Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(81)

Side by Side Diff: third_party/sqlite/src/src/wal.c

Issue 694353003: Get `gn gen` to succeed on Windows (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: remove GYP_DEFINES code Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/sqlite/src/src/wal.h ('k') | third_party/sqlite/src/src/walker.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
64 **
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient. After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file. In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes. Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly: Given
145 ** a page number P, return the index of the last frame for page P in the WAL,
146 ** or return NULL if there are no frames for page P in the WAL.
147 **
148 ** The wal-index consists of a header region, followed by an one or
149 ** more index blocks.
150 **
151 ** The wal-index header contains the total number of frames within the WAL
152 ** in the the mxFrame field.
153 **
154 ** Each index block except for the first contains information on
155 ** HASHTABLE_NPAGE frames. The first index block contains information on
156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
158 ** first index block are the same size as all other index blocks in the
159 ** wal-index.
160 **
161 ** Each index block contains two sections, a page-mapping that contains the
162 ** database page number associated with each wal frame, and a hash-table
163 ** that allows readers to query an index block for a specific page number.
164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165 ** for the first index block) 32-bit page numbers. The first entry in the
166 ** first index-block contains the database page number corresponding to the
167 ** first frame in the WAL file. The first entry in the second index block
168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169 ** the log, and so on.
170 **
171 ** The last index block in a wal-index usually contains less than the full
172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173 ** depending on the contents of the WAL file. This does not change the
174 ** allocated size of the page-mapping array - the page-mapping array merely
175 ** contains unused entries.
176 **
177 ** Even without using the hash table, the last frame for page P
178 ** can be found by scanning the page-mapping sections of each index block
179 ** starting with the last index block and moving toward the first, and
180 ** within each index block, starting at the end and moving toward the
181 ** beginning. The first entry that equals P corresponds to the frame
182 ** holding the content for that page.
183 **
184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186 ** hash table for each page number in the mapping section, so the hash
187 ** table is never more than half full. The expected number of collisions
188 ** prior to finding a match is 1. Each entry of the hash table is an
189 ** 1-based index of an entry in the mapping section of the same
190 ** index block. Let K be the 1-based index of the largest entry in
191 ** the mapping section. (For index blocks other than the last, K will
192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
194 ** contain a value of 0.
195 **
196 ** To look for page P in the hash table, first compute a hash iKey on
197 ** P as follows:
198 **
199 ** iKey = (P * 383) % HASHTABLE_NSLOT
200 **
201 ** Then start scanning entries of the hash table, starting with iKey
202 ** (wrapping around to the beginning when the end of the hash table is
203 ** reached) until an unused hash slot is found. Let the first unused slot
204 ** be at index iUnused. (iUnused might be less than iKey if there was
205 ** wrap-around.) Because the hash table is never more than half full,
206 ** the search is guaranteed to eventually hit an unused entry. Let
207 ** iMax be the value between iKey and iUnused, closest to iUnused,
208 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
209 ** no hash slot such that aHash[i]==p) then page P is not in the
210 ** current index block. Otherwise the iMax-th mapping entry of the
211 ** current index block corresponds to the last entry that references
212 ** page P.
213 **
214 ** A hash search begins with the last index block and moves toward the
215 ** first index block, looking for entries corresponding to page P. On
216 ** average, only two or three slots in each index block need to be
217 ** examined in order to either find the last entry for page P, or to
218 ** establish that no such entry exists in the block. Each index block
219 ** holds over 4000 entries. So two or three index blocks are sufficient
220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221 ** comparisons (on average) suffice to either locate a frame in the
222 ** WAL or to establish that the frame does not exist in the WAL. This
223 ** is much faster than scanning the entire 10MB WAL.
224 **
225 ** Note that entries are added in order of increasing K. Hence, one
226 ** reader might be using some value K0 and a second reader that started
227 ** at a later time (after additional transactions were added to the WAL
228 ** and to the wal-index) might be using a different value K1, where K1>K0.
229 ** Both readers can use the same hash table and mapping section to get
230 ** the correct result. There may be entries in the hash table with
231 ** K>K0 but to the first reader, those entries will appear to be unused
232 ** slots in the hash table and so the first reader will get an answer as
233 ** if no values greater than K0 had ever been inserted into the hash table
234 ** in the first place - which is what reader one wants. Meanwhile, the
235 ** second reader using K1 will see additional values that were inserted
236 ** later, which is exactly what reader two wants.
237 **
238 ** When a rollback occurs, the value of K is decreased. Hash table entries
239 ** that correspond to frames greater than the new K value are removed
240 ** from the hash table at this point.
241 */
242 #ifndef SQLITE_OMIT_WAL
243
244 #include "wal.h"
245
246 /*
247 ** Trace output macros
248 */
249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
250 int sqlite3WalTrace = 0;
251 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252 #else
253 # define WALTRACE(X)
254 #endif
255
256 /*
257 ** The maximum (and only) versions of the wal and wal-index formats
258 ** that may be interpreted by this version of SQLite.
259 **
260 ** If a client begins recovering a WAL file and finds that (a) the checksum
261 ** values in the wal-header are correct and (b) the version field is not
262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263 **
264 ** Similarly, if a client successfully reads a wal-index header (i.e. the
265 ** checksum test is successful) and finds that the version field is not
266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267 ** returns SQLITE_CANTOPEN.
268 */
269 #define WAL_MAX_VERSION 3007000
270 #define WALINDEX_MAX_VERSION 3007000
271
272 /*
273 ** Indices of various locking bytes. WAL_NREADER is the number
274 ** of available reader locks and should be at least 3.
275 */
276 #define WAL_WRITE_LOCK 0
277 #define WAL_ALL_BUT_WRITE 1
278 #define WAL_CKPT_LOCK 1
279 #define WAL_RECOVER_LOCK 2
280 #define WAL_READ_LOCK(I) (3+(I))
281 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
283
284 /* Object declarations */
285 typedef struct WalIndexHdr WalIndexHdr;
286 typedef struct WalIterator WalIterator;
287 typedef struct WalCkptInfo WalCkptInfo;
288
289
290 /*
291 ** The following object holds a copy of the wal-index header content.
292 **
293 ** The actual header in the wal-index consists of two copies of this
294 ** object.
295 **
296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297 ** Or it can be 1 to represent a 65536-byte page. The latter case was
298 ** added in 3.7.1 when support for 64K pages was added.
299 */
300 struct WalIndexHdr {
301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
303 u32 iChange; /* Counter incremented each transaction */
304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
306 u16 szPage; /* Database page size in bytes. 1==64K */
307 u32 mxFrame; /* Index of last valid frame in the WAL */
308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
312 };
313
314 /*
315 ** A copy of the following object occurs in the wal-index immediately
316 ** following the second copy of the WalIndexHdr. This object stores
317 ** information used by checkpoint.
318 **
319 ** nBackfill is the number of frames in the WAL that have been written
320 ** back into the database. (We call the act of moving content from WAL to
321 ** database "backfilling".) The nBackfill number is never greater than
322 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325 ** mxFrame back to zero when the WAL is reset.
326 **
327 ** There is one entry in aReadMark[] for each reader lock. If a reader
328 ** holds read-lock K, then the value in aReadMark[K] is no greater than
329 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
331 ** a special case; its value is never used and it exists as a place-holder
332 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334 ** directly from the database.
335 **
336 ** The value of aReadMark[K] may only be changed by a thread that
337 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338 ** aReadMark[K] cannot changed while there is a reader is using that mark
339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340 **
341 ** The checkpointer may only transfer frames from WAL to database where
342 ** the frame numbers are less than or equal to every aReadMark[] that is
343 ** in use (that is, every aReadMark[j] for which there is a corresponding
344 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345 ** largest value and will increase an unused aReadMark[] to mxFrame if there
346 ** is not already an aReadMark[] equal to mxFrame. The exception to the
347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
348 ** in the WAL has been backfilled into the database) then new readers
349 ** will choose aReadMark[0] which has value 0 and hence such reader will
350 ** get all their all content directly from the database file and ignore
351 ** the WAL.
352 **
353 ** Writers normally append new frames to the end of the WAL. However,
354 ** if nBackfill equals mxFrame (meaning that all WAL content has been
355 ** written back into the database) and if no readers are using the WAL
356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357 ** the writer will first "reset" the WAL back to the beginning and start
358 ** writing new content beginning at frame 1.
359 **
360 ** We assume that 32-bit loads are atomic and so no locks are needed in
361 ** order to read from any aReadMark[] entries.
362 */
363 struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366 };
367 #define READMARK_NOT_USED 0xffffffff
368
369
370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372 ** only support mandatory file-locks, we do not read or write data
373 ** from the region of the file on which locks are applied.
374 */
375 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376 #define WALINDEX_LOCK_RESERVED 16
377 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
378
379 /* Size of header before each frame in wal */
380 #define WAL_FRAME_HDRSIZE 24
381
382 /* Size of write ahead log header, including checksum. */
383 /* #define WAL_HDRSIZE 24 */
384 #define WAL_HDRSIZE 32
385
386 /* WAL magic value. Either this value, or the same value with the least
387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388 ** big-endian format in the first 4 bytes of a WAL file.
389 **
390 ** If the LSB is set, then the checksums for each frame within the WAL
391 ** file are calculated by treating all data as an array of 32-bit
392 ** big-endian words. Otherwise, they are calculated by interpreting
393 ** all data as 32-bit little-endian words.
394 */
395 #define WAL_MAGIC 0x377f0682
396
397 /*
398 ** Return the offset of frame iFrame in the write-ahead log file,
399 ** assuming a database page size of szPage bytes. The offset returned
400 ** is to the start of the write-ahead log frame-header.
401 */
402 #define walFrameOffset(iFrame, szPage) ( \
403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
404 )
405
406 /*
407 ** An open write-ahead log file is represented by an instance of the
408 ** following object.
409 */
410 struct Wal {
411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
414 u32 iCallback; /* Value to pass to log callback (or 0) */
415 int nWiData; /* Size of array apWiData */
416 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
417 u32 szPage; /* Database page size */
418 i16 readLock; /* Which read lock is being held. -1 for none */
419 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
420 u8 writeLock; /* True if in a write transaction */
421 u8 ckptLock; /* True if holding a checkpoint lock */
422 u8 readOnly; /* True if the WAL file is open read-only */
423 WalIndexHdr hdr; /* Wal-index header for current transaction */
424 const char *zWalName; /* Name of WAL file */
425 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
426 #ifdef SQLITE_DEBUG
427 u8 lockError; /* True if a locking error has occurred */
428 #endif
429 };
430
431 /*
432 ** Candidate values for Wal.exclusiveMode.
433 */
434 #define WAL_NORMAL_MODE 0
435 #define WAL_EXCLUSIVE_MODE 1
436 #define WAL_HEAPMEMORY_MODE 2
437
438 /*
439 ** Each page of the wal-index mapping contains a hash-table made up of
440 ** an array of HASHTABLE_NSLOT elements of the following type.
441 */
442 typedef u16 ht_slot;
443
444 /*
445 ** This structure is used to implement an iterator that loops through
446 ** all frames in the WAL in database page order. Where two or more frames
447 ** correspond to the same database page, the iterator visits only the
448 ** frame most recently written to the WAL (in other words, the frame with
449 ** the largest index).
450 **
451 ** The internals of this structure are only accessed by:
452 **
453 ** walIteratorInit() - Create a new iterator,
454 ** walIteratorNext() - Step an iterator,
455 ** walIteratorFree() - Free an iterator.
456 **
457 ** This functionality is used by the checkpoint code (see walCheckpoint()).
458 */
459 struct WalIterator {
460 int iPrior; /* Last result returned from the iterator */
461 int nSegment; /* Number of entries in aSegment[] */
462 struct WalSegment {
463 int iNext; /* Next slot in aIndex[] not yet returned */
464 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
465 u32 *aPgno; /* Array of page numbers. */
466 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
467 int iZero; /* Frame number associated with aPgno[0] */
468 } aSegment[1]; /* One for every 32KB page in the wal-index */
469 };
470
471 /*
472 ** Define the parameters of the hash tables in the wal-index file. There
473 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
474 ** wal-index.
475 **
476 ** Changing any of these constants will alter the wal-index format and
477 ** create incompatibilities.
478 */
479 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
480 #define HASHTABLE_HASH_1 383 /* Should be prime */
481 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
482
483 /*
484 ** The block of page numbers associated with the first hash-table in a
485 ** wal-index is smaller than usual. This is so that there is a complete
486 ** hash-table on each aligned 32KB page of the wal-index.
487 */
488 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
489
490 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
491 #define WALINDEX_PGSZ ( \
492 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
493 )
494
495 /*
496 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
497 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
498 ** numbered from zero.
499 **
500 ** If this call is successful, *ppPage is set to point to the wal-index
501 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
502 ** then an SQLite error code is returned and *ppPage is set to 0.
503 */
504 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
505 int rc = SQLITE_OK;
506
507 /* Enlarge the pWal->apWiData[] array if required */
508 if( pWal->nWiData<=iPage ){
509 int nByte = sizeof(u32*)*(iPage+1);
510 volatile u32 **apNew;
511 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
512 if( !apNew ){
513 *ppPage = 0;
514 return SQLITE_NOMEM;
515 }
516 memset((void*)&apNew[pWal->nWiData], 0,
517 sizeof(u32*)*(iPage+1-pWal->nWiData));
518 pWal->apWiData = apNew;
519 pWal->nWiData = iPage+1;
520 }
521
522 /* Request a pointer to the required page from the VFS */
523 if( pWal->apWiData[iPage]==0 ){
524 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
525 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
526 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
527 }else{
528 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
529 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
530 );
531 }
532 }
533
534 *ppPage = pWal->apWiData[iPage];
535 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
536 return rc;
537 }
538
539 /*
540 ** Return a pointer to the WalCkptInfo structure in the wal-index.
541 */
542 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
543 assert( pWal->nWiData>0 && pWal->apWiData[0] );
544 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
545 }
546
547 /*
548 ** Return a pointer to the WalIndexHdr structure in the wal-index.
549 */
550 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
551 assert( pWal->nWiData>0 && pWal->apWiData[0] );
552 return (volatile WalIndexHdr*)pWal->apWiData[0];
553 }
554
555 /*
556 ** The argument to this macro must be of type u32. On a little-endian
557 ** architecture, it returns the u32 value that results from interpreting
558 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
559 ** returns the value that would be produced by intepreting the 4 bytes
560 ** of the input value as a little-endian integer.
561 */
562 #define BYTESWAP32(x) ( \
563 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
564 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
565 )
566
567 /*
568 ** Generate or extend an 8 byte checksum based on the data in
569 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
570 ** initial values of 0 and 0 if aIn==NULL).
571 **
572 ** The checksum is written back into aOut[] before returning.
573 **
574 ** nByte must be a positive multiple of 8.
575 */
576 static void walChecksumBytes(
577 int nativeCksum, /* True for native byte-order, false for non-native */
578 u8 *a, /* Content to be checksummed */
579 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
580 const u32 *aIn, /* Initial checksum value input */
581 u32 *aOut /* OUT: Final checksum value output */
582 ){
583 u32 s1, s2;
584 u32 *aData = (u32 *)a;
585 u32 *aEnd = (u32 *)&a[nByte];
586
587 if( aIn ){
588 s1 = aIn[0];
589 s2 = aIn[1];
590 }else{
591 s1 = s2 = 0;
592 }
593
594 assert( nByte>=8 );
595 assert( (nByte&0x00000007)==0 );
596
597 if( nativeCksum ){
598 do {
599 s1 += *aData++ + s2;
600 s2 += *aData++ + s1;
601 }while( aData<aEnd );
602 }else{
603 do {
604 s1 += BYTESWAP32(aData[0]) + s2;
605 s2 += BYTESWAP32(aData[1]) + s1;
606 aData += 2;
607 }while( aData<aEnd );
608 }
609
610 aOut[0] = s1;
611 aOut[1] = s2;
612 }
613
614 static void walShmBarrier(Wal *pWal){
615 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
616 sqlite3OsShmBarrier(pWal->pDbFd);
617 }
618 }
619
620 /*
621 ** Write the header information in pWal->hdr into the wal-index.
622 **
623 ** The checksum on pWal->hdr is updated before it is written.
624 */
625 static void walIndexWriteHdr(Wal *pWal){
626 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
627 const int nCksum = offsetof(WalIndexHdr, aCksum);
628
629 assert( pWal->writeLock );
630 pWal->hdr.isInit = 1;
631 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
632 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
633 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
634 walShmBarrier(pWal);
635 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
636 }
637
638 /*
639 ** This function encodes a single frame header and writes it to a buffer
640 ** supplied by the caller. A frame-header is made up of a series of
641 ** 4-byte big-endian integers, as follows:
642 **
643 ** 0: Page number.
644 ** 4: For commit records, the size of the database image in pages
645 ** after the commit. For all other records, zero.
646 ** 8: Salt-1 (copied from the wal-header)
647 ** 12: Salt-2 (copied from the wal-header)
648 ** 16: Checksum-1.
649 ** 20: Checksum-2.
650 */
651 static void walEncodeFrame(
652 Wal *pWal, /* The write-ahead log */
653 u32 iPage, /* Database page number for frame */
654 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
655 u8 *aData, /* Pointer to page data */
656 u8 *aFrame /* OUT: Write encoded frame here */
657 ){
658 int nativeCksum; /* True for native byte-order checksums */
659 u32 *aCksum = pWal->hdr.aFrameCksum;
660 assert( WAL_FRAME_HDRSIZE==24 );
661 sqlite3Put4byte(&aFrame[0], iPage);
662 sqlite3Put4byte(&aFrame[4], nTruncate);
663 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
664
665 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
666 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
667 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
668
669 sqlite3Put4byte(&aFrame[16], aCksum[0]);
670 sqlite3Put4byte(&aFrame[20], aCksum[1]);
671 }
672
673 /*
674 ** Check to see if the frame with header in aFrame[] and content
675 ** in aData[] is valid. If it is a valid frame, fill *piPage and
676 ** *pnTruncate and return true. Return if the frame is not valid.
677 */
678 static int walDecodeFrame(
679 Wal *pWal, /* The write-ahead log */
680 u32 *piPage, /* OUT: Database page number for frame */
681 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
682 u8 *aData, /* Pointer to page data (for checksum) */
683 u8 *aFrame /* Frame data */
684 ){
685 int nativeCksum; /* True for native byte-order checksums */
686 u32 *aCksum = pWal->hdr.aFrameCksum;
687 u32 pgno; /* Page number of the frame */
688 assert( WAL_FRAME_HDRSIZE==24 );
689
690 /* A frame is only valid if the salt values in the frame-header
691 ** match the salt values in the wal-header.
692 */
693 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
694 return 0;
695 }
696
697 /* A frame is only valid if the page number is creater than zero.
698 */
699 pgno = sqlite3Get4byte(&aFrame[0]);
700 if( pgno==0 ){
701 return 0;
702 }
703
704 /* A frame is only valid if a checksum of the WAL header,
705 ** all prior frams, the first 16 bytes of this frame-header,
706 ** and the frame-data matches the checksum in the last 8
707 ** bytes of this frame-header.
708 */
709 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
710 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
711 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
712 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
713 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
714 ){
715 /* Checksum failed. */
716 return 0;
717 }
718
719 /* If we reach this point, the frame is valid. Return the page number
720 ** and the new database size.
721 */
722 *piPage = pgno;
723 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
724 return 1;
725 }
726
727
728 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
729 /*
730 ** Names of locks. This routine is used to provide debugging output and is not
731 ** a part of an ordinary build.
732 */
733 static const char *walLockName(int lockIdx){
734 if( lockIdx==WAL_WRITE_LOCK ){
735 return "WRITE-LOCK";
736 }else if( lockIdx==WAL_CKPT_LOCK ){
737 return "CKPT-LOCK";
738 }else if( lockIdx==WAL_RECOVER_LOCK ){
739 return "RECOVER-LOCK";
740 }else{
741 static char zName[15];
742 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
743 lockIdx-WAL_READ_LOCK(0));
744 return zName;
745 }
746 }
747 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
748
749
750 /*
751 ** Set or release locks on the WAL. Locks are either shared or exclusive.
752 ** A lock cannot be moved directly between shared and exclusive - it must go
753 ** through the unlocked state first.
754 **
755 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
756 */
757 static int walLockShared(Wal *pWal, int lockIdx){
758 int rc;
759 if( pWal->exclusiveMode ) return SQLITE_OK;
760 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
761 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
762 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
763 walLockName(lockIdx), rc ? "failed" : "ok"));
764 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
765 return rc;
766 }
767 static void walUnlockShared(Wal *pWal, int lockIdx){
768 if( pWal->exclusiveMode ) return;
769 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
770 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
771 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
772 }
773 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
774 int rc;
775 if( pWal->exclusiveMode ) return SQLITE_OK;
776 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
777 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
778 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
779 walLockName(lockIdx), n, rc ? "failed" : "ok"));
780 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
781 return rc;
782 }
783 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
784 if( pWal->exclusiveMode ) return;
785 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
786 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
787 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
788 walLockName(lockIdx), n));
789 }
790
791 /*
792 ** Compute a hash on a page number. The resulting hash value must land
793 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
794 ** the hash to the next value in the event of a collision.
795 */
796 static int walHash(u32 iPage){
797 assert( iPage>0 );
798 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
799 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
800 }
801 static int walNextHash(int iPriorHash){
802 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
803 }
804
805 /*
806 ** Return pointers to the hash table and page number array stored on
807 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
808 ** numbered starting from 0.
809 **
810 ** Set output variable *paHash to point to the start of the hash table
811 ** in the wal-index file. Set *piZero to one less than the frame
812 ** number of the first frame indexed by this hash table. If a
813 ** slot in the hash table is set to N, it refers to frame number
814 ** (*piZero+N) in the log.
815 **
816 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
817 ** first frame indexed by the hash table, frame (*piZero+1).
818 */
819 static int walHashGet(
820 Wal *pWal, /* WAL handle */
821 int iHash, /* Find the iHash'th table */
822 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
823 volatile u32 **paPgno, /* OUT: Pointer to page number array */
824 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
825 ){
826 int rc; /* Return code */
827 volatile u32 *aPgno;
828
829 rc = walIndexPage(pWal, iHash, &aPgno);
830 assert( rc==SQLITE_OK || iHash>0 );
831
832 if( rc==SQLITE_OK ){
833 u32 iZero;
834 volatile ht_slot *aHash;
835
836 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
837 if( iHash==0 ){
838 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
839 iZero = 0;
840 }else{
841 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
842 }
843
844 *paPgno = &aPgno[-1];
845 *paHash = aHash;
846 *piZero = iZero;
847 }
848 return rc;
849 }
850
851 /*
852 ** Return the number of the wal-index page that contains the hash-table
853 ** and page-number array that contain entries corresponding to WAL frame
854 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
855 ** are numbered starting from 0.
856 */
857 static int walFramePage(u32 iFrame){
858 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
859 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
860 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
861 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
862 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
863 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
864 );
865 return iHash;
866 }
867
868 /*
869 ** Return the page number associated with frame iFrame in this WAL.
870 */
871 static u32 walFramePgno(Wal *pWal, u32 iFrame){
872 int iHash = walFramePage(iFrame);
873 if( iHash==0 ){
874 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
875 }
876 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
877 }
878
879 /*
880 ** Remove entries from the hash table that point to WAL slots greater
881 ** than pWal->hdr.mxFrame.
882 **
883 ** This function is called whenever pWal->hdr.mxFrame is decreased due
884 ** to a rollback or savepoint.
885 **
886 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
887 ** updated. Any later hash tables will be automatically cleared when
888 ** pWal->hdr.mxFrame advances to the point where those hash tables are
889 ** actually needed.
890 */
891 static void walCleanupHash(Wal *pWal){
892 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
893 volatile u32 *aPgno = 0; /* Page number array for hash table */
894 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
895 int iLimit = 0; /* Zero values greater than this */
896 int nByte; /* Number of bytes to zero in aPgno[] */
897 int i; /* Used to iterate through aHash[] */
898
899 assert( pWal->writeLock );
900 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
901 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
902 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
903
904 if( pWal->hdr.mxFrame==0 ) return;
905
906 /* Obtain pointers to the hash-table and page-number array containing
907 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
908 ** that the page said hash-table and array reside on is already mapped.
909 */
910 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
911 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
912 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
913
914 /* Zero all hash-table entries that correspond to frame numbers greater
915 ** than pWal->hdr.mxFrame.
916 */
917 iLimit = pWal->hdr.mxFrame - iZero;
918 assert( iLimit>0 );
919 for(i=0; i<HASHTABLE_NSLOT; i++){
920 if( aHash[i]>iLimit ){
921 aHash[i] = 0;
922 }
923 }
924
925 /* Zero the entries in the aPgno array that correspond to frames with
926 ** frame numbers greater than pWal->hdr.mxFrame.
927 */
928 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
929 memset((void *)&aPgno[iLimit+1], 0, nByte);
930
931 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
932 /* Verify that the every entry in the mapping region is still reachable
933 ** via the hash table even after the cleanup.
934 */
935 if( iLimit ){
936 int i; /* Loop counter */
937 int iKey; /* Hash key */
938 for(i=1; i<=iLimit; i++){
939 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
940 if( aHash[iKey]==i ) break;
941 }
942 assert( aHash[iKey]==i );
943 }
944 }
945 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
946 }
947
948
949 /*
950 ** Set an entry in the wal-index that will map database page number
951 ** pPage into WAL frame iFrame.
952 */
953 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
954 int rc; /* Return code */
955 u32 iZero = 0; /* One less than frame number of aPgno[1] */
956 volatile u32 *aPgno = 0; /* Page number array */
957 volatile ht_slot *aHash = 0; /* Hash table */
958
959 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
960
961 /* Assuming the wal-index file was successfully mapped, populate the
962 ** page number array and hash table entry.
963 */
964 if( rc==SQLITE_OK ){
965 int iKey; /* Hash table key */
966 int idx; /* Value to write to hash-table slot */
967 int nCollide; /* Number of hash collisions */
968
969 idx = iFrame - iZero;
970 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
971
972 /* If this is the first entry to be added to this hash-table, zero the
973 ** entire hash table and aPgno[] array before proceding.
974 */
975 if( idx==1 ){
976 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
977 memset((void*)&aPgno[1], 0, nByte);
978 }
979
980 /* If the entry in aPgno[] is already set, then the previous writer
981 ** must have exited unexpectedly in the middle of a transaction (after
982 ** writing one or more dirty pages to the WAL to free up memory).
983 ** Remove the remnants of that writers uncommitted transaction from
984 ** the hash-table before writing any new entries.
985 */
986 if( aPgno[idx] ){
987 walCleanupHash(pWal);
988 assert( !aPgno[idx] );
989 }
990
991 /* Write the aPgno[] array entry and the hash-table slot. */
992 nCollide = idx;
993 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
994 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
995 }
996 aPgno[idx] = iPage;
997 aHash[iKey] = (ht_slot)idx;
998
999 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1000 /* Verify that the number of entries in the hash table exactly equals
1001 ** the number of entries in the mapping region.
1002 */
1003 {
1004 int i; /* Loop counter */
1005 int nEntry = 0; /* Number of entries in the hash table */
1006 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1007 assert( nEntry==idx );
1008 }
1009
1010 /* Verify that the every entry in the mapping region is reachable
1011 ** via the hash table. This turns out to be a really, really expensive
1012 ** thing to check, so only do this occasionally - not on every
1013 ** iteration.
1014 */
1015 if( (idx&0x3ff)==0 ){
1016 int i; /* Loop counter */
1017 for(i=1; i<=idx; i++){
1018 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1019 if( aHash[iKey]==i ) break;
1020 }
1021 assert( aHash[iKey]==i );
1022 }
1023 }
1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1025 }
1026
1027
1028 return rc;
1029 }
1030
1031
1032 /*
1033 ** Recover the wal-index by reading the write-ahead log file.
1034 **
1035 ** This routine first tries to establish an exclusive lock on the
1036 ** wal-index to prevent other threads/processes from doing anything
1037 ** with the WAL or wal-index while recovery is running. The
1038 ** WAL_RECOVER_LOCK is also held so that other threads will know
1039 ** that this thread is running recovery. If unable to establish
1040 ** the necessary locks, this routine returns SQLITE_BUSY.
1041 */
1042 static int walIndexRecover(Wal *pWal){
1043 int rc; /* Return Code */
1044 i64 nSize; /* Size of log file */
1045 u32 aFrameCksum[2] = {0, 0};
1046 int iLock; /* Lock offset to lock for checkpoint */
1047 int nLock; /* Number of locks to hold */
1048
1049 /* Obtain an exclusive lock on all byte in the locking range not already
1050 ** locked by the caller. The caller is guaranteed to have locked the
1051 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1052 ** If successful, the same bytes that are locked here are unlocked before
1053 ** this function returns.
1054 */
1055 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1056 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1057 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1058 assert( pWal->writeLock );
1059 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1060 nLock = SQLITE_SHM_NLOCK - iLock;
1061 rc = walLockExclusive(pWal, iLock, nLock);
1062 if( rc ){
1063 return rc;
1064 }
1065 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1066
1067 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1068
1069 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1070 if( rc!=SQLITE_OK ){
1071 goto recovery_error;
1072 }
1073
1074 if( nSize>WAL_HDRSIZE ){
1075 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1076 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1077 int szFrame; /* Number of bytes in buffer aFrame[] */
1078 u8 *aData; /* Pointer to data part of aFrame buffer */
1079 int iFrame; /* Index of last frame read */
1080 i64 iOffset; /* Next offset to read from log file */
1081 int szPage; /* Page size according to the log */
1082 u32 magic; /* Magic value read from WAL header */
1083 u32 version; /* Magic value read from WAL header */
1084
1085 /* Read in the WAL header. */
1086 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1087 if( rc!=SQLITE_OK ){
1088 goto recovery_error;
1089 }
1090
1091 /* If the database page size is not a power of two, or is greater than
1092 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1093 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1094 ** WAL file.
1095 */
1096 magic = sqlite3Get4byte(&aBuf[0]);
1097 szPage = sqlite3Get4byte(&aBuf[8]);
1098 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1099 || szPage&(szPage-1)
1100 || szPage>SQLITE_MAX_PAGE_SIZE
1101 || szPage<512
1102 ){
1103 goto finished;
1104 }
1105 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1106 pWal->szPage = szPage;
1107 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1108 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1109
1110 /* Verify that the WAL header checksum is correct */
1111 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1112 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1113 );
1114 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1115 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1116 ){
1117 goto finished;
1118 }
1119
1120 /* Verify that the version number on the WAL format is one that
1121 ** are able to understand */
1122 version = sqlite3Get4byte(&aBuf[4]);
1123 if( version!=WAL_MAX_VERSION ){
1124 rc = SQLITE_CANTOPEN_BKPT;
1125 goto finished;
1126 }
1127
1128 /* Malloc a buffer to read frames into. */
1129 szFrame = szPage + WAL_FRAME_HDRSIZE;
1130 aFrame = (u8 *)sqlite3_malloc(szFrame);
1131 if( !aFrame ){
1132 rc = SQLITE_NOMEM;
1133 goto recovery_error;
1134 }
1135 aData = &aFrame[WAL_FRAME_HDRSIZE];
1136
1137 /* Read all frames from the log file. */
1138 iFrame = 0;
1139 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1140 u32 pgno; /* Database page number for frame */
1141 u32 nTruncate; /* dbsize field from frame header */
1142 int isValid; /* True if this frame is valid */
1143
1144 /* Read and decode the next log frame. */
1145 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1146 if( rc!=SQLITE_OK ) break;
1147 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1148 if( !isValid ) break;
1149 rc = walIndexAppend(pWal, ++iFrame, pgno);
1150 if( rc!=SQLITE_OK ) break;
1151
1152 /* If nTruncate is non-zero, this is a commit record. */
1153 if( nTruncate ){
1154 pWal->hdr.mxFrame = iFrame;
1155 pWal->hdr.nPage = nTruncate;
1156 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1157 testcase( szPage<=32768 );
1158 testcase( szPage>=65536 );
1159 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1160 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1161 }
1162 }
1163
1164 sqlite3_free(aFrame);
1165 }
1166
1167 finished:
1168 if( rc==SQLITE_OK ){
1169 volatile WalCkptInfo *pInfo;
1170 int i;
1171 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1172 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1173 walIndexWriteHdr(pWal);
1174
1175 /* Reset the checkpoint-header. This is safe because this thread is
1176 ** currently holding locks that exclude all other readers, writers and
1177 ** checkpointers.
1178 */
1179 pInfo = walCkptInfo(pWal);
1180 pInfo->nBackfill = 0;
1181 pInfo->aReadMark[0] = 0;
1182 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1183
1184 /* If more than one frame was recovered from the log file, report an
1185 ** event via sqlite3_log(). This is to help with identifying performance
1186 ** problems caused by applications routinely shutting down without
1187 ** checkpointing the log file.
1188 */
1189 if( pWal->hdr.nPage ){
1190 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1191 pWal->hdr.nPage, pWal->zWalName
1192 );
1193 }
1194 }
1195
1196 recovery_error:
1197 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1198 walUnlockExclusive(pWal, iLock, nLock);
1199 return rc;
1200 }
1201
1202 /*
1203 ** Close an open wal-index.
1204 */
1205 static void walIndexClose(Wal *pWal, int isDelete){
1206 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1207 int i;
1208 for(i=0; i<pWal->nWiData; i++){
1209 sqlite3_free((void *)pWal->apWiData[i]);
1210 pWal->apWiData[i] = 0;
1211 }
1212 }else{
1213 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1214 }
1215 }
1216
1217 /*
1218 ** Open a connection to the WAL file zWalName. The database file must
1219 ** already be opened on connection pDbFd. The buffer that zWalName points
1220 ** to must remain valid for the lifetime of the returned Wal* handle.
1221 **
1222 ** A SHARED lock should be held on the database file when this function
1223 ** is called. The purpose of this SHARED lock is to prevent any other
1224 ** client from unlinking the WAL or wal-index file. If another process
1225 ** were to do this just after this client opened one of these files, the
1226 ** system would be badly broken.
1227 **
1228 ** If the log file is successfully opened, SQLITE_OK is returned and
1229 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1230 ** an SQLite error code is returned and *ppWal is left unmodified.
1231 */
1232 int sqlite3WalOpen(
1233 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1234 sqlite3_file *pDbFd, /* The open database file */
1235 const char *zWalName, /* Name of the WAL file */
1236 int bNoShm, /* True to run in heap-memory mode */
1237 Wal **ppWal /* OUT: Allocated Wal handle */
1238 ){
1239 int rc; /* Return Code */
1240 Wal *pRet; /* Object to allocate and return */
1241 int flags; /* Flags passed to OsOpen() */
1242
1243 assert( zWalName && zWalName[0] );
1244 assert( pDbFd );
1245
1246 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1247 ** this source file. Verify that the #defines of the locking byte offsets
1248 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1249 */
1250 #ifdef WIN_SHM_BASE
1251 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1252 #endif
1253 #ifdef UNIX_SHM_BASE
1254 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1255 #endif
1256
1257
1258 /* Allocate an instance of struct Wal to return. */
1259 *ppWal = 0;
1260 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1261 if( !pRet ){
1262 return SQLITE_NOMEM;
1263 }
1264
1265 pRet->pVfs = pVfs;
1266 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1267 pRet->pDbFd = pDbFd;
1268 pRet->readLock = -1;
1269 pRet->zWalName = zWalName;
1270 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1271
1272 /* Open file handle on the write-ahead log file. */
1273 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1274 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1275 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1276 pRet->readOnly = 1;
1277 }
1278
1279 if( rc!=SQLITE_OK ){
1280 walIndexClose(pRet, 0);
1281 sqlite3OsClose(pRet->pWalFd);
1282 sqlite3_free(pRet);
1283 }else{
1284 *ppWal = pRet;
1285 WALTRACE(("WAL%d: opened\n", pRet));
1286 }
1287 return rc;
1288 }
1289
1290 /*
1291 ** Find the smallest page number out of all pages held in the WAL that
1292 ** has not been returned by any prior invocation of this method on the
1293 ** same WalIterator object. Write into *piFrame the frame index where
1294 ** that page was last written into the WAL. Write into *piPage the page
1295 ** number.
1296 **
1297 ** Return 0 on success. If there are no pages in the WAL with a page
1298 ** number larger than *piPage, then return 1.
1299 */
1300 static int walIteratorNext(
1301 WalIterator *p, /* Iterator */
1302 u32 *piPage, /* OUT: The page number of the next page */
1303 u32 *piFrame /* OUT: Wal frame index of next page */
1304 ){
1305 u32 iMin; /* Result pgno must be greater than iMin */
1306 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1307 int i; /* For looping through segments */
1308
1309 iMin = p->iPrior;
1310 assert( iMin<0xffffffff );
1311 for(i=p->nSegment-1; i>=0; i--){
1312 struct WalSegment *pSegment = &p->aSegment[i];
1313 while( pSegment->iNext<pSegment->nEntry ){
1314 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1315 if( iPg>iMin ){
1316 if( iPg<iRet ){
1317 iRet = iPg;
1318 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1319 }
1320 break;
1321 }
1322 pSegment->iNext++;
1323 }
1324 }
1325
1326 *piPage = p->iPrior = iRet;
1327 return (iRet==0xFFFFFFFF);
1328 }
1329
1330 /*
1331 ** This function merges two sorted lists into a single sorted list.
1332 **
1333 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1334 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1335 ** is guaranteed for all J<K:
1336 **
1337 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1338 ** aContent[aRight[J]] < aContent[aRight[K]]
1339 **
1340 ** This routine overwrites aRight[] with a new (probably longer) sequence
1341 ** of indices such that the aRight[] contains every index that appears in
1342 ** either aLeft[] or the old aRight[] and such that the second condition
1343 ** above is still met.
1344 **
1345 ** The aContent[aLeft[X]] values will be unique for all X. And the
1346 ** aContent[aRight[X]] values will be unique too. But there might be
1347 ** one or more combinations of X and Y such that
1348 **
1349 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1350 **
1351 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1352 */
1353 static void walMerge(
1354 const u32 *aContent, /* Pages in wal - keys for the sort */
1355 ht_slot *aLeft, /* IN: Left hand input list */
1356 int nLeft, /* IN: Elements in array *paLeft */
1357 ht_slot **paRight, /* IN/OUT: Right hand input list */
1358 int *pnRight, /* IN/OUT: Elements in *paRight */
1359 ht_slot *aTmp /* Temporary buffer */
1360 ){
1361 int iLeft = 0; /* Current index in aLeft */
1362 int iRight = 0; /* Current index in aRight */
1363 int iOut = 0; /* Current index in output buffer */
1364 int nRight = *pnRight;
1365 ht_slot *aRight = *paRight;
1366
1367 assert( nLeft>0 && nRight>0 );
1368 while( iRight<nRight || iLeft<nLeft ){
1369 ht_slot logpage;
1370 Pgno dbpage;
1371
1372 if( (iLeft<nLeft)
1373 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1374 ){
1375 logpage = aLeft[iLeft++];
1376 }else{
1377 logpage = aRight[iRight++];
1378 }
1379 dbpage = aContent[logpage];
1380
1381 aTmp[iOut++] = logpage;
1382 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1383
1384 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1385 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1386 }
1387
1388 *paRight = aLeft;
1389 *pnRight = iOut;
1390 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1391 }
1392
1393 /*
1394 ** Sort the elements in list aList using aContent[] as the sort key.
1395 ** Remove elements with duplicate keys, preferring to keep the
1396 ** larger aList[] values.
1397 **
1398 ** The aList[] entries are indices into aContent[]. The values in
1399 ** aList[] are to be sorted so that for all J<K:
1400 **
1401 ** aContent[aList[J]] < aContent[aList[K]]
1402 **
1403 ** For any X and Y such that
1404 **
1405 ** aContent[aList[X]] == aContent[aList[Y]]
1406 **
1407 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1408 ** the smaller.
1409 */
1410 static void walMergesort(
1411 const u32 *aContent, /* Pages in wal */
1412 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1413 ht_slot *aList, /* IN/OUT: List to sort */
1414 int *pnList /* IN/OUT: Number of elements in aList[] */
1415 ){
1416 struct Sublist {
1417 int nList; /* Number of elements in aList */
1418 ht_slot *aList; /* Pointer to sub-list content */
1419 };
1420
1421 const int nList = *pnList; /* Size of input list */
1422 int nMerge = 0; /* Number of elements in list aMerge */
1423 ht_slot *aMerge = 0; /* List to be merged */
1424 int iList; /* Index into input list */
1425 int iSub = 0; /* Index into aSub array */
1426 struct Sublist aSub[13]; /* Array of sub-lists */
1427
1428 memset(aSub, 0, sizeof(aSub));
1429 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1430 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1431
1432 for(iList=0; iList<nList; iList++){
1433 nMerge = 1;
1434 aMerge = &aList[iList];
1435 for(iSub=0; iList & (1<<iSub); iSub++){
1436 struct Sublist *p = &aSub[iSub];
1437 assert( p->aList && p->nList<=(1<<iSub) );
1438 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1439 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1440 }
1441 aSub[iSub].aList = aMerge;
1442 aSub[iSub].nList = nMerge;
1443 }
1444
1445 for(iSub++; iSub<ArraySize(aSub); iSub++){
1446 if( nList & (1<<iSub) ){
1447 struct Sublist *p = &aSub[iSub];
1448 assert( p->nList<=(1<<iSub) );
1449 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1450 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1451 }
1452 }
1453 assert( aMerge==aList );
1454 *pnList = nMerge;
1455
1456 #ifdef SQLITE_DEBUG
1457 {
1458 int i;
1459 for(i=1; i<*pnList; i++){
1460 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1461 }
1462 }
1463 #endif
1464 }
1465
1466 /*
1467 ** Free an iterator allocated by walIteratorInit().
1468 */
1469 static void walIteratorFree(WalIterator *p){
1470 sqlite3ScratchFree(p);
1471 }
1472
1473 /*
1474 ** Construct a WalInterator object that can be used to loop over all
1475 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1476 ** lock.
1477 **
1478 ** On success, make *pp point to the newly allocated WalInterator object
1479 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1480 ** returns an error, the value of *pp is undefined.
1481 **
1482 ** The calling routine should invoke walIteratorFree() to destroy the
1483 ** WalIterator object when it has finished with it.
1484 */
1485 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1486 WalIterator *p; /* Return value */
1487 int nSegment; /* Number of segments to merge */
1488 u32 iLast; /* Last frame in log */
1489 int nByte; /* Number of bytes to allocate */
1490 int i; /* Iterator variable */
1491 ht_slot *aTmp; /* Temp space used by merge-sort */
1492 int rc = SQLITE_OK; /* Return Code */
1493
1494 /* This routine only runs while holding the checkpoint lock. And
1495 ** it only runs if there is actually content in the log (mxFrame>0).
1496 */
1497 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1498 iLast = pWal->hdr.mxFrame;
1499
1500 /* Allocate space for the WalIterator object. */
1501 nSegment = walFramePage(iLast) + 1;
1502 nByte = sizeof(WalIterator)
1503 + (nSegment-1)*sizeof(struct WalSegment)
1504 + iLast*sizeof(ht_slot);
1505 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
1506 if( !p ){
1507 return SQLITE_NOMEM;
1508 }
1509 memset(p, 0, nByte);
1510 p->nSegment = nSegment;
1511
1512 /* Allocate temporary space used by the merge-sort routine. This block
1513 ** of memory will be freed before this function returns.
1514 */
1515 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1516 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1517 );
1518 if( !aTmp ){
1519 rc = SQLITE_NOMEM;
1520 }
1521
1522 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1523 volatile ht_slot *aHash;
1524 u32 iZero;
1525 volatile u32 *aPgno;
1526
1527 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1528 if( rc==SQLITE_OK ){
1529 int j; /* Counter variable */
1530 int nEntry; /* Number of entries in this segment */
1531 ht_slot *aIndex; /* Sorted index for this segment */
1532
1533 aPgno++;
1534 if( (i+1)==nSegment ){
1535 nEntry = (int)(iLast - iZero);
1536 }else{
1537 nEntry = (int)((u32*)aHash - (u32*)aPgno);
1538 }
1539 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1540 iZero++;
1541
1542 for(j=0; j<nEntry; j++){
1543 aIndex[j] = (ht_slot)j;
1544 }
1545 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1546 p->aSegment[i].iZero = iZero;
1547 p->aSegment[i].nEntry = nEntry;
1548 p->aSegment[i].aIndex = aIndex;
1549 p->aSegment[i].aPgno = (u32 *)aPgno;
1550 }
1551 }
1552 sqlite3ScratchFree(aTmp);
1553
1554 if( rc!=SQLITE_OK ){
1555 walIteratorFree(p);
1556 }
1557 *pp = p;
1558 return rc;
1559 }
1560
1561 /*
1562 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1563 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1564 ** busy-handler function. Invoke it and retry the lock until either the
1565 ** lock is successfully obtained or the busy-handler returns 0.
1566 */
1567 static int walBusyLock(
1568 Wal *pWal, /* WAL connection */
1569 int (*xBusy)(void*), /* Function to call when busy */
1570 void *pBusyArg, /* Context argument for xBusyHandler */
1571 int lockIdx, /* Offset of first byte to lock */
1572 int n /* Number of bytes to lock */
1573 ){
1574 int rc;
1575 do {
1576 rc = walLockExclusive(pWal, lockIdx, n);
1577 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1578 return rc;
1579 }
1580
1581 /*
1582 ** The cache of the wal-index header must be valid to call this function.
1583 ** Return the page-size in bytes used by the database.
1584 */
1585 static int walPagesize(Wal *pWal){
1586 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1587 }
1588
1589 /*
1590 ** Copy as much content as we can from the WAL back into the database file
1591 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1592 **
1593 ** The amount of information copies from WAL to database might be limited
1594 ** by active readers. This routine will never overwrite a database page
1595 ** that a concurrent reader might be using.
1596 **
1597 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1598 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1599 ** checkpoints are always run by a background thread or background
1600 ** process, foreground threads will never block on a lengthy fsync call.
1601 **
1602 ** Fsync is called on the WAL before writing content out of the WAL and
1603 ** into the database. This ensures that if the new content is persistent
1604 ** in the WAL and can be recovered following a power-loss or hard reset.
1605 **
1606 ** Fsync is also called on the database file if (and only if) the entire
1607 ** WAL content is copied into the database file. This second fsync makes
1608 ** it safe to delete the WAL since the new content will persist in the
1609 ** database file.
1610 **
1611 ** This routine uses and updates the nBackfill field of the wal-index header.
1612 ** This is the only routine tha will increase the value of nBackfill.
1613 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1614 ** its value.)
1615 **
1616 ** The caller must be holding sufficient locks to ensure that no other
1617 ** checkpoint is running (in any other thread or process) at the same
1618 ** time.
1619 */
1620 static int walCheckpoint(
1621 Wal *pWal, /* Wal connection */
1622 int eMode, /* One of PASSIVE, FULL or RESTART */
1623 int (*xBusyCall)(void*), /* Function to call when busy */
1624 void *pBusyArg, /* Context argument for xBusyHandler */
1625 int sync_flags, /* Flags for OsSync() (or 0) */
1626 u8 *zBuf /* Temporary buffer to use */
1627 ){
1628 int rc; /* Return code */
1629 int szPage; /* Database page-size */
1630 WalIterator *pIter = 0; /* Wal iterator context */
1631 u32 iDbpage = 0; /* Next database page to write */
1632 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
1633 u32 mxSafeFrame; /* Max frame that can be backfilled */
1634 u32 mxPage; /* Max database page to write */
1635 int i; /* Loop counter */
1636 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
1637 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
1638
1639 szPage = walPagesize(pWal);
1640 testcase( szPage<=32768 );
1641 testcase( szPage>=65536 );
1642 pInfo = walCkptInfo(pWal);
1643 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
1644
1645 /* Allocate the iterator */
1646 rc = walIteratorInit(pWal, &pIter);
1647 if( rc!=SQLITE_OK ){
1648 return rc;
1649 }
1650 assert( pIter );
1651
1652 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
1653
1654 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1655 ** safe to write into the database. Frames beyond mxSafeFrame might
1656 ** overwrite database pages that are in use by active readers and thus
1657 ** cannot be backfilled from the WAL.
1658 */
1659 mxSafeFrame = pWal->hdr.mxFrame;
1660 mxPage = pWal->hdr.nPage;
1661 for(i=1; i<WAL_NREADER; i++){
1662 u32 y = pInfo->aReadMark[i];
1663 if( mxSafeFrame>y ){
1664 assert( y<=pWal->hdr.mxFrame );
1665 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1666 if( rc==SQLITE_OK ){
1667 pInfo->aReadMark[i] = READMARK_NOT_USED;
1668 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1669 }else if( rc==SQLITE_BUSY ){
1670 mxSafeFrame = y;
1671 xBusy = 0;
1672 }else{
1673 goto walcheckpoint_out;
1674 }
1675 }
1676 }
1677
1678 if( pInfo->nBackfill<mxSafeFrame
1679 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
1680 ){
1681 i64 nSize; /* Current size of database file */
1682 u32 nBackfill = pInfo->nBackfill;
1683
1684 /* Sync the WAL to disk */
1685 if( sync_flags ){
1686 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1687 }
1688
1689 /* If the database file may grow as a result of this checkpoint, hint
1690 ** about the eventual size of the db file to the VFS layer.
1691 */
1692 if( rc==SQLITE_OK ){
1693 i64 nReq = ((i64)mxPage * szPage);
1694 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1695 if( rc==SQLITE_OK && nSize<nReq ){
1696 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1697 }
1698 }
1699
1700 /* Iterate through the contents of the WAL, copying data to the db file. */
1701 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1702 i64 iOffset;
1703 assert( walFramePgno(pWal, iFrame)==iDbpage );
1704 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
1705 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1706 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1707 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1708 if( rc!=SQLITE_OK ) break;
1709 iOffset = (iDbpage-1)*(i64)szPage;
1710 testcase( IS_BIG_INT(iOffset) );
1711 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1712 if( rc!=SQLITE_OK ) break;
1713 }
1714
1715 /* If work was actually accomplished... */
1716 if( rc==SQLITE_OK ){
1717 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1718 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1719 testcase( IS_BIG_INT(szDb) );
1720 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1721 if( rc==SQLITE_OK && sync_flags ){
1722 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1723 }
1724 }
1725 if( rc==SQLITE_OK ){
1726 pInfo->nBackfill = mxSafeFrame;
1727 }
1728 }
1729
1730 /* Release the reader lock held while backfilling */
1731 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1732 }
1733
1734 if( rc==SQLITE_BUSY ){
1735 /* Reset the return code so as not to report a checkpoint failure
1736 ** just because there are active readers. */
1737 rc = SQLITE_OK;
1738 }
1739
1740 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1741 ** file has been copied into the database file, then block until all
1742 ** readers have finished using the wal file. This ensures that the next
1743 ** process to write to the database restarts the wal file.
1744 */
1745 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1746 assert( pWal->writeLock );
1747 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1748 rc = SQLITE_BUSY;
1749 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1750 assert( mxSafeFrame==pWal->hdr.mxFrame );
1751 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1752 if( rc==SQLITE_OK ){
1753 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1754 }
1755 }
1756 }
1757
1758 walcheckpoint_out:
1759 walIteratorFree(pIter);
1760 return rc;
1761 }
1762
1763 /*
1764 ** Close a connection to a log file.
1765 */
1766 int sqlite3WalClose(
1767 Wal *pWal, /* Wal to close */
1768 int sync_flags, /* Flags to pass to OsSync() (or 0) */
1769 int nBuf,
1770 u8 *zBuf /* Buffer of at least nBuf bytes */
1771 ){
1772 int rc = SQLITE_OK;
1773 if( pWal ){
1774 int isDelete = 0; /* True to unlink wal and wal-index files */
1775
1776 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1777 ** ordinary, rollback-mode locking methods, this guarantees that the
1778 ** connection associated with this log file is the only connection to
1779 ** the database. In this case checkpoint the database and unlink both
1780 ** the wal and wal-index files.
1781 **
1782 ** The EXCLUSIVE lock is not released before returning.
1783 */
1784 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1785 if( rc==SQLITE_OK ){
1786 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1787 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1788 }
1789 rc = sqlite3WalCheckpoint(
1790 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1791 );
1792 if( rc==SQLITE_OK ){
1793 isDelete = 1;
1794 }
1795 }
1796
1797 walIndexClose(pWal, isDelete);
1798 sqlite3OsClose(pWal->pWalFd);
1799 if( isDelete ){
1800 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1801 }
1802 WALTRACE(("WAL%p: closed\n", pWal));
1803 sqlite3_free((void *)pWal->apWiData);
1804 sqlite3_free(pWal);
1805 }
1806 return rc;
1807 }
1808
1809 /*
1810 ** Try to read the wal-index header. Return 0 on success and 1 if
1811 ** there is a problem.
1812 **
1813 ** The wal-index is in shared memory. Another thread or process might
1814 ** be writing the header at the same time this procedure is trying to
1815 ** read it, which might result in inconsistency. A dirty read is detected
1816 ** by verifying that both copies of the header are the same and also by
1817 ** a checksum on the header.
1818 **
1819 ** If and only if the read is consistent and the header is different from
1820 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1821 ** and *pChanged is set to 1.
1822 **
1823 ** If the checksum cannot be verified return non-zero. If the header
1824 ** is read successfully and the checksum verified, return zero.
1825 */
1826 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1827 u32 aCksum[2]; /* Checksum on the header content */
1828 WalIndexHdr h1, h2; /* Two copies of the header content */
1829 WalIndexHdr volatile *aHdr; /* Header in shared memory */
1830
1831 /* The first page of the wal-index must be mapped at this point. */
1832 assert( pWal->nWiData>0 && pWal->apWiData[0] );
1833
1834 /* Read the header. This might happen concurrently with a write to the
1835 ** same area of shared memory on a different CPU in a SMP,
1836 ** meaning it is possible that an inconsistent snapshot is read
1837 ** from the file. If this happens, return non-zero.
1838 **
1839 ** There are two copies of the header at the beginning of the wal-index.
1840 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1841 ** Memory barriers are used to prevent the compiler or the hardware from
1842 ** reordering the reads and writes.
1843 */
1844 aHdr = walIndexHdr(pWal);
1845 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1846 walShmBarrier(pWal);
1847 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1848
1849 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1850 return 1; /* Dirty read */
1851 }
1852 if( h1.isInit==0 ){
1853 return 1; /* Malformed header - probably all zeros */
1854 }
1855 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
1856 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1857 return 1; /* Checksum does not match */
1858 }
1859
1860 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
1861 *pChanged = 1;
1862 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
1863 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1864 testcase( pWal->szPage<=32768 );
1865 testcase( pWal->szPage>=65536 );
1866 }
1867
1868 /* The header was successfully read. Return zero. */
1869 return 0;
1870 }
1871
1872 /*
1873 ** Read the wal-index header from the wal-index and into pWal->hdr.
1874 ** If the wal-header appears to be corrupt, try to reconstruct the
1875 ** wal-index from the WAL before returning.
1876 **
1877 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1878 ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1879 ** to 0.
1880 **
1881 ** If the wal-index header is successfully read, return SQLITE_OK.
1882 ** Otherwise an SQLite error code.
1883 */
1884 static int walIndexReadHdr(Wal *pWal, int *pChanged){
1885 int rc; /* Return code */
1886 int badHdr; /* True if a header read failed */
1887 volatile u32 *page0; /* Chunk of wal-index containing header */
1888
1889 /* Ensure that page 0 of the wal-index (the page that contains the
1890 ** wal-index header) is mapped. Return early if an error occurs here.
1891 */
1892 assert( pChanged );
1893 rc = walIndexPage(pWal, 0, &page0);
1894 if( rc!=SQLITE_OK ){
1895 return rc;
1896 };
1897 assert( page0 || pWal->writeLock==0 );
1898
1899 /* If the first page of the wal-index has been mapped, try to read the
1900 ** wal-index header immediately, without holding any lock. This usually
1901 ** works, but may fail if the wal-index header is corrupt or currently
1902 ** being modified by another thread or process.
1903 */
1904 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
1905
1906 /* If the first attempt failed, it might have been due to a race
1907 ** with a writer. So get a WRITE lock and try again.
1908 */
1909 assert( badHdr==0 || pWal->writeLock==0 );
1910 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1911 pWal->writeLock = 1;
1912 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1913 badHdr = walIndexTryHdr(pWal, pChanged);
1914 if( badHdr ){
1915 /* If the wal-index header is still malformed even while holding
1916 ** a WRITE lock, it can only mean that the header is corrupted and
1917 ** needs to be reconstructed. So run recovery to do exactly that.
1918 */
1919 rc = walIndexRecover(pWal);
1920 *pChanged = 1;
1921 }
1922 }
1923 pWal->writeLock = 0;
1924 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1925 }
1926
1927 /* If the header is read successfully, check the version number to make
1928 ** sure the wal-index was not constructed with some future format that
1929 ** this version of SQLite cannot understand.
1930 */
1931 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1932 rc = SQLITE_CANTOPEN_BKPT;
1933 }
1934
1935 return rc;
1936 }
1937
1938 /*
1939 ** This is the value that walTryBeginRead returns when it needs to
1940 ** be retried.
1941 */
1942 #define WAL_RETRY (-1)
1943
1944 /*
1945 ** Attempt to start a read transaction. This might fail due to a race or
1946 ** other transient condition. When that happens, it returns WAL_RETRY to
1947 ** indicate to the caller that it is safe to retry immediately.
1948 **
1949 ** On success return SQLITE_OK. On a permanent failure (such an
1950 ** I/O error or an SQLITE_BUSY because another process is running
1951 ** recovery) return a positive error code.
1952 **
1953 ** The useWal parameter is true to force the use of the WAL and disable
1954 ** the case where the WAL is bypassed because it has been completely
1955 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1956 ** to make a copy of the wal-index header into pWal->hdr. If the
1957 ** wal-index header has changed, *pChanged is set to 1 (as an indication
1958 ** to the caller that the local paget cache is obsolete and needs to be
1959 ** flushed.) When useWal==1, the wal-index header is assumed to already
1960 ** be loaded and the pChanged parameter is unused.
1961 **
1962 ** The caller must set the cnt parameter to the number of prior calls to
1963 ** this routine during the current read attempt that returned WAL_RETRY.
1964 ** This routine will start taking more aggressive measures to clear the
1965 ** race conditions after multiple WAL_RETRY returns, and after an excessive
1966 ** number of errors will ultimately return SQLITE_PROTOCOL. The
1967 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1968 ** and is not honoring the locking protocol. There is a vanishingly small
1969 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
1970 ** bad luck when there is lots of contention for the wal-index, but that
1971 ** possibility is so small that it can be safely neglected, we believe.
1972 **
1973 ** On success, this routine obtains a read lock on
1974 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1975 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1976 ** that means the Wal does not hold any read lock. The reader must not
1977 ** access any database page that is modified by a WAL frame up to and
1978 ** including frame number aReadMark[pWal->readLock]. The reader will
1979 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1980 ** Or if pWal->readLock==0, then the reader will ignore the WAL
1981 ** completely and get all content directly from the database file.
1982 ** If the useWal parameter is 1 then the WAL will never be ignored and
1983 ** this routine will always set pWal->readLock>0 on success.
1984 ** When the read transaction is completed, the caller must release the
1985 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1986 **
1987 ** This routine uses the nBackfill and aReadMark[] fields of the header
1988 ** to select a particular WAL_READ_LOCK() that strives to let the
1989 ** checkpoint process do as much work as possible. This routine might
1990 ** update values of the aReadMark[] array in the header, but if it does
1991 ** so it takes care to hold an exclusive lock on the corresponding
1992 ** WAL_READ_LOCK() while changing values.
1993 */
1994 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
1995 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1996 u32 mxReadMark; /* Largest aReadMark[] value */
1997 int mxI; /* Index of largest aReadMark[] value */
1998 int i; /* Loop counter */
1999 int rc = SQLITE_OK; /* Return code */
2000
2001 assert( pWal->readLock<0 ); /* Not currently locked */
2002
2003 /* Take steps to avoid spinning forever if there is a protocol error.
2004 **
2005 ** Circumstances that cause a RETRY should only last for the briefest
2006 ** instances of time. No I/O or other system calls are done while the
2007 ** locks are held, so the locks should not be held for very long. But
2008 ** if we are unlucky, another process that is holding a lock might get
2009 ** paged out or take a page-fault that is time-consuming to resolve,
2010 ** during the few nanoseconds that it is holding the lock. In that case,
2011 ** it might take longer than normal for the lock to free.
2012 **
2013 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2014 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2015 ** is more of a scheduler yield than an actual delay. But on the 10th
2016 ** an subsequent retries, the delays start becoming longer and longer,
2017 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2018 ** The total delay time before giving up is less than 1 second.
2019 */
2020 if( cnt>5 ){
2021 int nDelay = 1; /* Pause time in microseconds */
2022 if( cnt>100 ){
2023 VVA_ONLY( pWal->lockError = 1; )
2024 return SQLITE_PROTOCOL;
2025 }
2026 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2027 sqlite3OsSleep(pWal->pVfs, nDelay);
2028 }
2029
2030 if( !useWal ){
2031 rc = walIndexReadHdr(pWal, pChanged);
2032 if( rc==SQLITE_BUSY ){
2033 /* If there is not a recovery running in another thread or process
2034 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2035 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2036 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2037 ** would be technically correct. But the race is benign since with
2038 ** WAL_RETRY this routine will be called again and will probably be
2039 ** right on the second iteration.
2040 */
2041 if( pWal->apWiData[0]==0 ){
2042 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2043 ** We assume this is a transient condition, so return WAL_RETRY. The
2044 ** xShmMap() implementation used by the default unix and win32 VFS
2045 ** modules may return SQLITE_BUSY due to a race condition in the
2046 ** code that determines whether or not the shared-memory region
2047 ** must be zeroed before the requested page is returned.
2048 */
2049 rc = WAL_RETRY;
2050 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2051 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2052 rc = WAL_RETRY;
2053 }else if( rc==SQLITE_BUSY ){
2054 rc = SQLITE_BUSY_RECOVERY;
2055 }
2056 }
2057 if( rc!=SQLITE_OK ){
2058 return rc;
2059 }
2060 }
2061
2062 pInfo = walCkptInfo(pWal);
2063 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2064 /* The WAL has been completely backfilled (or it is empty).
2065 ** and can be safely ignored.
2066 */
2067 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2068 walShmBarrier(pWal);
2069 if( rc==SQLITE_OK ){
2070 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2071 /* It is not safe to allow the reader to continue here if frames
2072 ** may have been appended to the log before READ_LOCK(0) was obtained.
2073 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2074 ** which implies that the database file contains a trustworthy
2075 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2076 ** happening, this is usually correct.
2077 **
2078 ** However, if frames have been appended to the log (or if the log
2079 ** is wrapped and written for that matter) before the READ_LOCK(0)
2080 ** is obtained, that is not necessarily true. A checkpointer may
2081 ** have started to backfill the appended frames but crashed before
2082 ** it finished. Leaving a corrupt image in the database file.
2083 */
2084 walUnlockShared(pWal, WAL_READ_LOCK(0));
2085 return WAL_RETRY;
2086 }
2087 pWal->readLock = 0;
2088 return SQLITE_OK;
2089 }else if( rc!=SQLITE_BUSY ){
2090 return rc;
2091 }
2092 }
2093
2094 /* If we get this far, it means that the reader will want to use
2095 ** the WAL to get at content from recent commits. The job now is
2096 ** to select one of the aReadMark[] entries that is closest to
2097 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2098 */
2099 mxReadMark = 0;
2100 mxI = 0;
2101 for(i=1; i<WAL_NREADER; i++){
2102 u32 thisMark = pInfo->aReadMark[i];
2103 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2104 assert( thisMark!=READMARK_NOT_USED );
2105 mxReadMark = thisMark;
2106 mxI = i;
2107 }
2108 }
2109 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2110 {
2111 if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){
2112 for(i=1; i<WAL_NREADER; i++){
2113 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2114 if( rc==SQLITE_OK ){
2115 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2116 mxI = i;
2117 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2118 break;
2119 }else if( rc!=SQLITE_BUSY ){
2120 return rc;
2121 }
2122 }
2123 }
2124 if( mxI==0 ){
2125 assert( rc==SQLITE_BUSY );
2126 return WAL_RETRY;
2127 }
2128
2129 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2130 if( rc ){
2131 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2132 }
2133 /* Now that the read-lock has been obtained, check that neither the
2134 ** value in the aReadMark[] array or the contents of the wal-index
2135 ** header have changed.
2136 **
2137 ** It is necessary to check that the wal-index header did not change
2138 ** between the time it was read and when the shared-lock was obtained
2139 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2140 ** that the log file may have been wrapped by a writer, or that frames
2141 ** that occur later in the log than pWal->hdr.mxFrame may have been
2142 ** copied into the database by a checkpointer. If either of these things
2143 ** happened, then reading the database with the current value of
2144 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2145 ** instead.
2146 **
2147 ** This does not guarantee that the copy of the wal-index header is up to
2148 ** date before proceeding. That would not be possible without somehow
2149 ** blocking writers. It only guarantees that a dangerous checkpoint or
2150 ** log-wrap (either of which would require an exclusive lock on
2151 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2152 */
2153 walShmBarrier(pWal);
2154 if( pInfo->aReadMark[mxI]!=mxReadMark
2155 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2156 ){
2157 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2158 return WAL_RETRY;
2159 }else{
2160 assert( mxReadMark<=pWal->hdr.mxFrame );
2161 pWal->readLock = (i16)mxI;
2162 }
2163 }
2164 return rc;
2165 }
2166
2167 /*
2168 ** Begin a read transaction on the database.
2169 **
2170 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2171 ** it takes a snapshot of the state of the WAL and wal-index for the current
2172 ** instant in time. The current thread will continue to use this snapshot.
2173 ** Other threads might append new content to the WAL and wal-index but
2174 ** that extra content is ignored by the current thread.
2175 **
2176 ** If the database contents have changes since the previous read
2177 ** transaction, then *pChanged is set to 1 before returning. The
2178 ** Pager layer will use this to know that is cache is stale and
2179 ** needs to be flushed.
2180 */
2181 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2182 int rc; /* Return code */
2183 int cnt = 0; /* Number of TryBeginRead attempts */
2184
2185 do{
2186 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2187 }while( rc==WAL_RETRY );
2188 testcase( (rc&0xff)==SQLITE_BUSY );
2189 testcase( (rc&0xff)==SQLITE_IOERR );
2190 testcase( rc==SQLITE_PROTOCOL );
2191 testcase( rc==SQLITE_OK );
2192 return rc;
2193 }
2194
2195 /*
2196 ** Finish with a read transaction. All this does is release the
2197 ** read-lock.
2198 */
2199 void sqlite3WalEndReadTransaction(Wal *pWal){
2200 sqlite3WalEndWriteTransaction(pWal);
2201 if( pWal->readLock>=0 ){
2202 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2203 pWal->readLock = -1;
2204 }
2205 }
2206
2207 /*
2208 ** Read a page from the WAL, if it is present in the WAL and if the
2209 ** current read transaction is configured to use the WAL.
2210 **
2211 ** The *pInWal is set to 1 if the requested page is in the WAL and
2212 ** has been loaded. Or *pInWal is set to 0 if the page was not in
2213 ** the WAL and needs to be read out of the database.
2214 */
2215 int sqlite3WalRead(
2216 Wal *pWal, /* WAL handle */
2217 Pgno pgno, /* Database page number to read data for */
2218 int *pInWal, /* OUT: True if data is read from WAL */
2219 int nOut, /* Size of buffer pOut in bytes */
2220 u8 *pOut /* Buffer to write page data to */
2221 ){
2222 u32 iRead = 0; /* If !=0, WAL frame to return data from */
2223 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
2224 int iHash; /* Used to loop through N hash tables */
2225
2226 /* This routine is only be called from within a read transaction. */
2227 assert( pWal->readLock>=0 || pWal->lockError );
2228
2229 /* If the "last page" field of the wal-index header snapshot is 0, then
2230 ** no data will be read from the wal under any circumstances. Return early
2231 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2232 ** then the WAL is ignored by the reader so return early, as if the
2233 ** WAL were empty.
2234 */
2235 if( iLast==0 || pWal->readLock==0 ){
2236 *pInWal = 0;
2237 return SQLITE_OK;
2238 }
2239
2240 /* Search the hash table or tables for an entry matching page number
2241 ** pgno. Each iteration of the following for() loop searches one
2242 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2243 **
2244 ** This code might run concurrently to the code in walIndexAppend()
2245 ** that adds entries to the wal-index (and possibly to this hash
2246 ** table). This means the value just read from the hash
2247 ** slot (aHash[iKey]) may have been added before or after the
2248 ** current read transaction was opened. Values added after the
2249 ** read transaction was opened may have been written incorrectly -
2250 ** i.e. these slots may contain garbage data. However, we assume
2251 ** that any slots written before the current read transaction was
2252 ** opened remain unmodified.
2253 **
2254 ** For the reasons above, the if(...) condition featured in the inner
2255 ** loop of the following block is more stringent that would be required
2256 ** if we had exclusive access to the hash-table:
2257 **
2258 ** (aPgno[iFrame]==pgno):
2259 ** This condition filters out normal hash-table collisions.
2260 **
2261 ** (iFrame<=iLast):
2262 ** This condition filters out entries that were added to the hash
2263 ** table after the current read-transaction had started.
2264 */
2265 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
2266 volatile ht_slot *aHash; /* Pointer to hash table */
2267 volatile u32 *aPgno; /* Pointer to array of page numbers */
2268 u32 iZero; /* Frame number corresponding to aPgno[0] */
2269 int iKey; /* Hash slot index */
2270 int nCollide; /* Number of hash collisions remaining */
2271 int rc; /* Error code */
2272
2273 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2274 if( rc!=SQLITE_OK ){
2275 return rc;
2276 }
2277 nCollide = HASHTABLE_NSLOT;
2278 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2279 u32 iFrame = aHash[iKey] + iZero;
2280 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
2281 assert( iFrame>iRead );
2282 iRead = iFrame;
2283 }
2284 if( (nCollide--)==0 ){
2285 return SQLITE_CORRUPT_BKPT;
2286 }
2287 }
2288 }
2289
2290 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2291 /* If expensive assert() statements are available, do a linear search
2292 ** of the wal-index file content. Make sure the results agree with the
2293 ** result obtained using the hash indexes above. */
2294 {
2295 u32 iRead2 = 0;
2296 u32 iTest;
2297 for(iTest=iLast; iTest>0; iTest--){
2298 if( walFramePgno(pWal, iTest)==pgno ){
2299 iRead2 = iTest;
2300 break;
2301 }
2302 }
2303 assert( iRead==iRead2 );
2304 }
2305 #endif
2306
2307 /* If iRead is non-zero, then it is the log frame number that contains the
2308 ** required page. Read and return data from the log file.
2309 */
2310 if( iRead ){
2311 int sz;
2312 i64 iOffset;
2313 sz = pWal->hdr.szPage;
2314 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2315 testcase( sz<=32768 );
2316 testcase( sz>=65536 );
2317 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2318 *pInWal = 1;
2319 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2320 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
2321 }
2322
2323 *pInWal = 0;
2324 return SQLITE_OK;
2325 }
2326
2327
2328 /*
2329 ** Return the size of the database in pages (or zero, if unknown).
2330 */
2331 Pgno sqlite3WalDbsize(Wal *pWal){
2332 if( pWal && ALWAYS(pWal->readLock>=0) ){
2333 return pWal->hdr.nPage;
2334 }
2335 return 0;
2336 }
2337
2338
2339 /*
2340 ** This function starts a write transaction on the WAL.
2341 **
2342 ** A read transaction must have already been started by a prior call
2343 ** to sqlite3WalBeginReadTransaction().
2344 **
2345 ** If another thread or process has written into the database since
2346 ** the read transaction was started, then it is not possible for this
2347 ** thread to write as doing so would cause a fork. So this routine
2348 ** returns SQLITE_BUSY in that case and no write transaction is started.
2349 **
2350 ** There can only be a single writer active at a time.
2351 */
2352 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2353 int rc;
2354
2355 /* Cannot start a write transaction without first holding a read
2356 ** transaction. */
2357 assert( pWal->readLock>=0 );
2358
2359 if( pWal->readOnly ){
2360 return SQLITE_READONLY;
2361 }
2362
2363 /* Only one writer allowed at a time. Get the write lock. Return
2364 ** SQLITE_BUSY if unable.
2365 */
2366 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2367 if( rc ){
2368 return rc;
2369 }
2370 pWal->writeLock = 1;
2371
2372 /* If another connection has written to the database file since the
2373 ** time the read transaction on this connection was started, then
2374 ** the write is disallowed.
2375 */
2376 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2377 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2378 pWal->writeLock = 0;
2379 rc = SQLITE_BUSY;
2380 }
2381
2382 return rc;
2383 }
2384
2385 /*
2386 ** End a write transaction. The commit has already been done. This
2387 ** routine merely releases the lock.
2388 */
2389 int sqlite3WalEndWriteTransaction(Wal *pWal){
2390 if( pWal->writeLock ){
2391 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2392 pWal->writeLock = 0;
2393 }
2394 return SQLITE_OK;
2395 }
2396
2397 /*
2398 ** If any data has been written (but not committed) to the log file, this
2399 ** function moves the write-pointer back to the start of the transaction.
2400 **
2401 ** Additionally, the callback function is invoked for each frame written
2402 ** to the WAL since the start of the transaction. If the callback returns
2403 ** other than SQLITE_OK, it is not invoked again and the error code is
2404 ** returned to the caller.
2405 **
2406 ** Otherwise, if the callback function does not return an error, this
2407 ** function returns SQLITE_OK.
2408 */
2409 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2410 int rc = SQLITE_OK;
2411 if( ALWAYS(pWal->writeLock) ){
2412 Pgno iMax = pWal->hdr.mxFrame;
2413 Pgno iFrame;
2414
2415 /* Restore the clients cache of the wal-index header to the state it
2416 ** was in before the client began writing to the database.
2417 */
2418 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2419
2420 for(iFrame=pWal->hdr.mxFrame+1;
2421 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2422 iFrame++
2423 ){
2424 /* This call cannot fail. Unless the page for which the page number
2425 ** is passed as the second argument is (a) in the cache and
2426 ** (b) has an outstanding reference, then xUndo is either a no-op
2427 ** (if (a) is false) or simply expels the page from the cache (if (b)
2428 ** is false).
2429 **
2430 ** If the upper layer is doing a rollback, it is guaranteed that there
2431 ** are no outstanding references to any page other than page 1. And
2432 ** page 1 is never written to the log until the transaction is
2433 ** committed. As a result, the call to xUndo may not fail.
2434 */
2435 assert( walFramePgno(pWal, iFrame)!=1 );
2436 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2437 }
2438 walCleanupHash(pWal);
2439 }
2440 assert( rc==SQLITE_OK );
2441 return rc;
2442 }
2443
2444 /*
2445 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2446 ** values. This function populates the array with values required to
2447 ** "rollback" the write position of the WAL handle back to the current
2448 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2449 */
2450 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2451 assert( pWal->writeLock );
2452 aWalData[0] = pWal->hdr.mxFrame;
2453 aWalData[1] = pWal->hdr.aFrameCksum[0];
2454 aWalData[2] = pWal->hdr.aFrameCksum[1];
2455 aWalData[3] = pWal->nCkpt;
2456 }
2457
2458 /*
2459 ** Move the write position of the WAL back to the point identified by
2460 ** the values in the aWalData[] array. aWalData must point to an array
2461 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2462 ** by a call to WalSavepoint().
2463 */
2464 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2465 int rc = SQLITE_OK;
2466
2467 assert( pWal->writeLock );
2468 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2469
2470 if( aWalData[3]!=pWal->nCkpt ){
2471 /* This savepoint was opened immediately after the write-transaction
2472 ** was started. Right after that, the writer decided to wrap around
2473 ** to the start of the log. Update the savepoint values to match.
2474 */
2475 aWalData[0] = 0;
2476 aWalData[3] = pWal->nCkpt;
2477 }
2478
2479 if( aWalData[0]<pWal->hdr.mxFrame ){
2480 pWal->hdr.mxFrame = aWalData[0];
2481 pWal->hdr.aFrameCksum[0] = aWalData[1];
2482 pWal->hdr.aFrameCksum[1] = aWalData[2];
2483 walCleanupHash(pWal);
2484 }
2485
2486 return rc;
2487 }
2488
2489 /*
2490 ** This function is called just before writing a set of frames to the log
2491 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2492 ** to the current log file, it is possible to overwrite the start of the
2493 ** existing log file with the new frames (i.e. "reset" the log). If so,
2494 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2495 ** unchanged.
2496 **
2497 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2498 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2499 ** if an error occurs.
2500 */
2501 static int walRestartLog(Wal *pWal){
2502 int rc = SQLITE_OK;
2503 int cnt;
2504
2505 if( pWal->readLock==0 ){
2506 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2507 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2508 if( pInfo->nBackfill>0 ){
2509 u32 salt1;
2510 sqlite3_randomness(4, &salt1);
2511 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2512 if( rc==SQLITE_OK ){
2513 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2514 ** readers are currently using the WAL), then the transactions
2515 ** frames will overwrite the start of the existing log. Update the
2516 ** wal-index header to reflect this.
2517 **
2518 ** In theory it would be Ok to update the cache of the header only
2519 ** at this point. But updating the actual wal-index header is also
2520 ** safe and means there is no special case for sqlite3WalUndo()
2521 ** to handle if this transaction is rolled back.
2522 */
2523 int i; /* Loop counter */
2524 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2525 pWal->nCkpt++;
2526 pWal->hdr.mxFrame = 0;
2527 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2528 aSalt[1] = salt1;
2529 walIndexWriteHdr(pWal);
2530 pInfo->nBackfill = 0;
2531 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2532 assert( pInfo->aReadMark[0]==0 );
2533 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2534 }else if( rc!=SQLITE_BUSY ){
2535 return rc;
2536 }
2537 }
2538 walUnlockShared(pWal, WAL_READ_LOCK(0));
2539 pWal->readLock = -1;
2540 cnt = 0;
2541 do{
2542 int notUsed;
2543 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2544 }while( rc==WAL_RETRY );
2545 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2546 testcase( (rc&0xff)==SQLITE_IOERR );
2547 testcase( rc==SQLITE_PROTOCOL );
2548 testcase( rc==SQLITE_OK );
2549 }
2550 return rc;
2551 }
2552
2553 /*
2554 ** Write a set of frames to the log. The caller must hold the write-lock
2555 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2556 */
2557 int sqlite3WalFrames(
2558 Wal *pWal, /* Wal handle to write to */
2559 int szPage, /* Database page-size in bytes */
2560 PgHdr *pList, /* List of dirty pages to write */
2561 Pgno nTruncate, /* Database size after this commit */
2562 int isCommit, /* True if this is a commit */
2563 int sync_flags /* Flags to pass to OsSync() (or 0) */
2564 ){
2565 int rc; /* Used to catch return codes */
2566 u32 iFrame; /* Next frame address */
2567 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2568 PgHdr *p; /* Iterator to run through pList with. */
2569 PgHdr *pLast = 0; /* Last frame in list */
2570 int nLast = 0; /* Number of extra copies of last page */
2571
2572 assert( pList );
2573 assert( pWal->writeLock );
2574
2575 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2576 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2577 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2578 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2579 }
2580 #endif
2581
2582 /* See if it is possible to write these frames into the start of the
2583 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2584 */
2585 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2586 return rc;
2587 }
2588
2589 /* If this is the first frame written into the log, write the WAL
2590 ** header to the start of the WAL file. See comments at the top of
2591 ** this source file for a description of the WAL header format.
2592 */
2593 iFrame = pWal->hdr.mxFrame;
2594 if( iFrame==0 ){
2595 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2596 u32 aCksum[2]; /* Checksum for wal-header */
2597
2598 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2599 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2600 sqlite3Put4byte(&aWalHdr[8], szPage);
2601 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2602 sqlite3_randomness(8, pWal->hdr.aSalt);
2603 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2604 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2605 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2606 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2607
2608 pWal->szPage = szPage;
2609 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2610 pWal->hdr.aFrameCksum[0] = aCksum[0];
2611 pWal->hdr.aFrameCksum[1] = aCksum[1];
2612
2613 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2614 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2615 if( rc!=SQLITE_OK ){
2616 return rc;
2617 }
2618 }
2619 assert( (int)pWal->szPage==szPage );
2620
2621 /* Write the log file. */
2622 for(p=pList; p; p=p->pDirty){
2623 u32 nDbsize; /* Db-size field for frame header */
2624 i64 iOffset; /* Write offset in log file */
2625 void *pData;
2626
2627 iOffset = walFrameOffset(++iFrame, szPage);
2628 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2629
2630 /* Populate and write the frame header */
2631 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2632 #if defined(SQLITE_HAS_CODEC)
2633 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
2634 #else
2635 pData = p->pData;
2636 #endif
2637 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
2638 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2639 if( rc!=SQLITE_OK ){
2640 return rc;
2641 }
2642
2643 /* Write the page data */
2644 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
2645 if( rc!=SQLITE_OK ){
2646 return rc;
2647 }
2648 pLast = p;
2649 }
2650
2651 /* Sync the log file if the 'isSync' flag was specified. */
2652 if( sync_flags ){
2653 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
2654 i64 iOffset = walFrameOffset(iFrame+1, szPage);
2655
2656 assert( isCommit );
2657 assert( iSegment>0 );
2658
2659 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2660 while( iOffset<iSegment ){
2661 void *pData;
2662 #if defined(SQLITE_HAS_CODEC)
2663 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
2664 #else
2665 pData = pLast->pData;
2666 #endif
2667 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
2668 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2669 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2670 if( rc!=SQLITE_OK ){
2671 return rc;
2672 }
2673 iOffset += WAL_FRAME_HDRSIZE;
2674 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
2675 if( rc!=SQLITE_OK ){
2676 return rc;
2677 }
2678 nLast++;
2679 iOffset += szPage;
2680 }
2681
2682 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
2683 }
2684
2685 /* Append data to the wal-index. It is not necessary to lock the
2686 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2687 ** guarantees that there are no other writers, and no data that may
2688 ** be in use by existing readers is being overwritten.
2689 */
2690 iFrame = pWal->hdr.mxFrame;
2691 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2692 iFrame++;
2693 rc = walIndexAppend(pWal, iFrame, p->pgno);
2694 }
2695 while( nLast>0 && rc==SQLITE_OK ){
2696 iFrame++;
2697 nLast--;
2698 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2699 }
2700
2701 if( rc==SQLITE_OK ){
2702 /* Update the private copy of the header. */
2703 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2704 testcase( szPage<=32768 );
2705 testcase( szPage>=65536 );
2706 pWal->hdr.mxFrame = iFrame;
2707 if( isCommit ){
2708 pWal->hdr.iChange++;
2709 pWal->hdr.nPage = nTruncate;
2710 }
2711 /* If this is a commit, update the wal-index header too. */
2712 if( isCommit ){
2713 walIndexWriteHdr(pWal);
2714 pWal->iCallback = iFrame;
2715 }
2716 }
2717
2718 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2719 return rc;
2720 }
2721
2722 /*
2723 ** This routine is called to implement sqlite3_wal_checkpoint() and
2724 ** related interfaces.
2725 **
2726 ** Obtain a CHECKPOINT lock and then backfill as much information as
2727 ** we can from WAL into the database.
2728 **
2729 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2730 ** callback. In this case this function runs a blocking checkpoint.
2731 */
2732 int sqlite3WalCheckpoint(
2733 Wal *pWal, /* Wal connection */
2734 int eMode, /* PASSIVE, FULL or RESTART */
2735 int (*xBusy)(void*), /* Function to call when busy */
2736 void *pBusyArg, /* Context argument for xBusyHandler */
2737 int sync_flags, /* Flags to sync db file with (or 0) */
2738 int nBuf, /* Size of temporary buffer */
2739 u8 *zBuf, /* Temporary buffer to use */
2740 int *pnLog, /* OUT: Number of frames in WAL */
2741 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
2742 ){
2743 int rc; /* Return code */
2744 int isChanged = 0; /* True if a new wal-index header is loaded */
2745 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
2746
2747 assert( pWal->ckptLock==0 );
2748 assert( pWal->writeLock==0 );
2749
2750 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
2751 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2752 if( rc ){
2753 /* Usually this is SQLITE_BUSY meaning that another thread or process
2754 ** is already running a checkpoint, or maybe a recovery. But it might
2755 ** also be SQLITE_IOERR. */
2756 return rc;
2757 }
2758 pWal->ckptLock = 1;
2759
2760 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2761 ** to prevent any writers from running while the checkpoint is underway.
2762 ** This has to be done before the call to walIndexReadHdr() below.
2763 **
2764 ** If the writer lock cannot be obtained, then a passive checkpoint is
2765 ** run instead. Since the checkpointer is not holding the writer lock,
2766 ** there is no point in blocking waiting for any readers. Assuming no
2767 ** other error occurs, this function will return SQLITE_BUSY to the caller.
2768 */
2769 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2770 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
2771 if( rc==SQLITE_OK ){
2772 pWal->writeLock = 1;
2773 }else if( rc==SQLITE_BUSY ){
2774 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2775 rc = SQLITE_OK;
2776 }
2777 }
2778
2779 /* Read the wal-index header. */
2780 if( rc==SQLITE_OK ){
2781 rc = walIndexReadHdr(pWal, &isChanged);
2782 }
2783
2784 /* Copy data from the log to the database file. */
2785 if( rc==SQLITE_OK ){
2786 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
2787 rc = SQLITE_CORRUPT_BKPT;
2788 }else{
2789 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2790 }
2791
2792 /* If no error occurred, set the output variables. */
2793 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
2794 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
2795 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
2796 }
2797 }
2798
2799 if( isChanged ){
2800 /* If a new wal-index header was loaded before the checkpoint was
2801 ** performed, then the pager-cache associated with pWal is now
2802 ** out of date. So zero the cached wal-index header to ensure that
2803 ** next time the pager opens a snapshot on this database it knows that
2804 ** the cache needs to be reset.
2805 */
2806 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2807 }
2808
2809 /* Release the locks. */
2810 sqlite3WalEndWriteTransaction(pWal);
2811 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2812 pWal->ckptLock = 0;
2813 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
2814 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
2815 }
2816
2817 /* Return the value to pass to a sqlite3_wal_hook callback, the
2818 ** number of frames in the WAL at the point of the last commit since
2819 ** sqlite3WalCallback() was called. If no commits have occurred since
2820 ** the last call, then return 0.
2821 */
2822 int sqlite3WalCallback(Wal *pWal){
2823 u32 ret = 0;
2824 if( pWal ){
2825 ret = pWal->iCallback;
2826 pWal->iCallback = 0;
2827 }
2828 return (int)ret;
2829 }
2830
2831 /*
2832 ** This function is called to change the WAL subsystem into or out
2833 ** of locking_mode=EXCLUSIVE.
2834 **
2835 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2836 ** into locking_mode=NORMAL. This means that we must acquire a lock
2837 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2838 ** or if the acquisition of the lock fails, then return 0. If the
2839 ** transition out of exclusive-mode is successful, return 1. This
2840 ** operation must occur while the pager is still holding the exclusive
2841 ** lock on the main database file.
2842 **
2843 ** If op is one, then change from locking_mode=NORMAL into
2844 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2845 ** be released. Return 1 if the transition is made and 0 if the
2846 ** WAL is already in exclusive-locking mode - meaning that this
2847 ** routine is a no-op. The pager must already hold the exclusive lock
2848 ** on the main database file before invoking this operation.
2849 **
2850 ** If op is negative, then do a dry-run of the op==1 case but do
2851 ** not actually change anything. The pager uses this to see if it
2852 ** should acquire the database exclusive lock prior to invoking
2853 ** the op==1 case.
2854 */
2855 int sqlite3WalExclusiveMode(Wal *pWal, int op){
2856 int rc;
2857 assert( pWal->writeLock==0 );
2858 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
2859
2860 /* pWal->readLock is usually set, but might be -1 if there was a
2861 ** prior error while attempting to acquire are read-lock. This cannot
2862 ** happen if the connection is actually in exclusive mode (as no xShmLock
2863 ** locks are taken in this case). Nor should the pager attempt to
2864 ** upgrade to exclusive-mode following such an error.
2865 */
2866 assert( pWal->readLock>=0 || pWal->lockError );
2867 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2868
2869 if( op==0 ){
2870 if( pWal->exclusiveMode ){
2871 pWal->exclusiveMode = 0;
2872 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
2873 pWal->exclusiveMode = 1;
2874 }
2875 rc = pWal->exclusiveMode==0;
2876 }else{
2877 /* Already in locking_mode=NORMAL */
2878 rc = 0;
2879 }
2880 }else if( op>0 ){
2881 assert( pWal->exclusiveMode==0 );
2882 assert( pWal->readLock>=0 );
2883 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2884 pWal->exclusiveMode = 1;
2885 rc = 1;
2886 }else{
2887 rc = pWal->exclusiveMode==0;
2888 }
2889 return rc;
2890 }
2891
2892 /*
2893 ** Return true if the argument is non-NULL and the WAL module is using
2894 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
2895 ** WAL module is using shared-memory, return false.
2896 */
2897 int sqlite3WalHeapMemory(Wal *pWal){
2898 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
2899 }
2900
2901 #endif /* #ifndef SQLITE_OMIT_WAL */
OLDNEW
« no previous file with comments | « third_party/sqlite/src/src/wal.h ('k') | third_party/sqlite/src/src/walker.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698