OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2005 December 14 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ |
| 14 ** |
| 15 ** This file contains the implementation of an asynchronous IO backend |
| 16 ** for SQLite. |
| 17 */ |
| 18 |
| 19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) |
| 20 |
| 21 #include "sqlite3async.h" |
| 22 #include "sqlite3.h" |
| 23 #include <stdarg.h> |
| 24 #include <string.h> |
| 25 #include <assert.h> |
| 26 |
| 27 /* Useful macros used in several places */ |
| 28 #define MIN(x,y) ((x)<(y)?(x):(y)) |
| 29 #define MAX(x,y) ((x)>(y)?(x):(y)) |
| 30 |
| 31 #ifndef SQLITE_AMALGAMATION |
| 32 /* Macro to mark parameters as unused and silence compiler warnings. */ |
| 33 #define UNUSED_PARAMETER(x) (void)(x) |
| 34 #endif |
| 35 |
| 36 /* Forward references */ |
| 37 typedef struct AsyncWrite AsyncWrite; |
| 38 typedef struct AsyncFile AsyncFile; |
| 39 typedef struct AsyncFileData AsyncFileData; |
| 40 typedef struct AsyncFileLock AsyncFileLock; |
| 41 typedef struct AsyncLock AsyncLock; |
| 42 |
| 43 /* Enable for debugging */ |
| 44 #ifndef NDEBUG |
| 45 #include <stdio.h> |
| 46 static int sqlite3async_trace = 0; |
| 47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X |
| 48 static void asyncTrace(const char *zFormat, ...){ |
| 49 char *z; |
| 50 va_list ap; |
| 51 va_start(ap, zFormat); |
| 52 z = sqlite3_vmprintf(zFormat, ap); |
| 53 va_end(ap); |
| 54 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); |
| 55 sqlite3_free(z); |
| 56 } |
| 57 #else |
| 58 # define ASYNC_TRACE(X) |
| 59 #endif |
| 60 |
| 61 /* |
| 62 ** THREAD SAFETY NOTES |
| 63 ** |
| 64 ** Basic rules: |
| 65 ** |
| 66 ** * Both read and write access to the global write-op queue must be |
| 67 ** protected by the async.queueMutex. As are the async.ioError and |
| 68 ** async.nFile variables. |
| 69 ** |
| 70 ** * The async.pLock list and all AsyncLock and AsyncFileLock |
| 71 ** structures must be protected by the async.lockMutex mutex. |
| 72 ** |
| 73 ** * The file handles from the underlying system are not assumed to |
| 74 ** be thread safe. |
| 75 ** |
| 76 ** * See the last two paragraphs under "The Writer Thread" for |
| 77 ** an assumption to do with file-handle synchronization by the Os. |
| 78 ** |
| 79 ** Deadlock prevention: |
| 80 ** |
| 81 ** There are three mutex used by the system: the "writer" mutex, |
| 82 ** the "queue" mutex and the "lock" mutex. Rules are: |
| 83 ** |
| 84 ** * It is illegal to block on the writer mutex when any other mutex |
| 85 ** are held, and |
| 86 ** |
| 87 ** * It is illegal to block on the queue mutex when the lock mutex |
| 88 ** is held. |
| 89 ** |
| 90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". |
| 91 ** |
| 92 ** File system operations (invoked by SQLite thread): |
| 93 ** |
| 94 ** xOpen |
| 95 ** xDelete |
| 96 ** xFileExists |
| 97 ** |
| 98 ** File handle operations (invoked by SQLite thread): |
| 99 ** |
| 100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync |
| 101 ** |
| 102 ** The operations above add an entry to the global write-op list. They |
| 103 ** prepare the entry, acquire the async.queueMutex momentarily while |
| 104 ** list pointers are manipulated to insert the new entry, then release |
| 105 ** the mutex and signal the writer thread to wake up in case it happens |
| 106 ** to be asleep. |
| 107 ** |
| 108 ** |
| 109 ** asyncRead, asyncFileSize. |
| 110 ** |
| 111 ** Read operations. Both of these read from both the underlying file |
| 112 ** first then adjust their result based on pending writes in the |
| 113 ** write-op queue. So async.queueMutex is held for the duration |
| 114 ** of these operations to prevent other threads from changing the |
| 115 ** queue in mid operation. |
| 116 ** |
| 117 ** |
| 118 ** asyncLock, asyncUnlock, asyncCheckReservedLock |
| 119 ** |
| 120 ** These primitives implement in-process locking using a hash table |
| 121 ** on the file name. Files are locked correctly for connections coming |
| 122 ** from the same process. But other processes cannot see these locks |
| 123 ** and will therefore not honor them. |
| 124 ** |
| 125 ** |
| 126 ** The writer thread: |
| 127 ** |
| 128 ** The async.writerMutex is used to make sure only there is only |
| 129 ** a single writer thread running at a time. |
| 130 ** |
| 131 ** Inside the writer thread is a loop that works like this: |
| 132 ** |
| 133 ** WHILE (write-op list is not empty) |
| 134 ** Do IO operation at head of write-op list |
| 135 ** Remove entry from head of write-op list |
| 136 ** END WHILE |
| 137 ** |
| 138 ** The async.queueMutex is always held during the <write-op list is |
| 139 ** not empty> test, and when the entry is removed from the head |
| 140 ** of the write-op list. Sometimes it is held for the interim |
| 141 ** period (while the IO is performed), and sometimes it is |
| 142 ** relinquished. It is relinquished if (a) the IO op is an |
| 143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of |
| 144 ** the underlying systems handles were opened on the same |
| 145 ** file-system entry. |
| 146 ** |
| 147 ** If condition (b) above is true, then one file-handle |
| 148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the |
| 149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() |
| 150 ** threads to perform write() operations. This means that read |
| 151 ** operations are not blocked by asynchronous writes (although |
| 152 ** asynchronous writes may still be blocked by reads). |
| 153 ** |
| 154 ** This assumes that the OS keeps two handles open on the same file |
| 155 ** properly in sync. That is, any read operation that starts after a |
| 156 ** write operation on the same file system entry has completed returns |
| 157 ** data consistent with the write. We also assume that if one thread |
| 158 ** reads a file while another is writing it all bytes other than the |
| 159 ** ones actually being written contain valid data. |
| 160 ** |
| 161 ** If the above assumptions are not true, set the preprocessor symbol |
| 162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. |
| 163 */ |
| 164 |
| 165 |
| 166 #ifndef NDEBUG |
| 167 # define TESTONLY( X ) X |
| 168 #else |
| 169 # define TESTONLY( X ) |
| 170 #endif |
| 171 |
| 172 /* |
| 173 ** PORTING FUNCTIONS |
| 174 ** |
| 175 ** There are two definitions of the following functions. One for pthreads |
| 176 ** compatible systems and one for Win32. These functions isolate the OS |
| 177 ** specific code required by each platform. |
| 178 ** |
| 179 ** The system uses three mutexes and a single condition variable. To |
| 180 ** block on a mutex, async_mutex_enter() is called. The parameter passed |
| 181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, |
| 182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three |
| 183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is |
| 184 ** called with a parameter identifying the mutex being unlocked. Mutexes |
| 185 ** are not recursive - it is an error to call async_mutex_enter() to |
| 186 ** lock a mutex that is already locked, or to call async_mutex_leave() |
| 187 ** to unlock a mutex that is not currently locked. |
| 188 ** |
| 189 ** The async_cond_wait() and async_cond_signal() functions are modelled |
| 190 ** on the pthreads functions with similar names. The first parameter to |
| 191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() |
| 192 ** is called the mutex identified by the second parameter must be held. |
| 193 ** The mutex is unlocked, and the calling thread simultaneously begins |
| 194 ** waiting for the condition variable to be signalled by another thread. |
| 195 ** After another thread signals the condition variable, the calling |
| 196 ** thread stops waiting, locks mutex eMutex and returns. The |
| 197 ** async_cond_signal() function is used to signal the condition variable. |
| 198 ** It is assumed that the mutex used by the thread calling async_cond_wait() |
| 199 ** is held by the caller of async_cond_signal() (otherwise there would be |
| 200 ** a race condition). |
| 201 ** |
| 202 ** It is guaranteed that no other thread will call async_cond_wait() when |
| 203 ** there is already a thread waiting on the condition variable. |
| 204 ** |
| 205 ** The async_sched_yield() function is called to suggest to the operating |
| 206 ** system that it would be a good time to shift the current thread off the |
| 207 ** CPU. The system will still work if this function is not implemented |
| 208 ** (it is not currently implemented for win32), but it might be marginally |
| 209 ** more efficient if it is. |
| 210 */ |
| 211 static void async_mutex_enter(int eMutex); |
| 212 static void async_mutex_leave(int eMutex); |
| 213 static void async_cond_wait(int eCond, int eMutex); |
| 214 static void async_cond_signal(int eCond); |
| 215 static void async_sched_yield(void); |
| 216 |
| 217 /* |
| 218 ** There are also two definitions of the following. async_os_initialize() |
| 219 ** is called when the asynchronous VFS is first installed, and os_shutdown() |
| 220 ** is called when it is uninstalled (from within sqlite3async_shutdown()). |
| 221 ** |
| 222 ** For pthreads builds, both of these functions are no-ops. For win32, |
| 223 ** they provide an opportunity to initialize and finalize the required |
| 224 ** mutex and condition variables. |
| 225 ** |
| 226 ** If async_os_initialize() returns other than zero, then the initialization |
| 227 ** fails and SQLITE_ERROR is returned to the user. |
| 228 */ |
| 229 static int async_os_initialize(void); |
| 230 static void async_os_shutdown(void); |
| 231 |
| 232 /* Values for use as the 'eMutex' argument of the above functions. The |
| 233 ** integer values assigned to these constants are important for assert() |
| 234 ** statements that verify that mutexes are locked in the correct order. |
| 235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock |
| 236 ** on mutex M if (M<=N). |
| 237 */ |
| 238 #define ASYNC_MUTEX_LOCK 0 |
| 239 #define ASYNC_MUTEX_QUEUE 1 |
| 240 #define ASYNC_MUTEX_WRITER 2 |
| 241 |
| 242 /* Values for use as the 'eCond' argument of the above functions. */ |
| 243 #define ASYNC_COND_QUEUE 0 |
| 244 |
| 245 /************************************************************************* |
| 246 ** Start of OS specific code. |
| 247 */ |
| 248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) ||
defined(__MINGW32__) || defined(__BORLANDC__) |
| 249 |
| 250 #include <windows.h> |
| 251 |
| 252 /* The following block contains the win32 specific code. */ |
| 253 |
| 254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) |
| 255 |
| 256 static struct AsyncPrimitives { |
| 257 int isInit; |
| 258 DWORD aHolder[3]; |
| 259 CRITICAL_SECTION aMutex[3]; |
| 260 HANDLE aCond[1]; |
| 261 } primitives = { 0 }; |
| 262 |
| 263 static int async_os_initialize(void){ |
| 264 if( !primitives.isInit ){ |
| 265 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); |
| 266 if( primitives.aCond[0]==NULL ){ |
| 267 return 1; |
| 268 } |
| 269 InitializeCriticalSection(&primitives.aMutex[0]); |
| 270 InitializeCriticalSection(&primitives.aMutex[1]); |
| 271 InitializeCriticalSection(&primitives.aMutex[2]); |
| 272 primitives.isInit = 1; |
| 273 } |
| 274 return 0; |
| 275 } |
| 276 static void async_os_shutdown(void){ |
| 277 if( primitives.isInit ){ |
| 278 DeleteCriticalSection(&primitives.aMutex[0]); |
| 279 DeleteCriticalSection(&primitives.aMutex[1]); |
| 280 DeleteCriticalSection(&primitives.aMutex[2]); |
| 281 CloseHandle(primitives.aCond[0]); |
| 282 primitives.isInit = 0; |
| 283 } |
| 284 } |
| 285 |
| 286 /* The following block contains the Win32 specific code. */ |
| 287 static void async_mutex_enter(int eMutex){ |
| 288 assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 289 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| 290 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| 291 assert( eMutex!=0 || (!mutex_held(0)) ); |
| 292 EnterCriticalSection(&primitives.aMutex[eMutex]); |
| 293 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) |
| 294 } |
| 295 static void async_mutex_leave(int eMutex){ |
| 296 assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 297 assert( mutex_held(eMutex) ); |
| 298 TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 299 LeaveCriticalSection(&primitives.aMutex[eMutex]); |
| 300 } |
| 301 static void async_cond_wait(int eCond, int eMutex){ |
| 302 ResetEvent(primitives.aCond[eCond]); |
| 303 async_mutex_leave(eMutex); |
| 304 WaitForSingleObject(primitives.aCond[eCond], INFINITE); |
| 305 async_mutex_enter(eMutex); |
| 306 } |
| 307 static void async_cond_signal(int eCond){ |
| 308 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| 309 SetEvent(primitives.aCond[eCond]); |
| 310 } |
| 311 static void async_sched_yield(void){ |
| 312 Sleep(0); |
| 313 } |
| 314 #else |
| 315 |
| 316 /* The following block contains the pthreads specific code. */ |
| 317 #include <pthread.h> |
| 318 #include <sched.h> |
| 319 |
| 320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) |
| 321 |
| 322 static int async_os_initialize(void) {return 0;} |
| 323 static void async_os_shutdown(void) {} |
| 324 |
| 325 static struct AsyncPrimitives { |
| 326 pthread_mutex_t aMutex[3]; |
| 327 pthread_cond_t aCond[1]; |
| 328 pthread_t aHolder[3]; |
| 329 } primitives = { |
| 330 { PTHREAD_MUTEX_INITIALIZER, |
| 331 PTHREAD_MUTEX_INITIALIZER, |
| 332 PTHREAD_MUTEX_INITIALIZER |
| 333 } , { |
| 334 PTHREAD_COND_INITIALIZER |
| 335 } , { 0, 0, 0 } |
| 336 }; |
| 337 |
| 338 static void async_mutex_enter(int eMutex){ |
| 339 assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 340 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| 341 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| 342 assert( eMutex!=0 || (!mutex_held(0)) ); |
| 343 pthread_mutex_lock(&primitives.aMutex[eMutex]); |
| 344 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| 345 } |
| 346 static void async_mutex_leave(int eMutex){ |
| 347 assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 348 assert( mutex_held(eMutex) ); |
| 349 TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 350 pthread_mutex_unlock(&primitives.aMutex[eMutex]); |
| 351 } |
| 352 static void async_cond_wait(int eCond, int eMutex){ |
| 353 assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| 354 assert( mutex_held(eMutex) ); |
| 355 TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| 356 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); |
| 357 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| 358 } |
| 359 static void async_cond_signal(int eCond){ |
| 360 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| 361 pthread_cond_signal(&primitives.aCond[eCond]); |
| 362 } |
| 363 static void async_sched_yield(void){ |
| 364 sched_yield(); |
| 365 } |
| 366 #endif |
| 367 /* |
| 368 ** End of OS specific code. |
| 369 *************************************************************************/ |
| 370 |
| 371 #define assert_mutex_is_held(X) assert( mutex_held(X) ) |
| 372 |
| 373 |
| 374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES |
| 375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ |
| 376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 |
| 377 #endif |
| 378 |
| 379 /* |
| 380 ** State information is held in the static variable "async" defined |
| 381 ** as the following structure. |
| 382 ** |
| 383 ** Both async.ioError and async.nFile are protected by async.queueMutex. |
| 384 */ |
| 385 static struct TestAsyncStaticData { |
| 386 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ |
| 387 AsyncWrite *pQueueLast; /* Last write operation on the list */ |
| 388 AsyncLock *pLock; /* Linked list of all AsyncLock structures */ |
| 389 volatile int ioDelay; /* Extra delay between write operations */ |
| 390 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ |
| 391 volatile int bLockFiles; /* Current value of "lockfiles" parameter */ |
| 392 int ioError; /* True if an IO error has occurred */ |
| 393 int nFile; /* Number of open files (from sqlite pov) */ |
| 394 } async = { 0,0,0,0,0,1,0,0 }; |
| 395 |
| 396 /* Possible values of AsyncWrite.op */ |
| 397 #define ASYNC_NOOP 0 |
| 398 #define ASYNC_WRITE 1 |
| 399 #define ASYNC_SYNC 2 |
| 400 #define ASYNC_TRUNCATE 3 |
| 401 #define ASYNC_CLOSE 4 |
| 402 #define ASYNC_DELETE 5 |
| 403 #define ASYNC_OPENEXCLUSIVE 6 |
| 404 #define ASYNC_UNLOCK 7 |
| 405 |
| 406 /* Names of opcodes. Used for debugging only. |
| 407 ** Make sure these stay in sync with the macros above! |
| 408 */ |
| 409 static const char *azOpcodeName[] = { |
| 410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" |
| 411 }; |
| 412 |
| 413 /* |
| 414 ** Entries on the write-op queue are instances of the AsyncWrite |
| 415 ** structure, defined here. |
| 416 ** |
| 417 ** The interpretation of the iOffset and nByte variables varies depending |
| 418 ** on the value of AsyncWrite.op: |
| 419 ** |
| 420 ** ASYNC_NOOP: |
| 421 ** No values used. |
| 422 ** |
| 423 ** ASYNC_WRITE: |
| 424 ** iOffset -> Offset in file to write to. |
| 425 ** nByte -> Number of bytes of data to write (pointed to by zBuf). |
| 426 ** |
| 427 ** ASYNC_SYNC: |
| 428 ** nByte -> flags to pass to sqlite3OsSync(). |
| 429 ** |
| 430 ** ASYNC_TRUNCATE: |
| 431 ** iOffset -> Size to truncate file to. |
| 432 ** nByte -> Unused. |
| 433 ** |
| 434 ** ASYNC_CLOSE: |
| 435 ** iOffset -> Unused. |
| 436 ** nByte -> Unused. |
| 437 ** |
| 438 ** ASYNC_DELETE: |
| 439 ** iOffset -> Contains the "syncDir" flag. |
| 440 ** nByte -> Number of bytes of zBuf points to (file name). |
| 441 ** |
| 442 ** ASYNC_OPENEXCLUSIVE: |
| 443 ** iOffset -> Value of "delflag". |
| 444 ** nByte -> Number of bytes of zBuf points to (file name). |
| 445 ** |
| 446 ** ASYNC_UNLOCK: |
| 447 ** nByte -> Argument to sqlite3OsUnlock(). |
| 448 ** |
| 449 ** |
| 450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. |
| 451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a |
| 452 ** single blob, so is deleted when sqlite3_free() is called on the parent |
| 453 ** structure. |
| 454 */ |
| 455 struct AsyncWrite { |
| 456 AsyncFileData *pFileData; /* File to write data to or sync */ |
| 457 int op; /* One of ASYNC_xxx etc. */ |
| 458 sqlite_int64 iOffset; /* See above */ |
| 459 int nByte; /* See above */ |
| 460 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ |
| 461 AsyncWrite *pNext; /* Next write operation (to any file) */ |
| 462 }; |
| 463 |
| 464 /* |
| 465 ** An instance of this structure is created for each distinct open file |
| 466 ** (i.e. if two handles are opened on the one file, only one of these |
| 467 ** structures is allocated) and stored in the async.aLock hash table. The |
| 468 ** keys for async.aLock are the full pathnames of the opened files. |
| 469 ** |
| 470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock |
| 471 ** structures, one for each handle currently open on the file. |
| 472 ** |
| 473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is |
| 474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is |
| 475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. |
| 476 ** Otherwise, pFile is a file handle opened on the file in question and |
| 477 ** used to obtain the file-system locks required by database connections |
| 478 ** within this process. |
| 479 ** |
| 480 ** See comments above the asyncLock() function for more details on |
| 481 ** the implementation of database locking used by this backend. |
| 482 */ |
| 483 struct AsyncLock { |
| 484 char *zFile; |
| 485 int nFile; |
| 486 sqlite3_file *pFile; |
| 487 int eLock; |
| 488 AsyncFileLock *pList; |
| 489 AsyncLock *pNext; /* Next in linked list headed by async.pLock */ |
| 490 }; |
| 491 |
| 492 /* |
| 493 ** An instance of the following structure is allocated along with each |
| 494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the |
| 495 ** file was opened with the SQLITE_OPEN_MAIN_DB. |
| 496 */ |
| 497 struct AsyncFileLock { |
| 498 int eLock; /* Internally visible lock state (sqlite pov) */ |
| 499 int eAsyncLock; /* Lock-state with write-queue unlock */ |
| 500 AsyncFileLock *pNext; |
| 501 }; |
| 502 |
| 503 /* |
| 504 ** The AsyncFile structure is a subclass of sqlite3_file used for |
| 505 ** asynchronous IO. |
| 506 ** |
| 507 ** All of the actual data for the structure is stored in the structure |
| 508 ** pointed to by AsyncFile.pData, which is allocated as part of the |
| 509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the |
| 510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose() |
| 511 ** is called, but the data in AsyncFileData may be required by the |
| 512 ** writer thread after that point. |
| 513 */ |
| 514 struct AsyncFile { |
| 515 sqlite3_io_methods *pMethod; |
| 516 AsyncFileData *pData; |
| 517 }; |
| 518 struct AsyncFileData { |
| 519 char *zName; /* Underlying OS filename - used for debugging */ |
| 520 int nName; /* Number of characters in zName */ |
| 521 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ |
| 522 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ |
| 523 AsyncFileLock lock; /* Lock state for this handle */ |
| 524 AsyncLock *pLock; /* AsyncLock object for this file system entry */ |
| 525 AsyncWrite closeOp; /* Preallocated close operation */ |
| 526 }; |
| 527 |
| 528 /* |
| 529 ** Add an entry to the end of the global write-op list. pWrite should point |
| 530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer |
| 531 ** thread will call sqlite3_free() to free the structure after the specified |
| 532 ** operation has been completed. |
| 533 ** |
| 534 ** Once an AsyncWrite structure has been added to the list, it becomes the |
| 535 ** property of the writer thread and must not be read or modified by the |
| 536 ** caller. |
| 537 */ |
| 538 static void addAsyncWrite(AsyncWrite *pWrite){ |
| 539 /* We must hold the queue mutex in order to modify the queue pointers */ |
| 540 if( pWrite->op!=ASYNC_UNLOCK ){ |
| 541 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 542 } |
| 543 |
| 544 /* Add the record to the end of the write-op queue */ |
| 545 assert( !pWrite->pNext ); |
| 546 if( async.pQueueLast ){ |
| 547 assert( async.pQueueFirst ); |
| 548 async.pQueueLast->pNext = pWrite; |
| 549 }else{ |
| 550 async.pQueueFirst = pWrite; |
| 551 } |
| 552 async.pQueueLast = pWrite; |
| 553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], |
| 554 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); |
| 555 |
| 556 if( pWrite->op==ASYNC_CLOSE ){ |
| 557 async.nFile--; |
| 558 } |
| 559 |
| 560 /* The writer thread might have been idle because there was nothing |
| 561 ** on the write-op queue for it to do. So wake it up. */ |
| 562 async_cond_signal(ASYNC_COND_QUEUE); |
| 563 |
| 564 /* Drop the queue mutex */ |
| 565 if( pWrite->op!=ASYNC_UNLOCK ){ |
| 566 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 567 } |
| 568 } |
| 569 |
| 570 /* |
| 571 ** Increment async.nFile in a thread-safe manner. |
| 572 */ |
| 573 static void incrOpenFileCount(void){ |
| 574 /* We must hold the queue mutex in order to modify async.nFile */ |
| 575 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 576 if( async.nFile==0 ){ |
| 577 async.ioError = SQLITE_OK; |
| 578 } |
| 579 async.nFile++; |
| 580 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 581 } |
| 582 |
| 583 /* |
| 584 ** This is a utility function to allocate and populate a new AsyncWrite |
| 585 ** structure and insert it (via addAsyncWrite() ) into the global list. |
| 586 */ |
| 587 static int addNewAsyncWrite( |
| 588 AsyncFileData *pFileData, |
| 589 int op, |
| 590 sqlite3_int64 iOffset, |
| 591 int nByte, |
| 592 const char *zByte |
| 593 ){ |
| 594 AsyncWrite *p; |
| 595 if( op!=ASYNC_CLOSE && async.ioError ){ |
| 596 return async.ioError; |
| 597 } |
| 598 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); |
| 599 if( !p ){ |
| 600 /* The upper layer does not expect operations like OsWrite() to |
| 601 ** return SQLITE_NOMEM. This is partly because under normal conditions |
| 602 ** SQLite is required to do rollback without calling malloc(). So |
| 603 ** if malloc() fails here, treat it as an I/O error. The above |
| 604 ** layer knows how to handle that. |
| 605 */ |
| 606 return SQLITE_IOERR; |
| 607 } |
| 608 p->op = op; |
| 609 p->iOffset = iOffset; |
| 610 p->nByte = nByte; |
| 611 p->pFileData = pFileData; |
| 612 p->pNext = 0; |
| 613 if( zByte ){ |
| 614 p->zBuf = (char *)&p[1]; |
| 615 memcpy(p->zBuf, zByte, nByte); |
| 616 }else{ |
| 617 p->zBuf = 0; |
| 618 } |
| 619 addAsyncWrite(p); |
| 620 return SQLITE_OK; |
| 621 } |
| 622 |
| 623 /* |
| 624 ** Close the file. This just adds an entry to the write-op list, the file is |
| 625 ** not actually closed. |
| 626 */ |
| 627 static int asyncClose(sqlite3_file *pFile){ |
| 628 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 629 |
| 630 /* Unlock the file, if it is locked */ |
| 631 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 632 p->lock.eLock = 0; |
| 633 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 634 |
| 635 addAsyncWrite(&p->closeOp); |
| 636 return SQLITE_OK; |
| 637 } |
| 638 |
| 639 /* |
| 640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of |
| 641 ** writing to the underlying file, this function adds an entry to the end of |
| 642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be |
| 643 ** returned. |
| 644 */ |
| 645 static int asyncWrite( |
| 646 sqlite3_file *pFile, |
| 647 const void *pBuf, |
| 648 int amt, |
| 649 sqlite3_int64 iOff |
| 650 ){ |
| 651 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 652 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); |
| 653 } |
| 654 |
| 655 /* |
| 656 ** Read data from the file. First we read from the filesystem, then adjust |
| 657 ** the contents of the buffer based on ASYNC_WRITE operations in the |
| 658 ** write-op queue. |
| 659 ** |
| 660 ** This method holds the mutex from start to finish. |
| 661 */ |
| 662 static int asyncRead( |
| 663 sqlite3_file *pFile, |
| 664 void *zOut, |
| 665 int iAmt, |
| 666 sqlite3_int64 iOffset |
| 667 ){ |
| 668 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 669 int rc = SQLITE_OK; |
| 670 sqlite3_int64 filesize = 0; |
| 671 sqlite3_file *pBase = p->pBaseRead; |
| 672 sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; |
| 673 |
| 674 /* Grab the write queue mutex for the duration of the call */ |
| 675 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 676 |
| 677 /* If an I/O error has previously occurred in this virtual file |
| 678 ** system, then all subsequent operations fail. |
| 679 */ |
| 680 if( async.ioError!=SQLITE_OK ){ |
| 681 rc = async.ioError; |
| 682 goto asyncread_out; |
| 683 } |
| 684 |
| 685 if( pBase->pMethods ){ |
| 686 sqlite3_int64 nRead; |
| 687 rc = pBase->pMethods->xFileSize(pBase, &filesize); |
| 688 if( rc!=SQLITE_OK ){ |
| 689 goto asyncread_out; |
| 690 } |
| 691 nRead = MIN(filesize - iOffset, iAmt64); |
| 692 if( nRead>0 ){ |
| 693 rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); |
| 694 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); |
| 695 } |
| 696 } |
| 697 |
| 698 if( rc==SQLITE_OK ){ |
| 699 AsyncWrite *pWrite; |
| 700 char *zName = p->zName; |
| 701 |
| 702 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| 703 if( pWrite->op==ASYNC_WRITE && ( |
| 704 (pWrite->pFileData==p) || |
| 705 (zName && pWrite->pFileData->zName==zName) |
| 706 )){ |
| 707 sqlite3_int64 nCopy; |
| 708 sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; |
| 709 |
| 710 /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from |
| 711 ** which data should be copied. Set iBeginOut to the offset within |
| 712 ** the output buffer to which data should be copied. If either of |
| 713 ** these offsets is a negative number, set them to 0. |
| 714 */ |
| 715 sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); |
| 716 sqlite3_int64 iBeginIn = -iBeginOut; |
| 717 if( iBeginIn<0 ) iBeginIn = 0; |
| 718 if( iBeginOut<0 ) iBeginOut = 0; |
| 719 |
| 720 filesize = MAX(filesize, pWrite->iOffset+nByte64); |
| 721 |
| 722 nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); |
| 723 if( nCopy>0 ){ |
| 724 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nC
opy); |
| 725 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); |
| 726 } |
| 727 } |
| 728 } |
| 729 } |
| 730 |
| 731 asyncread_out: |
| 732 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 733 if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ |
| 734 rc = SQLITE_IOERR_SHORT_READ; |
| 735 } |
| 736 return rc; |
| 737 } |
| 738 |
| 739 /* |
| 740 ** Truncate the file to nByte bytes in length. This just adds an entry to |
| 741 ** the write-op list, no IO actually takes place. |
| 742 */ |
| 743 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ |
| 744 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 745 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); |
| 746 } |
| 747 |
| 748 /* |
| 749 ** Sync the file. This just adds an entry to the write-op list, the |
| 750 ** sync() is done later by sqlite3_async_flush(). |
| 751 */ |
| 752 static int asyncSync(sqlite3_file *pFile, int flags){ |
| 753 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 754 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); |
| 755 } |
| 756 |
| 757 /* |
| 758 ** Read the size of the file. First we read the size of the file system |
| 759 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations |
| 760 ** currently in the write-op list. |
| 761 ** |
| 762 ** This method holds the mutex from start to finish. |
| 763 */ |
| 764 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ |
| 765 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 766 int rc = SQLITE_OK; |
| 767 sqlite3_int64 s = 0; |
| 768 sqlite3_file *pBase; |
| 769 |
| 770 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 771 |
| 772 /* Read the filesystem size from the base file. If pMethods is NULL, this |
| 773 ** means the file hasn't been opened yet. In this case all relevant data |
| 774 ** must be in the write-op queue anyway, so we can omit reading from the |
| 775 ** file-system. |
| 776 */ |
| 777 pBase = p->pBaseRead; |
| 778 if( pBase->pMethods ){ |
| 779 rc = pBase->pMethods->xFileSize(pBase, &s); |
| 780 } |
| 781 |
| 782 if( rc==SQLITE_OK ){ |
| 783 AsyncWrite *pWrite; |
| 784 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| 785 if( pWrite->op==ASYNC_DELETE |
| 786 && p->zName |
| 787 && strcmp(p->zName, pWrite->zBuf)==0 |
| 788 ){ |
| 789 s = 0; |
| 790 }else if( pWrite->pFileData && ( |
| 791 (pWrite->pFileData==p) |
| 792 || (p->zName && pWrite->pFileData->zName==p->zName) |
| 793 )){ |
| 794 switch( pWrite->op ){ |
| 795 case ASYNC_WRITE: |
| 796 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); |
| 797 break; |
| 798 case ASYNC_TRUNCATE: |
| 799 s = MIN(s, pWrite->iOffset); |
| 800 break; |
| 801 } |
| 802 } |
| 803 } |
| 804 *piSize = s; |
| 805 } |
| 806 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 807 return rc; |
| 808 } |
| 809 |
| 810 /* |
| 811 ** Lock or unlock the actual file-system entry. |
| 812 */ |
| 813 static int getFileLock(AsyncLock *pLock){ |
| 814 int rc = SQLITE_OK; |
| 815 AsyncFileLock *pIter; |
| 816 int eRequired = 0; |
| 817 |
| 818 if( pLock->pFile ){ |
| 819 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| 820 assert(pIter->eAsyncLock>=pIter->eLock); |
| 821 if( pIter->eAsyncLock>eRequired ){ |
| 822 eRequired = pIter->eAsyncLock; |
| 823 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); |
| 824 } |
| 825 } |
| 826 |
| 827 if( eRequired>pLock->eLock ){ |
| 828 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); |
| 829 if( rc==SQLITE_OK ){ |
| 830 pLock->eLock = eRequired; |
| 831 } |
| 832 } |
| 833 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ |
| 834 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); |
| 835 if( rc==SQLITE_OK ){ |
| 836 pLock->eLock = eRequired; |
| 837 } |
| 838 } |
| 839 } |
| 840 |
| 841 return rc; |
| 842 } |
| 843 |
| 844 /* |
| 845 ** Return the AsyncLock structure from the global async.pLock list |
| 846 ** associated with the file-system entry identified by path zName |
| 847 ** (a string of nName bytes). If no such structure exists, return 0. |
| 848 */ |
| 849 static AsyncLock *findLock(const char *zName, int nName){ |
| 850 AsyncLock *p = async.pLock; |
| 851 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ |
| 852 p = p->pNext; |
| 853 } |
| 854 return p; |
| 855 } |
| 856 |
| 857 /* |
| 858 ** The following two methods - asyncLock() and asyncUnlock() - are used |
| 859 ** to obtain and release locks on database files opened with the |
| 860 ** asynchronous backend. |
| 861 */ |
| 862 static int asyncLock(sqlite3_file *pFile, int eLock){ |
| 863 int rc = SQLITE_OK; |
| 864 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 865 |
| 866 if( p->zName ){ |
| 867 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 868 if( p->lock.eLock<eLock ){ |
| 869 AsyncLock *pLock = p->pLock; |
| 870 AsyncFileLock *pIter; |
| 871 assert(pLock && pLock->pList); |
| 872 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| 873 if( pIter!=&p->lock && ( |
| 874 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || |
| 875 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| 876 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| 877 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) |
| 878 )){ |
| 879 rc = SQLITE_BUSY; |
| 880 } |
| 881 } |
| 882 if( rc==SQLITE_OK ){ |
| 883 p->lock.eLock = eLock; |
| 884 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); |
| 885 } |
| 886 assert(p->lock.eAsyncLock>=p->lock.eLock); |
| 887 if( rc==SQLITE_OK ){ |
| 888 rc = getFileLock(pLock); |
| 889 } |
| 890 } |
| 891 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 892 } |
| 893 |
| 894 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); |
| 895 return rc; |
| 896 } |
| 897 static int asyncUnlock(sqlite3_file *pFile, int eLock){ |
| 898 int rc = SQLITE_OK; |
| 899 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 900 if( p->zName ){ |
| 901 AsyncFileLock *pLock = &p->lock; |
| 902 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 903 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 904 pLock->eLock = MIN(pLock->eLock, eLock); |
| 905 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); |
| 906 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 907 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 908 } |
| 909 return rc; |
| 910 } |
| 911 |
| 912 /* |
| 913 ** This function is called when the pager layer first opens a database file |
| 914 ** and is checking for a hot-journal. |
| 915 */ |
| 916 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ |
| 917 int ret = 0; |
| 918 AsyncFileLock *pIter; |
| 919 AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| 920 |
| 921 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 922 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ |
| 923 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ |
| 924 ret = 1; |
| 925 break; |
| 926 } |
| 927 } |
| 928 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 929 |
| 930 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); |
| 931 *pResOut = ret; |
| 932 return SQLITE_OK; |
| 933 } |
| 934 |
| 935 /* |
| 936 ** sqlite3_file_control() implementation. |
| 937 */ |
| 938 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ |
| 939 switch( op ){ |
| 940 case SQLITE_FCNTL_LOCKSTATE: { |
| 941 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 942 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; |
| 943 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 944 return SQLITE_OK; |
| 945 } |
| 946 } |
| 947 return SQLITE_ERROR; |
| 948 } |
| 949 |
| 950 /* |
| 951 ** Return the device characteristics and sector-size of the device. It |
| 952 ** is tricky to implement these correctly, as this backend might |
| 953 ** not have an open file handle at this point. |
| 954 */ |
| 955 static int asyncSectorSize(sqlite3_file *pFile){ |
| 956 UNUSED_PARAMETER(pFile); |
| 957 return 512; |
| 958 } |
| 959 static int asyncDeviceCharacteristics(sqlite3_file *pFile){ |
| 960 UNUSED_PARAMETER(pFile); |
| 961 return 0; |
| 962 } |
| 963 |
| 964 static int unlinkAsyncFile(AsyncFileData *pData){ |
| 965 AsyncFileLock **ppIter; |
| 966 int rc = SQLITE_OK; |
| 967 |
| 968 if( pData->zName ){ |
| 969 AsyncLock *pLock = pData->pLock; |
| 970 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ |
| 971 if( (*ppIter)==&pData->lock ){ |
| 972 *ppIter = pData->lock.pNext; |
| 973 break; |
| 974 } |
| 975 } |
| 976 if( !pLock->pList ){ |
| 977 AsyncLock **pp; |
| 978 if( pLock->pFile ){ |
| 979 pLock->pFile->pMethods->xClose(pLock->pFile); |
| 980 } |
| 981 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); |
| 982 *pp = pLock->pNext; |
| 983 sqlite3_free(pLock); |
| 984 }else{ |
| 985 rc = getFileLock(pLock); |
| 986 } |
| 987 } |
| 988 |
| 989 return rc; |
| 990 } |
| 991 |
| 992 /* |
| 993 ** The parameter passed to this function is a copy of a 'flags' parameter |
| 994 ** passed to this modules xOpen() method. This function returns true |
| 995 ** if the file should be opened asynchronously, or false if it should |
| 996 ** be opened immediately. |
| 997 ** |
| 998 ** If the file is to be opened asynchronously, then asyncOpen() will add |
| 999 ** an entry to the event queue and the file will not actually be opened |
| 1000 ** until the event is processed. Otherwise, the file is opened directly |
| 1001 ** by the caller. |
| 1002 */ |
| 1003 static int doAsynchronousOpen(int flags){ |
| 1004 return (flags&SQLITE_OPEN_CREATE) && ( |
| 1005 (flags&SQLITE_OPEN_MAIN_JOURNAL) || |
| 1006 (flags&SQLITE_OPEN_TEMP_JOURNAL) || |
| 1007 (flags&SQLITE_OPEN_DELETEONCLOSE) |
| 1008 ); |
| 1009 } |
| 1010 |
| 1011 /* |
| 1012 ** Open a file. |
| 1013 */ |
| 1014 static int asyncOpen( |
| 1015 sqlite3_vfs *pAsyncVfs, |
| 1016 const char *zName, |
| 1017 sqlite3_file *pFile, |
| 1018 int flags, |
| 1019 int *pOutFlags |
| 1020 ){ |
| 1021 static sqlite3_io_methods async_methods = { |
| 1022 1, /* iVersion */ |
| 1023 asyncClose, /* xClose */ |
| 1024 asyncRead, /* xRead */ |
| 1025 asyncWrite, /* xWrite */ |
| 1026 asyncTruncate, /* xTruncate */ |
| 1027 asyncSync, /* xSync */ |
| 1028 asyncFileSize, /* xFileSize */ |
| 1029 asyncLock, /* xLock */ |
| 1030 asyncUnlock, /* xUnlock */ |
| 1031 asyncCheckReservedLock, /* xCheckReservedLock */ |
| 1032 asyncFileControl, /* xFileControl */ |
| 1033 asyncSectorSize, /* xSectorSize */ |
| 1034 asyncDeviceCharacteristics /* xDeviceCharacteristics */ |
| 1035 }; |
| 1036 |
| 1037 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1038 AsyncFile *p = (AsyncFile *)pFile; |
| 1039 int nName = 0; |
| 1040 int rc = SQLITE_OK; |
| 1041 int nByte; |
| 1042 AsyncFileData *pData; |
| 1043 AsyncLock *pLock = 0; |
| 1044 char *z; |
| 1045 int isAsyncOpen = doAsynchronousOpen(flags); |
| 1046 |
| 1047 /* If zName is NULL, then the upper layer is requesting an anonymous file */ |
| 1048 if( zName ){ |
| 1049 nName = (int)strlen(zName)+1; |
| 1050 } |
| 1051 |
| 1052 nByte = ( |
| 1053 sizeof(AsyncFileData) + /* AsyncFileData structure */ |
| 1054 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ |
| 1055 nName /* AsyncFileData.zName */ |
| 1056 ); |
| 1057 z = sqlite3_malloc(nByte); |
| 1058 if( !z ){ |
| 1059 return SQLITE_NOMEM; |
| 1060 } |
| 1061 memset(z, 0, nByte); |
| 1062 pData = (AsyncFileData*)z; |
| 1063 z += sizeof(pData[0]); |
| 1064 pData->pBaseRead = (sqlite3_file*)z; |
| 1065 z += pVfs->szOsFile; |
| 1066 pData->pBaseWrite = (sqlite3_file*)z; |
| 1067 pData->closeOp.pFileData = pData; |
| 1068 pData->closeOp.op = ASYNC_CLOSE; |
| 1069 |
| 1070 if( zName ){ |
| 1071 z += pVfs->szOsFile; |
| 1072 pData->zName = z; |
| 1073 pData->nName = nName; |
| 1074 memcpy(pData->zName, zName, nName); |
| 1075 } |
| 1076 |
| 1077 if( !isAsyncOpen ){ |
| 1078 int flagsout; |
| 1079 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); |
| 1080 if( rc==SQLITE_OK |
| 1081 && (flagsout&SQLITE_OPEN_READWRITE) |
| 1082 && (flags&SQLITE_OPEN_EXCLUSIVE)==0 |
| 1083 ){ |
| 1084 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); |
| 1085 } |
| 1086 if( pOutFlags ){ |
| 1087 *pOutFlags = flagsout; |
| 1088 } |
| 1089 } |
| 1090 |
| 1091 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1092 |
| 1093 if( zName && rc==SQLITE_OK ){ |
| 1094 pLock = findLock(pData->zName, pData->nName); |
| 1095 if( !pLock ){ |
| 1096 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; |
| 1097 pLock = (AsyncLock *)sqlite3_malloc(nByte); |
| 1098 if( pLock ){ |
| 1099 memset(pLock, 0, nByte); |
| 1100 if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ |
| 1101 pLock->pFile = (sqlite3_file *)&pLock[1]; |
| 1102 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); |
| 1103 if( rc!=SQLITE_OK ){ |
| 1104 sqlite3_free(pLock); |
| 1105 pLock = 0; |
| 1106 } |
| 1107 } |
| 1108 if( pLock ){ |
| 1109 pLock->nFile = pData->nName; |
| 1110 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; |
| 1111 memcpy(pLock->zFile, pData->zName, pLock->nFile); |
| 1112 pLock->pNext = async.pLock; |
| 1113 async.pLock = pLock; |
| 1114 } |
| 1115 }else{ |
| 1116 rc = SQLITE_NOMEM; |
| 1117 } |
| 1118 } |
| 1119 } |
| 1120 |
| 1121 if( rc==SQLITE_OK ){ |
| 1122 p->pMethod = &async_methods; |
| 1123 p->pData = pData; |
| 1124 |
| 1125 /* Link AsyncFileData.lock into the linked list of |
| 1126 ** AsyncFileLock structures for this file. |
| 1127 */ |
| 1128 if( zName ){ |
| 1129 pData->lock.pNext = pLock->pList; |
| 1130 pLock->pList = &pData->lock; |
| 1131 pData->zName = pLock->zFile; |
| 1132 } |
| 1133 }else{ |
| 1134 if( pData->pBaseRead->pMethods ){ |
| 1135 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| 1136 } |
| 1137 if( pData->pBaseWrite->pMethods ){ |
| 1138 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| 1139 } |
| 1140 sqlite3_free(pData); |
| 1141 } |
| 1142 |
| 1143 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1144 |
| 1145 if( rc==SQLITE_OK ){ |
| 1146 pData->pLock = pLock; |
| 1147 } |
| 1148 |
| 1149 if( rc==SQLITE_OK && isAsyncOpen ){ |
| 1150 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); |
| 1151 if( rc==SQLITE_OK ){ |
| 1152 if( pOutFlags ) *pOutFlags = flags; |
| 1153 }else{ |
| 1154 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1155 unlinkAsyncFile(pData); |
| 1156 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1157 sqlite3_free(pData); |
| 1158 } |
| 1159 } |
| 1160 if( rc!=SQLITE_OK ){ |
| 1161 p->pMethod = 0; |
| 1162 }else{ |
| 1163 incrOpenFileCount(); |
| 1164 } |
| 1165 |
| 1166 return rc; |
| 1167 } |
| 1168 |
| 1169 /* |
| 1170 ** Implementation of sqlite3OsDelete. Add an entry to the end of the |
| 1171 ** write-op queue to perform the delete. |
| 1172 */ |
| 1173 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ |
| 1174 UNUSED_PARAMETER(pAsyncVfs); |
| 1175 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); |
| 1176 } |
| 1177 |
| 1178 /* |
| 1179 ** Implementation of sqlite3OsAccess. This method holds the mutex from |
| 1180 ** start to finish. |
| 1181 */ |
| 1182 static int asyncAccess( |
| 1183 sqlite3_vfs *pAsyncVfs, |
| 1184 const char *zName, |
| 1185 int flags, |
| 1186 int *pResOut |
| 1187 ){ |
| 1188 int rc; |
| 1189 int ret; |
| 1190 AsyncWrite *p; |
| 1191 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1192 |
| 1193 assert(flags==SQLITE_ACCESS_READWRITE |
| 1194 || flags==SQLITE_ACCESS_READ |
| 1195 || flags==SQLITE_ACCESS_EXISTS |
| 1196 ); |
| 1197 |
| 1198 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1199 rc = pVfs->xAccess(pVfs, zName, flags, &ret); |
| 1200 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ |
| 1201 for(p=async.pQueueFirst; p; p = p->pNext){ |
| 1202 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ |
| 1203 ret = 0; |
| 1204 }else if( p->op==ASYNC_OPENEXCLUSIVE |
| 1205 && p->pFileData->zName |
| 1206 && 0==strcmp(p->pFileData->zName, zName) |
| 1207 ){ |
| 1208 ret = 1; |
| 1209 } |
| 1210 } |
| 1211 } |
| 1212 ASYNC_TRACE(("ACCESS(%s): %s = %d\n", |
| 1213 flags==SQLITE_ACCESS_READWRITE?"read-write": |
| 1214 flags==SQLITE_ACCESS_READ?"read":"exists" |
| 1215 , zName, ret) |
| 1216 ); |
| 1217 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1218 *pResOut = ret; |
| 1219 return rc; |
| 1220 } |
| 1221 |
| 1222 /* |
| 1223 ** Fill in zPathOut with the full path to the file identified by zPath. |
| 1224 */ |
| 1225 static int asyncFullPathname( |
| 1226 sqlite3_vfs *pAsyncVfs, |
| 1227 const char *zPath, |
| 1228 int nPathOut, |
| 1229 char *zPathOut |
| 1230 ){ |
| 1231 int rc; |
| 1232 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1233 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); |
| 1234 |
| 1235 /* Because of the way intra-process file locking works, this backend |
| 1236 ** needs to return a canonical path. The following block assumes the |
| 1237 ** file-system uses unix style paths. |
| 1238 */ |
| 1239 if( rc==SQLITE_OK ){ |
| 1240 int i, j; |
| 1241 char *z = zPathOut; |
| 1242 int n = (int)strlen(z); |
| 1243 while( n>1 && z[n-1]=='/' ){ n--; } |
| 1244 for(i=j=0; i<n; i++){ |
| 1245 if( z[i]=='/' ){ |
| 1246 if( z[i+1]=='/' ) continue; |
| 1247 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 1248 i += 1; |
| 1249 continue; |
| 1250 } |
| 1251 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 1252 while( j>0 && z[j-1]!='/' ){ j--; } |
| 1253 if( j>0 ){ j--; } |
| 1254 i += 2; |
| 1255 continue; |
| 1256 } |
| 1257 } |
| 1258 z[j++] = z[i]; |
| 1259 } |
| 1260 z[j] = 0; |
| 1261 } |
| 1262 |
| 1263 return rc; |
| 1264 } |
| 1265 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ |
| 1266 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1267 return pVfs->xDlOpen(pVfs, zPath); |
| 1268 } |
| 1269 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ |
| 1270 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1271 pVfs->xDlError(pVfs, nByte, zErrMsg); |
| 1272 } |
| 1273 static void (*asyncDlSym( |
| 1274 sqlite3_vfs *pAsyncVfs, |
| 1275 void *pHandle, |
| 1276 const char *zSymbol |
| 1277 ))(void){ |
| 1278 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1279 return pVfs->xDlSym(pVfs, pHandle, zSymbol); |
| 1280 } |
| 1281 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ |
| 1282 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1283 pVfs->xDlClose(pVfs, pHandle); |
| 1284 } |
| 1285 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ |
| 1286 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1287 return pVfs->xRandomness(pVfs, nByte, zBufOut); |
| 1288 } |
| 1289 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ |
| 1290 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1291 return pVfs->xSleep(pVfs, nMicro); |
| 1292 } |
| 1293 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ |
| 1294 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| 1295 return pVfs->xCurrentTime(pVfs, pTimeOut); |
| 1296 } |
| 1297 |
| 1298 static sqlite3_vfs async_vfs = { |
| 1299 1, /* iVersion */ |
| 1300 sizeof(AsyncFile), /* szOsFile */ |
| 1301 0, /* mxPathname */ |
| 1302 0, /* pNext */ |
| 1303 SQLITEASYNC_VFSNAME, /* zName */ |
| 1304 0, /* pAppData */ |
| 1305 asyncOpen, /* xOpen */ |
| 1306 asyncDelete, /* xDelete */ |
| 1307 asyncAccess, /* xAccess */ |
| 1308 asyncFullPathname, /* xFullPathname */ |
| 1309 asyncDlOpen, /* xDlOpen */ |
| 1310 asyncDlError, /* xDlError */ |
| 1311 asyncDlSym, /* xDlSym */ |
| 1312 asyncDlClose, /* xDlClose */ |
| 1313 asyncRandomness, /* xDlError */ |
| 1314 asyncSleep, /* xDlSym */ |
| 1315 asyncCurrentTime /* xDlClose */ |
| 1316 }; |
| 1317 |
| 1318 /* |
| 1319 ** This procedure runs in a separate thread, reading messages off of the |
| 1320 ** write queue and processing them one by one. |
| 1321 ** |
| 1322 ** If async.writerHaltNow is true, then this procedure exits |
| 1323 ** after processing a single message. |
| 1324 ** |
| 1325 ** If async.writerHaltWhenIdle is true, then this procedure exits when |
| 1326 ** the write queue is empty. |
| 1327 ** |
| 1328 ** If both of the above variables are false, this procedure runs |
| 1329 ** indefinately, waiting for operations to be added to the write queue |
| 1330 ** and processing them in the order in which they arrive. |
| 1331 ** |
| 1332 ** An artifical delay of async.ioDelay milliseconds is inserted before |
| 1333 ** each write operation in order to simulate the effect of a slow disk. |
| 1334 ** |
| 1335 ** Only one instance of this procedure may be running at a time. |
| 1336 */ |
| 1337 static void asyncWriterThread(void){ |
| 1338 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); |
| 1339 AsyncWrite *p = 0; |
| 1340 int rc = SQLITE_OK; |
| 1341 int holdingMutex = 0; |
| 1342 |
| 1343 async_mutex_enter(ASYNC_MUTEX_WRITER); |
| 1344 |
| 1345 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ |
| 1346 int doNotFree = 0; |
| 1347 sqlite3_file *pBase = 0; |
| 1348 |
| 1349 if( !holdingMutex ){ |
| 1350 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1351 } |
| 1352 while( (p = async.pQueueFirst)==0 ){ |
| 1353 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ |
| 1354 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1355 break; |
| 1356 }else{ |
| 1357 ASYNC_TRACE(("IDLE\n")); |
| 1358 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); |
| 1359 ASYNC_TRACE(("WAKEUP\n")); |
| 1360 } |
| 1361 } |
| 1362 if( p==0 ) break; |
| 1363 holdingMutex = 1; |
| 1364 |
| 1365 /* Right now this thread is holding the mutex on the write-op queue. |
| 1366 ** Variable 'p' points to the first entry in the write-op queue. In |
| 1367 ** the general case, we hold on to the mutex for the entire body of |
| 1368 ** the loop. |
| 1369 ** |
| 1370 ** However in the cases enumerated below, we relinquish the mutex, |
| 1371 ** perform the IO, and then re-request the mutex before removing 'p' from |
| 1372 ** the head of the write-op queue. The idea is to increase concurrency with |
| 1373 ** sqlite threads. |
| 1374 ** |
| 1375 ** * An ASYNC_CLOSE operation. |
| 1376 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish |
| 1377 ** the mutex, call the underlying xOpenExclusive() function, then |
| 1378 ** re-aquire the mutex before seting the AsyncFile.pBaseRead |
| 1379 ** variable. |
| 1380 ** * ASYNC_SYNC and ASYNC_WRITE operations, if |
| 1381 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two |
| 1382 ** file-handles are open for the particular file being "synced". |
| 1383 */ |
| 1384 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ |
| 1385 p->op = ASYNC_NOOP; |
| 1386 } |
| 1387 if( p->pFileData ){ |
| 1388 pBase = p->pFileData->pBaseWrite; |
| 1389 if( |
| 1390 p->op==ASYNC_CLOSE || |
| 1391 p->op==ASYNC_OPENEXCLUSIVE || |
| 1392 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) |
| 1393 ){ |
| 1394 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1395 holdingMutex = 0; |
| 1396 } |
| 1397 if( !pBase->pMethods ){ |
| 1398 pBase = p->pFileData->pBaseRead; |
| 1399 } |
| 1400 } |
| 1401 |
| 1402 switch( p->op ){ |
| 1403 case ASYNC_NOOP: |
| 1404 break; |
| 1405 |
| 1406 case ASYNC_WRITE: |
| 1407 assert( pBase ); |
| 1408 ASYNC_TRACE(("WRITE %s %d bytes at %d\n", |
| 1409 p->pFileData->zName, p->nByte, p->iOffset)); |
| 1410 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOff
set); |
| 1411 break; |
| 1412 |
| 1413 case ASYNC_SYNC: |
| 1414 assert( pBase ); |
| 1415 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); |
| 1416 rc = pBase->pMethods->xSync(pBase, p->nByte); |
| 1417 break; |
| 1418 |
| 1419 case ASYNC_TRUNCATE: |
| 1420 assert( pBase ); |
| 1421 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", |
| 1422 p->pFileData->zName, p->iOffset)); |
| 1423 rc = pBase->pMethods->xTruncate(pBase, p->iOffset); |
| 1424 break; |
| 1425 |
| 1426 case ASYNC_CLOSE: { |
| 1427 AsyncFileData *pData = p->pFileData; |
| 1428 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); |
| 1429 if( pData->pBaseWrite->pMethods ){ |
| 1430 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| 1431 } |
| 1432 if( pData->pBaseRead->pMethods ){ |
| 1433 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| 1434 } |
| 1435 |
| 1436 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock |
| 1437 ** structures for this file. Obtain the async.lockMutex mutex |
| 1438 ** before doing so. |
| 1439 */ |
| 1440 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1441 rc = unlinkAsyncFile(pData); |
| 1442 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1443 |
| 1444 if( !holdingMutex ){ |
| 1445 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1446 holdingMutex = 1; |
| 1447 } |
| 1448 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| 1449 async.pQueueFirst = p->pNext; |
| 1450 sqlite3_free(pData); |
| 1451 doNotFree = 1; |
| 1452 break; |
| 1453 } |
| 1454 |
| 1455 case ASYNC_UNLOCK: { |
| 1456 AsyncWrite *pIter; |
| 1457 AsyncFileData *pData = p->pFileData; |
| 1458 int eLock = p->nByte; |
| 1459 |
| 1460 /* When a file is locked by SQLite using the async backend, it is |
| 1461 ** locked within the 'real' file-system synchronously. When it is |
| 1462 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to |
| 1463 ** unlock the file asynchronously. The design of the async backend |
| 1464 ** requires that the 'real' file-system file be locked from the |
| 1465 ** time that SQLite first locks it (and probably reads from it) |
| 1466 ** until all asynchronous write events that were scheduled before |
| 1467 ** SQLite unlocked the file have been processed. |
| 1468 ** |
| 1469 ** This is more complex if SQLite locks and unlocks the file multiple |
| 1470 ** times in quick succession. For example, if SQLite does: |
| 1471 ** |
| 1472 ** lock, write, unlock, lock, write, unlock |
| 1473 ** |
| 1474 ** Each "lock" operation locks the file immediately. Each "write" |
| 1475 ** and "unlock" operation adds an event to the event queue. If the |
| 1476 ** second "lock" operation is performed before the first "unlock" |
| 1477 ** operation has been processed asynchronously, then the first |
| 1478 ** "unlock" cannot be safely processed as is, since this would mean |
| 1479 ** the file was unlocked when the second "write" operation is |
| 1480 ** processed. To work around this, when processing an ASYNC_UNLOCK |
| 1481 ** operation, SQLite: |
| 1482 ** |
| 1483 ** 1) Unlocks the file to the minimum of the argument passed to |
| 1484 ** the xUnlock() call and the current lock from SQLite's point |
| 1485 ** of view, and |
| 1486 ** |
| 1487 ** 2) Only unlocks the file at all if this event is the last |
| 1488 ** ASYNC_UNLOCK event on this file in the write-queue. |
| 1489 */ |
| 1490 assert( holdingMutex==1 ); |
| 1491 assert( async.pQueueFirst==p ); |
| 1492 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ |
| 1493 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; |
| 1494 } |
| 1495 if( !pIter ){ |
| 1496 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1497 pData->lock.eAsyncLock = MIN( |
| 1498 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) |
| 1499 ); |
| 1500 assert(pData->lock.eAsyncLock>=pData->lock.eLock); |
| 1501 rc = getFileLock(pData->pLock); |
| 1502 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1503 } |
| 1504 break; |
| 1505 } |
| 1506 |
| 1507 case ASYNC_DELETE: |
| 1508 ASYNC_TRACE(("DELETE %s\n", p->zBuf)); |
| 1509 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); |
| 1510 break; |
| 1511 |
| 1512 case ASYNC_OPENEXCLUSIVE: { |
| 1513 int flags = (int)p->iOffset; |
| 1514 AsyncFileData *pData = p->pFileData; |
| 1515 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); |
| 1516 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); |
| 1517 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); |
| 1518 assert( holdingMutex==0 ); |
| 1519 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1520 holdingMutex = 1; |
| 1521 break; |
| 1522 } |
| 1523 |
| 1524 default: assert(!"Illegal value for AsyncWrite.op"); |
| 1525 } |
| 1526 |
| 1527 /* If we didn't hang on to the mutex during the IO op, obtain it now |
| 1528 ** so that the AsyncWrite structure can be safely removed from the |
| 1529 ** global write-op queue. |
| 1530 */ |
| 1531 if( !holdingMutex ){ |
| 1532 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1533 holdingMutex = 1; |
| 1534 } |
| 1535 /* ASYNC_TRACE(("UNLINK %p\n", p)); */ |
| 1536 if( p==async.pQueueLast ){ |
| 1537 async.pQueueLast = 0; |
| 1538 } |
| 1539 if( !doNotFree ){ |
| 1540 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| 1541 async.pQueueFirst = p->pNext; |
| 1542 sqlite3_free(p); |
| 1543 } |
| 1544 assert( holdingMutex ); |
| 1545 |
| 1546 /* An IO error has occurred. We cannot report the error back to the |
| 1547 ** connection that requested the I/O since the error happened |
| 1548 ** asynchronously. The connection has already moved on. There |
| 1549 ** really is nobody to report the error to. |
| 1550 ** |
| 1551 ** The file for which the error occurred may have been a database or |
| 1552 ** journal file. Regardless, none of the currently queued operations |
| 1553 ** associated with the same database should now be performed. Nor should |
| 1554 ** any subsequently requested IO on either a database or journal file |
| 1555 ** handle for the same database be accepted until the main database |
| 1556 ** file handle has been closed and reopened. |
| 1557 ** |
| 1558 ** Furthermore, no further IO should be queued or performed on any file |
| 1559 ** handle associated with a database that may have been part of a |
| 1560 ** multi-file transaction that included the database associated with |
| 1561 ** the IO error (i.e. a database ATTACHed to the same handle at some |
| 1562 ** point in time). |
| 1563 */ |
| 1564 if( rc!=SQLITE_OK ){ |
| 1565 async.ioError = rc; |
| 1566 } |
| 1567 |
| 1568 if( async.ioError && !async.pQueueFirst ){ |
| 1569 async_mutex_enter(ASYNC_MUTEX_LOCK); |
| 1570 if( 0==async.pLock ){ |
| 1571 async.ioError = SQLITE_OK; |
| 1572 } |
| 1573 async_mutex_leave(ASYNC_MUTEX_LOCK); |
| 1574 } |
| 1575 |
| 1576 /* Drop the queue mutex before continuing to the next write operation |
| 1577 ** in order to give other threads a chance to work with the write queue. |
| 1578 */ |
| 1579 if( !async.pQueueFirst || !async.ioError ){ |
| 1580 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1581 holdingMutex = 0; |
| 1582 if( async.ioDelay>0 ){ |
| 1583 pVfs->xSleep(pVfs, async.ioDelay*1000); |
| 1584 }else{ |
| 1585 async_sched_yield(); |
| 1586 } |
| 1587 } |
| 1588 } |
| 1589 |
| 1590 async_mutex_leave(ASYNC_MUTEX_WRITER); |
| 1591 return; |
| 1592 } |
| 1593 |
| 1594 /* |
| 1595 ** Install the asynchronous VFS. |
| 1596 */ |
| 1597 int sqlite3async_initialize(const char *zParent, int isDefault){ |
| 1598 int rc = SQLITE_OK; |
| 1599 if( async_vfs.pAppData==0 ){ |
| 1600 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); |
| 1601 if( !pParent || async_os_initialize() ){ |
| 1602 rc = SQLITE_ERROR; |
| 1603 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ |
| 1604 async_os_shutdown(); |
| 1605 }else{ |
| 1606 async_vfs.pAppData = (void *)pParent; |
| 1607 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; |
| 1608 } |
| 1609 } |
| 1610 return rc; |
| 1611 } |
| 1612 |
| 1613 /* |
| 1614 ** Uninstall the asynchronous VFS. |
| 1615 */ |
| 1616 void sqlite3async_shutdown(void){ |
| 1617 if( async_vfs.pAppData ){ |
| 1618 async_os_shutdown(); |
| 1619 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); |
| 1620 async_vfs.pAppData = 0; |
| 1621 } |
| 1622 } |
| 1623 |
| 1624 /* |
| 1625 ** Process events on the write-queue. |
| 1626 */ |
| 1627 void sqlite3async_run(void){ |
| 1628 asyncWriterThread(); |
| 1629 } |
| 1630 |
| 1631 /* |
| 1632 ** Control/configure the asynchronous IO system. |
| 1633 */ |
| 1634 int sqlite3async_control(int op, ...){ |
| 1635 va_list ap; |
| 1636 va_start(ap, op); |
| 1637 switch( op ){ |
| 1638 case SQLITEASYNC_HALT: { |
| 1639 int eWhen = va_arg(ap, int); |
| 1640 if( eWhen!=SQLITEASYNC_HALT_NEVER |
| 1641 && eWhen!=SQLITEASYNC_HALT_NOW |
| 1642 && eWhen!=SQLITEASYNC_HALT_IDLE |
| 1643 ){ |
| 1644 return SQLITE_MISUSE; |
| 1645 } |
| 1646 async.eHalt = eWhen; |
| 1647 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1648 async_cond_signal(ASYNC_COND_QUEUE); |
| 1649 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1650 break; |
| 1651 } |
| 1652 |
| 1653 case SQLITEASYNC_DELAY: { |
| 1654 int iDelay = va_arg(ap, int); |
| 1655 if( iDelay<0 ){ |
| 1656 return SQLITE_MISUSE; |
| 1657 } |
| 1658 async.ioDelay = iDelay; |
| 1659 break; |
| 1660 } |
| 1661 |
| 1662 case SQLITEASYNC_LOCKFILES: { |
| 1663 int bLock = va_arg(ap, int); |
| 1664 async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| 1665 if( async.nFile || async.pQueueFirst ){ |
| 1666 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1667 return SQLITE_MISUSE; |
| 1668 } |
| 1669 async.bLockFiles = bLock; |
| 1670 async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| 1671 break; |
| 1672 } |
| 1673 |
| 1674 case SQLITEASYNC_GET_HALT: { |
| 1675 int *peWhen = va_arg(ap, int *); |
| 1676 *peWhen = async.eHalt; |
| 1677 break; |
| 1678 } |
| 1679 case SQLITEASYNC_GET_DELAY: { |
| 1680 int *piDelay = va_arg(ap, int *); |
| 1681 *piDelay = async.ioDelay; |
| 1682 break; |
| 1683 } |
| 1684 case SQLITEASYNC_GET_LOCKFILES: { |
| 1685 int *piDelay = va_arg(ap, int *); |
| 1686 *piDelay = async.bLockFiles; |
| 1687 break; |
| 1688 } |
| 1689 |
| 1690 default: |
| 1691 return SQLITE_ERROR; |
| 1692 } |
| 1693 return SQLITE_OK; |
| 1694 } |
| 1695 |
| 1696 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ |
| 1697 |
OLD | NEW |