash[] */ |
| 898 |
| 899 assert( pWal->writeLock ); |
| 900 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); |
| 901 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); |
| 902 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); |
| 903 |
| 904 if( pWal->hdr.mxFrame==0 ) return; |
| 905 |
| 906 /* Obtain pointers to the hash-table and page-number array containing |
| 907 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed |
| 908 ** that the page said hash-table and array reside on is already mapped. |
| 909 */ |
| 910 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); |
| 911 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); |
| 912 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); |
| 913 |
| 914 /* Zero all hash-table entries that correspond to frame numbers greater |
| 915 ** than pWal->hdr.mxFrame. |
| 916 */ |
| 917 iLimit = pWal->hdr.mxFrame - iZero; |
| 918 assert( iLimit>0 ); |
| 919 for(i=0; i<HASHTABLE_NSLOT; i++){ |
| 920 if( aHash[i]>iLimit ){ |
| 921 aHash[i] = 0; |
| 922 } |
| 923 } |
| 924 |
| 925 /* Zero the entries in the aPgno array that correspond to frames with |
| 926 ** frame numbers greater than pWal->hdr.mxFrame. |
| 927 */ |
| 928 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); |
| 929 memset((void *)&aPgno[iLimit+1], 0, nByte); |
| 930 |
| 931 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
| 932 /* Verify that the every entry in the mapping region is still reachable |
| 933 ** via the hash table even after the cleanup. |
| 934 */ |
| 935 if( iLimit ){ |
| 936 int i; /* Loop counter */ |
| 937 int iKey; /* Hash key */ |
| 938 for(i=1; i<=iLimit; i++){ |
| 939 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ |
| 940 if( aHash[iKey]==i ) break; |
| 941 } |
| 942 assert( aHash[iKey]==i ); |
| 943 } |
| 944 } |
| 945 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ |
| 946 } |
| 947 |
| 948 |
| 949 /* |
| 950 ** Set an entry in the wal-index that will map database page number |
| 951 ** pPage into WAL frame iFrame. |
| 952 */ |
| 953 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ |
| 954 int rc; /* Return code */ |
| 955 u32 iZero = 0; /* One less than frame number of aPgno[1] */ |
| 956 volatile u32 *aPgno = 0; /* Page number array */ |
| 957 volatile ht_slot *aHash = 0; /* Hash table */ |
| 958 |
| 959 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); |
| 960 |
| 961 /* Assuming the wal-index file was successfully mapped, populate the |
| 962 ** page number array and hash table entry. |
| 963 */ |
| 964 if( rc==SQLITE_OK ){ |
| 965 int iKey; /* Hash table key */ |
| 966 int idx; /* Value to write to hash-table slot */ |
| 967 int nCollide; /* Number of hash collisions */ |
| 968 |
| 969 idx = iFrame - iZero; |
| 970 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); |
| 971 |
| 972 /* If this is the first entry to be added to this hash-table, zero the |
| 973 ** entire hash table and aPgno[] array before proceding. |
| 974 */ |
| 975 if( idx==1 ){ |
| 976 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); |
| 977 memset((void*)&aPgno[1], 0, nByte); |
| 978 } |
| 979 |
| 980 /* If the entry in aPgno[] is already set, then the previous writer |
| 981 ** must have exited unexpectedly in the middle of a transaction (after |
| 982 ** writing one or more dirty pages to the WAL to free up memory). |
| 983 ** Remove the remnants of that writers uncommitted transaction from |
| 984 ** the hash-table before writing any new entries. |
| 985 */ |
| 986 if( aPgno[idx] ){ |
| 987 walCleanupHash(pWal); |
| 988 assert( !aPgno[idx] ); |
| 989 } |
| 990 |
| 991 /* Write the aPgno[] array entry and the hash-table slot. */ |
| 992 nCollide = idx; |
| 993 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ |
| 994 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; |
| 995 } |
| 996 aPgno[idx] = iPage; |
| 997 aHash[iKey] = (ht_slot)idx; |
| 998 |
| 999 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
| 1000 /* Verify that the number of entries in the hash table exactly equals |
| 1001 ** the number of entries in the mapping region. |
| 1002 */ |
| 1003 { |
| 1004 int i; /* Loop counter */ |
| 1005 int nEntry = 0; /* Number of entries in the hash table */ |
| 1006 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } |
| 1007 assert( nEntry==idx ); |
| 1008 } |
| 1009 |
| 1010 /* Verify that the every entry in the mapping region is reachable |
| 1011 ** via the hash table. This turns out to be a really, really expensive |
| 1012 ** thing to check, so only do this occasionally - not on every |
| 1013 ** iteration. |
| 1014 */ |
| 1015 if( (idx&0x3ff)==0 ){ |
| 1016 int i; /* Loop counter */ |
| 1017 for(i=1; i<=idx; i++){ |
| 1018 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ |
| 1019 if( aHash[iKey]==i ) break; |
| 1020 } |
| 1021 assert( aHash[iKey]==i ); |
| 1022 } |
| 1023 } |
| 1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ |
| 1025 } |
| 1026 |
| 1027 |
| 1028 return rc; |
| 1029 } |
| 1030 |
| 1031 |
| 1032 /* |
| 1033 ** Recover the wal-index by reading the write-ahead log file. |
| 1034 ** |
| 1035 ** This routine first tries to establish an exclusive lock on the |
| 1036 ** wal-index to prevent other threads/processes from doing anything |
| 1037 ** with the WAL or wal-index while recovery is running. The |
| 1038 ** WAL_RECOVER_LOCK is also held so that other threads will know |
| 1039 ** that this thread is running recovery. If unable to establish |
| 1040 ** the necessary locks, this routine returns SQLITE_BUSY. |
| 1041 */ |
| 1042 static int walIndexRecover(Wal *pWal){ |
| 1043 int rc; /* Return Code */ |
| 1044 i64 nSize; /* Size of log file */ |
| 1045 u32 aFrameCksum[2] = {0, 0}; |
| 1046 int iLock; /* Lock offset to lock for checkpoint */ |
| 1047 int nLock; /* Number of locks to hold */ |
| 1048 |
| 1049 /* Obtain an exclusive lock on all byte in the locking range not already |
| 1050 ** locked by the caller. The caller is guaranteed to have locked the |
| 1051 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. |
| 1052 ** If successful, the same bytes that are locked here are unlocked before |
| 1053 ** this function returns. |
| 1054 */ |
| 1055 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); |
| 1056 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); |
| 1057 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); |
| 1058 assert( pWal->writeLock ); |
| 1059 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; |
| 1060 nLock = SQLITE_SHM_NLOCK - iLock; |
| 1061 rc = walLockExclusive(pWal, iLock, nLock); |
| 1062 if( rc ){ |
| 1063 return rc; |
| 1064 } |
| 1065 WALTRACE(("WAL%p: recovery begin...\n", pWal)); |
| 1066 |
| 1067 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
| 1068 |
| 1069 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); |
| 1070 if( rc!=SQLITE_OK ){ |
| 1071 goto recovery_error; |
| 1072 } |
| 1073 |
| 1074 if( nSize>WAL_HDRSIZE ){ |
| 1075 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ |
| 1076 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
| 1077 int szFrame; /* Number of bytes in buffer aFrame[] */ |
| 1078 u8 *aData; /* Pointer to data part of aFrame buffer */ |
| 1079 int iFrame; /* Index of last frame read */ |
| 1080 i64 iOffset; /* Next offset to read from log file */ |
| 1081 int szPage; /* Page size according to the log */ |
| 1082 u32 magic; /* Magic value read from WAL header */ |
| 1083 u32 version; /* Magic value read from WAL header */ |
| 1084 |
| 1085 /* Read in the WAL header. */ |
| 1086 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); |
| 1087 if( rc!=SQLITE_OK ){ |
| 1088 goto recovery_error; |
| 1089 } |
| 1090 |
| 1091 /* If the database page size is not a power of two, or is greater than |
| 1092 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid |
| 1093 ** data. Similarly, if the 'magic' value is invalid, ignore the whole |
| 1094 ** WAL file. |
| 1095 */ |
| 1096 magic = sqlite3Get4byte(&aBuf[0]); |
| 1097 szPage = sqlite3Get4byte(&aBuf[8]); |
| 1098 if( (magic&0xFFFFFFFE)!=WAL_MAGIC |
| 1099 || szPage&(szPage-1) |
| 1100 || szPage>SQLITE_MAX_PAGE_SIZE |
| 1101 || szPage<512 |
| 1102 ){ |
| 1103 goto finished; |
| 1104 } |
| 1105 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); |
| 1106 pWal->szPage = szPage; |
| 1107 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); |
| 1108 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); |
| 1109 |
| 1110 /* Verify that the WAL header checksum is correct */ |
| 1111 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, |
| 1112 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum |
| 1113 ); |
| 1114 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) |
| 1115 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) |
| 1116 ){ |
| 1117 goto finished; |
| 1118 } |
| 1119 |
| 1120 /* Verify that the version number on the WAL format is one that |
| 1121 ** are able to understand */ |
| 1122 version = sqlite3Get4byte(&aBuf[4]); |
| 1123 if( version!=WAL_MAX_VERSION ){ |
| 1124 rc = SQLITE_CANTOPEN_BKPT; |
| 1125 goto finished; |
| 1126 } |
| 1127 |
| 1128 /* Malloc a buffer to read frames into. */ |
| 1129 szFrame = szPage + WAL_FRAME_HDRSIZE; |
| 1130 aFrame = (u8 *)sqlite3_malloc(szFrame); |
| 1131 if( !aFrame ){ |
| 1132 rc = SQLITE_NOMEM; |
| 1133 goto recovery_error; |
| 1134 } |
| 1135 aData = &aFrame[WAL_FRAME_HDRSIZE]; |
| 1136 |
| 1137 /* Read all frames from the log file. */ |
| 1138 iFrame = 0; |
| 1139 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ |
| 1140 u32 pgno; /* Database page number for frame */ |
| 1141 u32 nTruncate; /* dbsize field from frame header */ |
| 1142 int isValid; /* True if this frame is valid */ |
| 1143 |
| 1144 /* Read and decode the next log frame. */ |
| 1145 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); |
| 1146 if( rc!=SQLITE_OK ) break; |
| 1147 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); |
| 1148 if( !isValid ) break; |
| 1149 rc = walIndexAppend(pWal, ++iFrame, pgno); |
| 1150 if( rc!=SQLITE_OK ) break; |
| 1151 |
| 1152 /* If nTruncate is non-zero, this is a commit record. */ |
| 1153 if( nTruncate ){ |
| 1154 pWal->hdr.mxFrame = iFrame; |
| 1155 pWal->hdr.nPage = nTruncate; |
| 1156 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); |
| 1157 testcase( szPage<=32768 ); |
| 1158 testcase( szPage>=65536 ); |
| 1159 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; |
| 1160 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; |
| 1161 } |
| 1162 } |
| 1163 |
| 1164 sqlite3_free(aFrame); |
| 1165 } |
| 1166 |
| 1167 finished: |
| 1168 if( rc==SQLITE_OK ){ |
| 1169 volatile WalCkptInfo *pInfo; |
| 1170 int i; |
| 1171 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; |
| 1172 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; |
| 1173 walIndexWriteHdr(pWal); |
| 1174 |
| 1175 /* Reset the checkpoint-header. This is safe because this thread is |
| 1176 ** currently holding locks that exclude all other readers, writers and |
| 1177 ** checkpointers. |
| 1178 */ |
| 1179 pInfo = walCkptInfo(pWal); |
| 1180 pInfo->nBackfill = 0; |
| 1181 pInfo->aReadMark[0] = 0; |
| 1182 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; |
| 1183 |
| 1184 /* If more than one frame was recovered from the log file, report an |
| 1185 ** event via sqlite3_log(). This is to help with identifying performance |
| 1186 ** problems caused by applications routinely shutting down without |
| 1187 ** checkpointing the log file. |
| 1188 */ |
| 1189 if( pWal->hdr.nPage ){ |
| 1190 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s", |
| 1191 pWal->hdr.nPage, pWal->zWalName |
| 1192 ); |
| 1193 } |
| 1194 } |
| 1195 |
| 1196 recovery_error: |
| 1197 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); |
| 1198 walUnlockExclusive(pWal, iLock, nLock); |
| 1199 return rc; |
| 1200 } |
| 1201 |
| 1202 /* |
| 1203 ** Close an open wal-index. |
| 1204 */ |
| 1205 static void walIndexClose(Wal *pWal, int isDelete){ |
| 1206 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ |
| 1207 int i; |
| 1208 for(i=0; i<pWal->nWiData; i++){ |
| 1209 sqlite3_free((void *)pWal->apWiData[i]); |
| 1210 pWal->apWiData[i] = 0; |
| 1211 } |
| 1212 }else{ |
| 1213 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); |
| 1214 } |
| 1215 } |
| 1216 |
| 1217 /* |
| 1218 ** Open a connection to the WAL file zWalName. The database file must |
| 1219 ** already be opened on connection pDbFd. The buffer that zWalName points |
| 1220 ** to must remain valid for the lifetime of the returned Wal* handle. |
| 1221 ** |
| 1222 ** A SHARED lock should be held on the database file when this function |
| 1223 ** is called. The purpose of this SHARED lock is to prevent any other |
| 1224 ** client from unlinking the WAL or wal-index file. If another process |
| 1225 ** were to do this just after this client opened one of these files, the |
| 1226 ** system would be badly broken. |
| 1227 ** |
| 1228 ** If the log file is successfully opened, SQLITE_OK is returned and |
| 1229 ** *ppWal is set to point to a new WAL handle. If an error occurs, |
| 1230 ** an SQLite error code is returned and *ppWal is left unmodified. |
| 1231 */ |
| 1232 int sqlite3WalOpen( |
| 1233 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ |
| 1234 sqlite3_file *pDbFd, /* The open database file */ |
| 1235 const char *zWalName, /* Name of the WAL file */ |
| 1236 int bNoShm, /* True to run in heap-memory mode */ |
| 1237 Wal **ppWal /* OUT: Allocated Wal handle */ |
| 1238 ){ |
| 1239 int rc; /* Return Code */ |
| 1240 Wal *pRet; /* Object to allocate and return */ |
| 1241 int flags; /* Flags passed to OsOpen() */ |
| 1242 |
| 1243 assert( zWalName && zWalName[0] ); |
| 1244 assert( pDbFd ); |
| 1245 |
| 1246 /* In the amalgamation, the os_unix.c and os_win.c source files come before |
| 1247 ** this source file. Verify that the #defines of the locking byte offsets |
| 1248 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. |
| 1249 */ |
| 1250 #ifdef WIN_SHM_BASE |
| 1251 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); |
| 1252 #endif |
| 1253 #ifdef UNIX_SHM_BASE |
| 1254 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); |
| 1255 #endif |
| 1256 |
| 1257 |
| 1258 /* Allocate an instance of struct Wal to return. */ |
| 1259 *ppWal = 0; |
| 1260 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); |
| 1261 if( !pRet ){ |
| 1262 return SQLITE_NOMEM; |
| 1263 } |
| 1264 |
| 1265 pRet->pVfs = pVfs; |
| 1266 pRet->pWalFd = (sqlite3_file *)&pRet[1]; |
| 1267 pRet->pDbFd = pDbFd; |
| 1268 pRet->readLock = -1; |
| 1269 pRet->zWalName = zWalName; |
| 1270 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); |
| 1271 |
| 1272 /* Open file handle on the write-ahead log file. */ |
| 1273 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); |
| 1274 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); |
| 1275 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ |
| 1276 pRet->readOnly = 1; |
| 1277 } |
| 1278 |
| 1279 if( rc!=SQLITE_OK ){ |
| 1280 walIndexClose(pRet, 0); |
| 1281 sqlite3OsClose(pRet->pWalFd); |
| 1282 sqlite3_free(pRet); |
| 1283 }else{ |
| 1284 *ppWal = pRet; |
| 1285 WALTRACE(("WAL%d: opened\n", pRet)); |
| 1286 } |
| 1287 return rc; |
| 1288 } |
| 1289 |
| 1290 /* |
| 1291 ** Find the smallest page number out of all pages held in the WAL that |
| 1292 ** has not been returned by any prior invocation of this method on the |
| 1293 ** same WalIterator object. Write into *piFrame the frame index where |
| 1294 ** that page was last written into the WAL. Write into *piPage the page |
| 1295 ** number. |
| 1296 ** |
| 1297 ** Return 0 on success. If there are no pages in the WAL with a page |
| 1298 ** number larger than *piPage, then return 1. |
| 1299 */ |
| 1300 static int walIteratorNext( |
| 1301 WalIterator *p, /* Iterator */ |
| 1302 u32 *piPage, /* OUT: The page number of the next page */ |
| 1303 u32 *piFrame /* OUT: Wal frame index of next page */ |
| 1304 ){ |
| 1305 u32 iMin; /* Result pgno must be greater than iMin */ |
| 1306 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ |
| 1307 int i; /* For looping through segments */ |
| 1308 |
| 1309 iMin = p->iPrior; |
| 1310 assert( iMin<0xffffffff ); |
| 1311 for(i=p->nSegment-1; i>=0; i--){ |
| 1312 struct WalSegment *pSegment = &p->aSegment[i]; |
| 1313 while( pSegment->iNext<pSegment->nEntry ){ |
| 1314 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; |
| 1315 if( iPg>iMin ){ |
| 1316 if( iPg<iRet ){ |
| 1317 iRet = iPg; |
| 1318 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; |
| 1319 } |
| 1320 break; |
| 1321 } |
| 1322 pSegment->iNext++; |
| 1323 } |
| 1324 } |
| 1325 |
| 1326 *piPage = p->iPrior = iRet; |
| 1327 return (iRet==0xFFFFFFFF); |
| 1328 } |
| 1329 |
| 1330 /* |
| 1331 ** This function merges two sorted lists into a single sorted list. |
| 1332 ** |
| 1333 ** aLeft[] and aRight[] are arrays of indices. The sort key is |
| 1334 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following |
| 1335 ** is guaranteed for all J<K: |
| 1336 ** |
| 1337 ** aContent[aLeft[J]] < aContent[aLeft[K]] |
| 1338 ** aContent[aRight[J]] < aContent[aRight[K]] |
| 1339 ** |
| 1340 ** This routine overwrites aRight[] with a new (probably longer) sequence |
| 1341 ** of indices such that the aRight[] contains every index that appears in |
| 1342 ** either aLeft[] or the old aRight[] and such that the second condition |
| 1343 ** above is still met. |
| 1344 ** |
| 1345 ** The aContent[aLeft[X]] values will be unique for all X. And the |
| 1346 ** aContent[aRight[X]] values will be unique too. But there might be |
| 1347 ** one or more combinations of X and Y such that |
| 1348 ** |
| 1349 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] |
| 1350 ** |
| 1351 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. |
| 1352 */ |
| 1353 static void walMerge( |
| 1354 const u32 *aContent, /* Pages in wal - keys for the sort */ |
| 1355 ht_slot *aLeft, /* IN: Left hand input list */ |
| 1356 int nLeft, /* IN: Elements in array *paLeft */ |
| 1357 ht_slot **paRight, /* IN/OUT: Right hand input list */ |
| 1358 int *pnRight, /* IN/OUT: Elements in *paRight */ |
| 1359 ht_slot *aTmp /* Temporary buffer */ |
| 1360 ){ |
| 1361 int iLeft = 0; /* Current index in aLeft */ |
| 1362 int iRight = 0; /* Current index in aRight */ |
| 1363 int iOut = 0; /* Current index in output buffer */ |
| 1364 int nRight = *pnRight; |
| 1365 ht_slot *aRight = *paRight; |
| 1366 |
| 1367 assert( nLeft>0 && nRight>0 ); |
| 1368 while( iRight<nRight || iLeft<nLeft ){ |
| 1369 ht_slot logpage; |
| 1370 Pgno dbpage; |
| 1371 |
| 1372 if( (iLeft<nLeft) |
| 1373 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
| 1374 ){ |
| 1375 logpage = aLeft[iLeft++]; |
| 1376 }else{ |
| 1377 logpage = aRight[iRight++]; |
| 1378 } |
| 1379 dbpage = aContent[logpage]; |
| 1380 |
| 1381 aTmp[iOut++] = logpage; |
| 1382 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
| 1383 |
| 1384 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
| 1385 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
| 1386 } |
| 1387 |
| 1388 *paRight = aLeft; |
| 1389 *pnRight = iOut; |
| 1390 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); |
| 1391 } |
| 1392 |
| 1393 /* |
| 1394 ** Sort the elements in list aList using aContent[] as the sort key. |
| 1395 ** Remove elements with duplicate keys, preferring to keep the |
| 1396 ** larger aList[] values. |
| 1397 ** |
| 1398 ** The aList[] entries are indices into aContent[]. The values in |
| 1399 ** aList[] are to be sorted so that for all J<K: |
| 1400 ** |
| 1401 ** aContent[aList[J]] < aContent[aList[K]] |
| 1402 ** |
| 1403 ** For any X and Y such that |
| 1404 ** |
| 1405 ** aContent[aList[X]] == aContent[aList[Y]] |
| 1406 ** |
| 1407 ** Keep the larger of the two values aList[X] and aList[Y] and discard |
| 1408 ** the smaller. |
| 1409 */ |
| 1410 static void walMergesort( |
| 1411 const u32 *aContent, /* Pages in wal */ |
| 1412 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ |
| 1413 ht_slot *aList, /* IN/OUT: List to sort */ |
| 1414 int *pnList /* IN/OUT: Number of elements in aList[] */ |
| 1415 ){ |
| 1416 struct Sublist { |
| 1417 int nList; /* Number of elements in aList */ |
| 1418 ht_slot *aList; /* Pointer to sub-list content */ |
| 1419 }; |
| 1420 |
| 1421 const int nList = *pnList; /* Size of input list */ |
| 1422 int nMerge = 0; /* Number of elements in list aMerge */ |
| 1423 ht_slot *aMerge = 0; /* List to be merged */ |
| 1424 int iList; /* Index into input list */ |
| 1425 int iSub = 0; /* Index into aSub array */ |
| 1426 struct Sublist aSub[13]; /* Array of sub-lists */ |
| 1427 |
| 1428 memset(aSub, 0, sizeof(aSub)); |
| 1429 assert( nList<=HASHTABLE_NPAGE && nList>0 ); |
| 1430 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); |
| 1431 |
| 1432 for(iList=0; iList<nList; iList++){ |
| 1433 nMerge = 1; |
| 1434 aMerge = &aList[iList]; |
| 1435 for(iSub=0; iList & (1<<iSub); iSub++){ |
| 1436 struct Sublist *p = &aSub[iSub]; |
| 1437 assert( p->aList && p->nList<=(1<<iSub) ); |
| 1438 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); |
| 1439 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); |
| 1440 } |
| 1441 aSub[iSub].aList = aMerge; |
| 1442 aSub[iSub].nList = nMerge; |
| 1443 } |
| 1444 |
| 1445 for(iSub++; iSub<ArraySize(aSub); iSub++){ |
| 1446 if( nList & (1<<iSub) ){ |
| 1447 struct Sublist *p = &aSub[iSub]; |
| 1448 assert( p->nList<=(1<<iSub) ); |
| 1449 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); |
| 1450 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); |
| 1451 } |
| 1452 } |
| 1453 assert( aMerge==aList ); |
| 1454 *pnList = nMerge; |
| 1455 |
| 1456 #ifdef SQLITE_DEBUG |
| 1457 { |
| 1458 int i; |
| 1459 for(i=1; i<*pnList; i++){ |
| 1460 assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
| 1461 } |
| 1462 } |
| 1463 #endif |
| 1464 } |
| 1465 |
| 1466 /* |
| 1467 ** Free an iterator allocated by walIteratorInit(). |
| 1468 */ |
| 1469 static void walIteratorFree(WalIterator *p){ |
| 1470 sqlite3ScratchFree(p); |
| 1471 } |
| 1472 |
| 1473 /* |
| 1474 ** Construct a WalInterator object that can be used to loop over all |
| 1475 ** pages in the WAL in ascending order. The caller must hold the checkpoint |
| 1476 ** lock. |
| 1477 ** |
| 1478 ** On success, make *pp point to the newly allocated WalInterator object |
| 1479 ** return SQLITE_OK. Otherwise, return an error code. If this routine |
| 1480 ** returns an error, the value of *pp is undefined. |
| 1481 ** |
| 1482 ** The calling routine should invoke walIteratorFree() to destroy the |
| 1483 ** WalIterator object when it has finished with it. |
| 1484 */ |
| 1485 static int walIteratorInit(Wal *pWal, WalIterator **pp){ |
| 1486 WalIterator *p; /* Return value */ |
| 1487 int nSegment; /* Number of segments to merge */ |
| 1488 u32 iLast; /* Last frame in log */ |
| 1489 int nByte; /* Number of bytes to allocate */ |
| 1490 int i; /* Iterator variable */ |
| 1491 ht_slot *aTmp; /* Temp space used by merge-sort */ |
| 1492 int rc = SQLITE_OK; /* Return Code */ |
| 1493 |
| 1494 /* This routine only runs while holding the checkpoint lock. And |
| 1495 ** it only runs if there is actually content in the log (mxFrame>0). |
| 1496 */ |
| 1497 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); |
| 1498 iLast = pWal->hdr.mxFrame; |
| 1499 |
| 1500 /* Allocate space for the WalIterator object. */ |
| 1501 nSegment = walFramePage(iLast) + 1; |
| 1502 nByte = sizeof(WalIterator) |
| 1503 + (nSegment-1)*sizeof(struct WalSegment) |
| 1504 + iLast*sizeof(ht_slot); |
| 1505 p = (WalIterator *)sqlite3ScratchMalloc(nByte); |
| 1506 if( !p ){ |
| 1507 return SQLITE_NOMEM; |
| 1508 } |
| 1509 memset(p, 0, nByte); |
| 1510 p->nSegment = nSegment; |
| 1511 |
| 1512 /* Allocate temporary space used by the merge-sort routine. This block |
| 1513 ** of memory will be freed before this function returns. |
| 1514 */ |
| 1515 aTmp = (ht_slot *)sqlite3ScratchMalloc( |
| 1516 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) |
| 1517 ); |
| 1518 if( !aTmp ){ |
| 1519 rc = SQLITE_NOMEM; |
| 1520 } |
| 1521 |
| 1522 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ |
| 1523 volatile ht_slot *aHash; |
| 1524 u32 iZero; |
| 1525 volatile u32 *aPgno; |
| 1526 |
| 1527 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); |
| 1528 if( rc==SQLITE_OK ){ |
| 1529 int j; /* Counter variable */ |
| 1530 int nEntry; /* Number of entries in this segment */ |
| 1531 ht_slot *aIndex; /* Sorted index for this segment */ |
| 1532 |
| 1533 aPgno++; |
| 1534 if( (i+1)==nSegment ){ |
| 1535 nEntry = (int)(iLast - iZero); |
| 1536 }else{ |
| 1537 nEntry = (int)((u32*)aHash - (u32*)aPgno); |
| 1538 } |
| 1539 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; |
| 1540 iZero++; |
| 1541 |
| 1542 for(j=0; j<nEntry; j++){ |
| 1543 aIndex[j] = (ht_slot)j; |
| 1544 } |
| 1545 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); |
| 1546 p->aSegment[i].iZero = iZero; |
| 1547 p->aSegment[i].nEntry = nEntry; |
| 1548 p->aSegment[i].aIndex = aIndex; |
| 1549 p->aSegment[i].aPgno = (u32 *)aPgno; |
| 1550 } |
| 1551 } |
| 1552 sqlite3ScratchFree(aTmp); |
| 1553 |
| 1554 if( rc!=SQLITE_OK ){ |
| 1555 walIteratorFree(p); |
| 1556 } |
| 1557 *pp = p; |
| 1558 return rc; |
| 1559 } |
| 1560 |
| 1561 /* |
| 1562 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and |
| 1563 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a |
| 1564 ** busy-handler function. Invoke it and retry the lock until either the |
| 1565 ** lock is successfully obtained or the busy-handler returns 0. |
| 1566 */ |
| 1567 static int walBusyLock( |
| 1568 Wal *pWal, /* WAL connection */ |
| 1569 int (*xBusy)(void*), /* Function to call when busy */ |
| 1570 void *pBusyArg, /* Context argument for xBusyHandler */ |
| 1571 int lockIdx, /* Offset of first byte to lock */ |
| 1572 int n /* Number of bytes to lock */ |
| 1573 ){ |
| 1574 int rc; |
| 1575 do { |
| 1576 rc = walLockExclusive(pWal, lockIdx, n); |
| 1577 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); |
| 1578 return rc; |
| 1579 } |
| 1580 |
| 1581 /* |
| 1582 ** The cache of the wal-index header must be valid to call this function. |
| 1583 ** Return the page-size in bytes used by the database. |
| 1584 */ |
| 1585 static int walPagesize(Wal *pWal){ |
| 1586 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); |
| 1587 } |
| 1588 |
| 1589 /* |
| 1590 ** Copy as much content as we can from the WAL back into the database file |
| 1591 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. |
| 1592 ** |
| 1593 ** The amount of information copies from WAL to database might be limited |
| 1594 ** by active readers. This routine will never overwrite a database page |
| 1595 ** that a concurrent reader might be using. |
| 1596 ** |
| 1597 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when |
| 1598 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if |
| 1599 ** checkpoints are always run by a background thread or background |
| 1600 ** process, foreground threads will never block on a lengthy fsync call. |
| 1601 ** |
| 1602 ** Fsync is called on the WAL before writing content out of the WAL and |
| 1603 ** into the database. This ensures that if the new content is persistent |
| 1604 ** in the WAL and can be recovered following a power-loss or hard reset. |
| 1605 ** |
| 1606 ** Fsync is also called on the database file if (and only if) the entire |
| 1607 ** WAL content is copied into the database file. This second fsync makes |
| 1608 ** it safe to delete the WAL since the new content will persist in the |
| 1609 ** database file. |
| 1610 ** |
| 1611 ** This routine uses and updates the nBackfill field of the wal-index header. |
| 1612 ** This is the only routine tha will increase the value of nBackfill. |
| 1613 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase |
| 1614 ** its value.) |
| 1615 ** |
| 1616 ** The caller must be holding sufficient locks to ensure that no other |
| 1617 ** checkpoint is running (in any other thread or process) at the same |
| 1618 ** time. |
| 1619 */ |
| 1620 static int walCheckpoint( |
| 1621 Wal *pWal, /* Wal connection */ |
| 1622 int eMode, /* One of PASSIVE, FULL or RESTART */ |
| 1623 int (*xBusyCall)(void*), /* Function to call when busy */ |
| 1624 void *pBusyArg, /* Context argument for xBusyHandler */ |
| 1625 int sync_flags, /* Flags for OsSync() (or 0) */ |
| 1626 u8 *zBuf /* Temporary buffer to use */ |
| 1627 ){ |
| 1628 int rc; /* Return code */ |
| 1629 int szPage; /* Database page-size */ |
| 1630 WalIterator *pIter = 0; /* Wal iterator context */ |
| 1631 u32 iDbpage = 0; /* Next database page to write */ |
| 1632 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ |
| 1633 u32 mxSafeFrame; /* Max frame that can be backfilled */ |
| 1634 u32 mxPage; /* Max database page to write */ |
| 1635 int i; /* Loop counter */ |
| 1636 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ |
| 1637 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ |
| 1638 |
| 1639 szPage = walPagesize(pWal); |
| 1640 testcase( szPage<=32768 ); |
| 1641 testcase( szPage>=65536 ); |
| 1642 pInfo = walCkptInfo(pWal); |
| 1643 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK; |
| 1644 |
| 1645 /* Allocate the iterator */ |
| 1646 rc = walIteratorInit(pWal, &pIter); |
| 1647 if( rc!=SQLITE_OK ){ |
| 1648 return rc; |
| 1649 } |
| 1650 assert( pIter ); |
| 1651 |
| 1652 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; |
| 1653 |
| 1654 /* Compute in mxSafeFrame the index of the last frame of the WAL that is |
| 1655 ** safe to write into the database. Frames beyond mxSafeFrame might |
| 1656 ** overwrite database pages that are in use by active readers and thus |
| 1657 ** cannot be backfilled from the WAL. |
| 1658 */ |
| 1659 mxSafeFrame = pWal->hdr.mxFrame; |
| 1660 mxPage = pWal->hdr.nPage; |
| 1661 for(i=1; i<WAL_NREADER; i++){ |
| 1662 u32 y = pInfo->aReadMark[i]; |
| 1663 if( mxSafeFrame>y ){ |
| 1664 assert( y<=pWal->hdr.mxFrame ); |
| 1665 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); |
| 1666 if( rc==SQLITE_OK ){ |
| 1667 pInfo->aReadMark[i] = READMARK_NOT_USED; |
| 1668 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); |
| 1669 }else if( rc==SQLITE_BUSY ){ |
| 1670 mxSafeFrame = y; |
| 1671 xBusy = 0; |
| 1672 }else{ |
| 1673 goto walcheckpoint_out; |
| 1674 } |
| 1675 } |
| 1676 } |
| 1677 |
| 1678 if( pInfo->nBackfill<mxSafeFrame |
| 1679 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK |
| 1680 ){ |
| 1681 i64 nSize; /* Current size of database file */ |
| 1682 u32 nBackfill = pInfo->nBackfill; |
| 1683 |
| 1684 /* Sync the WAL to disk */ |
| 1685 if( sync_flags ){ |
| 1686 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); |
| 1687 } |
| 1688 |
| 1689 /* If the database file may grow as a result of this checkpoint, hint |
| 1690 ** about the eventual size of the db file to the VFS layer. |
| 1691 */ |
| 1692 if( rc==SQLITE_OK ){ |
| 1693 i64 nReq = ((i64)mxPage * szPage); |
| 1694 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); |
| 1695 if( rc==SQLITE_OK && nSize<nReq ){ |
| 1696 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); |
| 1697 } |
| 1698 } |
| 1699 |
| 1700 /* Iterate through the contents of the WAL, copying data to the db file. */ |
| 1701 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ |
| 1702 i64 iOffset; |
| 1703 assert( walFramePgno(pWal, iFrame)==iDbpage ); |
| 1704 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; |
| 1705 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; |
| 1706 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ |
| 1707 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); |
| 1708 if( rc!=SQLITE_OK ) break; |
| 1709 iOffset = (iDbpage-1)*(i64)szPage; |
| 1710 testcase( IS_BIG_INT(iOffset) ); |
| 1711 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); |
| 1712 if( rc!=SQLITE_OK ) break; |
| 1713 } |
| 1714 |
| 1715 /* If work was actually accomplished... */ |
| 1716 if( rc==SQLITE_OK ){ |
| 1717 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ |
| 1718 i64 szDb = pWal->hdr.nPage*(i64)szPage; |
| 1719 testcase( IS_BIG_INT(szDb) ); |
| 1720 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); |
| 1721 if( rc==SQLITE_OK && sync_flags ){ |
| 1722 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); |
| 1723 } |
| 1724 } |
| 1725 if( rc==SQLITE_OK ){ |
| 1726 pInfo->nBackfill = mxSafeFrame; |
| 1727 } |
| 1728 } |
| 1729 |
| 1730 /* Release the reader lock held while backfilling */ |
| 1731 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); |
| 1732 } |
| 1733 |
| 1734 if( rc==SQLITE_BUSY ){ |
| 1735 /* Reset the return code so as not to report a checkpoint failure |
| 1736 ** just because there are active readers. */ |
| 1737 rc = SQLITE_OK; |
| 1738 } |
| 1739 |
| 1740 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal |
| 1741 ** file has been copied into the database file, then block until all |
| 1742 ** readers have finished using the wal file. This ensures that the next |
| 1743 ** process to write to the database restarts the wal file. |
| 1744 */ |
| 1745 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ |
| 1746 assert( pWal->writeLock ); |
| 1747 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ |
| 1748 rc = SQLITE_BUSY; |
| 1749 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ |
| 1750 assert( mxSafeFrame==pWal->hdr.mxFrame ); |
| 1751 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); |
| 1752 if( rc==SQLITE_OK ){ |
| 1753 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
| 1754 } |
| 1755 } |
| 1756 } |
| 1757 |
| 1758 walcheckpoint_out: |
| 1759 walIteratorFree(pIter); |
| 1760 return rc; |
| 1761 } |
| 1762 |
| 1763 /* |
| 1764 ** Close a connection to a log file. |
| 1765 */ |
| 1766 int sqlite3WalClose( |
| 1767 Wal *pWal, /* Wal to close */ |
| 1768 int sync_flags, /* Flags to pass to OsSync() (or 0) */ |
| 1769 int nBuf, |
| 1770 u8 *zBuf /* Buffer of at least nBuf bytes */ |
| 1771 ){ |
| 1772 int rc = SQLITE_OK; |
| 1773 if( pWal ){ |
| 1774 int isDelete = 0; /* True to unlink wal and wal-index files */ |
| 1775 |
| 1776 /* If an EXCLUSIVE lock can be obtained on the database file (using the |
| 1777 ** ordinary, rollback-mode locking methods, this guarantees that the |
| 1778 ** connection associated with this log file is the only connection to |
| 1779 ** the database. In this case checkpoint the database and unlink both |
| 1780 ** the wal and wal-index files. |
| 1781 ** |
| 1782 ** The EXCLUSIVE lock is not released before returning. |
| 1783 */ |
| 1784 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); |
| 1785 if( rc==SQLITE_OK ){ |
| 1786 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ |
| 1787 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; |
| 1788 } |
| 1789 rc = sqlite3WalCheckpoint( |
| 1790 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 |
| 1791 ); |
| 1792 if( rc==SQLITE_OK ){ |
| 1793 isDelete = 1; |
| 1794 } |
| 1795 } |
| 1796 |
| 1797 walIndexClose(pWal, isDelete); |
| 1798 sqlite3OsClose(pWal->pWalFd); |
| 1799 if( isDelete ){ |
| 1800 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); |
| 1801 } |
| 1802 WALTRACE(("WAL%p: closed\n", pWal)); |
| 1803 sqlite3_free((void *)pWal->apWiData); |
| 1804 sqlite3_free(pWal); |
| 1805 } |
| 1806 return rc; |
| 1807 } |
| 1808 |
| 1809 /* |
| 1810 ** Try to read the wal-index header. Return 0 on success and 1 if |
| 1811 ** there is a problem. |
| 1812 ** |
| 1813 ** The wal-index is in shared memory. Another thread or process might |
| 1814 ** be writing the header at the same time this procedure is trying to |
| 1815 ** read it, which might result in inconsistency. A dirty read is detected |
| 1816 ** by verifying that both copies of the header are the same and also by |
| 1817 ** a checksum on the header. |
| 1818 ** |
| 1819 ** If and only if the read is consistent and the header is different from |
| 1820 ** pWal->hdr, then pWal->hdr is updated to the content of the new header |
| 1821 ** and *pChanged is set to 1. |
| 1822 ** |
| 1823 ** If the checksum cannot be verified return non-zero. If the header |
| 1824 ** is read successfully and the checksum verified, return zero. |
| 1825 */ |
| 1826 static int walIndexTryHdr(Wal *pWal, int *pChanged){ |
| 1827 u32 aCksum[2]; /* Checksum on the header content */ |
| 1828 WalIndexHdr h1, h2; /* Two copies of the header content */ |
| 1829 WalIndexHdr volatile *aHdr; /* Header in shared memory */ |
| 1830 |
| 1831 /* The first page of the wal-index must be mapped at this point. */ |
| 1832 assert( pWal->nWiData>0 && pWal->apWiData[0] ); |
| 1833 |
| 1834 /* Read the header. This might happen concurrently with a write to the |
| 1835 ** same area of shared memory on a different CPU in a SMP, |
| 1836 ** meaning it is possible that an inconsistent snapshot is read |
| 1837 ** from the file. If this happens, return non-zero. |
| 1838 ** |
| 1839 ** There are two copies of the header at the beginning of the wal-index. |
| 1840 ** When reading, read [0] first then [1]. Writes are in the reverse order. |
| 1841 ** Memory barriers are used to prevent the compiler or the hardware from |
| 1842 ** reordering the reads and writes. |
| 1843 */ |
| 1844 aHdr = walIndexHdr(pWal); |
| 1845 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); |
| 1846 walShmBarrier(pWal); |
| 1847 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); |
| 1848 |
| 1849 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ |
| 1850 return 1; /* Dirty read */ |
| 1851 } |
| 1852 if( h1.isInit==0 ){ |
| 1853 return 1; /* Malformed header - probably all zeros */ |
| 1854 } |
| 1855 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); |
| 1856 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ |
| 1857 return 1; /* Checksum does not match */ |
| 1858 } |
| 1859 |
| 1860 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ |
| 1861 *pChanged = 1; |
| 1862 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); |
| 1863 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); |
| 1864 testcase( pWal->szPage<=32768 ); |
| 1865 testcase( pWal->szPage>=65536 ); |
| 1866 } |
| 1867 |
| 1868 /* The header was successfully read. Return zero. */ |
| 1869 return 0; |
| 1870 } |
| 1871 |
| 1872 /* |
| 1873 ** Read the wal-index header from the wal-index and into pWal->hdr. |
| 1874 ** If the wal-header appears to be corrupt, try to reconstruct the |
| 1875 ** wal-index from the WAL before returning. |
| 1876 ** |
| 1877 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is |
| 1878 ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged |
| 1879 ** to 0. |
| 1880 ** |
| 1881 ** If the wal-index header is successfully read, return SQLITE_OK. |
| 1882 ** Otherwise an SQLite error code. |
| 1883 */ |
| 1884 static int walIndexReadHdr(Wal *pWal, int *pChanged){ |
| 1885 int rc; /* Return code */ |
| 1886 int badHdr; /* True if a header read failed */ |
| 1887 volatile u32 *page0; /* Chunk of wal-index containing header */ |
| 1888 |
| 1889 /* Ensure that page 0 of the wal-index (the page that contains the |
| 1890 ** wal-index header) is mapped. Return early if an error occurs here. |
| 1891 */ |
| 1892 assert( pChanged ); |
| 1893 rc = walIndexPage(pWal, 0, &page0); |
| 1894 if( rc!=SQLITE_OK ){ |
| 1895 return rc; |
| 1896 }; |
| 1897 assert( page0 || pWal->writeLock==0 ); |
| 1898 |
| 1899 /* If the first page of the wal-index has been mapped, try to read the |
| 1900 ** wal-index header immediately, without holding any lock. This usually |
| 1901 ** works, but may fail if the wal-index header is corrupt or currently |
| 1902 ** being modified by another thread or process. |
| 1903 */ |
| 1904 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); |
| 1905 |
| 1906 /* If the first attempt failed, it might have been due to a race |
| 1907 ** with a writer. So get a WRITE lock and try again. |
| 1908 */ |
| 1909 assert( badHdr==0 || pWal->writeLock==0 ); |
| 1910 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ |
| 1911 pWal->writeLock = 1; |
| 1912 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ |
| 1913 badHdr = walIndexTryHdr(pWal, pChanged); |
| 1914 if( badHdr ){ |
| 1915 /* If the wal-index header is still malformed even while holding |
| 1916 ** a WRITE lock, it can only mean that the header is corrupted and |
| 1917 ** needs to be reconstructed. So run recovery to do exactly that. |
| 1918 */ |
| 1919 rc = walIndexRecover(pWal); |
| 1920 *pChanged = 1; |
| 1921 } |
| 1922 } |
| 1923 pWal->writeLock = 0; |
| 1924 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
| 1925 } |
| 1926 |
| 1927 /* If the header is read successfully, check the version number to make |
| 1928 ** sure the wal-index was not constructed with some future format that |
| 1929 ** this version of SQLite cannot understand. |
| 1930 */ |
| 1931 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ |
| 1932 rc = SQLITE_CANTOPEN_BKPT; |
| 1933 } |
| 1934 |
| 1935 return rc; |
| 1936 } |
| 1937 |
| 1938 /* |
| 1939 ** This is the value that walTryBeginRead returns when it needs to |
| 1940 ** be retried. |
| 1941 */ |
| 1942 #define WAL_RETRY (-1) |
| 1943 |
| 1944 /* |
| 1945 ** Attempt to start a read transaction. This might fail due to a race or |
| 1946 ** other transient condition. When that happens, it returns WAL_RETRY to |
| 1947 ** indicate to the caller that it is safe to retry immediately. |
| 1948 ** |
| 1949 ** On success return SQLITE_OK. On a permanent failure (such an |
| 1950 ** I/O error or an SQLITE_BUSY because another process is running |
| 1951 ** recovery) return a positive error code. |
| 1952 ** |
| 1953 ** The useWal parameter is true to force the use of the WAL and disable |
| 1954 ** the case where the WAL is bypassed because it has been completely |
| 1955 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() |
| 1956 ** to make a copy of the wal-index header into pWal->hdr. If the |
| 1957 ** wal-index header has changed, *pChanged is set to 1 (as an indication |
| 1958 ** to the caller that the local paget cache is obsolete and needs to be |
| 1959 ** flushed.) When useWal==1, the wal-index header is assumed to already |
| 1960 ** be loaded and the pChanged parameter is unused. |
| 1961 ** |
| 1962 ** The caller must set the cnt parameter to the number of prior calls to |
| 1963 ** this routine during the current read attempt that returned WAL_RETRY. |
| 1964 ** This routine will start taking more aggressive measures to clear the |
| 1965 ** race conditions after multiple WAL_RETRY returns, and after an excessive |
| 1966 ** number of errors will ultimately return SQLITE_PROTOCOL. The |
| 1967 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue |
| 1968 ** and is not honoring the locking protocol. There is a vanishingly small |
| 1969 ** chance that SQLITE_PROTOCOL could be returned because of a run of really |
| 1970 ** bad luck when there is lots of contention for the wal-index, but that |
| 1971 ** possibility is so small that it can be safely neglected, we believe. |
| 1972 ** |
| 1973 ** On success, this routine obtains a read lock on |
| 1974 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is |
| 1975 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) |
| 1976 ** that means the Wal does not hold any read lock. The reader must not |
| 1977 ** access any database page that is modified by a WAL frame up to and |
| 1978 ** including frame number aReadMark[pWal->readLock]. The reader will |
| 1979 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 |
| 1980 ** Or if pWal->readLock==0, then the reader will ignore the WAL |
| 1981 ** completely and get all content directly from the database file. |
| 1982 ** If the useWal parameter is 1 then the WAL will never be ignored and |
| 1983 ** this routine will always set pWal->readLock>0 on success. |
| 1984 ** When the read transaction is completed, the caller must release the |
| 1985 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. |
| 1986 ** |
| 1987 ** This routine uses the nBackfill and aReadMark[] fields of the header |
| 1988 ** to select a particular WAL_READ_LOCK() that strives to let the |
| 1989 ** checkpoint process do as much work as possible. This routine might |
| 1990 ** update values of the aReadMark[] array in the header, but if it does |
| 1991 ** so it takes care to hold an exclusive lock on the corresponding |
| 1992 ** WAL_READ_LOCK() while changing values. |
| 1993 */ |
| 1994 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ |
| 1995 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ |
| 1996 u32 mxReadMark; /* Largest aReadMark[] value */ |
| 1997 int mxI; /* Index of largest aReadMark[] value */ |
| 1998 int i; /* Loop counter */ |
| 1999 int rc = SQLITE_OK; /* Return code */ |
| 2000 |
| 2001 assert( pWal->readLock<0 ); /* Not currently locked */ |
| 2002 |
| 2003 /* Take steps to avoid spinning forever if there is a protocol error. |
| 2004 ** |
| 2005 ** Circumstances that cause a RETRY should only last for the briefest |
| 2006 ** instances of time. No I/O or other system calls are done while the |
| 2007 ** locks are held, so the locks should not be held for very long. But |
| 2008 ** if we are unlucky, another process that is holding a lock might get |
| 2009 ** paged out or take a page-fault that is time-consuming to resolve, |
| 2010 ** during the few nanoseconds that it is holding the lock. In that case, |
| 2011 ** it might take longer than normal for the lock to free. |
| 2012 ** |
| 2013 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few |
| 2014 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this |
| 2015 ** is more of a scheduler yield than an actual delay. But on the 10th |
| 2016 ** an subsequent retries, the delays start becoming longer and longer, |
| 2017 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds. |
| 2018 ** The total delay time before giving up is less than 1 second. |
| 2019 */ |
| 2020 if( cnt>5 ){ |
| 2021 int nDelay = 1; /* Pause time in microseconds */ |
| 2022 if( cnt>100 ){ |
| 2023 VVA_ONLY( pWal->lockError = 1; ) |
| 2024 return SQLITE_PROTOCOL; |
| 2025 } |
| 2026 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */ |
| 2027 sqlite3OsSleep(pWal->pVfs, nDelay); |
| 2028 } |
| 2029 |
| 2030 if( !useWal ){ |
| 2031 rc = walIndexReadHdr(pWal, pChanged); |
| 2032 if( rc==SQLITE_BUSY ){ |
| 2033 /* If there is not a recovery running in another thread or process |
| 2034 ** then convert BUSY errors to WAL_RETRY. If recovery is known to |
| 2035 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here |
| 2036 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY |
| 2037 ** would be technically correct. But the race is benign since with |
| 2038 ** WAL_RETRY this routine will be called again and will probably be |
| 2039 ** right on the second iteration. |
| 2040 */ |
| 2041 if( pWal->apWiData[0]==0 ){ |
| 2042 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. |
| 2043 ** We assume this is a transient condition, so return WAL_RETRY. The |
| 2044 ** xShmMap() implementation used by the default unix and win32 VFS |
| 2045 ** modules may return SQLITE_BUSY due to a race condition in the |
| 2046 ** code that determines whether or not the shared-memory region |
| 2047 ** must be zeroed before the requested page is returned. |
| 2048 */ |
| 2049 rc = WAL_RETRY; |
| 2050 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ |
| 2051 walUnlockShared(pWal, WAL_RECOVER_LOCK); |
| 2052 rc = WAL_RETRY; |
| 2053 }else if( rc==SQLITE_BUSY ){ |
| 2054 rc = SQLITE_BUSY_RECOVERY; |
| 2055 } |
| 2056 } |
| 2057 if( rc!=SQLITE_OK ){ |
| 2058 return rc; |
| 2059 } |
| 2060 } |
| 2061 |
| 2062 pInfo = walCkptInfo(pWal); |
| 2063 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ |
| 2064 /* The WAL has been completely backfilled (or it is empty). |
| 2065 ** and can be safely ignored. |
| 2066 */ |
| 2067 rc = walLockShared(pWal, WAL_READ_LOCK(0)); |
| 2068 walShmBarrier(pWal); |
| 2069 if( rc==SQLITE_OK ){ |
| 2070 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ |
| 2071 /* It is not safe to allow the reader to continue here if frames |
| 2072 ** may have been appended to the log before READ_LOCK(0) was obtained. |
| 2073 ** When holding READ_LOCK(0), the reader ignores the entire log file, |
| 2074 ** which implies that the database file contains a trustworthy |
| 2075 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from |
| 2076 ** happening, this is usually correct. |
| 2077 ** |
| 2078 ** However, if frames have been appended to the log (or if the log |
| 2079 ** is wrapped and written for that matter) before the READ_LOCK(0) |
| 2080 ** is obtained, that is not necessarily true. A checkpointer may |
| 2081 ** have started to backfill the appended frames but crashed before |
| 2082 ** it finished. Leaving a corrupt image in the database file. |
| 2083 */ |
| 2084 walUnlockShared(pWal, WAL_READ_LOCK(0)); |
| 2085 return WAL_RETRY; |
| 2086 } |
| 2087 pWal->readLock = 0; |
| 2088 return SQLITE_OK; |
| 2089 }else if( rc!=SQLITE_BUSY ){ |
| 2090 return rc; |
| 2091 } |
| 2092 } |
| 2093 |
| 2094 /* If we get this far, it means that the reader will want to use |
| 2095 ** the WAL to get at content from recent commits. The job now is |
| 2096 ** to select one of the aReadMark[] entries that is closest to |
| 2097 ** but not exceeding pWal->hdr.mxFrame and lock that entry. |
| 2098 */ |
| 2099 mxReadMark = 0; |
| 2100 mxI = 0; |
| 2101 for(i=1; i<WAL_NREADER; i++){ |
| 2102 u32 thisMark = pInfo->aReadMark[i]; |
| 2103 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ |
| 2104 assert( thisMark!=READMARK_NOT_USED ); |
| 2105 mxReadMark = thisMark; |
| 2106 mxI = i; |
| 2107 } |
| 2108 } |
| 2109 /* There was once an "if" here. The extra "{" is to preserve indentation. */ |
| 2110 { |
| 2111 if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){ |
| 2112 for(i=1; i<WAL_NREADER; i++){ |
| 2113 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); |
| 2114 if( rc==SQLITE_OK ){ |
| 2115 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; |
| 2116 mxI = i; |
| 2117 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); |
| 2118 break; |
| 2119 }else if( rc!=SQLITE_BUSY ){ |
| 2120 return rc; |
| 2121 } |
| 2122 } |
| 2123 } |
| 2124 if( mxI==0 ){ |
| 2125 assert( rc==SQLITE_BUSY ); |
| 2126 return WAL_RETRY; |
| 2127 } |
| 2128 |
| 2129 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); |
| 2130 if( rc ){ |
| 2131 return rc==SQLITE_BUSY ? WAL_RETRY : rc; |
| 2132 } |
| 2133 /* Now that the read-lock has been obtained, check that neither the |
| 2134 ** value in the aReadMark[] array or the contents of the wal-index |
| 2135 ** header have changed. |
| 2136 ** |
| 2137 ** It is necessary to check that the wal-index header did not change |
| 2138 ** between the time it was read and when the shared-lock was obtained |
| 2139 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility |
| 2140 ** that the log file may have been wrapped by a writer, or that frames |
| 2141 ** that occur later in the log than pWal->hdr.mxFrame may have been |
| 2142 ** copied into the database by a checkpointer. If either of these things |
| 2143 ** happened, then reading the database with the current value of |
| 2144 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry |
| 2145 ** instead. |
| 2146 ** |
| 2147 ** This does not guarantee that the copy of the wal-index header is up to |
| 2148 ** date before proceeding. That would not be possible without somehow |
| 2149 ** blocking writers. It only guarantees that a dangerous checkpoint or |
| 2150 ** log-wrap (either of which would require an exclusive lock on |
| 2151 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. |
| 2152 */ |
| 2153 walShmBarrier(pWal); |
| 2154 if( pInfo->aReadMark[mxI]!=mxReadMark |
| 2155 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) |
| 2156 ){ |
| 2157 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); |
| 2158 return WAL_RETRY; |
| 2159 }else{ |
| 2160 assert( mxReadMark<=pWal->hdr.mxFrame ); |
| 2161 pWal->readLock = (i16)mxI; |
| 2162 } |
| 2163 } |
| 2164 return rc; |
| 2165 } |
| 2166 |
| 2167 /* |
| 2168 ** Begin a read transaction on the database. |
| 2169 ** |
| 2170 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: |
| 2171 ** it takes a snapshot of the state of the WAL and wal-index for the current |
| 2172 ** instant in time. The current thread will continue to use this snapshot. |
| 2173 ** Other threads might append new content to the WAL and wal-index but |
| 2174 ** that extra content is ignored by the current thread. |
| 2175 ** |
| 2176 ** If the database contents have changes since the previous read |
| 2177 ** transaction, then *pChanged is set to 1 before returning. The |
| 2178 ** Pager layer will use this to know that is cache is stale and |
| 2179 ** needs to be flushed. |
| 2180 */ |
| 2181 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ |
| 2182 int rc; /* Return code */ |
| 2183 int cnt = 0; /* Number of TryBeginRead attempts */ |
| 2184 |
| 2185 do{ |
| 2186 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); |
| 2187 }while( rc==WAL_RETRY ); |
| 2188 testcase( (rc&0xff)==SQLITE_BUSY ); |
| 2189 testcase( (rc&0xff)==SQLITE_IOERR ); |
| 2190 testcase( rc==SQLITE_PROTOCOL ); |
| 2191 testcase( rc==SQLITE_OK ); |
| 2192 return rc; |
| 2193 } |
| 2194 |
| 2195 /* |
| 2196 ** Finish with a read transaction. All this does is release the |
| 2197 ** read-lock. |
| 2198 */ |
| 2199 void sqlite3WalEndReadTransaction(Wal *pWal){ |
| 2200 sqlite3WalEndWriteTransaction(pWal); |
| 2201 if( pWal->readLock>=0 ){ |
| 2202 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); |
| 2203 pWal->readLock = -1; |
| 2204 } |
| 2205 } |
| 2206 |
| 2207 /* |
| 2208 ** Read a page from the WAL, if it is present in the WAL and if the |
| 2209 ** current read transaction is configured to use the WAL. |
| 2210 ** |
| 2211 ** The *pInWal is set to 1 if the requested page is in the WAL and |
| 2212 ** has been loaded. Or *pInWal is set to 0 if the page was not in |
| 2213 ** the WAL and needs to be read out of the database. |
| 2214 */ |
| 2215 int sqlite3WalRead( |
| 2216 Wal *pWal, /* WAL handle */ |
| 2217 Pgno pgno, /* Database page number to read data for */ |
| 2218 int *pInWal, /* OUT: True if data is read from WAL */ |
| 2219 int nOut, /* Size of buffer pOut in bytes */ |
| 2220 u8 *pOut /* Buffer to write page data to */ |
| 2221 ){ |
| 2222 u32 iRead = 0; /* If !=0, WAL frame to return data from */ |
| 2223 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ |
| 2224 int iHash; /* Used to loop through N hash tables */ |
| 2225 |
| 2226 /* This routine is only be called from within a read transaction. */ |
| 2227 assert( pWal->readLock>=0 || pWal->lockError ); |
| 2228 |
| 2229 /* If the "last page" field of the wal-index header snapshot is 0, then |
| 2230 ** no data will be read from the wal under any circumstances. Return early |
| 2231 ** in this case as an optimization. Likewise, if pWal->readLock==0, |
| 2232 ** then the WAL is ignored by the reader so return early, as if the |
| 2233 ** WAL were empty. |
| 2234 */ |
| 2235 if( iLast==0 || pWal->readLock==0 ){ |
| 2236 *pInWal = 0; |
| 2237 return SQLITE_OK; |
| 2238 } |
| 2239 |
| 2240 /* Search the hash table or tables for an entry matching page number |
| 2241 ** pgno. Each iteration of the following for() loop searches one |
| 2242 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). |
| 2243 ** |
| 2244 ** This code might run concurrently to the code in walIndexAppend() |
| 2245 ** that adds entries to the wal-index (and possibly to this hash |
| 2246 ** table). This means the value just read from the hash |
| 2247 ** slot (aHash[iKey]) may have been added before or after the |
| 2248 ** current read transaction was opened. Values added after the |
| 2249 ** read transaction was opened may have been written incorrectly - |
| 2250 ** i.e. these slots may contain garbage data. However, we assume |
| 2251 ** that any slots written before the current read transaction was |
| 2252 ** opened remain unmodified. |
| 2253 ** |
| 2254 ** For the reasons above, the if(...) condition featured in the inner |
| 2255 ** loop of the following block is more stringent that would be required |
| 2256 ** if we had exclusive access to the hash-table: |
| 2257 ** |
| 2258 ** (aPgno[iFrame]==pgno): |
| 2259 ** This condition filters out normal hash-table collisions. |
| 2260 ** |
| 2261 ** (iFrame<=iLast): |
| 2262 ** This condition filters out entries that were added to the hash |
| 2263 ** table after the current read-transaction had started. |
| 2264 */ |
| 2265 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ |
| 2266 volatile ht_slot *aHash; /* Pointer to hash table */ |
| 2267 volatile u32 *aPgno; /* Pointer to array of page numbers */ |
| 2268 u32 iZero; /* Frame number corresponding to aPgno[0] */ |
| 2269 int iKey; /* Hash slot index */ |
| 2270 int nCollide; /* Number of hash collisions remaining */ |
| 2271 int rc; /* Error code */ |
| 2272 |
| 2273 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); |
| 2274 if( rc!=SQLITE_OK ){ |
| 2275 return rc; |
| 2276 } |
| 2277 nCollide = HASHTABLE_NSLOT; |
| 2278 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ |
| 2279 u32 iFrame = aHash[iKey] + iZero; |
| 2280 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ |
| 2281 assert( iFrame>iRead ); |
| 2282 iRead = iFrame; |
| 2283 } |
| 2284 if( (nCollide--)==0 ){ |
| 2285 return SQLITE_CORRUPT_BKPT; |
| 2286 } |
| 2287 } |
| 2288 } |
| 2289 |
| 2290 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
| 2291 /* If expensive assert() statements are available, do a linear search |
| 2292 ** of the wal-index file content. Make sure the results agree with the |
| 2293 ** result obtained using the hash indexes above. */ |
| 2294 { |
| 2295 u32 iRead2 = 0; |
| 2296 u32 iTest; |
| 2297 for(iTest=iLast; iTest>0; iTest--){ |
| 2298 if( walFramePgno(pWal, iTest)==pgno ){ |
| 2299 iRead2 = iTest; |
| 2300 break; |
| 2301 } |
| 2302 } |
| 2303 assert( iRead==iRead2 ); |
| 2304 } |
| 2305 #endif |
| 2306 |
| 2307 /* If iRead is non-zero, then it is the log frame number that contains the |
| 2308 ** required page. Read and return data from the log file. |
| 2309 */ |
| 2310 if( iRead ){ |
| 2311 int sz; |
| 2312 i64 iOffset; |
| 2313 sz = pWal->hdr.szPage; |
| 2314 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); |
| 2315 testcase( sz<=32768 ); |
| 2316 testcase( sz>=65536 ); |
| 2317 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; |
| 2318 *pInWal = 1; |
| 2319 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ |
| 2320 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset); |
| 2321 } |
| 2322 |
| 2323 *pInWal = 0; |
| 2324 return SQLITE_OK; |
| 2325 } |
| 2326 |
| 2327 |
| 2328 /* |
| 2329 ** Return the size of the database in pages (or zero, if unknown). |
| 2330 */ |
| 2331 Pgno sqlite3WalDbsize(Wal *pWal){ |
| 2332 if( pWal && ALWAYS(pWal->readLock>=0) ){ |
| 2333 return pWal->hdr.nPage; |
| 2334 } |
| 2335 return 0; |
| 2336 } |
| 2337 |
| 2338 |
| 2339 /* |
| 2340 ** This function starts a write transaction on the WAL. |
| 2341 ** |
| 2342 ** A read transaction must have already been started by a prior call |
| 2343 ** to sqlite3WalBeginReadTransaction(). |
| 2344 ** |
| 2345 ** If another thread or process has written into the database since |
| 2346 ** the read transaction was started, then it is not possible for this |
| 2347 ** thread to write as doing so would cause a fork. So this routine |
| 2348 ** returns SQLITE_BUSY in that case and no write transaction is started. |
| 2349 ** |
| 2350 ** There can only be a single writer active at a time. |
| 2351 */ |
| 2352 int sqlite3WalBeginWriteTransaction(Wal *pWal){ |
| 2353 int rc; |
| 2354 |
| 2355 /* Cannot start a write transaction without first holding a read |
| 2356 ** transaction. */ |
| 2357 assert( pWal->readLock>=0 ); |
| 2358 |
| 2359 if( pWal->readOnly ){ |
| 2360 return SQLITE_READONLY; |
| 2361 } |
| 2362 |
| 2363 /* Only one writer allowed at a time. Get the write lock. Return |
| 2364 ** SQLITE_BUSY if unable. |
| 2365 */ |
| 2366 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); |
| 2367 if( rc ){ |
| 2368 return rc; |
| 2369 } |
| 2370 pWal->writeLock = 1; |
| 2371 |
| 2372 /* If another connection has written to the database file since the |
| 2373 ** time the read transaction on this connection was started, then |
| 2374 ** the write is disallowed. |
| 2375 */ |
| 2376 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ |
| 2377 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
| 2378 pWal->writeLock = 0; |
| 2379 rc = SQLITE_BUSY; |
| 2380 } |
| 2381 |
| 2382 return rc; |
| 2383 } |
| 2384 |
| 2385 /* |
| 2386 ** End a write transaction. The commit has already been done. This |
| 2387 ** routine merely releases the lock. |
| 2388 */ |
| 2389 int sqlite3WalEndWriteTransaction(Wal *pWal){ |
| 2390 if( pWal->writeLock ){ |
| 2391 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); |
| 2392 pWal->writeLock = 0; |
| 2393 } |
| 2394 return SQLITE_OK; |
| 2395 } |
| 2396 |
| 2397 /* |
| 2398 ** If any data has been written (but not committed) to the log file, this |
| 2399 ** function moves the write-pointer back to the start of the transaction. |
| 2400 ** |
| 2401 ** Additionally, the callback function is invoked for each frame written |
| 2402 ** to the WAL since the start of the transaction. If the callback returns |
| 2403 ** other than SQLITE_OK, it is not invoked again and the error code is |
| 2404 ** returned to the caller. |
| 2405 ** |
| 2406 ** Otherwise, if the callback function does not return an error, this |
| 2407 ** function returns SQLITE_OK. |
| 2408 */ |
| 2409 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ |
| 2410 int rc = SQLITE_OK; |
| 2411 if( ALWAYS(pWal->writeLock) ){ |
| 2412 Pgno iMax = pWal->hdr.mxFrame; |
| 2413 Pgno iFrame; |
| 2414 |
| 2415 /* Restore the clients cache of the wal-index header to the state it |
| 2416 ** was in before the client began writing to the database. |
| 2417 */ |
| 2418 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); |
| 2419 |
| 2420 for(iFrame=pWal->hdr.mxFrame+1; |
| 2421 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; |
| 2422 iFrame++ |
| 2423 ){ |
| 2424 /* This call cannot fail. Unless the page for which the page number |
| 2425 ** is passed as the second argument is (a) in the cache and |
| 2426 ** (b) has an outstanding reference, then xUndo is either a no-op |
| 2427 ** (if (a) is false) or simply expels the page from the cache (if (b) |
| 2428 ** is false). |
| 2429 ** |
| 2430 ** If the upper layer is doing a rollback, it is guaranteed that there |
| 2431 ** are no outstanding references to any page other than page 1. And |
| 2432 ** page 1 is never written to the log until the transaction is |
| 2433 ** committed. As a result, the call to xUndo may not fail. |
| 2434 */ |
| 2435 assert( walFramePgno(pWal, iFrame)!=1 ); |
| 2436 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); |
| 2437 } |
| 2438 walCleanupHash(pWal); |
| 2439 } |
| 2440 assert( rc==SQLITE_OK ); |
| 2441 return rc; |
| 2442 } |
| 2443 |
| 2444 /* |
| 2445 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 |
| 2446 ** values. This function populates the array with values required to |
| 2447 ** "rollback" the write position of the WAL handle back to the current |
| 2448 ** point in the event of a savepoint rollback (via WalSavepointUndo()). |
| 2449 */ |
| 2450 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ |
| 2451 assert( pWal->writeLock ); |
| 2452 aWalData[0] = pWal->hdr.mxFrame; |
| 2453 aWalData[1] = pWal->hdr.aFrameCksum[0]; |
| 2454 aWalData[2] = pWal->hdr.aFrameCksum[1]; |
| 2455 aWalData[3] = pWal->nCkpt; |
| 2456 } |
| 2457 |
| 2458 /* |
| 2459 ** Move the write position of the WAL back to the point identified by |
| 2460 ** the values in the aWalData[] array. aWalData must point to an array |
| 2461 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated |
| 2462 ** by a call to WalSavepoint(). |
| 2463 */ |
| 2464 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ |
| 2465 int rc = SQLITE_OK; |
| 2466 |
| 2467 assert( pWal->writeLock ); |
| 2468 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); |
| 2469 |
| 2470 if( aWalData[3]!=pWal->nCkpt ){ |
| 2471 /* This savepoint was opened immediately after the write-transaction |
| 2472 ** was started. Right after that, the writer decided to wrap around |
| 2473 ** to the start of the log. Update the savepoint values to match. |
| 2474 */ |
| 2475 aWalData[0] = 0; |
| 2476 aWalData[3] = pWal->nCkpt; |
| 2477 } |
| 2478 |
| 2479 if( aWalData[0]<pWal->hdr.mxFrame ){ |
| 2480 pWal->hdr.mxFrame = aWalData[0]; |
| 2481 pWal->hdr.aFrameCksum[0] = aWalData[1]; |
| 2482 pWal->hdr.aFrameCksum[1] = aWalData[2]; |
| 2483 walCleanupHash(pWal); |
| 2484 } |
| 2485 |
| 2486 return rc; |
| 2487 } |
| 2488 |
| 2489 /* |
| 2490 ** This function is called just before writing a set of frames to the log |
| 2491 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending |
| 2492 ** to the current log file, it is possible to overwrite the start of the |
| 2493 ** existing log file with the new frames (i.e. "reset" the log). If so, |
| 2494 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left |
| 2495 ** unchanged. |
| 2496 ** |
| 2497 ** SQLITE_OK is returned if no error is encountered (regardless of whether |
| 2498 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned |
| 2499 ** if an error occurs. |
| 2500 */ |
| 2501 static int walRestartLog(Wal *pWal){ |
| 2502 int rc = SQLITE_OK; |
| 2503 int cnt; |
| 2504 |
| 2505 if( pWal->readLock==0 ){ |
| 2506 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); |
| 2507 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); |
| 2508 if( pInfo->nBackfill>0 ){ |
| 2509 u32 salt1; |
| 2510 sqlite3_randomness(4, &salt1); |
| 2511 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
| 2512 if( rc==SQLITE_OK ){ |
| 2513 /* If all readers are using WAL_READ_LOCK(0) (in other words if no |
| 2514 ** readers are currently using the WAL), then the transactions |
| 2515 ** frames will overwrite the start of the existing log. Update the |
| 2516 ** wal-index header to reflect this. |
| 2517 ** |
| 2518 ** In theory it would be Ok to update the cache of the header only |
| 2519 ** at this point. But updating the actual wal-index header is also |
| 2520 ** safe and means there is no special case for sqlite3WalUndo() |
| 2521 ** to handle if this transaction is rolled back. |
| 2522 */ |
| 2523 int i; /* Loop counter */ |
| 2524 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ |
| 2525 pWal->nCkpt++; |
| 2526 pWal->hdr.mxFrame = 0; |
| 2527 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); |
| 2528 aSalt[1] = salt1; |
| 2529 walIndexWriteHdr(pWal); |
| 2530 pInfo->nBackfill = 0; |
| 2531 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; |
| 2532 assert( pInfo->aReadMark[0]==0 ); |
| 2533 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); |
| 2534 }else if( rc!=SQLITE_BUSY ){ |
| 2535 return rc; |
| 2536 } |
| 2537 } |
| 2538 walUnlockShared(pWal, WAL_READ_LOCK(0)); |
| 2539 pWal->readLock = -1; |
| 2540 cnt = 0; |
| 2541 do{ |
| 2542 int notUsed; |
| 2543 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); |
| 2544 }while( rc==WAL_RETRY ); |
| 2545 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ |
| 2546 testcase( (rc&0xff)==SQLITE_IOERR ); |
| 2547 testcase( rc==SQLITE_PROTOCOL ); |
| 2548 testcase( rc==SQLITE_OK ); |
| 2549 } |
| 2550 return rc; |
| 2551 } |
| 2552 |
| 2553 /* |
| 2554 ** Write a set of frames to the log. The caller must hold the write-lock |
| 2555 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). |
| 2556 */ |
| 2557 int sqlite3WalFrames( |
| 2558 Wal *pWal, /* Wal handle to write to */ |
| 2559 int szPage, /* Database page-size in bytes */ |
| 2560 PgHdr *pList, /* List of dirty pages to write */ |
| 2561 Pgno nTruncate, /* Database size after this commit */ |
| 2562 int isCommit, /* True if this is a commit */ |
| 2563 int sync_flags /* Flags to pass to OsSync() (or 0) */ |
| 2564 ){ |
| 2565 int rc; /* Used to catch return codes */ |
| 2566 u32 iFrame; /* Next frame address */ |
| 2567 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ |
| 2568 PgHdr *p; /* Iterator to run through pList with. */ |
| 2569 PgHdr *pLast = 0; /* Last frame in list */ |
| 2570 int nLast = 0; /* Number of extra copies of last page */ |
| 2571 |
| 2572 assert( pList ); |
| 2573 assert( pWal->writeLock ); |
| 2574 |
| 2575 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
| 2576 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} |
| 2577 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", |
| 2578 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); |
| 2579 } |
| 2580 #endif |
| 2581 |
| 2582 /* See if it is possible to write these frames into the start of the |
| 2583 ** log file, instead of appending to it at pWal->hdr.mxFrame. |
| 2584 */ |
| 2585 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ |
| 2586 return rc; |
| 2587 } |
| 2588 |
| 2589 /* If this is the first frame written into the log, write the WAL |
| 2590 ** header to the start of the WAL file. See comments at the top of |
| 2591 ** this source file for a description of the WAL header format. |
| 2592 */ |
| 2593 iFrame = pWal->hdr.mxFrame; |
| 2594 if( iFrame==0 ){ |
| 2595 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ |
| 2596 u32 aCksum[2]; /* Checksum for wal-header */ |
| 2597 |
| 2598 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); |
| 2599 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); |
| 2600 sqlite3Put4byte(&aWalHdr[8], szPage); |
| 2601 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); |
| 2602 sqlite3_randomness(8, pWal->hdr.aSalt); |
| 2603 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); |
| 2604 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); |
| 2605 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); |
| 2606 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); |
| 2607 |
| 2608 pWal->szPage = szPage; |
| 2609 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; |
| 2610 pWal->hdr.aFrameCksum[0] = aCksum[0]; |
| 2611 pWal->hdr.aFrameCksum[1] = aCksum[1]; |
| 2612 |
| 2613 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); |
| 2614 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); |
| 2615 if( rc!=SQLITE_OK ){ |
| 2616 return rc; |
| 2617 } |
| 2618 } |
| 2619 assert( (int)pWal->szPage==szPage ); |
| 2620 |
| 2621 /* Write the log file. */ |
| 2622 for(p=pList; p; p=p->pDirty){ |
| 2623 u32 nDbsize; /* Db-size field for frame header */ |
| 2624 i64 iOffset; /* Write offset in log file */ |
| 2625 void *pData; |
| 2626 |
| 2627 iOffset = walFrameOffset(++iFrame, szPage); |
| 2628 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ |
| 2629 |
| 2630 /* Populate and write the frame header */ |
| 2631 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
| 2632 #if defined(SQLITE_HAS_CODEC) |
| 2633 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM; |
| 2634 #else |
| 2635 pData = p->pData; |
| 2636 #endif |
| 2637 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame); |
| 2638 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); |
| 2639 if( rc!=SQLITE_OK ){ |
| 2640 return rc; |
| 2641 } |
| 2642 |
| 2643 /* Write the page data */ |
| 2644 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame)); |
| 2645 if( rc!=SQLITE_OK ){ |
| 2646 return rc; |
| 2647 } |
| 2648 pLast = p; |
| 2649 } |
| 2650 |
| 2651 /* Sync the log file if the 'isSync' flag was specified. */ |
| 2652 if( sync_flags ){ |
| 2653 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd); |
| 2654 i64 iOffset = walFrameOffset(iFrame+1, szPage); |
| 2655 |
| 2656 assert( isCommit ); |
| 2657 assert( iSegment>0 ); |
| 2658 |
| 2659 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); |
| 2660 while( iOffset<iSegment ){ |
| 2661 void *pData; |
| 2662 #if defined(SQLITE_HAS_CODEC) |
| 2663 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM; |
| 2664 #else |
| 2665 pData = pLast->pData; |
| 2666 #endif |
| 2667 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame); |
| 2668 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ |
| 2669 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); |
| 2670 if( rc!=SQLITE_OK ){ |
| 2671 return rc; |
| 2672 } |
| 2673 iOffset += WAL_FRAME_HDRSIZE; |
| 2674 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset); |
| 2675 if( rc!=SQLITE_OK ){ |
| 2676 return rc; |
| 2677 } |
| 2678 nLast++; |
| 2679 iOffset += szPage; |
| 2680 } |
| 2681 |
| 2682 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); |
| 2683 } |
| 2684 |
| 2685 /* Append data to the wal-index. It is not necessary to lock the |
| 2686 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index |
| 2687 ** guarantees that there are no other writers, and no data that may |
| 2688 ** be in use by existing readers is being overwritten. |
| 2689 */ |
| 2690 iFrame = pWal->hdr.mxFrame; |
| 2691 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ |
| 2692 iFrame++; |
| 2693 rc = walIndexAppend(pWal, iFrame, p->pgno); |
| 2694 } |
| 2695 while( nLast>0 && rc==SQLITE_OK ){ |
| 2696 iFrame++; |
| 2697 nLast--; |
| 2698 rc = walIndexAppend(pWal, iFrame, pLast->pgno); |
| 2699 } |
| 2700 |
| 2701 if( rc==SQLITE_OK ){ |
| 2702 /* Update the private copy of the header. */ |
| 2703 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); |
| 2704 testcase( szPage<=32768 ); |
| 2705 testcase( szPage>=65536 ); |
| 2706 pWal->hdr.mxFrame = iFrame; |
| 2707 if( isCommit ){ |
| 2708 pWal->hdr.iChange++; |
| 2709 pWal->hdr.nPage = nTruncate; |
| 2710 } |
| 2711 /* If this is a commit, update the wal-index header too. */ |
| 2712 if( isCommit ){ |
| 2713 walIndexWriteHdr(pWal); |
| 2714 pWal->iCallback = iFrame; |
| 2715 } |
| 2716 } |
| 2717 |
| 2718 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); |
| 2719 return rc; |
| 2720 } |
| 2721 |
| 2722 /* |
| 2723 ** This routine is called to implement sqlite3_wal_checkpoint() and |
| 2724 ** related interfaces. |
| 2725 ** |
| 2726 ** Obtain a CHECKPOINT lock and then backfill as much information as |
| 2727 ** we can from WAL into the database. |
| 2728 ** |
| 2729 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler |
| 2730 ** callback. In this case this function runs a blocking checkpoint. |
| 2731 */ |
| 2732 int sqlite3WalCheckpoint( |
| 2733 Wal *pWal, /* Wal connection */ |
| 2734 int eMode, /* PASSIVE, FULL or RESTART */ |
| 2735 int (*xBusy)(void*), /* Function to call when busy */ |
| 2736 void *pBusyArg, /* Context argument for xBusyHandler */ |
| 2737 int sync_flags, /* Flags to sync db file with (or 0) */ |
| 2738 int nBuf, /* Size of temporary buffer */ |
| 2739 u8 *zBuf, /* Temporary buffer to use */ |
| 2740 int *pnLog, /* OUT: Number of frames in WAL */ |
| 2741 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ |
| 2742 ){ |
| 2743 int rc; /* Return code */ |
| 2744 int isChanged = 0; /* True if a new wal-index header is loaded */ |
| 2745 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ |
| 2746 |
| 2747 assert( pWal->ckptLock==0 ); |
| 2748 assert( pWal->writeLock==0 ); |
| 2749 |
| 2750 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); |
| 2751 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); |
| 2752 if( rc ){ |
| 2753 /* Usually this is SQLITE_BUSY meaning that another thread or process |
| 2754 ** is already running a checkpoint, or maybe a recovery. But it might |
| 2755 ** also be SQLITE_IOERR. */ |
| 2756 return rc; |
| 2757 } |
| 2758 pWal->ckptLock = 1; |
| 2759 |
| 2760 /* If this is a blocking-checkpoint, then obtain the write-lock as well |
| 2761 ** to prevent any writers from running while the checkpoint is underway. |
| 2762 ** This has to be done before the call to walIndexReadHdr() below. |
| 2763 ** |
| 2764 ** If the writer lock cannot be obtained, then a passive checkpoint is |
| 2765 ** run instead. Since the checkpointer is not holding the writer lock, |
| 2766 ** there is no point in blocking waiting for any readers. Assuming no |
| 2767 ** other error occurs, this function will return SQLITE_BUSY to the caller. |
| 2768 */ |
| 2769 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ |
| 2770 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); |
| 2771 if( rc==SQLITE_OK ){ |
| 2772 pWal->writeLock = 1; |
| 2773 }else if( rc==SQLITE_BUSY ){ |
| 2774 eMode2 = SQLITE_CHECKPOINT_PASSIVE; |
| 2775 rc = SQLITE_OK; |
| 2776 } |
| 2777 } |
| 2778 |
| 2779 /* Read the wal-index header. */ |
| 2780 if( rc==SQLITE_OK ){ |
| 2781 rc = walIndexReadHdr(pWal, &isChanged); |
| 2782 } |
| 2783 |
| 2784 /* Copy data from the log to the database file. */ |
| 2785 if( rc==SQLITE_OK ){ |
| 2786 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ |
| 2787 rc = SQLITE_CORRUPT_BKPT; |
| 2788 }else{ |
| 2789 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); |
| 2790 } |
| 2791 |
| 2792 /* If no error occurred, set the output variables. */ |
| 2793 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ |
| 2794 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; |
| 2795 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); |
| 2796 } |
| 2797 } |
| 2798 |
| 2799 if( isChanged ){ |
| 2800 /* If a new wal-index header was loaded before the checkpoint was |
| 2801 ** performed, then the pager-cache associated with pWal is now |
| 2802 ** out of date. So zero the cached wal-index header to ensure that |
| 2803 ** next time the pager opens a snapshot on this database it knows that |
| 2804 ** the cache needs to be reset. |
| 2805 */ |
| 2806 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
| 2807 } |
| 2808 |
| 2809 /* Release the locks. */ |
| 2810 sqlite3WalEndWriteTransaction(pWal); |
| 2811 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); |
| 2812 pWal->ckptLock = 0; |
| 2813 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); |
| 2814 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); |
| 2815 } |
| 2816 |
| 2817 /* Return the value to pass to a sqlite3_wal_hook callback, the |
| 2818 ** number of frames in the WAL at the point of the last commit since |
| 2819 ** sqlite3WalCallback() was called. If no commits have occurred since |
| 2820 ** the last call, then return 0. |
| 2821 */ |
| 2822 int sqlite3WalCallback(Wal *pWal){ |
| 2823 u32 ret = 0; |
| 2824 if( pWal ){ |
| 2825 ret = pWal->iCallback; |
| 2826 pWal->iCallback = 0; |
| 2827 } |
| 2828 return (int)ret; |
| 2829 } |
| 2830 |
| 2831 /* |
| 2832 ** This function is called to change the WAL subsystem into or out |
| 2833 ** of locking_mode=EXCLUSIVE. |
| 2834 ** |
| 2835 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE |
| 2836 ** into locking_mode=NORMAL. This means that we must acquire a lock |
| 2837 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL |
| 2838 ** or if the acquisition of the lock fails, then return 0. If the |
| 2839 ** transition out of exclusive-mode is successful, return 1. This |
| 2840 ** operation must occur while the pager is still holding the exclusive |
| 2841 ** lock on the main database file. |
| 2842 ** |
| 2843 ** If op is one, then change from locking_mode=NORMAL into |
| 2844 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must |
| 2845 ** be released. Return 1 if the transition is made and 0 if the |
| 2846 ** WAL is already in exclusive-locking mode - meaning that this |
| 2847 ** routine is a no-op. The pager must already hold the exclusive lock |
| 2848 ** on the main database file before invoking this operation. |
| 2849 ** |
| 2850 ** If op is negative, then do a dry-run of the op==1 case but do |
| 2851 ** not actually change anything. The pager uses this to see if it |
| 2852 ** should acquire the database exclusive lock prior to invoking |
| 2853 ** the op==1 case. |
| 2854 */ |
| 2855 int sqlite3WalExclusiveMode(Wal *pWal, int op){ |
| 2856 int rc; |
| 2857 assert( pWal->writeLock==0 ); |
| 2858 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); |
| 2859 |
| 2860 /* pWal->readLock is usually set, but might be -1 if there was a |
| 2861 ** prior error while attempting to acquire are read-lock. This cannot |
| 2862 ** happen if the connection is actually in exclusive mode (as no xShmLock |
| 2863 ** locks are taken in this case). Nor should the pager attempt to |
| 2864 ** upgrade to exclusive-mode following such an error. |
| 2865 */ |
| 2866 assert( pWal->readLock>=0 || pWal->lockError ); |
| 2867 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); |
| 2868 |
| 2869 if( op==0 ){ |
| 2870 if( pWal->exclusiveMode ){ |
| 2871 pWal->exclusiveMode = 0; |
| 2872 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ |
| 2873 pWal->exclusiveMode = 1; |
| 2874 } |
| 2875 rc = pWal->exclusiveMode==0; |
| 2876 }else{ |
| 2877 /* Already in locking_mode=NORMAL */ |
| 2878 rc = 0; |
| 2879 } |
| 2880 }else if( op>0 ){ |
| 2881 assert( pWal->exclusiveMode==0 ); |
| 2882 assert( pWal->readLock>=0 ); |
| 2883 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); |
| 2884 pWal->exclusiveMode = 1; |
| 2885 rc = 1; |
| 2886 }else{ |
| 2887 rc = pWal->exclusiveMode==0; |
| 2888 } |
| 2889 return rc; |
| 2890 } |
| 2891 |
| 2892 /* |
| 2893 ** Return true if the argument is non-NULL and the WAL module is using |
| 2894 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the |
| 2895 ** WAL module is using shared-memory, return false. |
| 2896 */ |
| 2897 int sqlite3WalHeapMemory(Wal *pWal){ |
| 2898 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); |
| 2899 } |
| 2900 |
| 2901 #endif /* #ifndef SQLITE_OMIT_WAL */ |
OLD | NEW |