OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 May 22 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** This file contains the VFS implementation for unix-like operating systems |
| 14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. |
| 15 ** |
| 16 ** There are actually several different VFS implementations in this file. |
| 17 ** The differences are in the way that file locking is done. The default |
| 18 ** implementation uses Posix Advisory Locks. Alternative implementations |
| 19 ** use flock(), dot-files, various proprietary locking schemas, or simply |
| 20 ** skip locking all together. |
| 21 ** |
| 22 ** This source file is organized into divisions where the logic for various |
| 23 ** subfunctions is contained within the appropriate division. PLEASE |
| 24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed |
| 25 ** in the correct division and should be clearly labeled. |
| 26 ** |
| 27 ** The layout of divisions is as follows: |
| 28 ** |
| 29 ** * General-purpose declarations and utility functions. |
| 30 ** * Unique file ID logic used by VxWorks. |
| 31 ** * Various locking primitive implementations (all except proxy locking): |
| 32 ** + for Posix Advisory Locks |
| 33 ** + for no-op locks |
| 34 ** + for dot-file locks |
| 35 ** + for flock() locking |
| 36 ** + for named semaphore locks (VxWorks only) |
| 37 ** + for AFP filesystem locks (MacOSX only) |
| 38 ** * sqlite3_file methods not associated with locking. |
| 39 ** * Definitions of sqlite3_io_methods objects for all locking |
| 40 ** methods plus "finder" functions for each locking method. |
| 41 ** * sqlite3_vfs method implementations. |
| 42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) |
| 43 ** * Definitions of sqlite3_vfs objects for all locking methods |
| 44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). |
| 45 */ |
| 46 #include "sqliteInt.h" |
| 47 #if SQLITE_OS_UNIX /* This file is used on unix only */ |
| 48 |
| 49 /* |
| 50 ** There are various methods for file locking used for concurrency |
| 51 ** control: |
| 52 ** |
| 53 ** 1. POSIX locking (the default), |
| 54 ** 2. No locking, |
| 55 ** 3. Dot-file locking, |
| 56 ** 4. flock() locking, |
| 57 ** 5. AFP locking (OSX only), |
| 58 ** 6. Named POSIX semaphores (VXWorks only), |
| 59 ** 7. proxy locking. (OSX only) |
| 60 ** |
| 61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE |
| 62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic |
| 63 ** selection of the appropriate locking style based on the filesystem |
| 64 ** where the database is located. |
| 65 */ |
| 66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) |
| 67 # if defined(__APPLE__) |
| 68 # define SQLITE_ENABLE_LOCKING_STYLE 1 |
| 69 # else |
| 70 # define SQLITE_ENABLE_LOCKING_STYLE 0 |
| 71 # endif |
| 72 #endif |
| 73 |
| 74 /* |
| 75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on |
| 76 ** vxworks, or 0 otherwise. |
| 77 */ |
| 78 #ifndef OS_VXWORKS |
| 79 # if defined(__RTP__) || defined(_WRS_KERNEL) |
| 80 # define OS_VXWORKS 1 |
| 81 # else |
| 82 # define OS_VXWORKS 0 |
| 83 # endif |
| 84 #endif |
| 85 |
| 86 /* |
| 87 ** These #defines should enable >2GB file support on Posix if the |
| 88 ** underlying operating system supports it. If the OS lacks |
| 89 ** large file support, these should be no-ops. |
| 90 ** |
| 91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch |
| 92 ** on the compiler command line. This is necessary if you are compiling |
| 93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work |
| 94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 |
| 95 ** without this option, LFS is enable. But LFS does not exist in the kernel |
| 96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary |
| 97 ** portability you should omit LFS. |
| 98 ** |
| 99 ** The previous paragraph was written in 2005. (This paragraph is written |
| 100 ** on 2008-11-28.) These days, all Linux kernels support large files, so |
| 101 ** you should probably leave LFS enabled. But some embedded platforms might |
| 102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. |
| 103 */ |
| 104 #ifndef SQLITE_DISABLE_LFS |
| 105 # define _LARGE_FILE 1 |
| 106 # ifndef _FILE_OFFSET_BITS |
| 107 # define _FILE_OFFSET_BITS 64 |
| 108 # endif |
| 109 # define _LARGEFILE_SOURCE 1 |
| 110 #endif |
| 111 |
| 112 /* |
| 113 ** standard include files. |
| 114 */ |
| 115 #include <sys/types.h> |
| 116 #include <sys/stat.h> |
| 117 #include <fcntl.h> |
| 118 #include <unistd.h> |
| 119 #include <time.h> |
| 120 #include <sys/time.h> |
| 121 #include <errno.h> |
| 122 #ifndef SQLITE_OMIT_WAL |
| 123 #include <sys/mman.h> |
| 124 #endif |
| 125 |
| 126 #if SQLITE_ENABLE_LOCKING_STYLE |
| 127 # include <sys/ioctl.h> |
| 128 # if OS_VXWORKS |
| 129 # include <semaphore.h> |
| 130 # include <limits.h> |
| 131 # else |
| 132 # include <sys/file.h> |
| 133 # include <sys/param.h> |
| 134 # endif |
| 135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
| 136 |
| 137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) |
| 138 # include <sys/mount.h> |
| 139 #endif |
| 140 |
| 141 /* |
| 142 ** Allowed values of unixFile.fsFlags |
| 143 */ |
| 144 #define SQLITE_FSFLAGS_IS_MSDOS 0x1 |
| 145 |
| 146 /* |
| 147 ** If we are to be thread-safe, include the pthreads header and define |
| 148 ** the SQLITE_UNIX_THREADS macro. |
| 149 */ |
| 150 #if SQLITE_THREADSAFE |
| 151 # include <pthread.h> |
| 152 # define SQLITE_UNIX_THREADS 1 |
| 153 #endif |
| 154 |
| 155 /* |
| 156 ** Default permissions when creating a new file |
| 157 */ |
| 158 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS |
| 159 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
| 160 #endif |
| 161 |
| 162 /* |
| 163 ** Default permissions when creating auto proxy dir |
| 164 */ |
| 165 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| 166 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 |
| 167 #endif |
| 168 |
| 169 /* |
| 170 ** Maximum supported path-length. |
| 171 */ |
| 172 #define MAX_PATHNAME 512 |
| 173 |
| 174 /* |
| 175 ** Only set the lastErrno if the error code is a real error and not |
| 176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK |
| 177 */ |
| 178 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
| 179 |
| 180 /* Forward references */ |
| 181 typedef struct unixShm unixShm; /* Connection shared memory */ |
| 182 typedef struct unixShmNode unixShmNode; /* Shared memory instance */ |
| 183 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ |
| 184 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ |
| 185 |
| 186 /* |
| 187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor |
| 188 ** cannot be closed immediately. In these cases, instances of the following |
| 189 ** structure are used to store the file descriptor while waiting for an |
| 190 ** opportunity to either close or reuse it. |
| 191 */ |
| 192 struct UnixUnusedFd { |
| 193 int fd; /* File descriptor to close */ |
| 194 int flags; /* Flags this file descriptor was opened with */ |
| 195 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ |
| 196 }; |
| 197 |
| 198 /* |
| 199 ** The unixFile structure is subclass of sqlite3_file specific to the unix |
| 200 ** VFS implementations. |
| 201 */ |
| 202 typedef struct unixFile unixFile; |
| 203 struct unixFile { |
| 204 sqlite3_io_methods const *pMethod; /* Always the first entry */ |
| 205 unixInodeInfo *pInode; /* Info about locks on this inode */ |
| 206 int h; /* The file descriptor */ |
| 207 unsigned char eFileLock; /* The type of lock held on this fd */ |
| 208 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ |
| 209 int lastErrno; /* The unix errno from last I/O error */ |
| 210 void *lockingContext; /* Locking style specific state */ |
| 211 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ |
| 212 const char *zPath; /* Name of the file */ |
| 213 unixShm *pShm; /* Shared memory segment information */ |
| 214 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ |
| 215 #if SQLITE_ENABLE_LOCKING_STYLE |
| 216 int openFlags; /* The flags specified at open() */ |
| 217 #endif |
| 218 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) |
| 219 unsigned fsFlags; /* cached details from statfs() */ |
| 220 #endif |
| 221 #if OS_VXWORKS |
| 222 int isDelete; /* Delete on close if true */ |
| 223 struct vxworksFileId *pId; /* Unique file ID */ |
| 224 #endif |
| 225 #ifndef NDEBUG |
| 226 /* The next group of variables are used to track whether or not the |
| 227 ** transaction counter in bytes 24-27 of database files are updated |
| 228 ** whenever any part of the database changes. An assertion fault will |
| 229 ** occur if a file is updated without also updating the transaction |
| 230 ** counter. This test is made to avoid new problems similar to the |
| 231 ** one described by ticket #3584. |
| 232 */ |
| 233 unsigned char transCntrChng; /* True if the transaction counter changed */ |
| 234 unsigned char dbUpdate; /* True if any part of database file changed */ |
| 235 unsigned char inNormalWrite; /* True if in a normal write operation */ |
| 236 #endif |
| 237 #ifdef SQLITE_TEST |
| 238 /* In test mode, increase the size of this structure a bit so that |
| 239 ** it is larger than the struct CrashFile defined in test6.c. |
| 240 */ |
| 241 char aPadding[32]; |
| 242 #endif |
| 243 }; |
| 244 |
| 245 /* |
| 246 ** Allowed values for the unixFile.ctrlFlags bitmask: |
| 247 */ |
| 248 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ |
| 249 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ |
| 250 #define UNIXFILE_DIRSYNC 0x04 /* Directory sync needed */ |
| 251 |
| 252 /* |
| 253 ** Include code that is common to all os_*.c files |
| 254 */ |
| 255 #include "os_common.h" |
| 256 |
| 257 /* |
| 258 ** Define various macros that are missing from some systems. |
| 259 */ |
| 260 #ifndef O_LARGEFILE |
| 261 # define O_LARGEFILE 0 |
| 262 #endif |
| 263 #ifdef SQLITE_DISABLE_LFS |
| 264 # undef O_LARGEFILE |
| 265 # define O_LARGEFILE 0 |
| 266 #endif |
| 267 #ifndef O_NOFOLLOW |
| 268 # define O_NOFOLLOW 0 |
| 269 #endif |
| 270 #ifndef O_BINARY |
| 271 # define O_BINARY 0 |
| 272 #endif |
| 273 |
| 274 /* |
| 275 ** The threadid macro resolves to the thread-id or to 0. Used for |
| 276 ** testing and debugging only. |
| 277 */ |
| 278 #if SQLITE_THREADSAFE |
| 279 #define threadid pthread_self() |
| 280 #else |
| 281 #define threadid 0 |
| 282 #endif |
| 283 |
| 284 /* Forward reference */ |
| 285 static int openDirectory(const char*, int*); |
| 286 |
| 287 /* |
| 288 ** Many system calls are accessed through pointer-to-functions so that |
| 289 ** they may be overridden at runtime to facilitate fault injection during |
| 290 ** testing and sandboxing. The following array holds the names and pointers |
| 291 ** to all overrideable system calls. |
| 292 */ |
| 293 static struct unix_syscall { |
| 294 const char *zName; /* Name of the sytem call */ |
| 295 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ |
| 296 sqlite3_syscall_ptr pDefault; /* Default value */ |
| 297 } aSyscall[] = { |
| 298 { "open", (sqlite3_syscall_ptr)open, 0 }, |
| 299 #define osOpen ((int(*)(const char*,int,...))aSyscall[0].pCurrent) |
| 300 |
| 301 { "close", (sqlite3_syscall_ptr)close, 0 }, |
| 302 #define osClose ((int(*)(int))aSyscall[1].pCurrent) |
| 303 |
| 304 { "access", (sqlite3_syscall_ptr)access, 0 }, |
| 305 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) |
| 306 |
| 307 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, |
| 308 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) |
| 309 |
| 310 { "stat", (sqlite3_syscall_ptr)stat, 0 }, |
| 311 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) |
| 312 |
| 313 /* |
| 314 ** The DJGPP compiler environment looks mostly like Unix, but it |
| 315 ** lacks the fcntl() system call. So redefine fcntl() to be something |
| 316 ** that always succeeds. This means that locking does not occur under |
| 317 ** DJGPP. But it is DOS - what did you expect? |
| 318 */ |
| 319 #ifdef __DJGPP__ |
| 320 { "fstat", 0, 0 }, |
| 321 #define osFstat(a,b,c) 0 |
| 322 #else |
| 323 { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, |
| 324 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) |
| 325 #endif |
| 326 |
| 327 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, |
| 328 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) |
| 329 |
| 330 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, |
| 331 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) |
| 332 |
| 333 { "read", (sqlite3_syscall_ptr)read, 0 }, |
| 334 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) |
| 335 |
| 336 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) |
| 337 { "pread", (sqlite3_syscall_ptr)pread, 0 }, |
| 338 #else |
| 339 { "pread", (sqlite3_syscall_ptr)0, 0 }, |
| 340 #endif |
| 341 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) |
| 342 |
| 343 #if defined(USE_PREAD64) |
| 344 { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, |
| 345 #else |
| 346 { "pread64", (sqlite3_syscall_ptr)0, 0 }, |
| 347 #endif |
| 348 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) |
| 349 |
| 350 { "write", (sqlite3_syscall_ptr)write, 0 }, |
| 351 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) |
| 352 |
| 353 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) |
| 354 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, |
| 355 #else |
| 356 { "pwrite", (sqlite3_syscall_ptr)0, 0 }, |
| 357 #endif |
| 358 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ |
| 359 aSyscall[12].pCurrent) |
| 360 |
| 361 #if defined(USE_PREAD64) |
| 362 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, |
| 363 #else |
| 364 { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, |
| 365 #endif |
| 366 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ |
| 367 aSyscall[13].pCurrent) |
| 368 |
| 369 #if SQLITE_ENABLE_LOCKING_STYLE |
| 370 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, |
| 371 #else |
| 372 { "fchmod", (sqlite3_syscall_ptr)0, 0 }, |
| 373 #endif |
| 374 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) |
| 375 |
| 376 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| 377 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, |
| 378 #else |
| 379 { "fallocate", (sqlite3_syscall_ptr)0, 0 }, |
| 380 #endif |
| 381 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) |
| 382 |
| 383 { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, |
| 384 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) |
| 385 |
| 386 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, |
| 387 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) |
| 388 |
| 389 }; /* End of the overrideable system calls */ |
| 390 |
| 391 /* |
| 392 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the |
| 393 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the |
| 394 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable |
| 395 ** system call named zName. |
| 396 */ |
| 397 static int unixSetSystemCall( |
| 398 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ |
| 399 const char *zName, /* Name of system call to override */ |
| 400 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
| 401 ){ |
| 402 unsigned int i; |
| 403 int rc = SQLITE_NOTFOUND; |
| 404 |
| 405 UNUSED_PARAMETER(pNotUsed); |
| 406 if( zName==0 ){ |
| 407 /* If no zName is given, restore all system calls to their default |
| 408 ** settings and return NULL |
| 409 */ |
| 410 rc = SQLITE_OK; |
| 411 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 412 if( aSyscall[i].pDefault ){ |
| 413 aSyscall[i].pCurrent = aSyscall[i].pDefault; |
| 414 } |
| 415 } |
| 416 }else{ |
| 417 /* If zName is specified, operate on only the one system call |
| 418 ** specified. |
| 419 */ |
| 420 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 421 if( strcmp(zName, aSyscall[i].zName)==0 ){ |
| 422 if( aSyscall[i].pDefault==0 ){ |
| 423 aSyscall[i].pDefault = aSyscall[i].pCurrent; |
| 424 } |
| 425 rc = SQLITE_OK; |
| 426 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; |
| 427 aSyscall[i].pCurrent = pNewFunc; |
| 428 break; |
| 429 } |
| 430 } |
| 431 } |
| 432 return rc; |
| 433 } |
| 434 |
| 435 /* |
| 436 ** Return the value of a system call. Return NULL if zName is not a |
| 437 ** recognized system call name. NULL is also returned if the system call |
| 438 ** is currently undefined. |
| 439 */ |
| 440 static sqlite3_syscall_ptr unixGetSystemCall( |
| 441 sqlite3_vfs *pNotUsed, |
| 442 const char *zName |
| 443 ){ |
| 444 unsigned int i; |
| 445 |
| 446 UNUSED_PARAMETER(pNotUsed); |
| 447 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 448 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; |
| 449 } |
| 450 return 0; |
| 451 } |
| 452 |
| 453 /* |
| 454 ** Return the name of the first system call after zName. If zName==NULL |
| 455 ** then return the name of the first system call. Return NULL if zName |
| 456 ** is the last system call or if zName is not the name of a valid |
| 457 ** system call. |
| 458 */ |
| 459 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ |
| 460 int i = -1; |
| 461 |
| 462 UNUSED_PARAMETER(p); |
| 463 if( zName ){ |
| 464 for(i=0; i<ArraySize(aSyscall)-1; i++){ |
| 465 if( strcmp(zName, aSyscall[i].zName)==0 ) break; |
| 466 } |
| 467 } |
| 468 for(i++; i<ArraySize(aSyscall); i++){ |
| 469 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; |
| 470 } |
| 471 return 0; |
| 472 } |
| 473 |
| 474 /* |
| 475 ** Retry open() calls that fail due to EINTR |
| 476 */ |
| 477 static int robust_open(const char *z, int f, int m){ |
| 478 int rc; |
| 479 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR ); |
| 480 return rc; |
| 481 } |
| 482 |
| 483 /* |
| 484 ** Helper functions to obtain and relinquish the global mutex. The |
| 485 ** global mutex is used to protect the unixInodeInfo and |
| 486 ** vxworksFileId objects used by this file, all of which may be |
| 487 ** shared by multiple threads. |
| 488 ** |
| 489 ** Function unixMutexHeld() is used to assert() that the global mutex |
| 490 ** is held when required. This function is only used as part of assert() |
| 491 ** statements. e.g. |
| 492 ** |
| 493 ** unixEnterMutex() |
| 494 ** assert( unixMutexHeld() ); |
| 495 ** unixEnterLeave() |
| 496 */ |
| 497 static void unixEnterMutex(void){ |
| 498 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
| 499 } |
| 500 static void unixLeaveMutex(void){ |
| 501 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
| 502 } |
| 503 #ifdef SQLITE_DEBUG |
| 504 static int unixMutexHeld(void) { |
| 505 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
| 506 } |
| 507 #endif |
| 508 |
| 509 |
| 510 #ifdef SQLITE_DEBUG |
| 511 /* |
| 512 ** Helper function for printing out trace information from debugging |
| 513 ** binaries. This returns the string represetation of the supplied |
| 514 ** integer lock-type. |
| 515 */ |
| 516 static const char *azFileLock(int eFileLock){ |
| 517 switch( eFileLock ){ |
| 518 case NO_LOCK: return "NONE"; |
| 519 case SHARED_LOCK: return "SHARED"; |
| 520 case RESERVED_LOCK: return "RESERVED"; |
| 521 case PENDING_LOCK: return "PENDING"; |
| 522 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; |
| 523 } |
| 524 return "ERROR"; |
| 525 } |
| 526 #endif |
| 527 |
| 528 #ifdef SQLITE_LOCK_TRACE |
| 529 /* |
| 530 ** Print out information about all locking operations. |
| 531 ** |
| 532 ** This routine is used for troubleshooting locks on multithreaded |
| 533 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE |
| 534 ** command-line option on the compiler. This code is normally |
| 535 ** turned off. |
| 536 */ |
| 537 static int lockTrace(int fd, int op, struct flock *p){ |
| 538 char *zOpName, *zType; |
| 539 int s; |
| 540 int savedErrno; |
| 541 if( op==F_GETLK ){ |
| 542 zOpName = "GETLK"; |
| 543 }else if( op==F_SETLK ){ |
| 544 zOpName = "SETLK"; |
| 545 }else{ |
| 546 s = osFcntl(fd, op, p); |
| 547 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); |
| 548 return s; |
| 549 } |
| 550 if( p->l_type==F_RDLCK ){ |
| 551 zType = "RDLCK"; |
| 552 }else if( p->l_type==F_WRLCK ){ |
| 553 zType = "WRLCK"; |
| 554 }else if( p->l_type==F_UNLCK ){ |
| 555 zType = "UNLCK"; |
| 556 }else{ |
| 557 assert( 0 ); |
| 558 } |
| 559 assert( p->l_whence==SEEK_SET ); |
| 560 s = osFcntl(fd, op, p); |
| 561 savedErrno = errno; |
| 562 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", |
| 563 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, |
| 564 (int)p->l_pid, s); |
| 565 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ |
| 566 struct flock l2; |
| 567 l2 = *p; |
| 568 osFcntl(fd, F_GETLK, &l2); |
| 569 if( l2.l_type==F_RDLCK ){ |
| 570 zType = "RDLCK"; |
| 571 }else if( l2.l_type==F_WRLCK ){ |
| 572 zType = "WRLCK"; |
| 573 }else if( l2.l_type==F_UNLCK ){ |
| 574 zType = "UNLCK"; |
| 575 }else{ |
| 576 assert( 0 ); |
| 577 } |
| 578 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", |
| 579 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); |
| 580 } |
| 581 errno = savedErrno; |
| 582 return s; |
| 583 } |
| 584 #undef osFcntl |
| 585 #define osFcntl lockTrace |
| 586 #endif /* SQLITE_LOCK_TRACE */ |
| 587 |
| 588 /* |
| 589 ** Retry ftruncate() calls that fail due to EINTR |
| 590 */ |
| 591 static int robust_ftruncate(int h, sqlite3_int64 sz){ |
| 592 int rc; |
| 593 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); |
| 594 return rc; |
| 595 } |
| 596 |
| 597 /* |
| 598 ** This routine translates a standard POSIX errno code into something |
| 599 ** useful to the clients of the sqlite3 functions. Specifically, it is |
| 600 ** intended to translate a variety of "try again" errors into SQLITE_BUSY |
| 601 ** and a variety of "please close the file descriptor NOW" errors into |
| 602 ** SQLITE_IOERR |
| 603 ** |
| 604 ** Errors during initialization of locks, or file system support for locks, |
| 605 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. |
| 606 */ |
| 607 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { |
| 608 switch (posixError) { |
| 609 #if 0 |
| 610 /* At one point this code was not commented out. In theory, this branch |
| 611 ** should never be hit, as this function should only be called after |
| 612 ** a locking-related function (i.e. fcntl()) has returned non-zero with |
| 613 ** the value of errno as the first argument. Since a system call has failed, |
| 614 ** errno should be non-zero. |
| 615 ** |
| 616 ** Despite this, if errno really is zero, we still don't want to return |
| 617 ** SQLITE_OK. The system call failed, and *some* SQLite error should be |
| 618 ** propagated back to the caller. Commenting this branch out means errno==0 |
| 619 ** will be handled by the "default:" case below. |
| 620 */ |
| 621 case 0: |
| 622 return SQLITE_OK; |
| 623 #endif |
| 624 |
| 625 case EAGAIN: |
| 626 case ETIMEDOUT: |
| 627 case EBUSY: |
| 628 case EINTR: |
| 629 case ENOLCK: |
| 630 /* random NFS retry error, unless during file system support |
| 631 * introspection, in which it actually means what it says */ |
| 632 return SQLITE_BUSY; |
| 633 |
| 634 case EACCES: |
| 635 /* EACCES is like EAGAIN during locking operations, but not any other time*/ |
| 636 if( (sqliteIOErr == SQLITE_IOERR_LOCK) || |
| 637 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || |
| 638 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || |
| 639 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ |
| 640 return SQLITE_BUSY; |
| 641 } |
| 642 /* else fall through */ |
| 643 case EPERM: |
| 644 return SQLITE_PERM; |
| 645 |
| 646 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And |
| 647 ** this module never makes such a call. And the code in SQLite itself |
| 648 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons |
| 649 ** this case is also commented out. If the system does set errno to EDEADLK, |
| 650 ** the default SQLITE_IOERR_XXX code will be returned. */ |
| 651 #if 0 |
| 652 case EDEADLK: |
| 653 return SQLITE_IOERR_BLOCKED; |
| 654 #endif |
| 655 |
| 656 #if EOPNOTSUPP!=ENOTSUP |
| 657 case EOPNOTSUPP: |
| 658 /* something went terribly awry, unless during file system support |
| 659 * introspection, in which it actually means what it says */ |
| 660 #endif |
| 661 #ifdef ENOTSUP |
| 662 case ENOTSUP: |
| 663 /* invalid fd, unless during file system support introspection, in which |
| 664 * it actually means what it says */ |
| 665 #endif |
| 666 case EIO: |
| 667 case EBADF: |
| 668 case EINVAL: |
| 669 case ENOTCONN: |
| 670 case ENODEV: |
| 671 case ENXIO: |
| 672 case ENOENT: |
| 673 case ESTALE: |
| 674 case ENOSYS: |
| 675 /* these should force the client to close the file and reconnect */ |
| 676 |
| 677 default: |
| 678 return sqliteIOErr; |
| 679 } |
| 680 } |
| 681 |
| 682 |
| 683 |
| 684 /****************************************************************************** |
| 685 ****************** Begin Unique File ID Utility Used By VxWorks *************** |
| 686 ** |
| 687 ** On most versions of unix, we can get a unique ID for a file by concatenating |
| 688 ** the device number and the inode number. But this does not work on VxWorks. |
| 689 ** On VxWorks, a unique file id must be based on the canonical filename. |
| 690 ** |
| 691 ** A pointer to an instance of the following structure can be used as a |
| 692 ** unique file ID in VxWorks. Each instance of this structure contains |
| 693 ** a copy of the canonical filename. There is also a reference count. |
| 694 ** The structure is reclaimed when the number of pointers to it drops to |
| 695 ** zero. |
| 696 ** |
| 697 ** There are never very many files open at one time and lookups are not |
| 698 ** a performance-critical path, so it is sufficient to put these |
| 699 ** structures on a linked list. |
| 700 */ |
| 701 struct vxworksFileId { |
| 702 struct vxworksFileId *pNext; /* Next in a list of them all */ |
| 703 int nRef; /* Number of references to this one */ |
| 704 int nName; /* Length of the zCanonicalName[] string */ |
| 705 char *zCanonicalName; /* Canonical filename */ |
| 706 }; |
| 707 |
| 708 #if OS_VXWORKS |
| 709 /* |
| 710 ** All unique filenames are held on a linked list headed by this |
| 711 ** variable: |
| 712 */ |
| 713 static struct vxworksFileId *vxworksFileList = 0; |
| 714 |
| 715 /* |
| 716 ** Simplify a filename into its canonical form |
| 717 ** by making the following changes: |
| 718 ** |
| 719 ** * removing any trailing and duplicate / |
| 720 ** * convert /./ into just / |
| 721 ** * convert /A/../ where A is any simple name into just / |
| 722 ** |
| 723 ** Changes are made in-place. Return the new name length. |
| 724 ** |
| 725 ** The original filename is in z[0..n-1]. Return the number of |
| 726 ** characters in the simplified name. |
| 727 */ |
| 728 static int vxworksSimplifyName(char *z, int n){ |
| 729 int i, j; |
| 730 while( n>1 && z[n-1]=='/' ){ n--; } |
| 731 for(i=j=0; i<n; i++){ |
| 732 if( z[i]=='/' ){ |
| 733 if( z[i+1]=='/' ) continue; |
| 734 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 735 i += 1; |
| 736 continue; |
| 737 } |
| 738 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 739 while( j>0 && z[j-1]!='/' ){ j--; } |
| 740 if( j>0 ){ j--; } |
| 741 i += 2; |
| 742 continue; |
| 743 } |
| 744 } |
| 745 z[j++] = z[i]; |
| 746 } |
| 747 z[j] = 0; |
| 748 return j; |
| 749 } |
| 750 |
| 751 /* |
| 752 ** Find a unique file ID for the given absolute pathname. Return |
| 753 ** a pointer to the vxworksFileId object. This pointer is the unique |
| 754 ** file ID. |
| 755 ** |
| 756 ** The nRef field of the vxworksFileId object is incremented before |
| 757 ** the object is returned. A new vxworksFileId object is created |
| 758 ** and added to the global list if necessary. |
| 759 ** |
| 760 ** If a memory allocation error occurs, return NULL. |
| 761 */ |
| 762 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ |
| 763 struct vxworksFileId *pNew; /* search key and new file ID */ |
| 764 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ |
| 765 int n; /* Length of zAbsoluteName string */ |
| 766 |
| 767 assert( zAbsoluteName[0]=='/' ); |
| 768 n = (int)strlen(zAbsoluteName); |
| 769 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); |
| 770 if( pNew==0 ) return 0; |
| 771 pNew->zCanonicalName = (char*)&pNew[1]; |
| 772 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); |
| 773 n = vxworksSimplifyName(pNew->zCanonicalName, n); |
| 774 |
| 775 /* Search for an existing entry that matching the canonical name. |
| 776 ** If found, increment the reference count and return a pointer to |
| 777 ** the existing file ID. |
| 778 */ |
| 779 unixEnterMutex(); |
| 780 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ |
| 781 if( pCandidate->nName==n |
| 782 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 |
| 783 ){ |
| 784 sqlite3_free(pNew); |
| 785 pCandidate->nRef++; |
| 786 unixLeaveMutex(); |
| 787 return pCandidate; |
| 788 } |
| 789 } |
| 790 |
| 791 /* No match was found. We will make a new file ID */ |
| 792 pNew->nRef = 1; |
| 793 pNew->nName = n; |
| 794 pNew->pNext = vxworksFileList; |
| 795 vxworksFileList = pNew; |
| 796 unixLeaveMutex(); |
| 797 return pNew; |
| 798 } |
| 799 |
| 800 /* |
| 801 ** Decrement the reference count on a vxworksFileId object. Free |
| 802 ** the object when the reference count reaches zero. |
| 803 */ |
| 804 static void vxworksReleaseFileId(struct vxworksFileId *pId){ |
| 805 unixEnterMutex(); |
| 806 assert( pId->nRef>0 ); |
| 807 pId->nRef--; |
| 808 if( pId->nRef==0 ){ |
| 809 struct vxworksFileId **pp; |
| 810 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} |
| 811 assert( *pp==pId ); |
| 812 *pp = pId->pNext; |
| 813 sqlite3_free(pId); |
| 814 } |
| 815 unixLeaveMutex(); |
| 816 } |
| 817 #endif /* OS_VXWORKS */ |
| 818 /*************** End of Unique File ID Utility Used By VxWorks **************** |
| 819 ******************************************************************************/ |
| 820 |
| 821 |
| 822 /****************************************************************************** |
| 823 *************************** Posix Advisory Locking **************************** |
| 824 ** |
| 825 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) |
| 826 ** section 6.5.2.2 lines 483 through 490 specify that when a process |
| 827 ** sets or clears a lock, that operation overrides any prior locks set |
| 828 ** by the same process. It does not explicitly say so, but this implies |
| 829 ** that it overrides locks set by the same process using a different |
| 830 ** file descriptor. Consider this test case: |
| 831 ** |
| 832 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); |
| 833 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); |
| 834 ** |
| 835 ** Suppose ./file1 and ./file2 are really the same file (because |
| 836 ** one is a hard or symbolic link to the other) then if you set |
| 837 ** an exclusive lock on fd1, then try to get an exclusive lock |
| 838 ** on fd2, it works. I would have expected the second lock to |
| 839 ** fail since there was already a lock on the file due to fd1. |
| 840 ** But not so. Since both locks came from the same process, the |
| 841 ** second overrides the first, even though they were on different |
| 842 ** file descriptors opened on different file names. |
| 843 ** |
| 844 ** This means that we cannot use POSIX locks to synchronize file access |
| 845 ** among competing threads of the same process. POSIX locks will work fine |
| 846 ** to synchronize access for threads in separate processes, but not |
| 847 ** threads within the same process. |
| 848 ** |
| 849 ** To work around the problem, SQLite has to manage file locks internally |
| 850 ** on its own. Whenever a new database is opened, we have to find the |
| 851 ** specific inode of the database file (the inode is determined by the |
| 852 ** st_dev and st_ino fields of the stat structure that fstat() fills in) |
| 853 ** and check for locks already existing on that inode. When locks are |
| 854 ** created or removed, we have to look at our own internal record of the |
| 855 ** locks to see if another thread has previously set a lock on that same |
| 856 ** inode. |
| 857 ** |
| 858 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. |
| 859 ** For VxWorks, we have to use the alternative unique ID system based on |
| 860 ** canonical filename and implemented in the previous division.) |
| 861 ** |
| 862 ** The sqlite3_file structure for POSIX is no longer just an integer file |
| 863 ** descriptor. It is now a structure that holds the integer file |
| 864 ** descriptor and a pointer to a structure that describes the internal |
| 865 ** locks on the corresponding inode. There is one locking structure |
| 866 ** per inode, so if the same inode is opened twice, both unixFile structures |
| 867 ** point to the same locking structure. The locking structure keeps |
| 868 ** a reference count (so we will know when to delete it) and a "cnt" |
| 869 ** field that tells us its internal lock status. cnt==0 means the |
| 870 ** file is unlocked. cnt==-1 means the file has an exclusive lock. |
| 871 ** cnt>0 means there are cnt shared locks on the file. |
| 872 ** |
| 873 ** Any attempt to lock or unlock a file first checks the locking |
| 874 ** structure. The fcntl() system call is only invoked to set a |
| 875 ** POSIX lock if the internal lock structure transitions between |
| 876 ** a locked and an unlocked state. |
| 877 ** |
| 878 ** But wait: there are yet more problems with POSIX advisory locks. |
| 879 ** |
| 880 ** If you close a file descriptor that points to a file that has locks, |
| 881 ** all locks on that file that are owned by the current process are |
| 882 ** released. To work around this problem, each unixInodeInfo object |
| 883 ** maintains a count of the number of pending locks on tha inode. |
| 884 ** When an attempt is made to close an unixFile, if there are |
| 885 ** other unixFile open on the same inode that are holding locks, the call |
| 886 ** to close() the file descriptor is deferred until all of the locks clear. |
| 887 ** The unixInodeInfo structure keeps a list of file descriptors that need to |
| 888 ** be closed and that list is walked (and cleared) when the last lock |
| 889 ** clears. |
| 890 ** |
| 891 ** Yet another problem: LinuxThreads do not play well with posix locks. |
| 892 ** |
| 893 ** Many older versions of linux use the LinuxThreads library which is |
| 894 ** not posix compliant. Under LinuxThreads, a lock created by thread |
| 895 ** A cannot be modified or overridden by a different thread B. |
| 896 ** Only thread A can modify the lock. Locking behavior is correct |
| 897 ** if the appliation uses the newer Native Posix Thread Library (NPTL) |
| 898 ** on linux - with NPTL a lock created by thread A can override locks |
| 899 ** in thread B. But there is no way to know at compile-time which |
| 900 ** threading library is being used. So there is no way to know at |
| 901 ** compile-time whether or not thread A can override locks on thread B. |
| 902 ** One has to do a run-time check to discover the behavior of the |
| 903 ** current process. |
| 904 ** |
| 905 ** SQLite used to support LinuxThreads. But support for LinuxThreads |
| 906 ** was dropped beginning with version 3.7.0. SQLite will still work with |
| 907 ** LinuxThreads provided that (1) there is no more than one connection |
| 908 ** per database file in the same process and (2) database connections |
| 909 ** do not move across threads. |
| 910 */ |
| 911 |
| 912 /* |
| 913 ** An instance of the following structure serves as the key used |
| 914 ** to locate a particular unixInodeInfo object. |
| 915 */ |
| 916 struct unixFileId { |
| 917 dev_t dev; /* Device number */ |
| 918 #if OS_VXWORKS |
| 919 struct vxworksFileId *pId; /* Unique file ID for vxworks. */ |
| 920 #else |
| 921 ino_t ino; /* Inode number */ |
| 922 #endif |
| 923 }; |
| 924 |
| 925 /* |
| 926 ** An instance of the following structure is allocated for each open |
| 927 ** inode. Or, on LinuxThreads, there is one of these structures for |
| 928 ** each inode opened by each thread. |
| 929 ** |
| 930 ** A single inode can have multiple file descriptors, so each unixFile |
| 931 ** structure contains a pointer to an instance of this object and this |
| 932 ** object keeps a count of the number of unixFile pointing to it. |
| 933 */ |
| 934 struct unixInodeInfo { |
| 935 struct unixFileId fileId; /* The lookup key */ |
| 936 int nShared; /* Number of SHARED locks held */ |
| 937 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ |
| 938 unsigned char bProcessLock; /* An exclusive process lock is held */ |
| 939 int nRef; /* Number of pointers to this structure */ |
| 940 unixShmNode *pShmNode; /* Shared memory associated with this inode */ |
| 941 int nLock; /* Number of outstanding file locks */ |
| 942 UnixUnusedFd *pUnused; /* Unused file descriptors to close */ |
| 943 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ |
| 944 unixInodeInfo *pPrev; /* .... doubly linked */ |
| 945 #if defined(SQLITE_ENABLE_LOCKING_STYLE) |
| 946 unsigned long long sharedByte; /* for AFP simulated shared lock */ |
| 947 #endif |
| 948 #if OS_VXWORKS |
| 949 sem_t *pSem; /* Named POSIX semaphore */ |
| 950 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ |
| 951 #endif |
| 952 }; |
| 953 |
| 954 /* |
| 955 ** A lists of all unixInodeInfo objects. |
| 956 */ |
| 957 static unixInodeInfo *inodeList = 0; |
| 958 |
| 959 /* |
| 960 ** |
| 961 ** This function - unixLogError_x(), is only ever called via the macro |
| 962 ** unixLogError(). |
| 963 ** |
| 964 ** It is invoked after an error occurs in an OS function and errno has been |
| 965 ** set. It logs a message using sqlite3_log() containing the current value of |
| 966 ** errno and, if possible, the human-readable equivalent from strerror() or |
| 967 ** strerror_r(). |
| 968 ** |
| 969 ** The first argument passed to the macro should be the error code that |
| 970 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). |
| 971 ** The two subsequent arguments should be the name of the OS function that |
| 972 ** failed (e.g. "unlink", "open") and the the associated file-system path, |
| 973 ** if any. |
| 974 */ |
| 975 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) |
| 976 static int unixLogErrorAtLine( |
| 977 int errcode, /* SQLite error code */ |
| 978 const char *zFunc, /* Name of OS function that failed */ |
| 979 const char *zPath, /* File path associated with error */ |
| 980 int iLine /* Source line number where error occurred */ |
| 981 ){ |
| 982 char *zErr; /* Message from strerror() or equivalent */ |
| 983 int iErrno = errno; /* Saved syscall error number */ |
| 984 |
| 985 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use |
| 986 ** the strerror() function to obtain the human-readable error message |
| 987 ** equivalent to errno. Otherwise, use strerror_r(). |
| 988 */ |
| 989 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) |
| 990 char aErr[80]; |
| 991 memset(aErr, 0, sizeof(aErr)); |
| 992 zErr = aErr; |
| 993 |
| 994 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, |
| 995 ** assume that the system provides the the GNU version of strerror_r() that |
| 996 ** returns a pointer to a buffer containing the error message. That pointer |
| 997 ** may point to aErr[], or it may point to some static storage somewhere. |
| 998 ** Otherwise, assume that the system provides the POSIX version of |
| 999 ** strerror_r(), which always writes an error message into aErr[]. |
| 1000 ** |
| 1001 ** If the code incorrectly assumes that it is the POSIX version that is |
| 1002 ** available, the error message will often be an empty string. Not a |
| 1003 ** huge problem. Incorrectly concluding that the GNU version is available |
| 1004 ** could lead to a segfault though. |
| 1005 */ |
| 1006 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) |
| 1007 zErr = |
| 1008 # endif |
| 1009 strerror_r(iErrno, aErr, sizeof(aErr)-1); |
| 1010 |
| 1011 #elif SQLITE_THREADSAFE |
| 1012 /* This is a threadsafe build, but strerror_r() is not available. */ |
| 1013 zErr = ""; |
| 1014 #else |
| 1015 /* Non-threadsafe build, use strerror(). */ |
| 1016 zErr = strerror(iErrno); |
| 1017 #endif |
| 1018 |
| 1019 assert( errcode!=SQLITE_OK ); |
| 1020 if( zPath==0 ) zPath = ""; |
| 1021 sqlite3_log(errcode, |
| 1022 "os_unix.c:%d: (%d) %s(%s) - %s", |
| 1023 iLine, iErrno, zFunc, zPath, zErr |
| 1024 ); |
| 1025 |
| 1026 return errcode; |
| 1027 } |
| 1028 |
| 1029 /* |
| 1030 ** Close a file descriptor. |
| 1031 ** |
| 1032 ** We assume that close() almost always works, since it is only in a |
| 1033 ** very sick application or on a very sick platform that it might fail. |
| 1034 ** If it does fail, simply leak the file descriptor, but do log the |
| 1035 ** error. |
| 1036 ** |
| 1037 ** Note that it is not safe to retry close() after EINTR since the |
| 1038 ** file descriptor might have already been reused by another thread. |
| 1039 ** So we don't even try to recover from an EINTR. Just log the error |
| 1040 ** and move on. |
| 1041 */ |
| 1042 static void robust_close(unixFile *pFile, int h, int lineno){ |
| 1043 if( osClose(h) ){ |
| 1044 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", |
| 1045 pFile ? pFile->zPath : 0, lineno); |
| 1046 } |
| 1047 } |
| 1048 |
| 1049 /* |
| 1050 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. |
| 1051 */ |
| 1052 static void closePendingFds(unixFile *pFile){ |
| 1053 unixInodeInfo *pInode = pFile->pInode; |
| 1054 UnixUnusedFd *p; |
| 1055 UnixUnusedFd *pNext; |
| 1056 for(p=pInode->pUnused; p; p=pNext){ |
| 1057 pNext = p->pNext; |
| 1058 robust_close(pFile, p->fd, __LINE__); |
| 1059 sqlite3_free(p); |
| 1060 } |
| 1061 pInode->pUnused = 0; |
| 1062 } |
| 1063 |
| 1064 /* |
| 1065 ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). |
| 1066 ** |
| 1067 ** The mutex entered using the unixEnterMutex() function must be held |
| 1068 ** when this function is called. |
| 1069 */ |
| 1070 static void releaseInodeInfo(unixFile *pFile){ |
| 1071 unixInodeInfo *pInode = pFile->pInode; |
| 1072 assert( unixMutexHeld() ); |
| 1073 if( ALWAYS(pInode) ){ |
| 1074 pInode->nRef--; |
| 1075 if( pInode->nRef==0 ){ |
| 1076 assert( pInode->pShmNode==0 ); |
| 1077 closePendingFds(pFile); |
| 1078 if( pInode->pPrev ){ |
| 1079 assert( pInode->pPrev->pNext==pInode ); |
| 1080 pInode->pPrev->pNext = pInode->pNext; |
| 1081 }else{ |
| 1082 assert( inodeList==pInode ); |
| 1083 inodeList = pInode->pNext; |
| 1084 } |
| 1085 if( pInode->pNext ){ |
| 1086 assert( pInode->pNext->pPrev==pInode ); |
| 1087 pInode->pNext->pPrev = pInode->pPrev; |
| 1088 } |
| 1089 sqlite3_free(pInode); |
| 1090 } |
| 1091 } |
| 1092 } |
| 1093 |
| 1094 /* |
| 1095 ** Given a file descriptor, locate the unixInodeInfo object that |
| 1096 ** describes that file descriptor. Create a new one if necessary. The |
| 1097 ** return value might be uninitialized if an error occurs. |
| 1098 ** |
| 1099 ** The mutex entered using the unixEnterMutex() function must be held |
| 1100 ** when this function is called. |
| 1101 ** |
| 1102 ** Return an appropriate error code. |
| 1103 */ |
| 1104 static int findInodeInfo( |
| 1105 unixFile *pFile, /* Unix file with file desc used in the key */ |
| 1106 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ |
| 1107 ){ |
| 1108 int rc; /* System call return code */ |
| 1109 int fd; /* The file descriptor for pFile */ |
| 1110 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ |
| 1111 struct stat statbuf; /* Low-level file information */ |
| 1112 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ |
| 1113 |
| 1114 assert( unixMutexHeld() ); |
| 1115 |
| 1116 /* Get low-level information about the file that we can used to |
| 1117 ** create a unique name for the file. |
| 1118 */ |
| 1119 fd = pFile->h; |
| 1120 rc = osFstat(fd, &statbuf); |
| 1121 if( rc!=0 ){ |
| 1122 pFile->lastErrno = errno; |
| 1123 #ifdef EOVERFLOW |
| 1124 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; |
| 1125 #endif |
| 1126 return SQLITE_IOERR; |
| 1127 } |
| 1128 |
| 1129 #ifdef __APPLE__ |
| 1130 /* On OS X on an msdos filesystem, the inode number is reported |
| 1131 ** incorrectly for zero-size files. See ticket #3260. To work |
| 1132 ** around this problem (we consider it a bug in OS X, not SQLite) |
| 1133 ** we always increase the file size to 1 by writing a single byte |
| 1134 ** prior to accessing the inode number. The one byte written is |
| 1135 ** an ASCII 'S' character which also happens to be the first byte |
| 1136 ** in the header of every SQLite database. In this way, if there |
| 1137 ** is a race condition such that another thread has already populated |
| 1138 ** the first page of the database, no damage is done. |
| 1139 */ |
| 1140 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ |
| 1141 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); |
| 1142 if( rc!=1 ){ |
| 1143 pFile->lastErrno = errno; |
| 1144 return SQLITE_IOERR; |
| 1145 } |
| 1146 rc = osFstat(fd, &statbuf); |
| 1147 if( rc!=0 ){ |
| 1148 pFile->lastErrno = errno; |
| 1149 return SQLITE_IOERR; |
| 1150 } |
| 1151 } |
| 1152 #endif |
| 1153 |
| 1154 memset(&fileId, 0, sizeof(fileId)); |
| 1155 fileId.dev = statbuf.st_dev; |
| 1156 #if OS_VXWORKS |
| 1157 fileId.pId = pFile->pId; |
| 1158 #else |
| 1159 fileId.ino = statbuf.st_ino; |
| 1160 #endif |
| 1161 pInode = inodeList; |
| 1162 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ |
| 1163 pInode = pInode->pNext; |
| 1164 } |
| 1165 if( pInode==0 ){ |
| 1166 pInode = sqlite3_malloc( sizeof(*pInode) ); |
| 1167 if( pInode==0 ){ |
| 1168 return SQLITE_NOMEM; |
| 1169 } |
| 1170 memset(pInode, 0, sizeof(*pInode)); |
| 1171 memcpy(&pInode->fileId, &fileId, sizeof(fileId)); |
| 1172 pInode->nRef = 1; |
| 1173 pInode->pNext = inodeList; |
| 1174 pInode->pPrev = 0; |
| 1175 if( inodeList ) inodeList->pPrev = pInode; |
| 1176 inodeList = pInode; |
| 1177 }else{ |
| 1178 pInode->nRef++; |
| 1179 } |
| 1180 *ppInode = pInode; |
| 1181 return SQLITE_OK; |
| 1182 } |
| 1183 |
| 1184 |
| 1185 /* |
| 1186 ** This routine checks if there is a RESERVED lock held on the specified |
| 1187 ** file by this or any other process. If such a lock is held, set *pResOut |
| 1188 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 1189 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 1190 */ |
| 1191 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 1192 int rc = SQLITE_OK; |
| 1193 int reserved = 0; |
| 1194 unixFile *pFile = (unixFile*)id; |
| 1195 |
| 1196 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 1197 |
| 1198 assert( pFile ); |
| 1199 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
| 1200 |
| 1201 /* Check if a thread in this process holds such a lock */ |
| 1202 if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| 1203 reserved = 1; |
| 1204 } |
| 1205 |
| 1206 /* Otherwise see if some other process holds it. |
| 1207 */ |
| 1208 #ifndef __DJGPP__ |
| 1209 if( !reserved && !pFile->pInode->bProcessLock ){ |
| 1210 struct flock lock; |
| 1211 lock.l_whence = SEEK_SET; |
| 1212 lock.l_start = RESERVED_BYTE; |
| 1213 lock.l_len = 1; |
| 1214 lock.l_type = F_WRLCK; |
| 1215 if( osFcntl(pFile->h, F_GETLK, &lock) ){ |
| 1216 rc = SQLITE_IOERR_CHECKRESERVEDLOCK; |
| 1217 pFile->lastErrno = errno; |
| 1218 } else if( lock.l_type!=F_UNLCK ){ |
| 1219 reserved = 1; |
| 1220 } |
| 1221 } |
| 1222 #endif |
| 1223 |
| 1224 unixLeaveMutex(); |
| 1225 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); |
| 1226 |
| 1227 *pResOut = reserved; |
| 1228 return rc; |
| 1229 } |
| 1230 |
| 1231 /* |
| 1232 ** Attempt to set a system-lock on the file pFile. The lock is |
| 1233 ** described by pLock. |
| 1234 ** |
| 1235 ** If the pFile was opened read/write from unix-excl, then the only lock |
| 1236 ** ever obtained is an exclusive lock, and it is obtained exactly once |
| 1237 ** the first time any lock is attempted. All subsequent system locking |
| 1238 ** operations become no-ops. Locking operations still happen internally, |
| 1239 ** in order to coordinate access between separate database connections |
| 1240 ** within this process, but all of that is handled in memory and the |
| 1241 ** operating system does not participate. |
| 1242 ** |
| 1243 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using |
| 1244 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" |
| 1245 ** and is read-only. |
| 1246 ** |
| 1247 ** Zero is returned if the call completes successfully, or -1 if a call |
| 1248 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). |
| 1249 */ |
| 1250 static int unixFileLock(unixFile *pFile, struct flock *pLock){ |
| 1251 int rc; |
| 1252 unixInodeInfo *pInode = pFile->pInode; |
| 1253 assert( unixMutexHeld() ); |
| 1254 assert( pInode!=0 ); |
| 1255 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) |
| 1256 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) |
| 1257 ){ |
| 1258 if( pInode->bProcessLock==0 ){ |
| 1259 struct flock lock; |
| 1260 assert( pInode->nLock==0 ); |
| 1261 lock.l_whence = SEEK_SET; |
| 1262 lock.l_start = SHARED_FIRST; |
| 1263 lock.l_len = SHARED_SIZE; |
| 1264 lock.l_type = F_WRLCK; |
| 1265 rc = osFcntl(pFile->h, F_SETLK, &lock); |
| 1266 if( rc<0 ) return rc; |
| 1267 pInode->bProcessLock = 1; |
| 1268 pInode->nLock++; |
| 1269 }else{ |
| 1270 rc = 0; |
| 1271 } |
| 1272 }else{ |
| 1273 rc = osFcntl(pFile->h, F_SETLK, pLock); |
| 1274 } |
| 1275 return rc; |
| 1276 } |
| 1277 |
| 1278 /* |
| 1279 ** Lock the file with the lock specified by parameter eFileLock - one |
| 1280 ** of the following: |
| 1281 ** |
| 1282 ** (1) SHARED_LOCK |
| 1283 ** (2) RESERVED_LOCK |
| 1284 ** (3) PENDING_LOCK |
| 1285 ** (4) EXCLUSIVE_LOCK |
| 1286 ** |
| 1287 ** Sometimes when requesting one lock state, additional lock states |
| 1288 ** are inserted in between. The locking might fail on one of the later |
| 1289 ** transitions leaving the lock state different from what it started but |
| 1290 ** still short of its goal. The following chart shows the allowed |
| 1291 ** transitions and the inserted intermediate states: |
| 1292 ** |
| 1293 ** UNLOCKED -> SHARED |
| 1294 ** SHARED -> RESERVED |
| 1295 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 1296 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 1297 ** PENDING -> EXCLUSIVE |
| 1298 ** |
| 1299 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 1300 ** routine to lower a locking level. |
| 1301 */ |
| 1302 static int unixLock(sqlite3_file *id, int eFileLock){ |
| 1303 /* The following describes the implementation of the various locks and |
| 1304 ** lock transitions in terms of the POSIX advisory shared and exclusive |
| 1305 ** lock primitives (called read-locks and write-locks below, to avoid |
| 1306 ** confusion with SQLite lock names). The algorithms are complicated |
| 1307 ** slightly in order to be compatible with windows systems simultaneously |
| 1308 ** accessing the same database file, in case that is ever required. |
| 1309 ** |
| 1310 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved |
| 1311 ** byte', each single bytes at well known offsets, and the 'shared byte |
| 1312 ** range', a range of 510 bytes at a well known offset. |
| 1313 ** |
| 1314 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending |
| 1315 ** byte'. If this is successful, a random byte from the 'shared byte |
| 1316 ** range' is read-locked and the lock on the 'pending byte' released. |
| 1317 ** |
| 1318 ** A process may only obtain a RESERVED lock after it has a SHARED lock. |
| 1319 ** A RESERVED lock is implemented by grabbing a write-lock on the |
| 1320 ** 'reserved byte'. |
| 1321 ** |
| 1322 ** A process may only obtain a PENDING lock after it has obtained a |
| 1323 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock |
| 1324 ** on the 'pending byte'. This ensures that no new SHARED locks can be |
| 1325 ** obtained, but existing SHARED locks are allowed to persist. A process |
| 1326 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. |
| 1327 ** This property is used by the algorithm for rolling back a journal file |
| 1328 ** after a crash. |
| 1329 ** |
| 1330 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is |
| 1331 ** implemented by obtaining a write-lock on the entire 'shared byte |
| 1332 ** range'. Since all other locks require a read-lock on one of the bytes |
| 1333 ** within this range, this ensures that no other locks are held on the |
| 1334 ** database. |
| 1335 ** |
| 1336 ** The reason a single byte cannot be used instead of the 'shared byte |
| 1337 ** range' is that some versions of windows do not support read-locks. By |
| 1338 ** locking a random byte from a range, concurrent SHARED locks may exist |
| 1339 ** even if the locking primitive used is always a write-lock. |
| 1340 */ |
| 1341 int rc = SQLITE_OK; |
| 1342 unixFile *pFile = (unixFile*)id; |
| 1343 unixInodeInfo *pInode = pFile->pInode; |
| 1344 struct flock lock; |
| 1345 int tErrno = 0; |
| 1346 |
| 1347 assert( pFile ); |
| 1348 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, |
| 1349 azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| 1350 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); |
| 1351 |
| 1352 /* If there is already a lock of this type or more restrictive on the |
| 1353 ** unixFile, do nothing. Don't use the end_lock: exit path, as |
| 1354 ** unixEnterMutex() hasn't been called yet. |
| 1355 */ |
| 1356 if( pFile->eFileLock>=eFileLock ){ |
| 1357 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
| 1358 azFileLock(eFileLock))); |
| 1359 return SQLITE_OK; |
| 1360 } |
| 1361 |
| 1362 /* Make sure the locking sequence is correct. |
| 1363 ** (1) We never move from unlocked to anything higher than shared lock. |
| 1364 ** (2) SQLite never explicitly requests a pendig lock. |
| 1365 ** (3) A shared lock is always held when a reserve lock is requested. |
| 1366 */ |
| 1367 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| 1368 assert( eFileLock!=PENDING_LOCK ); |
| 1369 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| 1370 |
| 1371 /* This mutex is needed because pFile->pInode is shared across threads |
| 1372 */ |
| 1373 unixEnterMutex(); |
| 1374 pInode = pFile->pInode; |
| 1375 |
| 1376 /* If some thread using this PID has a lock via a different unixFile* |
| 1377 ** handle that precludes the requested lock, return BUSY. |
| 1378 */ |
| 1379 if( (pFile->eFileLock!=pInode->eFileLock && |
| 1380 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| 1381 ){ |
| 1382 rc = SQLITE_BUSY; |
| 1383 goto end_lock; |
| 1384 } |
| 1385 |
| 1386 /* If a SHARED lock is requested, and some thread using this PID already |
| 1387 ** has a SHARED or RESERVED lock, then increment reference counts and |
| 1388 ** return SQLITE_OK. |
| 1389 */ |
| 1390 if( eFileLock==SHARED_LOCK && |
| 1391 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| 1392 assert( eFileLock==SHARED_LOCK ); |
| 1393 assert( pFile->eFileLock==0 ); |
| 1394 assert( pInode->nShared>0 ); |
| 1395 pFile->eFileLock = SHARED_LOCK; |
| 1396 pInode->nShared++; |
| 1397 pInode->nLock++; |
| 1398 goto end_lock; |
| 1399 } |
| 1400 |
| 1401 |
| 1402 /* A PENDING lock is needed before acquiring a SHARED lock and before |
| 1403 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| 1404 ** be released. |
| 1405 */ |
| 1406 lock.l_len = 1L; |
| 1407 lock.l_whence = SEEK_SET; |
| 1408 if( eFileLock==SHARED_LOCK |
| 1409 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| 1410 ){ |
| 1411 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); |
| 1412 lock.l_start = PENDING_BYTE; |
| 1413 if( unixFileLock(pFile, &lock) ){ |
| 1414 tErrno = errno; |
| 1415 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1416 if( rc!=SQLITE_BUSY ){ |
| 1417 pFile->lastErrno = tErrno; |
| 1418 } |
| 1419 goto end_lock; |
| 1420 } |
| 1421 } |
| 1422 |
| 1423 |
| 1424 /* If control gets to this point, then actually go ahead and make |
| 1425 ** operating system calls for the specified lock. |
| 1426 */ |
| 1427 if( eFileLock==SHARED_LOCK ){ |
| 1428 assert( pInode->nShared==0 ); |
| 1429 assert( pInode->eFileLock==0 ); |
| 1430 assert( rc==SQLITE_OK ); |
| 1431 |
| 1432 /* Now get the read-lock */ |
| 1433 lock.l_start = SHARED_FIRST; |
| 1434 lock.l_len = SHARED_SIZE; |
| 1435 if( unixFileLock(pFile, &lock) ){ |
| 1436 tErrno = errno; |
| 1437 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1438 } |
| 1439 |
| 1440 /* Drop the temporary PENDING lock */ |
| 1441 lock.l_start = PENDING_BYTE; |
| 1442 lock.l_len = 1L; |
| 1443 lock.l_type = F_UNLCK; |
| 1444 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ |
| 1445 /* This could happen with a network mount */ |
| 1446 tErrno = errno; |
| 1447 rc = SQLITE_IOERR_UNLOCK; |
| 1448 } |
| 1449 |
| 1450 if( rc ){ |
| 1451 if( rc!=SQLITE_BUSY ){ |
| 1452 pFile->lastErrno = tErrno; |
| 1453 } |
| 1454 goto end_lock; |
| 1455 }else{ |
| 1456 pFile->eFileLock = SHARED_LOCK; |
| 1457 pInode->nLock++; |
| 1458 pInode->nShared = 1; |
| 1459 } |
| 1460 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| 1461 /* We are trying for an exclusive lock but another thread in this |
| 1462 ** same process is still holding a shared lock. */ |
| 1463 rc = SQLITE_BUSY; |
| 1464 }else{ |
| 1465 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| 1466 ** assumed that there is a SHARED or greater lock on the file |
| 1467 ** already. |
| 1468 */ |
| 1469 assert( 0!=pFile->eFileLock ); |
| 1470 lock.l_type = F_WRLCK; |
| 1471 |
| 1472 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); |
| 1473 if( eFileLock==RESERVED_LOCK ){ |
| 1474 lock.l_start = RESERVED_BYTE; |
| 1475 lock.l_len = 1L; |
| 1476 }else{ |
| 1477 lock.l_start = SHARED_FIRST; |
| 1478 lock.l_len = SHARED_SIZE; |
| 1479 } |
| 1480 |
| 1481 if( unixFileLock(pFile, &lock) ){ |
| 1482 tErrno = errno; |
| 1483 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1484 if( rc!=SQLITE_BUSY ){ |
| 1485 pFile->lastErrno = tErrno; |
| 1486 } |
| 1487 } |
| 1488 } |
| 1489 |
| 1490 |
| 1491 #ifndef NDEBUG |
| 1492 /* Set up the transaction-counter change checking flags when |
| 1493 ** transitioning from a SHARED to a RESERVED lock. The change |
| 1494 ** from SHARED to RESERVED marks the beginning of a normal |
| 1495 ** write operation (not a hot journal rollback). |
| 1496 */ |
| 1497 if( rc==SQLITE_OK |
| 1498 && pFile->eFileLock<=SHARED_LOCK |
| 1499 && eFileLock==RESERVED_LOCK |
| 1500 ){ |
| 1501 pFile->transCntrChng = 0; |
| 1502 pFile->dbUpdate = 0; |
| 1503 pFile->inNormalWrite = 1; |
| 1504 } |
| 1505 #endif |
| 1506 |
| 1507 |
| 1508 if( rc==SQLITE_OK ){ |
| 1509 pFile->eFileLock = eFileLock; |
| 1510 pInode->eFileLock = eFileLock; |
| 1511 }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| 1512 pFile->eFileLock = PENDING_LOCK; |
| 1513 pInode->eFileLock = PENDING_LOCK; |
| 1514 } |
| 1515 |
| 1516 end_lock: |
| 1517 unixLeaveMutex(); |
| 1518 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), |
| 1519 rc==SQLITE_OK ? "ok" : "failed")); |
| 1520 return rc; |
| 1521 } |
| 1522 |
| 1523 /* |
| 1524 ** Add the file descriptor used by file handle pFile to the corresponding |
| 1525 ** pUnused list. |
| 1526 */ |
| 1527 static void setPendingFd(unixFile *pFile){ |
| 1528 unixInodeInfo *pInode = pFile->pInode; |
| 1529 UnixUnusedFd *p = pFile->pUnused; |
| 1530 p->pNext = pInode->pUnused; |
| 1531 pInode->pUnused = p; |
| 1532 pFile->h = -1; |
| 1533 pFile->pUnused = 0; |
| 1534 } |
| 1535 |
| 1536 /* |
| 1537 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 1538 ** must be either NO_LOCK or SHARED_LOCK. |
| 1539 ** |
| 1540 ** If the locking level of the file descriptor is already at or below |
| 1541 ** the requested locking level, this routine is a no-op. |
| 1542 ** |
| 1543 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED |
| 1544 ** the byte range is divided into 2 parts and the first part is unlocked then |
| 1545 ** set to a read lock, then the other part is simply unlocked. This works |
| 1546 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to |
| 1547 ** remove the write lock on a region when a read lock is set. |
| 1548 */ |
| 1549 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ |
| 1550 unixFile *pFile = (unixFile*)id; |
| 1551 unixInodeInfo *pInode; |
| 1552 struct flock lock; |
| 1553 int rc = SQLITE_OK; |
| 1554 int h; |
| 1555 |
| 1556 assert( pFile ); |
| 1557 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, |
| 1558 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| 1559 getpid())); |
| 1560 |
| 1561 assert( eFileLock<=SHARED_LOCK ); |
| 1562 if( pFile->eFileLock<=eFileLock ){ |
| 1563 return SQLITE_OK; |
| 1564 } |
| 1565 unixEnterMutex(); |
| 1566 h = pFile->h; |
| 1567 pInode = pFile->pInode; |
| 1568 assert( pInode->nShared!=0 ); |
| 1569 if( pFile->eFileLock>SHARED_LOCK ){ |
| 1570 assert( pInode->eFileLock==pFile->eFileLock ); |
| 1571 SimulateIOErrorBenign(1); |
| 1572 SimulateIOError( h=(-1) ) |
| 1573 SimulateIOErrorBenign(0); |
| 1574 |
| 1575 #ifndef NDEBUG |
| 1576 /* When reducing a lock such that other processes can start |
| 1577 ** reading the database file again, make sure that the |
| 1578 ** transaction counter was updated if any part of the database |
| 1579 ** file changed. If the transaction counter is not updated, |
| 1580 ** other connections to the same file might not realize that |
| 1581 ** the file has changed and hence might not know to flush their |
| 1582 ** cache. The use of a stale cache can lead to database corruption. |
| 1583 */ |
| 1584 #if 0 |
| 1585 assert( pFile->inNormalWrite==0 |
| 1586 || pFile->dbUpdate==0 |
| 1587 || pFile->transCntrChng==1 ); |
| 1588 #endif |
| 1589 pFile->inNormalWrite = 0; |
| 1590 #endif |
| 1591 |
| 1592 /* downgrading to a shared lock on NFS involves clearing the write lock |
| 1593 ** before establishing the readlock - to avoid a race condition we downgrade |
| 1594 ** the lock in 2 blocks, so that part of the range will be covered by a |
| 1595 ** write lock until the rest is covered by a read lock: |
| 1596 ** 1: [WWWWW] |
| 1597 ** 2: [....W] |
| 1598 ** 3: [RRRRW] |
| 1599 ** 4: [RRRR.] |
| 1600 */ |
| 1601 if( eFileLock==SHARED_LOCK ){ |
| 1602 |
| 1603 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE |
| 1604 (void)handleNFSUnlock; |
| 1605 assert( handleNFSUnlock==0 ); |
| 1606 #endif |
| 1607 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 1608 if( handleNFSUnlock ){ |
| 1609 int tErrno; /* Error code from system call errors */ |
| 1610 off_t divSize = SHARED_SIZE - 1; |
| 1611 |
| 1612 lock.l_type = F_UNLCK; |
| 1613 lock.l_whence = SEEK_SET; |
| 1614 lock.l_start = SHARED_FIRST; |
| 1615 lock.l_len = divSize; |
| 1616 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1617 tErrno = errno; |
| 1618 rc = SQLITE_IOERR_UNLOCK; |
| 1619 if( IS_LOCK_ERROR(rc) ){ |
| 1620 pFile->lastErrno = tErrno; |
| 1621 } |
| 1622 goto end_unlock; |
| 1623 } |
| 1624 lock.l_type = F_RDLCK; |
| 1625 lock.l_whence = SEEK_SET; |
| 1626 lock.l_start = SHARED_FIRST; |
| 1627 lock.l_len = divSize; |
| 1628 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1629 tErrno = errno; |
| 1630 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); |
| 1631 if( IS_LOCK_ERROR(rc) ){ |
| 1632 pFile->lastErrno = tErrno; |
| 1633 } |
| 1634 goto end_unlock; |
| 1635 } |
| 1636 lock.l_type = F_UNLCK; |
| 1637 lock.l_whence = SEEK_SET; |
| 1638 lock.l_start = SHARED_FIRST+divSize; |
| 1639 lock.l_len = SHARED_SIZE-divSize; |
| 1640 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1641 tErrno = errno; |
| 1642 rc = SQLITE_IOERR_UNLOCK; |
| 1643 if( IS_LOCK_ERROR(rc) ){ |
| 1644 pFile->lastErrno = tErrno; |
| 1645 } |
| 1646 goto end_unlock; |
| 1647 } |
| 1648 }else |
| 1649 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 1650 { |
| 1651 lock.l_type = F_RDLCK; |
| 1652 lock.l_whence = SEEK_SET; |
| 1653 lock.l_start = SHARED_FIRST; |
| 1654 lock.l_len = SHARED_SIZE; |
| 1655 if( unixFileLock(pFile, &lock) ){ |
| 1656 /* In theory, the call to unixFileLock() cannot fail because another |
| 1657 ** process is holding an incompatible lock. If it does, this |
| 1658 ** indicates that the other process is not following the locking |
| 1659 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning |
| 1660 ** SQLITE_BUSY would confuse the upper layer (in practice it causes |
| 1661 ** an assert to fail). */ |
| 1662 rc = SQLITE_IOERR_RDLOCK; |
| 1663 pFile->lastErrno = errno; |
| 1664 goto end_unlock; |
| 1665 } |
| 1666 } |
| 1667 } |
| 1668 lock.l_type = F_UNLCK; |
| 1669 lock.l_whence = SEEK_SET; |
| 1670 lock.l_start = PENDING_BYTE; |
| 1671 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); |
| 1672 if( unixFileLock(pFile, &lock)==0 ){ |
| 1673 pInode->eFileLock = SHARED_LOCK; |
| 1674 }else{ |
| 1675 rc = SQLITE_IOERR_UNLOCK; |
| 1676 pFile->lastErrno = errno; |
| 1677 goto end_unlock; |
| 1678 } |
| 1679 } |
| 1680 if( eFileLock==NO_LOCK ){ |
| 1681 /* Decrement the shared lock counter. Release the lock using an |
| 1682 ** OS call only when all threads in this same process have released |
| 1683 ** the lock. |
| 1684 */ |
| 1685 pInode->nShared--; |
| 1686 if( pInode->nShared==0 ){ |
| 1687 lock.l_type = F_UNLCK; |
| 1688 lock.l_whence = SEEK_SET; |
| 1689 lock.l_start = lock.l_len = 0L; |
| 1690 SimulateIOErrorBenign(1); |
| 1691 SimulateIOError( h=(-1) ) |
| 1692 SimulateIOErrorBenign(0); |
| 1693 if( unixFileLock(pFile, &lock)==0 ){ |
| 1694 pInode->eFileLock = NO_LOCK; |
| 1695 }else{ |
| 1696 rc = SQLITE_IOERR_UNLOCK; |
| 1697 pFile->lastErrno = errno; |
| 1698 pInode->eFileLock = NO_LOCK; |
| 1699 pFile->eFileLock = NO_LOCK; |
| 1700 } |
| 1701 } |
| 1702 |
| 1703 /* Decrement the count of locks against this same file. When the |
| 1704 ** count reaches zero, close any other file descriptors whose close |
| 1705 ** was deferred because of outstanding locks. |
| 1706 */ |
| 1707 pInode->nLock--; |
| 1708 assert( pInode->nLock>=0 ); |
| 1709 if( pInode->nLock==0 ){ |
| 1710 closePendingFds(pFile); |
| 1711 } |
| 1712 } |
| 1713 |
| 1714 end_unlock: |
| 1715 unixLeaveMutex(); |
| 1716 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
| 1717 return rc; |
| 1718 } |
| 1719 |
| 1720 /* |
| 1721 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 1722 ** must be either NO_LOCK or SHARED_LOCK. |
| 1723 ** |
| 1724 ** If the locking level of the file descriptor is already at or below |
| 1725 ** the requested locking level, this routine is a no-op. |
| 1726 */ |
| 1727 static int unixUnlock(sqlite3_file *id, int eFileLock){ |
| 1728 return posixUnlock(id, eFileLock, 0); |
| 1729 } |
| 1730 |
| 1731 /* |
| 1732 ** This function performs the parts of the "close file" operation |
| 1733 ** common to all locking schemes. It closes the directory and file |
| 1734 ** handles, if they are valid, and sets all fields of the unixFile |
| 1735 ** structure to 0. |
| 1736 ** |
| 1737 ** It is *not* necessary to hold the mutex when this routine is called, |
| 1738 ** even on VxWorks. A mutex will be acquired on VxWorks by the |
| 1739 ** vxworksReleaseFileId() routine. |
| 1740 */ |
| 1741 static int closeUnixFile(sqlite3_file *id){ |
| 1742 unixFile *pFile = (unixFile*)id; |
| 1743 if( pFile->h>=0 ){ |
| 1744 robust_close(pFile, pFile->h, __LINE__); |
| 1745 pFile->h = -1; |
| 1746 } |
| 1747 #if OS_VXWORKS |
| 1748 if( pFile->pId ){ |
| 1749 if( pFile->isDelete ){ |
| 1750 osUnlink(pFile->pId->zCanonicalName); |
| 1751 } |
| 1752 vxworksReleaseFileId(pFile->pId); |
| 1753 pFile->pId = 0; |
| 1754 } |
| 1755 #endif |
| 1756 OSTRACE(("CLOSE %-3d\n", pFile->h)); |
| 1757 OpenCounter(-1); |
| 1758 sqlite3_free(pFile->pUnused); |
| 1759 memset(pFile, 0, sizeof(unixFile)); |
| 1760 return SQLITE_OK; |
| 1761 } |
| 1762 |
| 1763 /* |
| 1764 ** Close a file. |
| 1765 */ |
| 1766 static int unixClose(sqlite3_file *id){ |
| 1767 int rc = SQLITE_OK; |
| 1768 unixFile *pFile = (unixFile *)id; |
| 1769 unixUnlock(id, NO_LOCK); |
| 1770 unixEnterMutex(); |
| 1771 |
| 1772 /* unixFile.pInode is always valid here. Otherwise, a different close |
| 1773 ** routine (e.g. nolockClose()) would be called instead. |
| 1774 */ |
| 1775 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); |
| 1776 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ |
| 1777 /* If there are outstanding locks, do not actually close the file just |
| 1778 ** yet because that would clear those locks. Instead, add the file |
| 1779 ** descriptor to pInode->pUnused list. It will be automatically closed |
| 1780 ** when the last lock is cleared. |
| 1781 */ |
| 1782 setPendingFd(pFile); |
| 1783 } |
| 1784 releaseInodeInfo(pFile); |
| 1785 rc = closeUnixFile(id); |
| 1786 unixLeaveMutex(); |
| 1787 return rc; |
| 1788 } |
| 1789 |
| 1790 /************** End of the posix advisory lock implementation ***************** |
| 1791 ******************************************************************************/ |
| 1792 |
| 1793 /****************************************************************************** |
| 1794 ****************************** No-op Locking ********************************** |
| 1795 ** |
| 1796 ** Of the various locking implementations available, this is by far the |
| 1797 ** simplest: locking is ignored. No attempt is made to lock the database |
| 1798 ** file for reading or writing. |
| 1799 ** |
| 1800 ** This locking mode is appropriate for use on read-only databases |
| 1801 ** (ex: databases that are burned into CD-ROM, for example.) It can |
| 1802 ** also be used if the application employs some external mechanism to |
| 1803 ** prevent simultaneous access of the same database by two or more |
| 1804 ** database connections. But there is a serious risk of database |
| 1805 ** corruption if this locking mode is used in situations where multiple |
| 1806 ** database connections are accessing the same database file at the same |
| 1807 ** time and one or more of those connections are writing. |
| 1808 */ |
| 1809 |
| 1810 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ |
| 1811 UNUSED_PARAMETER(NotUsed); |
| 1812 *pResOut = 0; |
| 1813 return SQLITE_OK; |
| 1814 } |
| 1815 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ |
| 1816 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 1817 return SQLITE_OK; |
| 1818 } |
| 1819 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ |
| 1820 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 1821 return SQLITE_OK; |
| 1822 } |
| 1823 |
| 1824 /* |
| 1825 ** Close the file. |
| 1826 */ |
| 1827 static int nolockClose(sqlite3_file *id) { |
| 1828 return closeUnixFile(id); |
| 1829 } |
| 1830 |
| 1831 /******************* End of the no-op lock implementation ********************* |
| 1832 ******************************************************************************/ |
| 1833 |
| 1834 /****************************************************************************** |
| 1835 ************************* Begin dot-file Locking ****************************** |
| 1836 ** |
| 1837 ** The dotfile locking implementation uses the existance of separate lock |
| 1838 ** files in order to control access to the database. This works on just |
| 1839 ** about every filesystem imaginable. But there are serious downsides: |
| 1840 ** |
| 1841 ** (1) There is zero concurrency. A single reader blocks all other |
| 1842 ** connections from reading or writing the database. |
| 1843 ** |
| 1844 ** (2) An application crash or power loss can leave stale lock files |
| 1845 ** sitting around that need to be cleared manually. |
| 1846 ** |
| 1847 ** Nevertheless, a dotlock is an appropriate locking mode for use if no |
| 1848 ** other locking strategy is available. |
| 1849 ** |
| 1850 ** Dotfile locking works by creating a file in the same directory as the |
| 1851 ** database and with the same name but with a ".lock" extension added. |
| 1852 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock |
| 1853 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. |
| 1854 */ |
| 1855 |
| 1856 /* |
| 1857 ** The file suffix added to the data base filename in order to create the |
| 1858 ** lock file. |
| 1859 */ |
| 1860 #define DOTLOCK_SUFFIX ".lock" |
| 1861 |
| 1862 /* |
| 1863 ** This routine checks if there is a RESERVED lock held on the specified |
| 1864 ** file by this or any other process. If such a lock is held, set *pResOut |
| 1865 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 1866 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 1867 ** |
| 1868 ** In dotfile locking, either a lock exists or it does not. So in this |
| 1869 ** variation of CheckReservedLock(), *pResOut is set to true if any lock |
| 1870 ** is held on the file and false if the file is unlocked. |
| 1871 */ |
| 1872 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 1873 int rc = SQLITE_OK; |
| 1874 int reserved = 0; |
| 1875 unixFile *pFile = (unixFile*)id; |
| 1876 |
| 1877 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 1878 |
| 1879 assert( pFile ); |
| 1880 |
| 1881 /* Check if a thread in this process holds such a lock */ |
| 1882 if( pFile->eFileLock>SHARED_LOCK ){ |
| 1883 /* Either this connection or some other connection in the same process |
| 1884 ** holds a lock on the file. No need to check further. */ |
| 1885 reserved = 1; |
| 1886 }else{ |
| 1887 /* The lock is held if and only if the lockfile exists */ |
| 1888 const char *zLockFile = (const char*)pFile->lockingContext; |
| 1889 reserved = osAccess(zLockFile, 0)==0; |
| 1890 } |
| 1891 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); |
| 1892 *pResOut = reserved; |
| 1893 return rc; |
| 1894 } |
| 1895 |
| 1896 /* |
| 1897 ** Lock the file with the lock specified by parameter eFileLock - one |
| 1898 ** of the following: |
| 1899 ** |
| 1900 ** (1) SHARED_LOCK |
| 1901 ** (2) RESERVED_LOCK |
| 1902 ** (3) PENDING_LOCK |
| 1903 ** (4) EXCLUSIVE_LOCK |
| 1904 ** |
| 1905 ** Sometimes when requesting one lock state, additional lock states |
| 1906 ** are inserted in between. The locking might fail on one of the later |
| 1907 ** transitions leaving the lock state different from what it started but |
| 1908 ** still short of its goal. The following chart shows the allowed |
| 1909 ** transitions and the inserted intermediate states: |
| 1910 ** |
| 1911 ** UNLOCKED -> SHARED |
| 1912 ** SHARED -> RESERVED |
| 1913 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 1914 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 1915 ** PENDING -> EXCLUSIVE |
| 1916 ** |
| 1917 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 1918 ** routine to lower a locking level. |
| 1919 ** |
| 1920 ** With dotfile locking, we really only support state (4): EXCLUSIVE. |
| 1921 ** But we track the other locking levels internally. |
| 1922 */ |
| 1923 static int dotlockLock(sqlite3_file *id, int eFileLock) { |
| 1924 unixFile *pFile = (unixFile*)id; |
| 1925 int fd; |
| 1926 char *zLockFile = (char *)pFile->lockingContext; |
| 1927 int rc = SQLITE_OK; |
| 1928 |
| 1929 |
| 1930 /* If we have any lock, then the lock file already exists. All we have |
| 1931 ** to do is adjust our internal record of the lock level. |
| 1932 */ |
| 1933 if( pFile->eFileLock > NO_LOCK ){ |
| 1934 pFile->eFileLock = eFileLock; |
| 1935 #if !OS_VXWORKS |
| 1936 /* Always update the timestamp on the old file */ |
| 1937 utimes(zLockFile, NULL); |
| 1938 #endif |
| 1939 return SQLITE_OK; |
| 1940 } |
| 1941 |
| 1942 /* grab an exclusive lock */ |
| 1943 fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); |
| 1944 if( fd<0 ){ |
| 1945 /* failed to open/create the file, someone else may have stolen the lock */ |
| 1946 int tErrno = errno; |
| 1947 if( EEXIST == tErrno ){ |
| 1948 rc = SQLITE_BUSY; |
| 1949 } else { |
| 1950 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1951 if( IS_LOCK_ERROR(rc) ){ |
| 1952 pFile->lastErrno = tErrno; |
| 1953 } |
| 1954 } |
| 1955 return rc; |
| 1956 } |
| 1957 robust_close(pFile, fd, __LINE__); |
| 1958 |
| 1959 /* got it, set the type and return ok */ |
| 1960 pFile->eFileLock = eFileLock; |
| 1961 return rc; |
| 1962 } |
| 1963 |
| 1964 /* |
| 1965 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 1966 ** must be either NO_LOCK or SHARED_LOCK. |
| 1967 ** |
| 1968 ** If the locking level of the file descriptor is already at or below |
| 1969 ** the requested locking level, this routine is a no-op. |
| 1970 ** |
| 1971 ** When the locking level reaches NO_LOCK, delete the lock file. |
| 1972 */ |
| 1973 static int dotlockUnlock(sqlite3_file *id, int eFileLock) { |
| 1974 unixFile *pFile = (unixFile*)id; |
| 1975 char *zLockFile = (char *)pFile->lockingContext; |
| 1976 |
| 1977 assert( pFile ); |
| 1978 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, |
| 1979 pFile->eFileLock, getpid())); |
| 1980 assert( eFileLock<=SHARED_LOCK ); |
| 1981 |
| 1982 /* no-op if possible */ |
| 1983 if( pFile->eFileLock==eFileLock ){ |
| 1984 return SQLITE_OK; |
| 1985 } |
| 1986 |
| 1987 /* To downgrade to shared, simply update our internal notion of the |
| 1988 ** lock state. No need to mess with the file on disk. |
| 1989 */ |
| 1990 if( eFileLock==SHARED_LOCK ){ |
| 1991 pFile->eFileLock = SHARED_LOCK; |
| 1992 return SQLITE_OK; |
| 1993 } |
| 1994 |
| 1995 /* To fully unlock the database, delete the lock file */ |
| 1996 assert( eFileLock==NO_LOCK ); |
| 1997 if( osUnlink(zLockFile) ){ |
| 1998 int rc = 0; |
| 1999 int tErrno = errno; |
| 2000 if( ENOENT != tErrno ){ |
| 2001 rc = SQLITE_IOERR_UNLOCK; |
| 2002 } |
| 2003 if( IS_LOCK_ERROR(rc) ){ |
| 2004 pFile->lastErrno = tErrno; |
| 2005 } |
| 2006 return rc; |
| 2007 } |
| 2008 pFile->eFileLock = NO_LOCK; |
| 2009 return SQLITE_OK; |
| 2010 } |
| 2011 |
| 2012 /* |
| 2013 ** Close a file. Make sure the lock has been released before closing. |
| 2014 */ |
| 2015 static int dotlockClose(sqlite3_file *id) { |
| 2016 int rc; |
| 2017 if( id ){ |
| 2018 unixFile *pFile = (unixFile*)id; |
| 2019 dotlockUnlock(id, NO_LOCK); |
| 2020 sqlite3_free(pFile->lockingContext); |
| 2021 } |
| 2022 rc = closeUnixFile(id); |
| 2023 return rc; |
| 2024 } |
| 2025 /****************** End of the dot-file lock implementation ******************* |
| 2026 ******************************************************************************/ |
| 2027 |
| 2028 /****************************************************************************** |
| 2029 ************************** Begin flock Locking ******************************** |
| 2030 ** |
| 2031 ** Use the flock() system call to do file locking. |
| 2032 ** |
| 2033 ** flock() locking is like dot-file locking in that the various |
| 2034 ** fine-grain locking levels supported by SQLite are collapsed into |
| 2035 ** a single exclusive lock. In other words, SHARED, RESERVED, and |
| 2036 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite |
| 2037 ** still works when you do this, but concurrency is reduced since |
| 2038 ** only a single process can be reading the database at a time. |
| 2039 ** |
| 2040 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if |
| 2041 ** compiling for VXWORKS. |
| 2042 */ |
| 2043 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS |
| 2044 |
| 2045 /* |
| 2046 ** Retry flock() calls that fail with EINTR |
| 2047 */ |
| 2048 #ifdef EINTR |
| 2049 static int robust_flock(int fd, int op){ |
| 2050 int rc; |
| 2051 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); |
| 2052 return rc; |
| 2053 } |
| 2054 #else |
| 2055 # define robust_flock(a,b) flock(a,b) |
| 2056 #endif |
| 2057 |
| 2058 |
| 2059 /* |
| 2060 ** This routine checks if there is a RESERVED lock held on the specified |
| 2061 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2062 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2063 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2064 */ |
| 2065 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 2066 int rc = SQLITE_OK; |
| 2067 int reserved = 0; |
| 2068 unixFile *pFile = (unixFile*)id; |
| 2069 |
| 2070 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2071 |
| 2072 assert( pFile ); |
| 2073 |
| 2074 /* Check if a thread in this process holds such a lock */ |
| 2075 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2076 reserved = 1; |
| 2077 } |
| 2078 |
| 2079 /* Otherwise see if some other process holds it. */ |
| 2080 if( !reserved ){ |
| 2081 /* attempt to get the lock */ |
| 2082 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); |
| 2083 if( !lrc ){ |
| 2084 /* got the lock, unlock it */ |
| 2085 lrc = robust_flock(pFile->h, LOCK_UN); |
| 2086 if ( lrc ) { |
| 2087 int tErrno = errno; |
| 2088 /* unlock failed with an error */ |
| 2089 lrc = SQLITE_IOERR_UNLOCK; |
| 2090 if( IS_LOCK_ERROR(lrc) ){ |
| 2091 pFile->lastErrno = tErrno; |
| 2092 rc = lrc; |
| 2093 } |
| 2094 } |
| 2095 } else { |
| 2096 int tErrno = errno; |
| 2097 reserved = 1; |
| 2098 /* someone else might have it reserved */ |
| 2099 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 2100 if( IS_LOCK_ERROR(lrc) ){ |
| 2101 pFile->lastErrno = tErrno; |
| 2102 rc = lrc; |
| 2103 } |
| 2104 } |
| 2105 } |
| 2106 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); |
| 2107 |
| 2108 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2109 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
| 2110 rc = SQLITE_OK; |
| 2111 reserved=1; |
| 2112 } |
| 2113 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2114 *pResOut = reserved; |
| 2115 return rc; |
| 2116 } |
| 2117 |
| 2118 /* |
| 2119 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2120 ** of the following: |
| 2121 ** |
| 2122 ** (1) SHARED_LOCK |
| 2123 ** (2) RESERVED_LOCK |
| 2124 ** (3) PENDING_LOCK |
| 2125 ** (4) EXCLUSIVE_LOCK |
| 2126 ** |
| 2127 ** Sometimes when requesting one lock state, additional lock states |
| 2128 ** are inserted in between. The locking might fail on one of the later |
| 2129 ** transitions leaving the lock state different from what it started but |
| 2130 ** still short of its goal. The following chart shows the allowed |
| 2131 ** transitions and the inserted intermediate states: |
| 2132 ** |
| 2133 ** UNLOCKED -> SHARED |
| 2134 ** SHARED -> RESERVED |
| 2135 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2136 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2137 ** PENDING -> EXCLUSIVE |
| 2138 ** |
| 2139 ** flock() only really support EXCLUSIVE locks. We track intermediate |
| 2140 ** lock states in the sqlite3_file structure, but all locks SHARED or |
| 2141 ** above are really EXCLUSIVE locks and exclude all other processes from |
| 2142 ** access the file. |
| 2143 ** |
| 2144 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2145 ** routine to lower a locking level. |
| 2146 */ |
| 2147 static int flockLock(sqlite3_file *id, int eFileLock) { |
| 2148 int rc = SQLITE_OK; |
| 2149 unixFile *pFile = (unixFile*)id; |
| 2150 |
| 2151 assert( pFile ); |
| 2152 |
| 2153 /* if we already have a lock, it is exclusive. |
| 2154 ** Just adjust level and punt on outta here. */ |
| 2155 if (pFile->eFileLock > NO_LOCK) { |
| 2156 pFile->eFileLock = eFileLock; |
| 2157 return SQLITE_OK; |
| 2158 } |
| 2159 |
| 2160 /* grab an exclusive lock */ |
| 2161 |
| 2162 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { |
| 2163 int tErrno = errno; |
| 2164 /* didn't get, must be busy */ |
| 2165 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 2166 if( IS_LOCK_ERROR(rc) ){ |
| 2167 pFile->lastErrno = tErrno; |
| 2168 } |
| 2169 } else { |
| 2170 /* got it, set the type and return ok */ |
| 2171 pFile->eFileLock = eFileLock; |
| 2172 } |
| 2173 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), |
| 2174 rc==SQLITE_OK ? "ok" : "failed")); |
| 2175 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2176 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
| 2177 rc = SQLITE_BUSY; |
| 2178 } |
| 2179 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2180 return rc; |
| 2181 } |
| 2182 |
| 2183 |
| 2184 /* |
| 2185 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2186 ** must be either NO_LOCK or SHARED_LOCK. |
| 2187 ** |
| 2188 ** If the locking level of the file descriptor is already at or below |
| 2189 ** the requested locking level, this routine is a no-op. |
| 2190 */ |
| 2191 static int flockUnlock(sqlite3_file *id, int eFileLock) { |
| 2192 unixFile *pFile = (unixFile*)id; |
| 2193 |
| 2194 assert( pFile ); |
| 2195 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, |
| 2196 pFile->eFileLock, getpid())); |
| 2197 assert( eFileLock<=SHARED_LOCK ); |
| 2198 |
| 2199 /* no-op if possible */ |
| 2200 if( pFile->eFileLock==eFileLock ){ |
| 2201 return SQLITE_OK; |
| 2202 } |
| 2203 |
| 2204 /* shared can just be set because we always have an exclusive */ |
| 2205 if (eFileLock==SHARED_LOCK) { |
| 2206 pFile->eFileLock = eFileLock; |
| 2207 return SQLITE_OK; |
| 2208 } |
| 2209 |
| 2210 /* no, really, unlock. */ |
| 2211 if( robust_flock(pFile->h, LOCK_UN) ){ |
| 2212 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2213 return SQLITE_OK; |
| 2214 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2215 return SQLITE_IOERR_UNLOCK; |
| 2216 }else{ |
| 2217 pFile->eFileLock = NO_LOCK; |
| 2218 return SQLITE_OK; |
| 2219 } |
| 2220 } |
| 2221 |
| 2222 /* |
| 2223 ** Close a file. |
| 2224 */ |
| 2225 static int flockClose(sqlite3_file *id) { |
| 2226 if( id ){ |
| 2227 flockUnlock(id, NO_LOCK); |
| 2228 } |
| 2229 return closeUnixFile(id); |
| 2230 } |
| 2231 |
| 2232 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ |
| 2233 |
| 2234 /******************* End of the flock lock implementation ********************* |
| 2235 ******************************************************************************/ |
| 2236 |
| 2237 /****************************************************************************** |
| 2238 ************************ Begin Named Semaphore Locking ************************ |
| 2239 ** |
| 2240 ** Named semaphore locking is only supported on VxWorks. |
| 2241 ** |
| 2242 ** Semaphore locking is like dot-lock and flock in that it really only |
| 2243 ** supports EXCLUSIVE locking. Only a single process can read or write |
| 2244 ** the database file at a time. This reduces potential concurrency, but |
| 2245 ** makes the lock implementation much easier. |
| 2246 */ |
| 2247 #if OS_VXWORKS |
| 2248 |
| 2249 /* |
| 2250 ** This routine checks if there is a RESERVED lock held on the specified |
| 2251 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2252 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2253 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2254 */ |
| 2255 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 2256 int rc = SQLITE_OK; |
| 2257 int reserved = 0; |
| 2258 unixFile *pFile = (unixFile*)id; |
| 2259 |
| 2260 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2261 |
| 2262 assert( pFile ); |
| 2263 |
| 2264 /* Check if a thread in this process holds such a lock */ |
| 2265 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2266 reserved = 1; |
| 2267 } |
| 2268 |
| 2269 /* Otherwise see if some other process holds it. */ |
| 2270 if( !reserved ){ |
| 2271 sem_t *pSem = pFile->pInode->pSem; |
| 2272 struct stat statBuf; |
| 2273 |
| 2274 if( sem_trywait(pSem)==-1 ){ |
| 2275 int tErrno = errno; |
| 2276 if( EAGAIN != tErrno ){ |
| 2277 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
| 2278 pFile->lastErrno = tErrno; |
| 2279 } else { |
| 2280 /* someone else has the lock when we are in NO_LOCK */ |
| 2281 reserved = (pFile->eFileLock < SHARED_LOCK); |
| 2282 } |
| 2283 }else{ |
| 2284 /* we could have it if we want it */ |
| 2285 sem_post(pSem); |
| 2286 } |
| 2287 } |
| 2288 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); |
| 2289 |
| 2290 *pResOut = reserved; |
| 2291 return rc; |
| 2292 } |
| 2293 |
| 2294 /* |
| 2295 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2296 ** of the following: |
| 2297 ** |
| 2298 ** (1) SHARED_LOCK |
| 2299 ** (2) RESERVED_LOCK |
| 2300 ** (3) PENDING_LOCK |
| 2301 ** (4) EXCLUSIVE_LOCK |
| 2302 ** |
| 2303 ** Sometimes when requesting one lock state, additional lock states |
| 2304 ** are inserted in between. The locking might fail on one of the later |
| 2305 ** transitions leaving the lock state different from what it started but |
| 2306 ** still short of its goal. The following chart shows the allowed |
| 2307 ** transitions and the inserted intermediate states: |
| 2308 ** |
| 2309 ** UNLOCKED -> SHARED |
| 2310 ** SHARED -> RESERVED |
| 2311 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2312 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2313 ** PENDING -> EXCLUSIVE |
| 2314 ** |
| 2315 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate |
| 2316 ** lock states in the sqlite3_file structure, but all locks SHARED or |
| 2317 ** above are really EXCLUSIVE locks and exclude all other processes from |
| 2318 ** access the file. |
| 2319 ** |
| 2320 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2321 ** routine to lower a locking level. |
| 2322 */ |
| 2323 static int semLock(sqlite3_file *id, int eFileLock) { |
| 2324 unixFile *pFile = (unixFile*)id; |
| 2325 int fd; |
| 2326 sem_t *pSem = pFile->pInode->pSem; |
| 2327 int rc = SQLITE_OK; |
| 2328 |
| 2329 /* if we already have a lock, it is exclusive. |
| 2330 ** Just adjust level and punt on outta here. */ |
| 2331 if (pFile->eFileLock > NO_LOCK) { |
| 2332 pFile->eFileLock = eFileLock; |
| 2333 rc = SQLITE_OK; |
| 2334 goto sem_end_lock; |
| 2335 } |
| 2336 |
| 2337 /* lock semaphore now but bail out when already locked. */ |
| 2338 if( sem_trywait(pSem)==-1 ){ |
| 2339 rc = SQLITE_BUSY; |
| 2340 goto sem_end_lock; |
| 2341 } |
| 2342 |
| 2343 /* got it, set the type and return ok */ |
| 2344 pFile->eFileLock = eFileLock; |
| 2345 |
| 2346 sem_end_lock: |
| 2347 return rc; |
| 2348 } |
| 2349 |
| 2350 /* |
| 2351 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2352 ** must be either NO_LOCK or SHARED_LOCK. |
| 2353 ** |
| 2354 ** If the locking level of the file descriptor is already at or below |
| 2355 ** the requested locking level, this routine is a no-op. |
| 2356 */ |
| 2357 static int semUnlock(sqlite3_file *id, int eFileLock) { |
| 2358 unixFile *pFile = (unixFile*)id; |
| 2359 sem_t *pSem = pFile->pInode->pSem; |
| 2360 |
| 2361 assert( pFile ); |
| 2362 assert( pSem ); |
| 2363 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, |
| 2364 pFile->eFileLock, getpid())); |
| 2365 assert( eFileLock<=SHARED_LOCK ); |
| 2366 |
| 2367 /* no-op if possible */ |
| 2368 if( pFile->eFileLock==eFileLock ){ |
| 2369 return SQLITE_OK; |
| 2370 } |
| 2371 |
| 2372 /* shared can just be set because we always have an exclusive */ |
| 2373 if (eFileLock==SHARED_LOCK) { |
| 2374 pFile->eFileLock = eFileLock; |
| 2375 return SQLITE_OK; |
| 2376 } |
| 2377 |
| 2378 /* no, really unlock. */ |
| 2379 if ( sem_post(pSem)==-1 ) { |
| 2380 int rc, tErrno = errno; |
| 2381 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
| 2382 if( IS_LOCK_ERROR(rc) ){ |
| 2383 pFile->lastErrno = tErrno; |
| 2384 } |
| 2385 return rc; |
| 2386 } |
| 2387 pFile->eFileLock = NO_LOCK; |
| 2388 return SQLITE_OK; |
| 2389 } |
| 2390 |
| 2391 /* |
| 2392 ** Close a file. |
| 2393 */ |
| 2394 static int semClose(sqlite3_file *id) { |
| 2395 if( id ){ |
| 2396 unixFile *pFile = (unixFile*)id; |
| 2397 semUnlock(id, NO_LOCK); |
| 2398 assert( pFile ); |
| 2399 unixEnterMutex(); |
| 2400 releaseInodeInfo(pFile); |
| 2401 unixLeaveMutex(); |
| 2402 closeUnixFile(id); |
| 2403 } |
| 2404 return SQLITE_OK; |
| 2405 } |
| 2406 |
| 2407 #endif /* OS_VXWORKS */ |
| 2408 /* |
| 2409 ** Named semaphore locking is only available on VxWorks. |
| 2410 ** |
| 2411 *************** End of the named semaphore lock implementation **************** |
| 2412 ******************************************************************************/ |
| 2413 |
| 2414 |
| 2415 /****************************************************************************** |
| 2416 *************************** Begin AFP Locking ********************************* |
| 2417 ** |
| 2418 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found |
| 2419 ** on Apple Macintosh computers - both OS9 and OSX. |
| 2420 ** |
| 2421 ** Third-party implementations of AFP are available. But this code here |
| 2422 ** only works on OSX. |
| 2423 */ |
| 2424 |
| 2425 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 2426 /* |
| 2427 ** The afpLockingContext structure contains all afp lock specific state |
| 2428 */ |
| 2429 typedef struct afpLockingContext afpLockingContext; |
| 2430 struct afpLockingContext { |
| 2431 int reserved; |
| 2432 const char *dbPath; /* Name of the open file */ |
| 2433 }; |
| 2434 |
| 2435 struct ByteRangeLockPB2 |
| 2436 { |
| 2437 unsigned long long offset; /* offset to first byte to lock */ |
| 2438 unsigned long long length; /* nbr of bytes to lock */ |
| 2439 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ |
| 2440 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ |
| 2441 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ |
| 2442 int fd; /* file desc to assoc this lock with */ |
| 2443 }; |
| 2444 |
| 2445 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) |
| 2446 |
| 2447 /* |
| 2448 ** This is a utility for setting or clearing a bit-range lock on an |
| 2449 ** AFP filesystem. |
| 2450 ** |
| 2451 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. |
| 2452 */ |
| 2453 static int afpSetLock( |
| 2454 const char *path, /* Name of the file to be locked or unlocked */ |
| 2455 unixFile *pFile, /* Open file descriptor on path */ |
| 2456 unsigned long long offset, /* First byte to be locked */ |
| 2457 unsigned long long length, /* Number of bytes to lock */ |
| 2458 int setLockFlag /* True to set lock. False to clear lock */ |
| 2459 ){ |
| 2460 struct ByteRangeLockPB2 pb; |
| 2461 int err; |
| 2462 |
| 2463 pb.unLockFlag = setLockFlag ? 0 : 1; |
| 2464 pb.startEndFlag = 0; |
| 2465 pb.offset = offset; |
| 2466 pb.length = length; |
| 2467 pb.fd = pFile->h; |
| 2468 |
| 2469 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", |
| 2470 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), |
| 2471 offset, length)); |
| 2472 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); |
| 2473 if ( err==-1 ) { |
| 2474 int rc; |
| 2475 int tErrno = errno; |
| 2476 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", |
| 2477 path, tErrno, strerror(tErrno))); |
| 2478 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS |
| 2479 rc = SQLITE_BUSY; |
| 2480 #else |
| 2481 rc = sqliteErrorFromPosixError(tErrno, |
| 2482 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); |
| 2483 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ |
| 2484 if( IS_LOCK_ERROR(rc) ){ |
| 2485 pFile->lastErrno = tErrno; |
| 2486 } |
| 2487 return rc; |
| 2488 } else { |
| 2489 return SQLITE_OK; |
| 2490 } |
| 2491 } |
| 2492 |
| 2493 /* |
| 2494 ** This routine checks if there is a RESERVED lock held on the specified |
| 2495 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2496 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2497 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2498 */ |
| 2499 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 2500 int rc = SQLITE_OK; |
| 2501 int reserved = 0; |
| 2502 unixFile *pFile = (unixFile*)id; |
| 2503 |
| 2504 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2505 |
| 2506 assert( pFile ); |
| 2507 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| 2508 if( context->reserved ){ |
| 2509 *pResOut = 1; |
| 2510 return SQLITE_OK; |
| 2511 } |
| 2512 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
| 2513 |
| 2514 /* Check if a thread in this process holds such a lock */ |
| 2515 if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| 2516 reserved = 1; |
| 2517 } |
| 2518 |
| 2519 /* Otherwise see if some other process holds it. |
| 2520 */ |
| 2521 if( !reserved ){ |
| 2522 /* lock the RESERVED byte */ |
| 2523 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| 2524 if( SQLITE_OK==lrc ){ |
| 2525 /* if we succeeded in taking the reserved lock, unlock it to restore |
| 2526 ** the original state */ |
| 2527 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| 2528 } else { |
| 2529 /* if we failed to get the lock then someone else must have it */ |
| 2530 reserved = 1; |
| 2531 } |
| 2532 if( IS_LOCK_ERROR(lrc) ){ |
| 2533 rc=lrc; |
| 2534 } |
| 2535 } |
| 2536 |
| 2537 unixLeaveMutex(); |
| 2538 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); |
| 2539 |
| 2540 *pResOut = reserved; |
| 2541 return rc; |
| 2542 } |
| 2543 |
| 2544 /* |
| 2545 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2546 ** of the following: |
| 2547 ** |
| 2548 ** (1) SHARED_LOCK |
| 2549 ** (2) RESERVED_LOCK |
| 2550 ** (3) PENDING_LOCK |
| 2551 ** (4) EXCLUSIVE_LOCK |
| 2552 ** |
| 2553 ** Sometimes when requesting one lock state, additional lock states |
| 2554 ** are inserted in between. The locking might fail on one of the later |
| 2555 ** transitions leaving the lock state different from what it started but |
| 2556 ** still short of its goal. The following chart shows the allowed |
| 2557 ** transitions and the inserted intermediate states: |
| 2558 ** |
| 2559 ** UNLOCKED -> SHARED |
| 2560 ** SHARED -> RESERVED |
| 2561 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2562 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2563 ** PENDING -> EXCLUSIVE |
| 2564 ** |
| 2565 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2566 ** routine to lower a locking level. |
| 2567 */ |
| 2568 static int afpLock(sqlite3_file *id, int eFileLock){ |
| 2569 int rc = SQLITE_OK; |
| 2570 unixFile *pFile = (unixFile*)id; |
| 2571 unixInodeInfo *pInode = pFile->pInode; |
| 2572 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| 2573 |
| 2574 assert( pFile ); |
| 2575 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, |
| 2576 azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| 2577 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); |
| 2578 |
| 2579 /* If there is already a lock of this type or more restrictive on the |
| 2580 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as |
| 2581 ** unixEnterMutex() hasn't been called yet. |
| 2582 */ |
| 2583 if( pFile->eFileLock>=eFileLock ){ |
| 2584 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
| 2585 azFileLock(eFileLock))); |
| 2586 return SQLITE_OK; |
| 2587 } |
| 2588 |
| 2589 /* Make sure the locking sequence is correct |
| 2590 ** (1) We never move from unlocked to anything higher than shared lock. |
| 2591 ** (2) SQLite never explicitly requests a pendig lock. |
| 2592 ** (3) A shared lock is always held when a reserve lock is requested. |
| 2593 */ |
| 2594 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| 2595 assert( eFileLock!=PENDING_LOCK ); |
| 2596 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| 2597 |
| 2598 /* This mutex is needed because pFile->pInode is shared across threads |
| 2599 */ |
| 2600 unixEnterMutex(); |
| 2601 pInode = pFile->pInode; |
| 2602 |
| 2603 /* If some thread using this PID has a lock via a different unixFile* |
| 2604 ** handle that precludes the requested lock, return BUSY. |
| 2605 */ |
| 2606 if( (pFile->eFileLock!=pInode->eFileLock && |
| 2607 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| 2608 ){ |
| 2609 rc = SQLITE_BUSY; |
| 2610 goto afp_end_lock; |
| 2611 } |
| 2612 |
| 2613 /* If a SHARED lock is requested, and some thread using this PID already |
| 2614 ** has a SHARED or RESERVED lock, then increment reference counts and |
| 2615 ** return SQLITE_OK. |
| 2616 */ |
| 2617 if( eFileLock==SHARED_LOCK && |
| 2618 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| 2619 assert( eFileLock==SHARED_LOCK ); |
| 2620 assert( pFile->eFileLock==0 ); |
| 2621 assert( pInode->nShared>0 ); |
| 2622 pFile->eFileLock = SHARED_LOCK; |
| 2623 pInode->nShared++; |
| 2624 pInode->nLock++; |
| 2625 goto afp_end_lock; |
| 2626 } |
| 2627 |
| 2628 /* A PENDING lock is needed before acquiring a SHARED lock and before |
| 2629 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| 2630 ** be released. |
| 2631 */ |
| 2632 if( eFileLock==SHARED_LOCK |
| 2633 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| 2634 ){ |
| 2635 int failed; |
| 2636 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); |
| 2637 if (failed) { |
| 2638 rc = failed; |
| 2639 goto afp_end_lock; |
| 2640 } |
| 2641 } |
| 2642 |
| 2643 /* If control gets to this point, then actually go ahead and make |
| 2644 ** operating system calls for the specified lock. |
| 2645 */ |
| 2646 if( eFileLock==SHARED_LOCK ){ |
| 2647 int lrc1, lrc2, lrc1Errno; |
| 2648 long lk, mask; |
| 2649 |
| 2650 assert( pInode->nShared==0 ); |
| 2651 assert( pInode->eFileLock==0 ); |
| 2652 |
| 2653 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; |
| 2654 /* Now get the read-lock SHARED_LOCK */ |
| 2655 /* note that the quality of the randomness doesn't matter that much */ |
| 2656 lk = random(); |
| 2657 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); |
| 2658 lrc1 = afpSetLock(context->dbPath, pFile, |
| 2659 SHARED_FIRST+pInode->sharedByte, 1, 1); |
| 2660 if( IS_LOCK_ERROR(lrc1) ){ |
| 2661 lrc1Errno = pFile->lastErrno; |
| 2662 } |
| 2663 /* Drop the temporary PENDING lock */ |
| 2664 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| 2665 |
| 2666 if( IS_LOCK_ERROR(lrc1) ) { |
| 2667 pFile->lastErrno = lrc1Errno; |
| 2668 rc = lrc1; |
| 2669 goto afp_end_lock; |
| 2670 } else if( IS_LOCK_ERROR(lrc2) ){ |
| 2671 rc = lrc2; |
| 2672 goto afp_end_lock; |
| 2673 } else if( lrc1 != SQLITE_OK ) { |
| 2674 rc = lrc1; |
| 2675 } else { |
| 2676 pFile->eFileLock = SHARED_LOCK; |
| 2677 pInode->nLock++; |
| 2678 pInode->nShared = 1; |
| 2679 } |
| 2680 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| 2681 /* We are trying for an exclusive lock but another thread in this |
| 2682 ** same process is still holding a shared lock. */ |
| 2683 rc = SQLITE_BUSY; |
| 2684 }else{ |
| 2685 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| 2686 ** assumed that there is a SHARED or greater lock on the file |
| 2687 ** already. |
| 2688 */ |
| 2689 int failed = 0; |
| 2690 assert( 0!=pFile->eFileLock ); |
| 2691 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { |
| 2692 /* Acquire a RESERVED lock */ |
| 2693 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| 2694 if( !failed ){ |
| 2695 context->reserved = 1; |
| 2696 } |
| 2697 } |
| 2698 if (!failed && eFileLock == EXCLUSIVE_LOCK) { |
| 2699 /* Acquire an EXCLUSIVE lock */ |
| 2700 |
| 2701 /* Remove the shared lock before trying the range. we'll need to |
| 2702 ** reestablish the shared lock if we can't get the afpUnlock |
| 2703 */ |
| 2704 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + |
| 2705 pInode->sharedByte, 1, 0)) ){ |
| 2706 int failed2 = SQLITE_OK; |
| 2707 /* now attemmpt to get the exclusive lock range */ |
| 2708 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, |
| 2709 SHARED_SIZE, 1); |
| 2710 if( failed && (failed2 = afpSetLock(context->dbPath, pFile, |
| 2711 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ |
| 2712 /* Can't reestablish the shared lock. Sqlite can't deal, this is |
| 2713 ** a critical I/O error |
| 2714 */ |
| 2715 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : |
| 2716 SQLITE_IOERR_LOCK; |
| 2717 goto afp_end_lock; |
| 2718 } |
| 2719 }else{ |
| 2720 rc = failed; |
| 2721 } |
| 2722 } |
| 2723 if( failed ){ |
| 2724 rc = failed; |
| 2725 } |
| 2726 } |
| 2727 |
| 2728 if( rc==SQLITE_OK ){ |
| 2729 pFile->eFileLock = eFileLock; |
| 2730 pInode->eFileLock = eFileLock; |
| 2731 }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| 2732 pFile->eFileLock = PENDING_LOCK; |
| 2733 pInode->eFileLock = PENDING_LOCK; |
| 2734 } |
| 2735 |
| 2736 afp_end_lock: |
| 2737 unixLeaveMutex(); |
| 2738 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), |
| 2739 rc==SQLITE_OK ? "ok" : "failed")); |
| 2740 return rc; |
| 2741 } |
| 2742 |
| 2743 /* |
| 2744 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2745 ** must be either NO_LOCK or SHARED_LOCK. |
| 2746 ** |
| 2747 ** If the locking level of the file descriptor is already at or below |
| 2748 ** the requested locking level, this routine is a no-op. |
| 2749 */ |
| 2750 static int afpUnlock(sqlite3_file *id, int eFileLock) { |
| 2751 int rc = SQLITE_OK; |
| 2752 unixFile *pFile = (unixFile*)id; |
| 2753 unixInodeInfo *pInode; |
| 2754 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| 2755 int skipShared = 0; |
| 2756 #ifdef SQLITE_TEST |
| 2757 int h = pFile->h; |
| 2758 #endif |
| 2759 |
| 2760 assert( pFile ); |
| 2761 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, |
| 2762 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| 2763 getpid())); |
| 2764 |
| 2765 assert( eFileLock<=SHARED_LOCK ); |
| 2766 if( pFile->eFileLock<=eFileLock ){ |
| 2767 return SQLITE_OK; |
| 2768 } |
| 2769 unixEnterMutex(); |
| 2770 pInode = pFile->pInode; |
| 2771 assert( pInode->nShared!=0 ); |
| 2772 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2773 assert( pInode->eFileLock==pFile->eFileLock ); |
| 2774 SimulateIOErrorBenign(1); |
| 2775 SimulateIOError( h=(-1) ) |
| 2776 SimulateIOErrorBenign(0); |
| 2777 |
| 2778 #ifndef NDEBUG |
| 2779 /* When reducing a lock such that other processes can start |
| 2780 ** reading the database file again, make sure that the |
| 2781 ** transaction counter was updated if any part of the database |
| 2782 ** file changed. If the transaction counter is not updated, |
| 2783 ** other connections to the same file might not realize that |
| 2784 ** the file has changed and hence might not know to flush their |
| 2785 ** cache. The use of a stale cache can lead to database corruption. |
| 2786 */ |
| 2787 assert( pFile->inNormalWrite==0 |
| 2788 || pFile->dbUpdate==0 |
| 2789 || pFile->transCntrChng==1 ); |
| 2790 pFile->inNormalWrite = 0; |
| 2791 #endif |
| 2792 |
| 2793 if( pFile->eFileLock==EXCLUSIVE_LOCK ){ |
| 2794 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); |
| 2795 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ |
| 2796 /* only re-establish the shared lock if necessary */ |
| 2797 int sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| 2798 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); |
| 2799 } else { |
| 2800 skipShared = 1; |
| 2801 } |
| 2802 } |
| 2803 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ |
| 2804 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| 2805 } |
| 2806 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ |
| 2807 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| 2808 if( !rc ){ |
| 2809 context->reserved = 0; |
| 2810 } |
| 2811 } |
| 2812 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ |
| 2813 pInode->eFileLock = SHARED_LOCK; |
| 2814 } |
| 2815 } |
| 2816 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ |
| 2817 |
| 2818 /* Decrement the shared lock counter. Release the lock using an |
| 2819 ** OS call only when all threads in this same process have released |
| 2820 ** the lock. |
| 2821 */ |
| 2822 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| 2823 pInode->nShared--; |
| 2824 if( pInode->nShared==0 ){ |
| 2825 SimulateIOErrorBenign(1); |
| 2826 SimulateIOError( h=(-1) ) |
| 2827 SimulateIOErrorBenign(0); |
| 2828 if( !skipShared ){ |
| 2829 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); |
| 2830 } |
| 2831 if( !rc ){ |
| 2832 pInode->eFileLock = NO_LOCK; |
| 2833 pFile->eFileLock = NO_LOCK; |
| 2834 } |
| 2835 } |
| 2836 if( rc==SQLITE_OK ){ |
| 2837 pInode->nLock--; |
| 2838 assert( pInode->nLock>=0 ); |
| 2839 if( pInode->nLock==0 ){ |
| 2840 closePendingFds(pFile); |
| 2841 } |
| 2842 } |
| 2843 } |
| 2844 |
| 2845 unixLeaveMutex(); |
| 2846 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
| 2847 return rc; |
| 2848 } |
| 2849 |
| 2850 /* |
| 2851 ** Close a file & cleanup AFP specific locking context |
| 2852 */ |
| 2853 static int afpClose(sqlite3_file *id) { |
| 2854 int rc = SQLITE_OK; |
| 2855 if( id ){ |
| 2856 unixFile *pFile = (unixFile*)id; |
| 2857 afpUnlock(id, NO_LOCK); |
| 2858 unixEnterMutex(); |
| 2859 if( pFile->pInode && pFile->pInode->nLock ){ |
| 2860 /* If there are outstanding locks, do not actually close the file just |
| 2861 ** yet because that would clear those locks. Instead, add the file |
| 2862 ** descriptor to pInode->aPending. It will be automatically closed when |
| 2863 ** the last lock is cleared. |
| 2864 */ |
| 2865 setPendingFd(pFile); |
| 2866 } |
| 2867 releaseInodeInfo(pFile); |
| 2868 sqlite3_free(pFile->lockingContext); |
| 2869 rc = closeUnixFile(id); |
| 2870 unixLeaveMutex(); |
| 2871 } |
| 2872 return rc; |
| 2873 } |
| 2874 |
| 2875 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 2876 /* |
| 2877 ** The code above is the AFP lock implementation. The code is specific |
| 2878 ** to MacOSX and does not work on other unix platforms. No alternative |
| 2879 ** is available. If you don't compile for a mac, then the "unix-afp" |
| 2880 ** VFS is not available. |
| 2881 ** |
| 2882 ********************* End of the AFP lock implementation ********************** |
| 2883 ******************************************************************************/ |
| 2884 |
| 2885 /****************************************************************************** |
| 2886 *************************** Begin NFS Locking ********************************/ |
| 2887 |
| 2888 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 2889 /* |
| 2890 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2891 ** must be either NO_LOCK or SHARED_LOCK. |
| 2892 ** |
| 2893 ** If the locking level of the file descriptor is already at or below |
| 2894 ** the requested locking level, this routine is a no-op. |
| 2895 */ |
| 2896 static int nfsUnlock(sqlite3_file *id, int eFileLock){ |
| 2897 return posixUnlock(id, eFileLock, 1); |
| 2898 } |
| 2899 |
| 2900 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 2901 /* |
| 2902 ** The code above is the NFS lock implementation. The code is specific |
| 2903 ** to MacOSX and does not work on other unix platforms. No alternative |
| 2904 ** is available. |
| 2905 ** |
| 2906 ********************* End of the NFS lock implementation ********************** |
| 2907 ******************************************************************************/ |
| 2908 |
| 2909 /****************************************************************************** |
| 2910 **************** Non-locking sqlite3_file methods ***************************** |
| 2911 ** |
| 2912 ** The next division contains implementations for all methods of the |
| 2913 ** sqlite3_file object other than the locking methods. The locking |
| 2914 ** methods were defined in divisions above (one locking method per |
| 2915 ** division). Those methods that are common to all locking modes |
| 2916 ** are gather together into this division. |
| 2917 */ |
| 2918 |
| 2919 /* |
| 2920 ** Seek to the offset passed as the second argument, then read cnt |
| 2921 ** bytes into pBuf. Return the number of bytes actually read. |
| 2922 ** |
| 2923 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also |
| 2924 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from |
| 2925 ** one system to another. Since SQLite does not define USE_PREAD |
| 2926 ** any any form by default, we will not attempt to define _XOPEN_SOURCE. |
| 2927 ** See tickets #2741 and #2681. |
| 2928 ** |
| 2929 ** To avoid stomping the errno value on a failed read the lastErrno value |
| 2930 ** is set before returning. |
| 2931 */ |
| 2932 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ |
| 2933 int got; |
| 2934 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) |
| 2935 i64 newOffset; |
| 2936 #endif |
| 2937 TIMER_START; |
| 2938 #if defined(USE_PREAD) |
| 2939 do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); |
| 2940 SimulateIOError( got = -1 ); |
| 2941 #elif defined(USE_PREAD64) |
| 2942 do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR); |
| 2943 SimulateIOError( got = -1 ); |
| 2944 #else |
| 2945 newOffset = lseek(id->h, offset, SEEK_SET); |
| 2946 SimulateIOError( newOffset-- ); |
| 2947 if( newOffset!=offset ){ |
| 2948 if( newOffset == -1 ){ |
| 2949 ((unixFile*)id)->lastErrno = errno; |
| 2950 }else{ |
| 2951 ((unixFile*)id)->lastErrno = 0; |
| 2952 } |
| 2953 return -1; |
| 2954 } |
| 2955 do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); |
| 2956 #endif |
| 2957 TIMER_END; |
| 2958 if( got<0 ){ |
| 2959 ((unixFile*)id)->lastErrno = errno; |
| 2960 } |
| 2961 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); |
| 2962 return got; |
| 2963 } |
| 2964 |
| 2965 /* |
| 2966 ** Read data from a file into a buffer. Return SQLITE_OK if all |
| 2967 ** bytes were read successfully and SQLITE_IOERR if anything goes |
| 2968 ** wrong. |
| 2969 */ |
| 2970 static int unixRead( |
| 2971 sqlite3_file *id, |
| 2972 void *pBuf, |
| 2973 int amt, |
| 2974 sqlite3_int64 offset |
| 2975 ){ |
| 2976 unixFile *pFile = (unixFile *)id; |
| 2977 int got; |
| 2978 assert( id ); |
| 2979 |
| 2980 /* If this is a database file (not a journal, master-journal or temp |
| 2981 ** file), the bytes in the locking range should never be read or written. */ |
| 2982 #if 0 |
| 2983 assert( pFile->pUnused==0 |
| 2984 || offset>=PENDING_BYTE+512 |
| 2985 || offset+amt<=PENDING_BYTE |
| 2986 ); |
| 2987 #endif |
| 2988 |
| 2989 got = seekAndRead(pFile, offset, pBuf, amt); |
| 2990 if( got==amt ){ |
| 2991 return SQLITE_OK; |
| 2992 }else if( got<0 ){ |
| 2993 /* lastErrno set by seekAndRead */ |
| 2994 return SQLITE_IOERR_READ; |
| 2995 }else{ |
| 2996 pFile->lastErrno = 0; /* not a system error */ |
| 2997 /* Unread parts of the buffer must be zero-filled */ |
| 2998 memset(&((char*)pBuf)[got], 0, amt-got); |
| 2999 return SQLITE_IOERR_SHORT_READ; |
| 3000 } |
| 3001 } |
| 3002 |
| 3003 /* |
| 3004 ** Seek to the offset in id->offset then read cnt bytes into pBuf. |
| 3005 ** Return the number of bytes actually read. Update the offset. |
| 3006 ** |
| 3007 ** To avoid stomping the errno value on a failed write the lastErrno value |
| 3008 ** is set before returning. |
| 3009 */ |
| 3010 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ |
| 3011 int got; |
| 3012 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) |
| 3013 i64 newOffset; |
| 3014 #endif |
| 3015 TIMER_START; |
| 3016 #if defined(USE_PREAD) |
| 3017 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); |
| 3018 #elif defined(USE_PREAD64) |
| 3019 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR); |
| 3020 #else |
| 3021 newOffset = lseek(id->h, offset, SEEK_SET); |
| 3022 SimulateIOError( newOffset-- ); |
| 3023 if( newOffset!=offset ){ |
| 3024 if( newOffset == -1 ){ |
| 3025 ((unixFile*)id)->lastErrno = errno; |
| 3026 }else{ |
| 3027 ((unixFile*)id)->lastErrno = 0; |
| 3028 } |
| 3029 return -1; |
| 3030 } |
| 3031 do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); |
| 3032 #endif |
| 3033 TIMER_END; |
| 3034 if( got<0 ){ |
| 3035 ((unixFile*)id)->lastErrno = errno; |
| 3036 } |
| 3037 |
| 3038 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); |
| 3039 return got; |
| 3040 } |
| 3041 |
| 3042 |
| 3043 /* |
| 3044 ** Write data from a buffer into a file. Return SQLITE_OK on success |
| 3045 ** or some other error code on failure. |
| 3046 */ |
| 3047 static int unixWrite( |
| 3048 sqlite3_file *id, |
| 3049 const void *pBuf, |
| 3050 int amt, |
| 3051 sqlite3_int64 offset |
| 3052 ){ |
| 3053 unixFile *pFile = (unixFile*)id; |
| 3054 int wrote = 0; |
| 3055 assert( id ); |
| 3056 assert( amt>0 ); |
| 3057 |
| 3058 /* If this is a database file (not a journal, master-journal or temp |
| 3059 ** file), the bytes in the locking range should never be read or written. */ |
| 3060 #if 0 |
| 3061 assert( pFile->pUnused==0 |
| 3062 || offset>=PENDING_BYTE+512 |
| 3063 || offset+amt<=PENDING_BYTE |
| 3064 ); |
| 3065 #endif |
| 3066 |
| 3067 #ifndef NDEBUG |
| 3068 /* If we are doing a normal write to a database file (as opposed to |
| 3069 ** doing a hot-journal rollback or a write to some file other than a |
| 3070 ** normal database file) then record the fact that the database |
| 3071 ** has changed. If the transaction counter is modified, record that |
| 3072 ** fact too. |
| 3073 */ |
| 3074 if( pFile->inNormalWrite ){ |
| 3075 pFile->dbUpdate = 1; /* The database has been modified */ |
| 3076 if( offset<=24 && offset+amt>=27 ){ |
| 3077 int rc; |
| 3078 char oldCntr[4]; |
| 3079 SimulateIOErrorBenign(1); |
| 3080 rc = seekAndRead(pFile, 24, oldCntr, 4); |
| 3081 SimulateIOErrorBenign(0); |
| 3082 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ |
| 3083 pFile->transCntrChng = 1; /* The transaction counter has changed */ |
| 3084 } |
| 3085 } |
| 3086 } |
| 3087 #endif |
| 3088 |
| 3089 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ |
| 3090 amt -= wrote; |
| 3091 offset += wrote; |
| 3092 pBuf = &((char*)pBuf)[wrote]; |
| 3093 } |
| 3094 SimulateIOError(( wrote=(-1), amt=1 )); |
| 3095 SimulateDiskfullError(( wrote=0, amt=1 )); |
| 3096 |
| 3097 if( amt>0 ){ |
| 3098 if( wrote<0 ){ |
| 3099 /* lastErrno set by seekAndWrite */ |
| 3100 return SQLITE_IOERR_WRITE; |
| 3101 }else{ |
| 3102 pFile->lastErrno = 0; /* not a system error */ |
| 3103 return SQLITE_FULL; |
| 3104 } |
| 3105 } |
| 3106 |
| 3107 return SQLITE_OK; |
| 3108 } |
| 3109 |
| 3110 #ifdef SQLITE_TEST |
| 3111 /* |
| 3112 ** Count the number of fullsyncs and normal syncs. This is used to test |
| 3113 ** that syncs and fullsyncs are occurring at the right times. |
| 3114 */ |
| 3115 int sqlite3_sync_count = 0; |
| 3116 int sqlite3_fullsync_count = 0; |
| 3117 #endif |
| 3118 |
| 3119 /* |
| 3120 ** We do not trust systems to provide a working fdatasync(). Some do. |
| 3121 ** Others do no. To be safe, we will stick with the (slower) fsync(). |
| 3122 ** If you know that your system does support fdatasync() correctly, |
| 3123 ** then simply compile with -Dfdatasync=fdatasync |
| 3124 */ |
| 3125 #if !defined(fdatasync) && !defined(__linux__) |
| 3126 # define fdatasync fsync |
| 3127 #endif |
| 3128 |
| 3129 /* |
| 3130 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not |
| 3131 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently |
| 3132 ** only available on Mac OS X. But that could change. |
| 3133 */ |
| 3134 #ifdef F_FULLFSYNC |
| 3135 # define HAVE_FULLFSYNC 1 |
| 3136 #else |
| 3137 # define HAVE_FULLFSYNC 0 |
| 3138 #endif |
| 3139 |
| 3140 |
| 3141 /* |
| 3142 ** The fsync() system call does not work as advertised on many |
| 3143 ** unix systems. The following procedure is an attempt to make |
| 3144 ** it work better. |
| 3145 ** |
| 3146 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful |
| 3147 ** for testing when we want to run through the test suite quickly. |
| 3148 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC |
| 3149 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash |
| 3150 ** or power failure will likely corrupt the database file. |
| 3151 ** |
| 3152 ** SQLite sets the dataOnly flag if the size of the file is unchanged. |
| 3153 ** The idea behind dataOnly is that it should only write the file content |
| 3154 ** to disk, not the inode. We only set dataOnly if the file size is |
| 3155 ** unchanged since the file size is part of the inode. However, |
| 3156 ** Ted Ts'o tells us that fdatasync() will also write the inode if the |
| 3157 ** file size has changed. The only real difference between fdatasync() |
| 3158 ** and fsync(), Ted tells us, is that fdatasync() will not flush the |
| 3159 ** inode if the mtime or owner or other inode attributes have changed. |
| 3160 ** We only care about the file size, not the other file attributes, so |
| 3161 ** as far as SQLite is concerned, an fdatasync() is always adequate. |
| 3162 ** So, we always use fdatasync() if it is available, regardless of |
| 3163 ** the value of the dataOnly flag. |
| 3164 */ |
| 3165 static int full_fsync(int fd, int fullSync, int dataOnly){ |
| 3166 int rc; |
| 3167 |
| 3168 /* The following "ifdef/elif/else/" block has the same structure as |
| 3169 ** the one below. It is replicated here solely to avoid cluttering |
| 3170 ** up the real code with the UNUSED_PARAMETER() macros. |
| 3171 */ |
| 3172 #ifdef SQLITE_NO_SYNC |
| 3173 UNUSED_PARAMETER(fd); |
| 3174 UNUSED_PARAMETER(fullSync); |
| 3175 UNUSED_PARAMETER(dataOnly); |
| 3176 #elif HAVE_FULLFSYNC |
| 3177 UNUSED_PARAMETER(dataOnly); |
| 3178 #else |
| 3179 UNUSED_PARAMETER(fullSync); |
| 3180 UNUSED_PARAMETER(dataOnly); |
| 3181 #endif |
| 3182 |
| 3183 /* Record the number of times that we do a normal fsync() and |
| 3184 ** FULLSYNC. This is used during testing to verify that this procedure |
| 3185 ** gets called with the correct arguments. |
| 3186 */ |
| 3187 #ifdef SQLITE_TEST |
| 3188 if( fullSync ) sqlite3_fullsync_count++; |
| 3189 sqlite3_sync_count++; |
| 3190 #endif |
| 3191 |
| 3192 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a |
| 3193 ** no-op |
| 3194 */ |
| 3195 #ifdef SQLITE_NO_SYNC |
| 3196 rc = SQLITE_OK; |
| 3197 #elif HAVE_FULLFSYNC |
| 3198 if( fullSync ){ |
| 3199 rc = osFcntl(fd, F_FULLFSYNC, 0); |
| 3200 }else{ |
| 3201 rc = 1; |
| 3202 } |
| 3203 /* If the FULLFSYNC failed, fall back to attempting an fsync(). |
| 3204 ** It shouldn't be possible for fullfsync to fail on the local |
| 3205 ** file system (on OSX), so failure indicates that FULLFSYNC |
| 3206 ** isn't supported for this file system. So, attempt an fsync |
| 3207 ** and (for now) ignore the overhead of a superfluous fcntl call. |
| 3208 ** It'd be better to detect fullfsync support once and avoid |
| 3209 ** the fcntl call every time sync is called. |
| 3210 */ |
| 3211 if( rc ) rc = fsync(fd); |
| 3212 |
| 3213 #elif defined(__APPLE__) |
| 3214 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly |
| 3215 ** so currently we default to the macro that redefines fdatasync to fsync |
| 3216 */ |
| 3217 rc = fsync(fd); |
| 3218 #else |
| 3219 rc = fdatasync(fd); |
| 3220 #if OS_VXWORKS |
| 3221 if( rc==-1 && errno==ENOTSUP ){ |
| 3222 rc = fsync(fd); |
| 3223 } |
| 3224 #endif /* OS_VXWORKS */ |
| 3225 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ |
| 3226 |
| 3227 if( OS_VXWORKS && rc!= -1 ){ |
| 3228 rc = 0; |
| 3229 } |
| 3230 return rc; |
| 3231 } |
| 3232 |
| 3233 /* |
| 3234 ** Open a file descriptor to the directory containing file zFilename. |
| 3235 ** If successful, *pFd is set to the opened file descriptor and |
| 3236 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM |
| 3237 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined |
| 3238 ** value. |
| 3239 ** |
| 3240 ** The directory file descriptor is used for only one thing - to |
| 3241 ** fsync() a directory to make sure file creation and deletion events |
| 3242 ** are flushed to disk. Such fsyncs are not needed on newer |
| 3243 ** journaling filesystems, but are required on older filesystems. |
| 3244 ** |
| 3245 ** This routine can be overridden using the xSetSysCall interface. |
| 3246 ** The ability to override this routine was added in support of the |
| 3247 ** chromium sandbox. Opening a directory is a security risk (we are |
| 3248 ** told) so making it overrideable allows the chromium sandbox to |
| 3249 ** replace this routine with a harmless no-op. To make this routine |
| 3250 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves |
| 3251 ** *pFd set to a negative number. |
| 3252 ** |
| 3253 ** If SQLITE_OK is returned, the caller is responsible for closing |
| 3254 ** the file descriptor *pFd using close(). |
| 3255 */ |
| 3256 static int openDirectory(const char *zFilename, int *pFd){ |
| 3257 int ii; |
| 3258 int fd = -1; |
| 3259 char zDirname[MAX_PATHNAME+1]; |
| 3260 |
| 3261 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); |
| 3262 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); |
| 3263 if( ii>0 ){ |
| 3264 zDirname[ii] = '\0'; |
| 3265 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); |
| 3266 if( fd>=0 ){ |
| 3267 #ifdef FD_CLOEXEC |
| 3268 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
| 3269 #endif |
| 3270 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); |
| 3271 } |
| 3272 } |
| 3273 *pFd = fd; |
| 3274 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); |
| 3275 } |
| 3276 |
| 3277 /* |
| 3278 ** Make sure all writes to a particular file are committed to disk. |
| 3279 ** |
| 3280 ** If dataOnly==0 then both the file itself and its metadata (file |
| 3281 ** size, access time, etc) are synced. If dataOnly!=0 then only the |
| 3282 ** file data is synced. |
| 3283 ** |
| 3284 ** Under Unix, also make sure that the directory entry for the file |
| 3285 ** has been created by fsync-ing the directory that contains the file. |
| 3286 ** If we do not do this and we encounter a power failure, the directory |
| 3287 ** entry for the journal might not exist after we reboot. The next |
| 3288 ** SQLite to access the file will not know that the journal exists (because |
| 3289 ** the directory entry for the journal was never created) and the transaction |
| 3290 ** will not roll back - possibly leading to database corruption. |
| 3291 */ |
| 3292 static int unixSync(sqlite3_file *id, int flags){ |
| 3293 int rc; |
| 3294 unixFile *pFile = (unixFile*)id; |
| 3295 |
| 3296 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); |
| 3297 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; |
| 3298 |
| 3299 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ |
| 3300 assert((flags&0x0F)==SQLITE_SYNC_NORMAL |
| 3301 || (flags&0x0F)==SQLITE_SYNC_FULL |
| 3302 ); |
| 3303 |
| 3304 /* Unix cannot, but some systems may return SQLITE_FULL from here. This |
| 3305 ** line is to test that doing so does not cause any problems. |
| 3306 */ |
| 3307 SimulateDiskfullError( return SQLITE_FULL ); |
| 3308 |
| 3309 assert( pFile ); |
| 3310 OSTRACE(("SYNC %-3d\n", pFile->h)); |
| 3311 rc = full_fsync(pFile->h, isFullsync, isDataOnly); |
| 3312 SimulateIOError( rc=1 ); |
| 3313 if( rc ){ |
| 3314 pFile->lastErrno = errno; |
| 3315 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); |
| 3316 } |
| 3317 |
| 3318 /* Also fsync the directory containing the file if the DIRSYNC flag |
| 3319 ** is set. This is a one-time occurrance. Many systems (examples: AIX) |
| 3320 ** are unable to fsync a directory, so ignore errors on the fsync. |
| 3321 */ |
| 3322 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ |
| 3323 int dirfd; |
| 3324 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, |
| 3325 HAVE_FULLFSYNC, isFullsync)); |
| 3326 rc = osOpenDirectory(pFile->zPath, &dirfd); |
| 3327 if( rc==SQLITE_OK && dirfd>=0 ){ |
| 3328 full_fsync(dirfd, 0, 0); |
| 3329 robust_close(pFile, dirfd, __LINE__); |
| 3330 }else if( rc==SQLITE_CANTOPEN ){ |
| 3331 rc = SQLITE_OK; |
| 3332 } |
| 3333 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; |
| 3334 } |
| 3335 return rc; |
| 3336 } |
| 3337 |
| 3338 /* |
| 3339 ** Truncate an open file to a specified size |
| 3340 */ |
| 3341 static int unixTruncate(sqlite3_file *id, i64 nByte){ |
| 3342 unixFile *pFile = (unixFile *)id; |
| 3343 int rc; |
| 3344 assert( pFile ); |
| 3345 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); |
| 3346 |
| 3347 /* If the user has configured a chunk-size for this file, truncate the |
| 3348 ** file so that it consists of an integer number of chunks (i.e. the |
| 3349 ** actual file size after the operation may be larger than the requested |
| 3350 ** size). |
| 3351 */ |
| 3352 if( pFile->szChunk ){ |
| 3353 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; |
| 3354 } |
| 3355 |
| 3356 rc = robust_ftruncate(pFile->h, (off_t)nByte); |
| 3357 if( rc ){ |
| 3358 pFile->lastErrno = errno; |
| 3359 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| 3360 }else{ |
| 3361 #ifndef NDEBUG |
| 3362 /* If we are doing a normal write to a database file (as opposed to |
| 3363 ** doing a hot-journal rollback or a write to some file other than a |
| 3364 ** normal database file) and we truncate the file to zero length, |
| 3365 ** that effectively updates the change counter. This might happen |
| 3366 ** when restoring a database using the backup API from a zero-length |
| 3367 ** source. |
| 3368 */ |
| 3369 if( pFile->inNormalWrite && nByte==0 ){ |
| 3370 pFile->transCntrChng = 1; |
| 3371 } |
| 3372 #endif |
| 3373 |
| 3374 return SQLITE_OK; |
| 3375 } |
| 3376 } |
| 3377 |
| 3378 /* |
| 3379 ** Determine the current size of a file in bytes |
| 3380 */ |
| 3381 static int unixFileSize(sqlite3_file *id, i64 *pSize){ |
| 3382 int rc; |
| 3383 struct stat buf; |
| 3384 assert( id ); |
| 3385 rc = osFstat(((unixFile*)id)->h, &buf); |
| 3386 SimulateIOError( rc=1 ); |
| 3387 if( rc!=0 ){ |
| 3388 ((unixFile*)id)->lastErrno = errno; |
| 3389 return SQLITE_IOERR_FSTAT; |
| 3390 } |
| 3391 *pSize = buf.st_size; |
| 3392 |
| 3393 /* When opening a zero-size database, the findInodeInfo() procedure |
| 3394 ** writes a single byte into that file in order to work around a bug |
| 3395 ** in the OS-X msdos filesystem. In order to avoid problems with upper |
| 3396 ** layers, we need to report this file size as zero even though it is |
| 3397 ** really 1. Ticket #3260. |
| 3398 */ |
| 3399 if( *pSize==1 ) *pSize = 0; |
| 3400 |
| 3401 |
| 3402 return SQLITE_OK; |
| 3403 } |
| 3404 |
| 3405 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 3406 /* |
| 3407 ** Handler for proxy-locking file-control verbs. Defined below in the |
| 3408 ** proxying locking division. |
| 3409 */ |
| 3410 static int proxyFileControl(sqlite3_file*,int,void*); |
| 3411 #endif |
| 3412 |
| 3413 /* |
| 3414 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT |
| 3415 ** file-control operation. |
| 3416 ** |
| 3417 ** If the user has configured a chunk-size for this file, it could be |
| 3418 ** that the file needs to be extended at this point. Otherwise, the |
| 3419 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. |
| 3420 */ |
| 3421 static int fcntlSizeHint(unixFile *pFile, i64 nByte){ |
| 3422 if( pFile->szChunk ){ |
| 3423 i64 nSize; /* Required file size */ |
| 3424 struct stat buf; /* Used to hold return values of fstat() */ |
| 3425 |
| 3426 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; |
| 3427 |
| 3428 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; |
| 3429 if( nSize>(i64)buf.st_size ){ |
| 3430 |
| 3431 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| 3432 /* The code below is handling the return value of osFallocate() |
| 3433 ** correctly. posix_fallocate() is defined to "returns zero on success, |
| 3434 ** or an error number on failure". See the manpage for details. */ |
| 3435 int err; |
| 3436 do{ |
| 3437 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); |
| 3438 }while( err==EINTR ); |
| 3439 if( err ) return SQLITE_IOERR_WRITE; |
| 3440 #else |
| 3441 /* If the OS does not have posix_fallocate(), fake it. First use |
| 3442 ** ftruncate() to set the file size, then write a single byte to |
| 3443 ** the last byte in each block within the extended region. This |
| 3444 ** is the same technique used by glibc to implement posix_fallocate() |
| 3445 ** on systems that do not have a real fallocate() system call. |
| 3446 */ |
| 3447 int nBlk = buf.st_blksize; /* File-system block size */ |
| 3448 i64 iWrite; /* Next offset to write to */ |
| 3449 |
| 3450 if( robust_ftruncate(pFile->h, nSize) ){ |
| 3451 pFile->lastErrno = errno; |
| 3452 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| 3453 } |
| 3454 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; |
| 3455 while( iWrite<nSize ){ |
| 3456 int nWrite = seekAndWrite(pFile, iWrite, "", 1); |
| 3457 if( nWrite!=1 ) return SQLITE_IOERR_WRITE; |
| 3458 iWrite += nBlk; |
| 3459 } |
| 3460 #endif |
| 3461 } |
| 3462 } |
| 3463 |
| 3464 return SQLITE_OK; |
| 3465 } |
| 3466 |
| 3467 /* |
| 3468 ** Information and control of an open file handle. |
| 3469 */ |
| 3470 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ |
| 3471 switch( op ){ |
| 3472 case SQLITE_FCNTL_LOCKSTATE: { |
| 3473 *(int*)pArg = ((unixFile*)id)->eFileLock; |
| 3474 return SQLITE_OK; |
| 3475 } |
| 3476 case SQLITE_LAST_ERRNO: { |
| 3477 *(int*)pArg = ((unixFile*)id)->lastErrno; |
| 3478 return SQLITE_OK; |
| 3479 } |
| 3480 case SQLITE_FCNTL_CHUNK_SIZE: { |
| 3481 ((unixFile*)id)->szChunk = *(int *)pArg; |
| 3482 return SQLITE_OK; |
| 3483 } |
| 3484 case SQLITE_FCNTL_SIZE_HINT: { |
| 3485 return fcntlSizeHint((unixFile *)id, *(i64 *)pArg); |
| 3486 } |
| 3487 #ifndef NDEBUG |
| 3488 /* The pager calls this method to signal that it has done |
| 3489 ** a rollback and that the database is therefore unchanged and |
| 3490 ** it hence it is OK for the transaction change counter to be |
| 3491 ** unchanged. |
| 3492 */ |
| 3493 case SQLITE_FCNTL_DB_UNCHANGED: { |
| 3494 ((unixFile*)id)->dbUpdate = 0; |
| 3495 return SQLITE_OK; |
| 3496 } |
| 3497 #endif |
| 3498 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 3499 case SQLITE_SET_LOCKPROXYFILE: |
| 3500 case SQLITE_GET_LOCKPROXYFILE: { |
| 3501 return proxyFileControl(id,op,pArg); |
| 3502 } |
| 3503 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ |
| 3504 case SQLITE_FCNTL_SYNC_OMITTED: { |
| 3505 return SQLITE_OK; /* A no-op */ |
| 3506 } |
| 3507 } |
| 3508 return SQLITE_NOTFOUND; |
| 3509 } |
| 3510 |
| 3511 /* |
| 3512 ** Return the sector size in bytes of the underlying block device for |
| 3513 ** the specified file. This is almost always 512 bytes, but may be |
| 3514 ** larger for some devices. |
| 3515 ** |
| 3516 ** SQLite code assumes this function cannot fail. It also assumes that |
| 3517 ** if two files are created in the same file-system directory (i.e. |
| 3518 ** a database and its journal file) that the sector size will be the |
| 3519 ** same for both. |
| 3520 */ |
| 3521 static int unixSectorSize(sqlite3_file *NotUsed){ |
| 3522 UNUSED_PARAMETER(NotUsed); |
| 3523 return SQLITE_DEFAULT_SECTOR_SIZE; |
| 3524 } |
| 3525 |
| 3526 /* |
| 3527 ** Return the device characteristics for the file. This is always 0 for unix. |
| 3528 */ |
| 3529 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){ |
| 3530 UNUSED_PARAMETER(NotUsed); |
| 3531 return 0; |
| 3532 } |
| 3533 |
| 3534 #ifndef SQLITE_OMIT_WAL |
| 3535 |
| 3536 |
| 3537 /* |
| 3538 ** Object used to represent an shared memory buffer. |
| 3539 ** |
| 3540 ** When multiple threads all reference the same wal-index, each thread |
| 3541 ** has its own unixShm object, but they all point to a single instance |
| 3542 ** of this unixShmNode object. In other words, each wal-index is opened |
| 3543 ** only once per process. |
| 3544 ** |
| 3545 ** Each unixShmNode object is connected to a single unixInodeInfo object. |
| 3546 ** We could coalesce this object into unixInodeInfo, but that would mean |
| 3547 ** every open file that does not use shared memory (in other words, most |
| 3548 ** open files) would have to carry around this extra information. So |
| 3549 ** the unixInodeInfo object contains a pointer to this unixShmNode object |
| 3550 ** and the unixShmNode object is created only when needed. |
| 3551 ** |
| 3552 ** unixMutexHeld() must be true when creating or destroying |
| 3553 ** this object or while reading or writing the following fields: |
| 3554 ** |
| 3555 ** nRef |
| 3556 ** |
| 3557 ** The following fields are read-only after the object is created: |
| 3558 ** |
| 3559 ** fid |
| 3560 ** zFilename |
| 3561 ** |
| 3562 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and |
| 3563 ** unixMutexHeld() is true when reading or writing any other field |
| 3564 ** in this structure. |
| 3565 */ |
| 3566 struct unixShmNode { |
| 3567 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ |
| 3568 sqlite3_mutex *mutex; /* Mutex to access this object */ |
| 3569 char *zFilename; /* Name of the mmapped file */ |
| 3570 int h; /* Open file descriptor */ |
| 3571 int szRegion; /* Size of shared-memory regions */ |
| 3572 int nRegion; /* Size of array apRegion */ |
| 3573 char **apRegion; /* Array of mapped shared-memory regions */ |
| 3574 int nRef; /* Number of unixShm objects pointing to this */ |
| 3575 unixShm *pFirst; /* All unixShm objects pointing to this */ |
| 3576 #ifdef SQLITE_DEBUG |
| 3577 u8 exclMask; /* Mask of exclusive locks held */ |
| 3578 u8 sharedMask; /* Mask of shared locks held */ |
| 3579 u8 nextShmId; /* Next available unixShm.id value */ |
| 3580 #endif |
| 3581 }; |
| 3582 |
| 3583 /* |
| 3584 ** Structure used internally by this VFS to record the state of an |
| 3585 ** open shared memory connection. |
| 3586 ** |
| 3587 ** The following fields are initialized when this object is created and |
| 3588 ** are read-only thereafter: |
| 3589 ** |
| 3590 ** unixShm.pFile |
| 3591 ** unixShm.id |
| 3592 ** |
| 3593 ** All other fields are read/write. The unixShm.pFile->mutex must be held |
| 3594 ** while accessing any read/write fields. |
| 3595 */ |
| 3596 struct unixShm { |
| 3597 unixShmNode *pShmNode; /* The underlying unixShmNode object */ |
| 3598 unixShm *pNext; /* Next unixShm with the same unixShmNode */ |
| 3599 u8 hasMutex; /* True if holding the unixShmNode mutex */ |
| 3600 u16 sharedMask; /* Mask of shared locks held */ |
| 3601 u16 exclMask; /* Mask of exclusive locks held */ |
| 3602 #ifdef SQLITE_DEBUG |
| 3603 u8 id; /* Id of this connection within its unixShmNode */ |
| 3604 #endif |
| 3605 }; |
| 3606 |
| 3607 /* |
| 3608 ** Constants used for locking |
| 3609 */ |
| 3610 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ |
| 3611 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ |
| 3612 |
| 3613 /* |
| 3614 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. |
| 3615 ** |
| 3616 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking |
| 3617 ** otherwise. |
| 3618 */ |
| 3619 static int unixShmSystemLock( |
| 3620 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ |
| 3621 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ |
| 3622 int ofst, /* First byte of the locking range */ |
| 3623 int n /* Number of bytes to lock */ |
| 3624 ){ |
| 3625 struct flock f; /* The posix advisory locking structure */ |
| 3626 int rc = SQLITE_OK; /* Result code form fcntl() */ |
| 3627 |
| 3628 /* Access to the unixShmNode object is serialized by the caller */ |
| 3629 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); |
| 3630 |
| 3631 /* Shared locks never span more than one byte */ |
| 3632 assert( n==1 || lockType!=F_RDLCK ); |
| 3633 |
| 3634 /* Locks are within range */ |
| 3635 assert( n>=1 && n<SQLITE_SHM_NLOCK ); |
| 3636 |
| 3637 if( pShmNode->h>=0 ){ |
| 3638 /* Initialize the locking parameters */ |
| 3639 memset(&f, 0, sizeof(f)); |
| 3640 f.l_type = lockType; |
| 3641 f.l_whence = SEEK_SET; |
| 3642 f.l_start = ofst; |
| 3643 f.l_len = n; |
| 3644 |
| 3645 rc = osFcntl(pShmNode->h, F_SETLK, &f); |
| 3646 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; |
| 3647 } |
| 3648 |
| 3649 /* Update the global lock state and do debug tracing */ |
| 3650 #ifdef SQLITE_DEBUG |
| 3651 { u16 mask; |
| 3652 OSTRACE(("SHM-LOCK ")); |
| 3653 mask = (1<<(ofst+n)) - (1<<ofst); |
| 3654 if( rc==SQLITE_OK ){ |
| 3655 if( lockType==F_UNLCK ){ |
| 3656 OSTRACE(("unlock %d ok", ofst)); |
| 3657 pShmNode->exclMask &= ~mask; |
| 3658 pShmNode->sharedMask &= ~mask; |
| 3659 }else if( lockType==F_RDLCK ){ |
| 3660 OSTRACE(("read-lock %d ok", ofst)); |
| 3661 pShmNode->exclMask &= ~mask; |
| 3662 pShmNode->sharedMask |= mask; |
| 3663 }else{ |
| 3664 assert( lockType==F_WRLCK ); |
| 3665 OSTRACE(("write-lock %d ok", ofst)); |
| 3666 pShmNode->exclMask |= mask; |
| 3667 pShmNode->sharedMask &= ~mask; |
| 3668 } |
| 3669 }else{ |
| 3670 if( lockType==F_UNLCK ){ |
| 3671 OSTRACE(("unlock %d failed", ofst)); |
| 3672 }else if( lockType==F_RDLCK ){ |
| 3673 OSTRACE(("read-lock failed")); |
| 3674 }else{ |
| 3675 assert( lockType==F_WRLCK ); |
| 3676 OSTRACE(("write-lock %d failed", ofst)); |
| 3677 } |
| 3678 } |
| 3679 OSTRACE((" - afterwards %03x,%03x\n", |
| 3680 pShmNode->sharedMask, pShmNode->exclMask)); |
| 3681 } |
| 3682 #endif |
| 3683 |
| 3684 return rc; |
| 3685 } |
| 3686 |
| 3687 |
| 3688 /* |
| 3689 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. |
| 3690 ** |
| 3691 ** This is not a VFS shared-memory method; it is a utility function called |
| 3692 ** by VFS shared-memory methods. |
| 3693 */ |
| 3694 static void unixShmPurge(unixFile *pFd){ |
| 3695 unixShmNode *p = pFd->pInode->pShmNode; |
| 3696 assert( unixMutexHeld() ); |
| 3697 if( p && p->nRef==0 ){ |
| 3698 int i; |
| 3699 assert( p->pInode==pFd->pInode ); |
| 3700 if( p->mutex ) sqlite3_mutex_free(p->mutex); |
| 3701 for(i=0; i<p->nRegion; i++){ |
| 3702 if( p->h>=0 ){ |
| 3703 munmap(p->apRegion[i], p->szRegion); |
| 3704 }else{ |
| 3705 sqlite3_free(p->apRegion[i]); |
| 3706 } |
| 3707 } |
| 3708 sqlite3_free(p->apRegion); |
| 3709 if( p->h>=0 ){ |
| 3710 robust_close(pFd, p->h, __LINE__); |
| 3711 p->h = -1; |
| 3712 } |
| 3713 p->pInode->pShmNode = 0; |
| 3714 sqlite3_free(p); |
| 3715 } |
| 3716 } |
| 3717 |
| 3718 /* |
| 3719 ** Open a shared-memory area associated with open database file pDbFd. |
| 3720 ** This particular implementation uses mmapped files. |
| 3721 ** |
| 3722 ** The file used to implement shared-memory is in the same directory |
| 3723 ** as the open database file and has the same name as the open database |
| 3724 ** file with the "-shm" suffix added. For example, if the database file |
| 3725 ** is "/home/user1/config.db" then the file that is created and mmapped |
| 3726 ** for shared memory will be called "/home/user1/config.db-shm". |
| 3727 ** |
| 3728 ** Another approach to is to use files in /dev/shm or /dev/tmp or an |
| 3729 ** some other tmpfs mount. But if a file in a different directory |
| 3730 ** from the database file is used, then differing access permissions |
| 3731 ** or a chroot() might cause two different processes on the same |
| 3732 ** database to end up using different files for shared memory - |
| 3733 ** meaning that their memory would not really be shared - resulting |
| 3734 ** in database corruption. Nevertheless, this tmpfs file usage |
| 3735 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" |
| 3736 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time |
| 3737 ** option results in an incompatible build of SQLite; builds of SQLite |
| 3738 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the |
| 3739 ** same database file at the same time, database corruption will likely |
| 3740 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered |
| 3741 ** "unsupported" and may go away in a future SQLite release. |
| 3742 ** |
| 3743 ** When opening a new shared-memory file, if no other instances of that |
| 3744 ** file are currently open, in this process or in other processes, then |
| 3745 ** the file must be truncated to zero length or have its header cleared. |
| 3746 ** |
| 3747 ** If the original database file (pDbFd) is using the "unix-excl" VFS |
| 3748 ** that means that an exclusive lock is held on the database file and |
| 3749 ** that no other processes are able to read or write the database. In |
| 3750 ** that case, we do not really need shared memory. No shared memory |
| 3751 ** file is created. The shared memory will be simulated with heap memory. |
| 3752 */ |
| 3753 static int unixOpenSharedMemory(unixFile *pDbFd){ |
| 3754 struct unixShm *p = 0; /* The connection to be opened */ |
| 3755 struct unixShmNode *pShmNode; /* The underlying mmapped file */ |
| 3756 int rc; /* Result code */ |
| 3757 unixInodeInfo *pInode; /* The inode of fd */ |
| 3758 char *zShmFilename; /* Name of the file used for SHM */ |
| 3759 int nShmFilename; /* Size of the SHM filename in bytes */ |
| 3760 |
| 3761 /* Allocate space for the new unixShm object. */ |
| 3762 p = sqlite3_malloc( sizeof(*p) ); |
| 3763 if( p==0 ) return SQLITE_NOMEM; |
| 3764 memset(p, 0, sizeof(*p)); |
| 3765 assert( pDbFd->pShm==0 ); |
| 3766 |
| 3767 /* Check to see if a unixShmNode object already exists. Reuse an existing |
| 3768 ** one if present. Create a new one if necessary. |
| 3769 */ |
| 3770 unixEnterMutex(); |
| 3771 pInode = pDbFd->pInode; |
| 3772 pShmNode = pInode->pShmNode; |
| 3773 if( pShmNode==0 ){ |
| 3774 struct stat sStat; /* fstat() info for database file */ |
| 3775 |
| 3776 /* Call fstat() to figure out the permissions on the database file. If |
| 3777 ** a new *-shm file is created, an attempt will be made to create it |
| 3778 ** with the same permissions. The actual permissions the file is created |
| 3779 ** with are subject to the current umask setting. |
| 3780 */ |
| 3781 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ |
| 3782 rc = SQLITE_IOERR_FSTAT; |
| 3783 goto shm_open_err; |
| 3784 } |
| 3785 |
| 3786 #ifdef SQLITE_SHM_DIRECTORY |
| 3787 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30; |
| 3788 #else |
| 3789 nShmFilename = 5 + (int)strlen(pDbFd->zPath); |
| 3790 #endif |
| 3791 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); |
| 3792 if( pShmNode==0 ){ |
| 3793 rc = SQLITE_NOMEM; |
| 3794 goto shm_open_err; |
| 3795 } |
| 3796 memset(pShmNode, 0, sizeof(*pShmNode)); |
| 3797 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; |
| 3798 #ifdef SQLITE_SHM_DIRECTORY |
| 3799 sqlite3_snprintf(nShmFilename, zShmFilename, |
| 3800 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", |
| 3801 (u32)sStat.st_ino, (u32)sStat.st_dev); |
| 3802 #else |
| 3803 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); |
| 3804 #endif |
| 3805 pShmNode->h = -1; |
| 3806 pDbFd->pInode->pShmNode = pShmNode; |
| 3807 pShmNode->pInode = pDbFd->pInode; |
| 3808 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
| 3809 if( pShmNode->mutex==0 ){ |
| 3810 rc = SQLITE_NOMEM; |
| 3811 goto shm_open_err; |
| 3812 } |
| 3813 |
| 3814 if( pInode->bProcessLock==0 ){ |
| 3815 pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT, |
| 3816 (sStat.st_mode & 0777)); |
| 3817 if( pShmNode->h<0 ){ |
| 3818 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); |
| 3819 goto shm_open_err; |
| 3820 } |
| 3821 |
| 3822 /* Check to see if another process is holding the dead-man switch. |
| 3823 ** If not, truncate the file to zero length. |
| 3824 */ |
| 3825 rc = SQLITE_OK; |
| 3826 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ |
| 3827 if( robust_ftruncate(pShmNode->h, 0) ){ |
| 3828 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); |
| 3829 } |
| 3830 } |
| 3831 if( rc==SQLITE_OK ){ |
| 3832 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); |
| 3833 } |
| 3834 if( rc ) goto shm_open_err; |
| 3835 } |
| 3836 } |
| 3837 |
| 3838 /* Make the new connection a child of the unixShmNode */ |
| 3839 p->pShmNode = pShmNode; |
| 3840 #ifdef SQLITE_DEBUG |
| 3841 p->id = pShmNode->nextShmId++; |
| 3842 #endif |
| 3843 pShmNode->nRef++; |
| 3844 pDbFd->pShm = p; |
| 3845 unixLeaveMutex(); |
| 3846 |
| 3847 /* The reference count on pShmNode has already been incremented under |
| 3848 ** the cover of the unixEnterMutex() mutex and the pointer from the |
| 3849 ** new (struct unixShm) object to the pShmNode has been set. All that is |
| 3850 ** left to do is to link the new object into the linked list starting |
| 3851 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex |
| 3852 ** mutex. |
| 3853 */ |
| 3854 sqlite3_mutex_enter(pShmNode->mutex); |
| 3855 p->pNext = pShmNode->pFirst; |
| 3856 pShmNode->pFirst = p; |
| 3857 sqlite3_mutex_leave(pShmNode->mutex); |
| 3858 return SQLITE_OK; |
| 3859 |
| 3860 /* Jump here on any error */ |
| 3861 shm_open_err: |
| 3862 unixShmPurge(pDbFd); /* This call frees pShmNode if required */ |
| 3863 sqlite3_free(p); |
| 3864 unixLeaveMutex(); |
| 3865 return rc; |
| 3866 } |
| 3867 |
| 3868 /* |
| 3869 ** This function is called to obtain a pointer to region iRegion of the |
| 3870 ** shared-memory associated with the database file fd. Shared-memory regions |
| 3871 ** are numbered starting from zero. Each shared-memory region is szRegion |
| 3872 ** bytes in size. |
| 3873 ** |
| 3874 ** If an error occurs, an error code is returned and *pp is set to NULL. |
| 3875 ** |
| 3876 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory |
| 3877 ** region has not been allocated (by any client, including one running in a |
| 3878 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If |
| 3879 ** bExtend is non-zero and the requested shared-memory region has not yet |
| 3880 ** been allocated, it is allocated by this function. |
| 3881 ** |
| 3882 ** If the shared-memory region has already been allocated or is allocated by |
| 3883 ** this call as described above, then it is mapped into this processes |
| 3884 ** address space (if it is not already), *pp is set to point to the mapped |
| 3885 ** memory and SQLITE_OK returned. |
| 3886 */ |
| 3887 static int unixShmMap( |
| 3888 sqlite3_file *fd, /* Handle open on database file */ |
| 3889 int iRegion, /* Region to retrieve */ |
| 3890 int szRegion, /* Size of regions */ |
| 3891 int bExtend, /* True to extend file if necessary */ |
| 3892 void volatile **pp /* OUT: Mapped memory */ |
| 3893 ){ |
| 3894 unixFile *pDbFd = (unixFile*)fd; |
| 3895 unixShm *p; |
| 3896 unixShmNode *pShmNode; |
| 3897 int rc = SQLITE_OK; |
| 3898 |
| 3899 /* If the shared-memory file has not yet been opened, open it now. */ |
| 3900 if( pDbFd->pShm==0 ){ |
| 3901 rc = unixOpenSharedMemory(pDbFd); |
| 3902 if( rc!=SQLITE_OK ) return rc; |
| 3903 } |
| 3904 |
| 3905 p = pDbFd->pShm; |
| 3906 pShmNode = p->pShmNode; |
| 3907 sqlite3_mutex_enter(pShmNode->mutex); |
| 3908 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); |
| 3909 assert( pShmNode->pInode==pDbFd->pInode ); |
| 3910 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
| 3911 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
| 3912 |
| 3913 if( pShmNode->nRegion<=iRegion ){ |
| 3914 char **apNew; /* New apRegion[] array */ |
| 3915 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ |
| 3916 struct stat sStat; /* Used by fstat() */ |
| 3917 |
| 3918 pShmNode->szRegion = szRegion; |
| 3919 |
| 3920 if( pShmNode->h>=0 ){ |
| 3921 /* The requested region is not mapped into this processes address space. |
| 3922 ** Check to see if it has been allocated (i.e. if the wal-index file is |
| 3923 ** large enough to contain the requested region). |
| 3924 */ |
| 3925 if( osFstat(pShmNode->h, &sStat) ){ |
| 3926 rc = SQLITE_IOERR_SHMSIZE; |
| 3927 goto shmpage_out; |
| 3928 } |
| 3929 |
| 3930 if( sStat.st_size<nByte ){ |
| 3931 /* The requested memory region does not exist. If bExtend is set to |
| 3932 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. |
| 3933 ** |
| 3934 ** Alternatively, if bExtend is true, use ftruncate() to allocate |
| 3935 ** the requested memory region. |
| 3936 */ |
| 3937 if( !bExtend ) goto shmpage_out; |
| 3938 if( robust_ftruncate(pShmNode->h, nByte) ){ |
| 3939 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate", |
| 3940 pShmNode->zFilename); |
| 3941 goto shmpage_out; |
| 3942 } |
| 3943 } |
| 3944 } |
| 3945 |
| 3946 /* Map the requested memory region into this processes address space. */ |
| 3947 apNew = (char **)sqlite3_realloc( |
| 3948 pShmNode->apRegion, (iRegion+1)*sizeof(char *) |
| 3949 ); |
| 3950 if( !apNew ){ |
| 3951 rc = SQLITE_IOERR_NOMEM; |
| 3952 goto shmpage_out; |
| 3953 } |
| 3954 pShmNode->apRegion = apNew; |
| 3955 while(pShmNode->nRegion<=iRegion){ |
| 3956 void *pMem; |
| 3957 if( pShmNode->h>=0 ){ |
| 3958 pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, |
| 3959 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion |
| 3960 ); |
| 3961 if( pMem==MAP_FAILED ){ |
| 3962 rc = SQLITE_IOERR; |
| 3963 goto shmpage_out; |
| 3964 } |
| 3965 }else{ |
| 3966 pMem = sqlite3_malloc(szRegion); |
| 3967 if( pMem==0 ){ |
| 3968 rc = SQLITE_NOMEM; |
| 3969 goto shmpage_out; |
| 3970 } |
| 3971 memset(pMem, 0, szRegion); |
| 3972 } |
| 3973 pShmNode->apRegion[pShmNode->nRegion] = pMem; |
| 3974 pShmNode->nRegion++; |
| 3975 } |
| 3976 } |
| 3977 |
| 3978 shmpage_out: |
| 3979 if( pShmNode->nRegion>iRegion ){ |
| 3980 *pp = pShmNode->apRegion[iRegion]; |
| 3981 }else{ |
| 3982 *pp = 0; |
| 3983 } |
| 3984 sqlite3_mutex_leave(pShmNode->mutex); |
| 3985 return rc; |
| 3986 } |
| 3987 |
| 3988 /* |
| 3989 ** Change the lock state for a shared-memory segment. |
| 3990 ** |
| 3991 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little |
| 3992 ** different here than in posix. In xShmLock(), one can go from unlocked |
| 3993 ** to shared and back or from unlocked to exclusive and back. But one may |
| 3994 ** not go from shared to exclusive or from exclusive to shared. |
| 3995 */ |
| 3996 static int unixShmLock( |
| 3997 sqlite3_file *fd, /* Database file holding the shared memory */ |
| 3998 int ofst, /* First lock to acquire or release */ |
| 3999 int n, /* Number of locks to acquire or release */ |
| 4000 int flags /* What to do with the lock */ |
| 4001 ){ |
| 4002 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ |
| 4003 unixShm *p = pDbFd->pShm; /* The shared memory being locked */ |
| 4004 unixShm *pX; /* For looping over all siblings */ |
| 4005 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ |
| 4006 int rc = SQLITE_OK; /* Result code */ |
| 4007 u16 mask; /* Mask of locks to take or release */ |
| 4008 |
| 4009 assert( pShmNode==pDbFd->pInode->pShmNode ); |
| 4010 assert( pShmNode->pInode==pDbFd->pInode ); |
| 4011 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); |
| 4012 assert( n>=1 ); |
| 4013 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) |
| 4014 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) |
| 4015 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) |
| 4016 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); |
| 4017 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); |
| 4018 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
| 4019 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
| 4020 |
| 4021 mask = (1<<(ofst+n)) - (1<<ofst); |
| 4022 assert( n>1 || mask==(1<<ofst) ); |
| 4023 sqlite3_mutex_enter(pShmNode->mutex); |
| 4024 if( flags & SQLITE_SHM_UNLOCK ){ |
| 4025 u16 allMask = 0; /* Mask of locks held by siblings */ |
| 4026 |
| 4027 /* See if any siblings hold this same lock */ |
| 4028 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4029 if( pX==p ) continue; |
| 4030 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); |
| 4031 allMask |= pX->sharedMask; |
| 4032 } |
| 4033 |
| 4034 /* Unlock the system-level locks */ |
| 4035 if( (mask & allMask)==0 ){ |
| 4036 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); |
| 4037 }else{ |
| 4038 rc = SQLITE_OK; |
| 4039 } |
| 4040 |
| 4041 /* Undo the local locks */ |
| 4042 if( rc==SQLITE_OK ){ |
| 4043 p->exclMask &= ~mask; |
| 4044 p->sharedMask &= ~mask; |
| 4045 } |
| 4046 }else if( flags & SQLITE_SHM_SHARED ){ |
| 4047 u16 allShared = 0; /* Union of locks held by connections other than "p" */ |
| 4048 |
| 4049 /* Find out which shared locks are already held by sibling connections. |
| 4050 ** If any sibling already holds an exclusive lock, go ahead and return |
| 4051 ** SQLITE_BUSY. |
| 4052 */ |
| 4053 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4054 if( (pX->exclMask & mask)!=0 ){ |
| 4055 rc = SQLITE_BUSY; |
| 4056 break; |
| 4057 } |
| 4058 allShared |= pX->sharedMask; |
| 4059 } |
| 4060 |
| 4061 /* Get shared locks at the system level, if necessary */ |
| 4062 if( rc==SQLITE_OK ){ |
| 4063 if( (allShared & mask)==0 ){ |
| 4064 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); |
| 4065 }else{ |
| 4066 rc = SQLITE_OK; |
| 4067 } |
| 4068 } |
| 4069 |
| 4070 /* Get the local shared locks */ |
| 4071 if( rc==SQLITE_OK ){ |
| 4072 p->sharedMask |= mask; |
| 4073 } |
| 4074 }else{ |
| 4075 /* Make sure no sibling connections hold locks that will block this |
| 4076 ** lock. If any do, return SQLITE_BUSY right away. |
| 4077 */ |
| 4078 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4079 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ |
| 4080 rc = SQLITE_BUSY; |
| 4081 break; |
| 4082 } |
| 4083 } |
| 4084 |
| 4085 /* Get the exclusive locks at the system level. Then if successful |
| 4086 ** also mark the local connection as being locked. |
| 4087 */ |
| 4088 if( rc==SQLITE_OK ){ |
| 4089 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); |
| 4090 if( rc==SQLITE_OK ){ |
| 4091 assert( (p->sharedMask & mask)==0 ); |
| 4092 p->exclMask |= mask; |
| 4093 } |
| 4094 } |
| 4095 } |
| 4096 sqlite3_mutex_leave(pShmNode->mutex); |
| 4097 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", |
| 4098 p->id, getpid(), p->sharedMask, p->exclMask)); |
| 4099 return rc; |
| 4100 } |
| 4101 |
| 4102 /* |
| 4103 ** Implement a memory barrier or memory fence on shared memory. |
| 4104 ** |
| 4105 ** All loads and stores begun before the barrier must complete before |
| 4106 ** any load or store begun after the barrier. |
| 4107 */ |
| 4108 static void unixShmBarrier( |
| 4109 sqlite3_file *fd /* Database file holding the shared memory */ |
| 4110 ){ |
| 4111 UNUSED_PARAMETER(fd); |
| 4112 unixEnterMutex(); |
| 4113 unixLeaveMutex(); |
| 4114 } |
| 4115 |
| 4116 /* |
| 4117 ** Close a connection to shared-memory. Delete the underlying |
| 4118 ** storage if deleteFlag is true. |
| 4119 ** |
| 4120 ** If there is no shared memory associated with the connection then this |
| 4121 ** routine is a harmless no-op. |
| 4122 */ |
| 4123 static int unixShmUnmap( |
| 4124 sqlite3_file *fd, /* The underlying database file */ |
| 4125 int deleteFlag /* Delete shared-memory if true */ |
| 4126 ){ |
| 4127 unixShm *p; /* The connection to be closed */ |
| 4128 unixShmNode *pShmNode; /* The underlying shared-memory file */ |
| 4129 unixShm **pp; /* For looping over sibling connections */ |
| 4130 unixFile *pDbFd; /* The underlying database file */ |
| 4131 |
| 4132 pDbFd = (unixFile*)fd; |
| 4133 p = pDbFd->pShm; |
| 4134 if( p==0 ) return SQLITE_OK; |
| 4135 pShmNode = p->pShmNode; |
| 4136 |
| 4137 assert( pShmNode==pDbFd->pInode->pShmNode ); |
| 4138 assert( pShmNode->pInode==pDbFd->pInode ); |
| 4139 |
| 4140 /* Remove connection p from the set of connections associated |
| 4141 ** with pShmNode */ |
| 4142 sqlite3_mutex_enter(pShmNode->mutex); |
| 4143 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} |
| 4144 *pp = p->pNext; |
| 4145 |
| 4146 /* Free the connection p */ |
| 4147 sqlite3_free(p); |
| 4148 pDbFd->pShm = 0; |
| 4149 sqlite3_mutex_leave(pShmNode->mutex); |
| 4150 |
| 4151 /* If pShmNode->nRef has reached 0, then close the underlying |
| 4152 ** shared-memory file, too */ |
| 4153 unixEnterMutex(); |
| 4154 assert( pShmNode->nRef>0 ); |
| 4155 pShmNode->nRef--; |
| 4156 if( pShmNode->nRef==0 ){ |
| 4157 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); |
| 4158 unixShmPurge(pDbFd); |
| 4159 } |
| 4160 unixLeaveMutex(); |
| 4161 |
| 4162 return SQLITE_OK; |
| 4163 } |
| 4164 |
| 4165 |
| 4166 #else |
| 4167 # define unixShmMap 0 |
| 4168 # define unixShmLock 0 |
| 4169 # define unixShmBarrier 0 |
| 4170 # define unixShmUnmap 0 |
| 4171 #endif /* #ifndef SQLITE_OMIT_WAL */ |
| 4172 |
| 4173 /* |
| 4174 ** Here ends the implementation of all sqlite3_file methods. |
| 4175 ** |
| 4176 ********************** End sqlite3_file Methods ******************************* |
| 4177 ******************************************************************************/ |
| 4178 |
| 4179 /* |
| 4180 ** This division contains definitions of sqlite3_io_methods objects that |
| 4181 ** implement various file locking strategies. It also contains definitions |
| 4182 ** of "finder" functions. A finder-function is used to locate the appropriate |
| 4183 ** sqlite3_io_methods object for a particular database file. The pAppData |
| 4184 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to |
| 4185 ** the correct finder-function for that VFS. |
| 4186 ** |
| 4187 ** Most finder functions return a pointer to a fixed sqlite3_io_methods |
| 4188 ** object. The only interesting finder-function is autolockIoFinder, which |
| 4189 ** looks at the filesystem type and tries to guess the best locking |
| 4190 ** strategy from that. |
| 4191 ** |
| 4192 ** For finder-funtion F, two objects are created: |
| 4193 ** |
| 4194 ** (1) The real finder-function named "FImpt()". |
| 4195 ** |
| 4196 ** (2) A constant pointer to this function named just "F". |
| 4197 ** |
| 4198 ** |
| 4199 ** A pointer to the F pointer is used as the pAppData value for VFS |
| 4200 ** objects. We have to do this instead of letting pAppData point |
| 4201 ** directly at the finder-function since C90 rules prevent a void* |
| 4202 ** from be cast into a function pointer. |
| 4203 ** |
| 4204 ** |
| 4205 ** Each instance of this macro generates two objects: |
| 4206 ** |
| 4207 ** * A constant sqlite3_io_methods object call METHOD that has locking |
| 4208 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. |
| 4209 ** |
| 4210 ** * An I/O method finder function called FINDER that returns a pointer |
| 4211 ** to the METHOD object in the previous bullet. |
| 4212 */ |
| 4213 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \ |
| 4214 static const sqlite3_io_methods METHOD = { \ |
| 4215 VERSION, /* iVersion */ \ |
| 4216 CLOSE, /* xClose */ \ |
| 4217 unixRead, /* xRead */ \ |
| 4218 unixWrite, /* xWrite */ \ |
| 4219 unixTruncate, /* xTruncate */ \ |
| 4220 unixSync, /* xSync */ \ |
| 4221 unixFileSize, /* xFileSize */ \ |
| 4222 LOCK, /* xLock */ \ |
| 4223 UNLOCK, /* xUnlock */ \ |
| 4224 CKLOCK, /* xCheckReservedLock */ \ |
| 4225 unixFileControl, /* xFileControl */ \ |
| 4226 unixSectorSize, /* xSectorSize */ \ |
| 4227 unixDeviceCharacteristics, /* xDeviceCapabilities */ \ |
| 4228 unixShmMap, /* xShmMap */ \ |
| 4229 unixShmLock, /* xShmLock */ \ |
| 4230 unixShmBarrier, /* xShmBarrier */ \ |
| 4231 unixShmUnmap /* xShmUnmap */ \ |
| 4232 }; \ |
| 4233 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ |
| 4234 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ |
| 4235 return &METHOD; \ |
| 4236 } \ |
| 4237 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ |
| 4238 = FINDER##Impl; |
| 4239 |
| 4240 /* |
| 4241 ** Here are all of the sqlite3_io_methods objects for each of the |
| 4242 ** locking strategies. Functions that return pointers to these methods |
| 4243 ** are also created. |
| 4244 */ |
| 4245 IOMETHODS( |
| 4246 posixIoFinder, /* Finder function name */ |
| 4247 posixIoMethods, /* sqlite3_io_methods object name */ |
| 4248 2, /* shared memory is enabled */ |
| 4249 unixClose, /* xClose method */ |
| 4250 unixLock, /* xLock method */ |
| 4251 unixUnlock, /* xUnlock method */ |
| 4252 unixCheckReservedLock /* xCheckReservedLock method */ |
| 4253 ) |
| 4254 IOMETHODS( |
| 4255 nolockIoFinder, /* Finder function name */ |
| 4256 nolockIoMethods, /* sqlite3_io_methods object name */ |
| 4257 1, /* shared memory is disabled */ |
| 4258 nolockClose, /* xClose method */ |
| 4259 nolockLock, /* xLock method */ |
| 4260 nolockUnlock, /* xUnlock method */ |
| 4261 nolockCheckReservedLock /* xCheckReservedLock method */ |
| 4262 ) |
| 4263 IOMETHODS( |
| 4264 dotlockIoFinder, /* Finder function name */ |
| 4265 dotlockIoMethods, /* sqlite3_io_methods object name */ |
| 4266 1, /* shared memory is disabled */ |
| 4267 dotlockClose, /* xClose method */ |
| 4268 dotlockLock, /* xLock method */ |
| 4269 dotlockUnlock, /* xUnlock method */ |
| 4270 dotlockCheckReservedLock /* xCheckReservedLock method */ |
| 4271 ) |
| 4272 |
| 4273 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS |
| 4274 IOMETHODS( |
| 4275 flockIoFinder, /* Finder function name */ |
| 4276 flockIoMethods, /* sqlite3_io_methods object name */ |
| 4277 1, /* shared memory is disabled */ |
| 4278 flockClose, /* xClose method */ |
| 4279 flockLock, /* xLock method */ |
| 4280 flockUnlock, /* xUnlock method */ |
| 4281 flockCheckReservedLock /* xCheckReservedLock method */ |
| 4282 ) |
| 4283 #endif |
| 4284 |
| 4285 #if OS_VXWORKS |
| 4286 IOMETHODS( |
| 4287 semIoFinder, /* Finder function name */ |
| 4288 semIoMethods, /* sqlite3_io_methods object name */ |
| 4289 1, /* shared memory is disabled */ |
| 4290 semClose, /* xClose method */ |
| 4291 semLock, /* xLock method */ |
| 4292 semUnlock, /* xUnlock method */ |
| 4293 semCheckReservedLock /* xCheckReservedLock method */ |
| 4294 ) |
| 4295 #endif |
| 4296 |
| 4297 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4298 IOMETHODS( |
| 4299 afpIoFinder, /* Finder function name */ |
| 4300 afpIoMethods, /* sqlite3_io_methods object name */ |
| 4301 1, /* shared memory is disabled */ |
| 4302 afpClose, /* xClose method */ |
| 4303 afpLock, /* xLock method */ |
| 4304 afpUnlock, /* xUnlock method */ |
| 4305 afpCheckReservedLock /* xCheckReservedLock method */ |
| 4306 ) |
| 4307 #endif |
| 4308 |
| 4309 /* |
| 4310 ** The proxy locking method is a "super-method" in the sense that it |
| 4311 ** opens secondary file descriptors for the conch and lock files and |
| 4312 ** it uses proxy, dot-file, AFP, and flock() locking methods on those |
| 4313 ** secondary files. For this reason, the division that implements |
| 4314 ** proxy locking is located much further down in the file. But we need |
| 4315 ** to go ahead and define the sqlite3_io_methods and finder function |
| 4316 ** for proxy locking here. So we forward declare the I/O methods. |
| 4317 */ |
| 4318 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4319 static int proxyClose(sqlite3_file*); |
| 4320 static int proxyLock(sqlite3_file*, int); |
| 4321 static int proxyUnlock(sqlite3_file*, int); |
| 4322 static int proxyCheckReservedLock(sqlite3_file*, int*); |
| 4323 IOMETHODS( |
| 4324 proxyIoFinder, /* Finder function name */ |
| 4325 proxyIoMethods, /* sqlite3_io_methods object name */ |
| 4326 1, /* shared memory is disabled */ |
| 4327 proxyClose, /* xClose method */ |
| 4328 proxyLock, /* xLock method */ |
| 4329 proxyUnlock, /* xUnlock method */ |
| 4330 proxyCheckReservedLock /* xCheckReservedLock method */ |
| 4331 ) |
| 4332 #endif |
| 4333 |
| 4334 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ |
| 4335 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4336 IOMETHODS( |
| 4337 nfsIoFinder, /* Finder function name */ |
| 4338 nfsIoMethods, /* sqlite3_io_methods object name */ |
| 4339 1, /* shared memory is disabled */ |
| 4340 unixClose, /* xClose method */ |
| 4341 unixLock, /* xLock method */ |
| 4342 nfsUnlock, /* xUnlock method */ |
| 4343 unixCheckReservedLock /* xCheckReservedLock method */ |
| 4344 ) |
| 4345 #endif |
| 4346 |
| 4347 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4348 /* |
| 4349 ** This "finder" function attempts to determine the best locking strategy |
| 4350 ** for the database file "filePath". It then returns the sqlite3_io_methods |
| 4351 ** object that implements that strategy. |
| 4352 ** |
| 4353 ** This is for MacOSX only. |
| 4354 */ |
| 4355 static const sqlite3_io_methods *autolockIoFinderImpl( |
| 4356 const char *filePath, /* name of the database file */ |
| 4357 unixFile *pNew /* open file object for the database file */ |
| 4358 ){ |
| 4359 static const struct Mapping { |
| 4360 const char *zFilesystem; /* Filesystem type name */ |
| 4361 const sqlite3_io_methods *pMethods; /* Appropriate locking method */ |
| 4362 } aMap[] = { |
| 4363 { "hfs", &posixIoMethods }, |
| 4364 { "ufs", &posixIoMethods }, |
| 4365 { "afpfs", &afpIoMethods }, |
| 4366 { "smbfs", &afpIoMethods }, |
| 4367 { "webdav", &nolockIoMethods }, |
| 4368 { 0, 0 } |
| 4369 }; |
| 4370 int i; |
| 4371 struct statfs fsInfo; |
| 4372 struct flock lockInfo; |
| 4373 |
| 4374 if( !filePath ){ |
| 4375 /* If filePath==NULL that means we are dealing with a transient file |
| 4376 ** that does not need to be locked. */ |
| 4377 return &nolockIoMethods; |
| 4378 } |
| 4379 if( statfs(filePath, &fsInfo) != -1 ){ |
| 4380 if( fsInfo.f_flags & MNT_RDONLY ){ |
| 4381 return &nolockIoMethods; |
| 4382 } |
| 4383 for(i=0; aMap[i].zFilesystem; i++){ |
| 4384 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ |
| 4385 return aMap[i].pMethods; |
| 4386 } |
| 4387 } |
| 4388 } |
| 4389 |
| 4390 /* Default case. Handles, amongst others, "nfs". |
| 4391 ** Test byte-range lock using fcntl(). If the call succeeds, |
| 4392 ** assume that the file-system supports POSIX style locks. |
| 4393 */ |
| 4394 lockInfo.l_len = 1; |
| 4395 lockInfo.l_start = 0; |
| 4396 lockInfo.l_whence = SEEK_SET; |
| 4397 lockInfo.l_type = F_RDLCK; |
| 4398 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| 4399 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ |
| 4400 return &nfsIoMethods; |
| 4401 } else { |
| 4402 return &posixIoMethods; |
| 4403 } |
| 4404 }else{ |
| 4405 return &dotlockIoMethods; |
| 4406 } |
| 4407 } |
| 4408 static const sqlite3_io_methods |
| 4409 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
| 4410 |
| 4411 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 4412 |
| 4413 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE |
| 4414 /* |
| 4415 ** This "finder" function attempts to determine the best locking strategy |
| 4416 ** for the database file "filePath". It then returns the sqlite3_io_methods |
| 4417 ** object that implements that strategy. |
| 4418 ** |
| 4419 ** This is for VXWorks only. |
| 4420 */ |
| 4421 static const sqlite3_io_methods *autolockIoFinderImpl( |
| 4422 const char *filePath, /* name of the database file */ |
| 4423 unixFile *pNew /* the open file object */ |
| 4424 ){ |
| 4425 struct flock lockInfo; |
| 4426 |
| 4427 if( !filePath ){ |
| 4428 /* If filePath==NULL that means we are dealing with a transient file |
| 4429 ** that does not need to be locked. */ |
| 4430 return &nolockIoMethods; |
| 4431 } |
| 4432 |
| 4433 /* Test if fcntl() is supported and use POSIX style locks. |
| 4434 ** Otherwise fall back to the named semaphore method. |
| 4435 */ |
| 4436 lockInfo.l_len = 1; |
| 4437 lockInfo.l_start = 0; |
| 4438 lockInfo.l_whence = SEEK_SET; |
| 4439 lockInfo.l_type = F_RDLCK; |
| 4440 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| 4441 return &posixIoMethods; |
| 4442 }else{ |
| 4443 return &semIoMethods; |
| 4444 } |
| 4445 } |
| 4446 static const sqlite3_io_methods |
| 4447 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
| 4448 |
| 4449 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ |
| 4450 |
| 4451 /* |
| 4452 ** An abstract type for a pointer to a IO method finder function: |
| 4453 */ |
| 4454 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); |
| 4455 |
| 4456 |
| 4457 /**************************************************************************** |
| 4458 **************************** sqlite3_vfs methods **************************** |
| 4459 ** |
| 4460 ** This division contains the implementation of methods on the |
| 4461 ** sqlite3_vfs object. |
| 4462 */ |
| 4463 |
| 4464 /* |
| 4465 ** Initializes a unixFile structure with zeros. |
| 4466 */ |
| 4467 void initUnixFile(sqlite3_file* file) { |
| 4468 memset(file, 0, sizeof(unixFile)); |
| 4469 } |
| 4470 |
| 4471 /* |
| 4472 ** Initialize the contents of the unixFile structure pointed to by pId. |
| 4473 */ |
| 4474 int fillInUnixFile( |
| 4475 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| 4476 int h, /* Open file descriptor of file being opened */ |
| 4477 int syncDir, /* True to sync directory on first sync */ |
| 4478 sqlite3_file *pId, /* Write to the unixFile structure here */ |
| 4479 const char *zFilename, /* Name of the file being opened */ |
| 4480 int noLock, /* Omit locking if true */ |
| 4481 int isDelete, /* Delete on close if true */ |
| 4482 int isReadOnly /* True if the file is opened read-only */ |
| 4483 ){ |
| 4484 const sqlite3_io_methods *pLockingStyle; |
| 4485 unixFile *pNew = (unixFile *)pId; |
| 4486 int rc = SQLITE_OK; |
| 4487 |
| 4488 assert( pNew->pInode==NULL ); |
| 4489 |
| 4490 /* Parameter isDelete is only used on vxworks. Express this explicitly |
| 4491 ** here to prevent compiler warnings about unused parameters. |
| 4492 */ |
| 4493 UNUSED_PARAMETER(isDelete); |
| 4494 |
| 4495 /* Usually the path zFilename should not be a relative pathname. The |
| 4496 ** exception is when opening the proxy "conch" file in builds that |
| 4497 ** include the special Apple locking styles. |
| 4498 */ |
| 4499 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4500 assert( zFilename==0 || zFilename[0]=='/' |
| 4501 || pVfs->pAppData==(void*)&autolockIoFinder ); |
| 4502 #else |
| 4503 assert( zFilename==0 || zFilename[0]=='/' ); |
| 4504 #endif |
| 4505 |
| 4506 OSTRACE(("OPEN %-3d %s\n", h, zFilename)); |
| 4507 pNew->h = h; |
| 4508 pNew->zPath = zFilename; |
| 4509 if( strcmp(pVfs->zName,"unix-excl")==0 ){ |
| 4510 pNew->ctrlFlags = UNIXFILE_EXCL; |
| 4511 }else{ |
| 4512 pNew->ctrlFlags = 0; |
| 4513 } |
| 4514 if( isReadOnly ){ |
| 4515 pNew->ctrlFlags |= UNIXFILE_RDONLY; |
| 4516 } |
| 4517 if( syncDir ){ |
| 4518 pNew->ctrlFlags |= UNIXFILE_DIRSYNC; |
| 4519 } |
| 4520 |
| 4521 #if OS_VXWORKS |
| 4522 pNew->pId = vxworksFindFileId(zFilename); |
| 4523 if( pNew->pId==0 ){ |
| 4524 noLock = 1; |
| 4525 rc = SQLITE_NOMEM; |
| 4526 } |
| 4527 #endif |
| 4528 |
| 4529 if( noLock ){ |
| 4530 pLockingStyle = &nolockIoMethods; |
| 4531 }else{ |
| 4532 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); |
| 4533 #if SQLITE_ENABLE_LOCKING_STYLE |
| 4534 /* Cache zFilename in the locking context (AFP and dotlock override) for |
| 4535 ** proxyLock activation is possible (remote proxy is based on db name) |
| 4536 ** zFilename remains valid until file is closed, to support */ |
| 4537 pNew->lockingContext = (void*)zFilename; |
| 4538 #endif |
| 4539 } |
| 4540 |
| 4541 if( pLockingStyle == &posixIoMethods |
| 4542 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 4543 || pLockingStyle == &nfsIoMethods |
| 4544 #endif |
| 4545 ){ |
| 4546 unixEnterMutex(); |
| 4547 rc = findInodeInfo(pNew, &pNew->pInode); |
| 4548 if( rc!=SQLITE_OK ){ |
| 4549 /* If an error occured in findInodeInfo(), close the file descriptor |
| 4550 ** immediately, before releasing the mutex. findInodeInfo() may fail |
| 4551 ** in two scenarios: |
| 4552 ** |
| 4553 ** (a) A call to fstat() failed. |
| 4554 ** (b) A malloc failed. |
| 4555 ** |
| 4556 ** Scenario (b) may only occur if the process is holding no other |
| 4557 ** file descriptors open on the same file. If there were other file |
| 4558 ** descriptors on this file, then no malloc would be required by |
| 4559 ** findInodeInfo(). If this is the case, it is quite safe to close |
| 4560 ** handle h - as it is guaranteed that no posix locks will be released |
| 4561 ** by doing so. |
| 4562 ** |
| 4563 ** If scenario (a) caused the error then things are not so safe. The |
| 4564 ** implicit assumption here is that if fstat() fails, things are in |
| 4565 ** such bad shape that dropping a lock or two doesn't matter much. |
| 4566 */ |
| 4567 robust_close(pNew, h, __LINE__); |
| 4568 h = -1; |
| 4569 } |
| 4570 unixLeaveMutex(); |
| 4571 } |
| 4572 |
| 4573 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 4574 else if( pLockingStyle == &afpIoMethods ){ |
| 4575 /* AFP locking uses the file path so it needs to be included in |
| 4576 ** the afpLockingContext. |
| 4577 */ |
| 4578 afpLockingContext *pCtx; |
| 4579 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); |
| 4580 if( pCtx==0 ){ |
| 4581 rc = SQLITE_NOMEM; |
| 4582 }else{ |
| 4583 /* NB: zFilename exists and remains valid until the file is closed |
| 4584 ** according to requirement F11141. So we do not need to make a |
| 4585 ** copy of the filename. */ |
| 4586 pCtx->dbPath = zFilename; |
| 4587 pCtx->reserved = 0; |
| 4588 srandomdev(); |
| 4589 unixEnterMutex(); |
| 4590 rc = findInodeInfo(pNew, &pNew->pInode); |
| 4591 if( rc!=SQLITE_OK ){ |
| 4592 sqlite3_free(pNew->lockingContext); |
| 4593 robust_close(pNew, h, __LINE__); |
| 4594 h = -1; |
| 4595 } |
| 4596 unixLeaveMutex(); |
| 4597 } |
| 4598 } |
| 4599 #endif |
| 4600 |
| 4601 else if( pLockingStyle == &dotlockIoMethods ){ |
| 4602 /* Dotfile locking uses the file path so it needs to be included in |
| 4603 ** the dotlockLockingContext |
| 4604 */ |
| 4605 char *zLockFile; |
| 4606 int nFilename; |
| 4607 nFilename = (int)strlen(zFilename) + 6; |
| 4608 zLockFile = (char *)sqlite3_malloc(nFilename); |
| 4609 if( zLockFile==0 ){ |
| 4610 rc = SQLITE_NOMEM; |
| 4611 }else{ |
| 4612 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); |
| 4613 } |
| 4614 pNew->lockingContext = zLockFile; |
| 4615 } |
| 4616 |
| 4617 #if OS_VXWORKS |
| 4618 else if( pLockingStyle == &semIoMethods ){ |
| 4619 /* Named semaphore locking uses the file path so it needs to be |
| 4620 ** included in the semLockingContext |
| 4621 */ |
| 4622 unixEnterMutex(); |
| 4623 rc = findInodeInfo(pNew, &pNew->pInode); |
| 4624 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ |
| 4625 char *zSemName = pNew->pInode->aSemName; |
| 4626 int n; |
| 4627 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", |
| 4628 pNew->pId->zCanonicalName); |
| 4629 for( n=1; zSemName[n]; n++ ) |
| 4630 if( zSemName[n]=='/' ) zSemName[n] = '_'; |
| 4631 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); |
| 4632 if( pNew->pInode->pSem == SEM_FAILED ){ |
| 4633 rc = SQLITE_NOMEM; |
| 4634 pNew->pInode->aSemName[0] = '\0'; |
| 4635 } |
| 4636 } |
| 4637 unixLeaveMutex(); |
| 4638 } |
| 4639 #endif |
| 4640 |
| 4641 pNew->lastErrno = 0; |
| 4642 #if OS_VXWORKS |
| 4643 if( rc!=SQLITE_OK ){ |
| 4644 if( h>=0 ) robust_close(pNew, h, __LINE__); |
| 4645 h = -1; |
| 4646 osUnlink(zFilename); |
| 4647 isDelete = 0; |
| 4648 } |
| 4649 pNew->isDelete = isDelete; |
| 4650 #endif |
| 4651 if( rc!=SQLITE_OK ){ |
| 4652 if( h>=0 ) robust_close(pNew, h, __LINE__); |
| 4653 }else{ |
| 4654 pNew->pMethod = pLockingStyle; |
| 4655 OpenCounter(+1); |
| 4656 } |
| 4657 return rc; |
| 4658 } |
| 4659 |
| 4660 /* |
| 4661 ** Return the name of a directory in which to put temporary files. |
| 4662 ** If no suitable temporary file directory can be found, return NULL. |
| 4663 */ |
| 4664 static const char *unixTempFileDir(void){ |
| 4665 static const char *azDirs[] = { |
| 4666 0, |
| 4667 0, |
| 4668 "/var/tmp", |
| 4669 "/usr/tmp", |
| 4670 "/tmp", |
| 4671 0 /* List terminator */ |
| 4672 }; |
| 4673 unsigned int i; |
| 4674 struct stat buf; |
| 4675 const char *zDir = 0; |
| 4676 |
| 4677 azDirs[0] = sqlite3_temp_directory; |
| 4678 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); |
| 4679 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ |
| 4680 if( zDir==0 ) continue; |
| 4681 if( osStat(zDir, &buf) ) continue; |
| 4682 if( !S_ISDIR(buf.st_mode) ) continue; |
| 4683 if( osAccess(zDir, 07) ) continue; |
| 4684 break; |
| 4685 } |
| 4686 return zDir; |
| 4687 } |
| 4688 |
| 4689 /* |
| 4690 ** Create a temporary file name in zBuf. zBuf must be allocated |
| 4691 ** by the calling process and must be big enough to hold at least |
| 4692 ** pVfs->mxPathname bytes. |
| 4693 */ |
| 4694 static int unixGetTempname(int nBuf, char *zBuf){ |
| 4695 static const unsigned char zChars[] = |
| 4696 "abcdefghijklmnopqrstuvwxyz" |
| 4697 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| 4698 "0123456789"; |
| 4699 unsigned int i, j; |
| 4700 const char *zDir; |
| 4701 |
| 4702 /* It's odd to simulate an io-error here, but really this is just |
| 4703 ** using the io-error infrastructure to test that SQLite handles this |
| 4704 ** function failing. |
| 4705 */ |
| 4706 SimulateIOError( return SQLITE_IOERR ); |
| 4707 |
| 4708 zDir = unixTempFileDir(); |
| 4709 if( zDir==0 ) zDir = "."; |
| 4710 |
| 4711 /* Check that the output buffer is large enough for the temporary file |
| 4712 ** name. If it is not, return SQLITE_ERROR. |
| 4713 */ |
| 4714 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){ |
| 4715 return SQLITE_ERROR; |
| 4716 } |
| 4717 |
| 4718 do{ |
| 4719 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); |
| 4720 j = (int)strlen(zBuf); |
| 4721 sqlite3_randomness(15, &zBuf[j]); |
| 4722 for(i=0; i<15; i++, j++){ |
| 4723 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; |
| 4724 } |
| 4725 zBuf[j] = 0; |
| 4726 }while( osAccess(zBuf,0)==0 ); |
| 4727 return SQLITE_OK; |
| 4728 } |
| 4729 |
| 4730 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 4731 /* |
| 4732 ** Routine to transform a unixFile into a proxy-locking unixFile. |
| 4733 ** Implementation in the proxy-lock division, but used by unixOpen() |
| 4734 ** if SQLITE_PREFER_PROXY_LOCKING is defined. |
| 4735 */ |
| 4736 static int proxyTransformUnixFile(unixFile*, const char*); |
| 4737 #endif |
| 4738 |
| 4739 /* |
| 4740 ** Search for an unused file descriptor that was opened on the database |
| 4741 ** file (not a journal or master-journal file) identified by pathname |
| 4742 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second |
| 4743 ** argument to this function. |
| 4744 ** |
| 4745 ** Such a file descriptor may exist if a database connection was closed |
| 4746 ** but the associated file descriptor could not be closed because some |
| 4747 ** other file descriptor open on the same file is holding a file-lock. |
| 4748 ** Refer to comments in the unixClose() function and the lengthy comment |
| 4749 ** describing "Posix Advisory Locking" at the start of this file for |
| 4750 ** further details. Also, ticket #4018. |
| 4751 ** |
| 4752 ** If a suitable file descriptor is found, then it is returned. If no |
| 4753 ** such file descriptor is located, -1 is returned. |
| 4754 */ |
| 4755 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ |
| 4756 UnixUnusedFd *pUnused = 0; |
| 4757 |
| 4758 /* Do not search for an unused file descriptor on vxworks. Not because |
| 4759 ** vxworks would not benefit from the change (it might, we're not sure), |
| 4760 ** but because no way to test it is currently available. It is better |
| 4761 ** not to risk breaking vxworks support for the sake of such an obscure |
| 4762 ** feature. */ |
| 4763 #if !OS_VXWORKS |
| 4764 struct stat sStat; /* Results of stat() call */ |
| 4765 |
| 4766 /* A stat() call may fail for various reasons. If this happens, it is |
| 4767 ** almost certain that an open() call on the same path will also fail. |
| 4768 ** For this reason, if an error occurs in the stat() call here, it is |
| 4769 ** ignored and -1 is returned. The caller will try to open a new file |
| 4770 ** descriptor on the same path, fail, and return an error to SQLite. |
| 4771 ** |
| 4772 ** Even if a subsequent open() call does succeed, the consequences of |
| 4773 ** not searching for a resusable file descriptor are not dire. */ |
| 4774 if( 0==osStat(zPath, &sStat) ){ |
| 4775 unixInodeInfo *pInode; |
| 4776 |
| 4777 unixEnterMutex(); |
| 4778 pInode = inodeList; |
| 4779 while( pInode && (pInode->fileId.dev!=sStat.st_dev |
| 4780 || pInode->fileId.ino!=sStat.st_ino) ){ |
| 4781 pInode = pInode->pNext; |
| 4782 } |
| 4783 if( pInode ){ |
| 4784 UnixUnusedFd **pp; |
| 4785 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); |
| 4786 pUnused = *pp; |
| 4787 if( pUnused ){ |
| 4788 *pp = pUnused->pNext; |
| 4789 } |
| 4790 } |
| 4791 unixLeaveMutex(); |
| 4792 } |
| 4793 #endif /* if !OS_VXWORKS */ |
| 4794 return pUnused; |
| 4795 } |
| 4796 |
| 4797 /* |
| 4798 ** This function is called by unixOpen() to determine the unix permissions |
| 4799 ** to create new files with. If no error occurs, then SQLITE_OK is returned |
| 4800 ** and a value suitable for passing as the third argument to open(2) is |
| 4801 ** written to *pMode. If an IO error occurs, an SQLite error code is |
| 4802 ** returned and the value of *pMode is not modified. |
| 4803 ** |
| 4804 ** If the file being opened is a temporary file, it is always created with |
| 4805 ** the octal permissions 0600 (read/writable by owner only). If the file |
| 4806 ** is a database or master journal file, it is created with the permissions |
| 4807 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS. |
| 4808 ** |
| 4809 ** Finally, if the file being opened is a WAL or regular journal file, then |
| 4810 ** this function queries the file-system for the permissions on the |
| 4811 ** corresponding database file and sets *pMode to this value. Whenever |
| 4812 ** possible, WAL and journal files are created using the same permissions |
| 4813 ** as the associated database file. |
| 4814 */ |
| 4815 static int findCreateFileMode( |
| 4816 const char *zPath, /* Path of file (possibly) being created */ |
| 4817 int flags, /* Flags passed as 4th argument to xOpen() */ |
| 4818 mode_t *pMode /* OUT: Permissions to open file with */ |
| 4819 ){ |
| 4820 int rc = SQLITE_OK; /* Return Code */ |
| 4821 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
| 4822 char zDb[MAX_PATHNAME+1]; /* Database file path */ |
| 4823 int nDb; /* Number of valid bytes in zDb */ |
| 4824 struct stat sStat; /* Output of stat() on database file */ |
| 4825 |
| 4826 /* zPath is a path to a WAL or journal file. The following block derives |
| 4827 ** the path to the associated database file from zPath. This block handles |
| 4828 ** the following naming conventions: |
| 4829 ** |
| 4830 ** "<path to db>-journal" |
| 4831 ** "<path to db>-wal" |
| 4832 ** "<path to db>-journal-NNNN" |
| 4833 ** "<path to db>-wal-NNNN" |
| 4834 ** |
| 4835 ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are |
| 4836 ** used by the test_multiplex.c module. |
| 4837 */ |
| 4838 nDb = sqlite3Strlen30(zPath) - 1; |
| 4839 while( nDb>0 && zPath[nDb]!='l' ) nDb--; |
| 4840 nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7); |
| 4841 memcpy(zDb, zPath, nDb); |
| 4842 zDb[nDb] = '\0'; |
| 4843 |
| 4844 if( 0==osStat(zDb, &sStat) ){ |
| 4845 *pMode = sStat.st_mode & 0777; |
| 4846 }else{ |
| 4847 rc = SQLITE_IOERR_FSTAT; |
| 4848 } |
| 4849 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ |
| 4850 *pMode = 0600; |
| 4851 }else{ |
| 4852 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS; |
| 4853 } |
| 4854 return rc; |
| 4855 } |
| 4856 |
| 4857 /* |
| 4858 ** Initializes a unixFile structure with zeros. |
| 4859 */ |
| 4860 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) { |
| 4861 memset(file, 0, sizeof(unixFile)); |
| 4862 } |
| 4863 |
| 4864 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs, |
| 4865 int fd, |
| 4866 int dirfd, |
| 4867 sqlite3_file* file, |
| 4868 const char* fileName, |
| 4869 int noLock, |
| 4870 int isDelete) { |
| 4871 return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0); |
| 4872 } |
| 4873 |
| 4874 /* |
| 4875 ** Search for an unused file descriptor that was opened on the database file. |
| 4876 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise, |
| 4877 ** *fd is not modified. |
| 4878 ** |
| 4879 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot |
| 4880 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned. |
| 4881 */ |
| 4882 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file, |
| 4883 const char* fileName, |
| 4884 int flags, |
| 4885 int* fd) { |
| 4886 unixFile* unixSQLite3File = (unixFile*)file; |
| 4887 int fileType = flags & 0xFFFFFF00; |
| 4888 if (fileType == SQLITE_OPEN_MAIN_DB) { |
| 4889 UnixUnusedFd *unusedFd = findReusableFd(fileName, flags); |
| 4890 if (unusedFd) { |
| 4891 *fd = unusedFd->fd; |
| 4892 } else { |
| 4893 unusedFd = sqlite3_malloc(sizeof(*unusedFd)); |
| 4894 if (!unusedFd) { |
| 4895 return SQLITE_NOMEM; |
| 4896 } |
| 4897 } |
| 4898 unixSQLite3File->pUnused = unusedFd; |
| 4899 } |
| 4900 return SQLITE_OK; |
| 4901 } |
| 4902 |
| 4903 /* |
| 4904 ** Marks 'fd' as the unused file descriptor for 'pFile'. |
| 4905 */ |
| 4906 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file, |
| 4907 int fd, |
| 4908 int flags) { |
| 4909 unixFile* unixSQLite3File = (unixFile*)file; |
| 4910 if (unixSQLite3File->pUnused) { |
| 4911 unixSQLite3File->pUnused->fd = fd; |
| 4912 unixSQLite3File->pUnused->flags = flags; |
| 4913 } |
| 4914 } |
| 4915 |
| 4916 /* |
| 4917 ** Destroys pFile's field that keeps track of the unused file descriptor. |
| 4918 */ |
| 4919 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) { |
| 4920 unixFile* unixSQLite3File = (unixFile*)file; |
| 4921 sqlite3_free(unixSQLite3File->pUnused); |
| 4922 } |
| 4923 |
| 4924 /* |
| 4925 ** Open the file zPath. |
| 4926 ** |
| 4927 ** Previously, the SQLite OS layer used three functions in place of this |
| 4928 ** one: |
| 4929 ** |
| 4930 ** sqlite3OsOpenReadWrite(); |
| 4931 ** sqlite3OsOpenReadOnly(); |
| 4932 ** sqlite3OsOpenExclusive(); |
| 4933 ** |
| 4934 ** These calls correspond to the following combinations of flags: |
| 4935 ** |
| 4936 ** ReadWrite() -> (READWRITE | CREATE) |
| 4937 ** ReadOnly() -> (READONLY) |
| 4938 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) |
| 4939 ** |
| 4940 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If |
| 4941 ** true, the file was configured to be automatically deleted when the |
| 4942 ** file handle closed. To achieve the same effect using this new |
| 4943 ** interface, add the DELETEONCLOSE flag to those specified above for |
| 4944 ** OpenExclusive(). |
| 4945 */ |
| 4946 static int unixOpen( |
| 4947 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ |
| 4948 const char *zPath, /* Pathname of file to be opened */ |
| 4949 sqlite3_file *pFile, /* The file descriptor to be filled in */ |
| 4950 int flags, /* Input flags to control the opening */ |
| 4951 int *pOutFlags /* Output flags returned to SQLite core */ |
| 4952 ){ |
| 4953 unixFile *p = (unixFile *)pFile; |
| 4954 int fd = -1; /* File descriptor returned by open() */ |
| 4955 int openFlags = 0; /* Flags to pass to open() */ |
| 4956 int eType = flags&0xFFFFFF00; /* Type of file to open */ |
| 4957 int noLock; /* True to omit locking primitives */ |
| 4958 int rc = SQLITE_OK; /* Function Return Code */ |
| 4959 |
| 4960 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
| 4961 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); |
| 4962 int isCreate = (flags & SQLITE_OPEN_CREATE); |
| 4963 int isReadonly = (flags & SQLITE_OPEN_READONLY); |
| 4964 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
| 4965 #if SQLITE_ENABLE_LOCKING_STYLE |
| 4966 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); |
| 4967 #endif |
| 4968 |
| 4969 /* If creating a master or main-file journal, this function will open |
| 4970 ** a file-descriptor on the directory too. The first time unixSync() |
| 4971 ** is called the directory file descriptor will be fsync()ed and close()d. |
| 4972 */ |
| 4973 int syncDir = (isCreate && ( |
| 4974 eType==SQLITE_OPEN_MASTER_JOURNAL |
| 4975 || eType==SQLITE_OPEN_MAIN_JOURNAL |
| 4976 || eType==SQLITE_OPEN_WAL |
| 4977 )); |
| 4978 |
| 4979 /* If argument zPath is a NULL pointer, this function is required to open |
| 4980 ** a temporary file. Use this buffer to store the file name in. |
| 4981 */ |
| 4982 char zTmpname[MAX_PATHNAME+1]; |
| 4983 const char *zName = zPath; |
| 4984 |
| 4985 /* Check the following statements are true: |
| 4986 ** |
| 4987 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and |
| 4988 ** (b) if CREATE is set, then READWRITE must also be set, and |
| 4989 ** (c) if EXCLUSIVE is set, then CREATE must also be set. |
| 4990 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. |
| 4991 */ |
| 4992 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); |
| 4993 assert(isCreate==0 || isReadWrite); |
| 4994 assert(isExclusive==0 || isCreate); |
| 4995 assert(isDelete==0 || isCreate); |
| 4996 |
| 4997 /* The main DB, main journal, WAL file and master journal are never |
| 4998 ** automatically deleted. Nor are they ever temporary files. */ |
| 4999 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); |
| 5000 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); |
| 5001 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); |
| 5002 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); |
| 5003 |
| 5004 /* Assert that the upper layer has set one of the "file-type" flags. */ |
| 5005 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB |
| 5006 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL |
| 5007 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL |
| 5008 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL |
| 5009 ); |
| 5010 |
| 5011 chromium_sqlite3_initialize_unix_sqlite3_file(pFile); |
| 5012 |
| 5013 if( eType==SQLITE_OPEN_MAIN_DB ){ |
| 5014 rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd); |
| 5015 if( rc!=SQLITE_OK ){ |
| 5016 return rc; |
| 5017 } |
| 5018 }else if( !zName ){ |
| 5019 /* If zName is NULL, the upper layer is requesting a temp file. */ |
| 5020 assert(isDelete && !syncDir); |
| 5021 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname); |
| 5022 if( rc!=SQLITE_OK ){ |
| 5023 return rc; |
| 5024 } |
| 5025 zName = zTmpname; |
| 5026 } |
| 5027 |
| 5028 /* Determine the value of the flags parameter passed to POSIX function |
| 5029 ** open(). These must be calculated even if open() is not called, as |
| 5030 ** they may be stored as part of the file handle and used by the |
| 5031 ** 'conch file' locking functions later on. */ |
| 5032 if( isReadonly ) openFlags |= O_RDONLY; |
| 5033 if( isReadWrite ) openFlags |= O_RDWR; |
| 5034 if( isCreate ) openFlags |= O_CREAT; |
| 5035 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); |
| 5036 openFlags |= (O_LARGEFILE|O_BINARY); |
| 5037 |
| 5038 if( fd<0 ){ |
| 5039 mode_t openMode; /* Permissions to create file with */ |
| 5040 rc = findCreateFileMode(zName, flags, &openMode); |
| 5041 if( rc!=SQLITE_OK ){ |
| 5042 assert( !p->pUnused ); |
| 5043 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); |
| 5044 return rc; |
| 5045 } |
| 5046 fd = robust_open(zName, openFlags, openMode); |
| 5047 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); |
| 5048 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ |
| 5049 /* Failed to open the file for read/write access. Try read-only. */ |
| 5050 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); |
| 5051 openFlags &= ~(O_RDWR|O_CREAT); |
| 5052 flags |= SQLITE_OPEN_READONLY; |
| 5053 openFlags |= O_RDONLY; |
| 5054 isReadonly = 1; |
| 5055 fd = robust_open(zName, openFlags, openMode); |
| 5056 } |
| 5057 if( fd<0 ){ |
| 5058 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); |
| 5059 goto open_finished; |
| 5060 } |
| 5061 } |
| 5062 assert( fd>=0 ); |
| 5063 if( pOutFlags ){ |
| 5064 *pOutFlags = flags; |
| 5065 } |
| 5066 |
| 5067 chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags); |
| 5068 |
| 5069 if( isDelete ){ |
| 5070 #if OS_VXWORKS |
| 5071 zPath = zName; |
| 5072 #else |
| 5073 osUnlink(zName); |
| 5074 #endif |
| 5075 } |
| 5076 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5077 else{ |
| 5078 p->openFlags = openFlags; |
| 5079 } |
| 5080 #endif |
| 5081 |
| 5082 #ifdef FD_CLOEXEC |
| 5083 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
| 5084 #endif |
| 5085 |
| 5086 noLock = eType!=SQLITE_OPEN_MAIN_DB; |
| 5087 |
| 5088 |
| 5089 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| 5090 struct statfs fsInfo; |
| 5091 if( fstatfs(fd, &fsInfo) == -1 ){ |
| 5092 ((unixFile*)pFile)->lastErrno = errno; |
| 5093 robust_close(p, fd, __LINE__); |
| 5094 return SQLITE_IOERR_ACCESS; |
| 5095 } |
| 5096 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { |
| 5097 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
| 5098 } |
| 5099 #endif |
| 5100 |
| 5101 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5102 #if SQLITE_PREFER_PROXY_LOCKING |
| 5103 isAutoProxy = 1; |
| 5104 #endif |
| 5105 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ |
| 5106 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); |
| 5107 int useProxy = 0; |
| 5108 |
| 5109 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means |
| 5110 ** never use proxy, NULL means use proxy for non-local files only. */ |
| 5111 if( envforce!=NULL ){ |
| 5112 useProxy = atoi(envforce)>0; |
| 5113 }else{ |
| 5114 struct statfs fsInfo; |
| 5115 if( statfs(zPath, &fsInfo) == -1 ){ |
| 5116 /* In theory, the close(fd) call is sub-optimal. If the file opened |
| 5117 ** with fd is a database file, and there are other connections open |
| 5118 ** on that file that are currently holding advisory locks on it, |
| 5119 ** then the call to close() will cancel those locks. In practice, |
| 5120 ** we're assuming that statfs() doesn't fail very often. At least |
| 5121 ** not while other file descriptors opened by the same process on |
| 5122 ** the same file are working. */ |
| 5123 p->lastErrno = errno; |
| 5124 robust_close(p, fd, __LINE__); |
| 5125 rc = SQLITE_IOERR_ACCESS; |
| 5126 goto open_finished; |
| 5127 } |
| 5128 useProxy = !(fsInfo.f_flags&MNT_LOCAL); |
| 5129 } |
| 5130 if( useProxy ){ |
| 5131 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, |
| 5132 isDelete, isReadonly); |
| 5133 if( rc==SQLITE_OK ){ |
| 5134 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); |
| 5135 if( rc!=SQLITE_OK ){ |
| 5136 /* Use unixClose to clean up the resources added in fillInUnixFile |
| 5137 ** and clear all the structure's references. Specifically, |
| 5138 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op |
| 5139 */ |
| 5140 unixClose(pFile); |
| 5141 return rc; |
| 5142 } |
| 5143 } |
| 5144 goto open_finished; |
| 5145 } |
| 5146 } |
| 5147 #endif |
| 5148 |
| 5149 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, |
| 5150 isDelete, isReadonly); |
| 5151 open_finished: |
| 5152 if( rc!=SQLITE_OK ){ |
| 5153 chromium_sqlite3_destroy_reusable_file_handle(pFile); |
| 5154 } |
| 5155 return rc; |
| 5156 } |
| 5157 |
| 5158 |
| 5159 /* |
| 5160 ** Delete the file at zPath. If the dirSync argument is true, fsync() |
| 5161 ** the directory after deleting the file. |
| 5162 */ |
| 5163 static int unixDelete( |
| 5164 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ |
| 5165 const char *zPath, /* Name of file to be deleted */ |
| 5166 int dirSync /* If true, fsync() directory after deleting file */ |
| 5167 ){ |
| 5168 int rc = SQLITE_OK; |
| 5169 UNUSED_PARAMETER(NotUsed); |
| 5170 SimulateIOError(return SQLITE_IOERR_DELETE); |
| 5171 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){ |
| 5172 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); |
| 5173 } |
| 5174 #ifndef SQLITE_DISABLE_DIRSYNC |
| 5175 if( dirSync ){ |
| 5176 int fd; |
| 5177 rc = osOpenDirectory(zPath, &fd); |
| 5178 if( rc==SQLITE_OK ){ |
| 5179 #if OS_VXWORKS |
| 5180 if( fsync(fd)==-1 ) |
| 5181 #else |
| 5182 if( fsync(fd) ) |
| 5183 #endif |
| 5184 { |
| 5185 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); |
| 5186 } |
| 5187 robust_close(0, fd, __LINE__); |
| 5188 }else if( rc==SQLITE_CANTOPEN ){ |
| 5189 rc = SQLITE_OK; |
| 5190 } |
| 5191 } |
| 5192 #endif |
| 5193 return rc; |
| 5194 } |
| 5195 |
| 5196 /* |
| 5197 ** Test the existance of or access permissions of file zPath. The |
| 5198 ** test performed depends on the value of flags: |
| 5199 ** |
| 5200 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists |
| 5201 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. |
| 5202 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. |
| 5203 ** |
| 5204 ** Otherwise return 0. |
| 5205 */ |
| 5206 static int unixAccess( |
| 5207 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ |
| 5208 const char *zPath, /* Path of the file to examine */ |
| 5209 int flags, /* What do we want to learn about the zPath file? */ |
| 5210 int *pResOut /* Write result boolean here */ |
| 5211 ){ |
| 5212 int amode = 0; |
| 5213 UNUSED_PARAMETER(NotUsed); |
| 5214 SimulateIOError( return SQLITE_IOERR_ACCESS; ); |
| 5215 switch( flags ){ |
| 5216 case SQLITE_ACCESS_EXISTS: |
| 5217 amode = F_OK; |
| 5218 break; |
| 5219 case SQLITE_ACCESS_READWRITE: |
| 5220 amode = W_OK|R_OK; |
| 5221 break; |
| 5222 case SQLITE_ACCESS_READ: |
| 5223 amode = R_OK; |
| 5224 break; |
| 5225 |
| 5226 default: |
| 5227 assert(!"Invalid flags argument"); |
| 5228 } |
| 5229 *pResOut = (osAccess(zPath, amode)==0); |
| 5230 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ |
| 5231 struct stat buf; |
| 5232 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ |
| 5233 *pResOut = 0; |
| 5234 } |
| 5235 } |
| 5236 return SQLITE_OK; |
| 5237 } |
| 5238 |
| 5239 |
| 5240 /* |
| 5241 ** Turn a relative pathname into a full pathname. The relative path |
| 5242 ** is stored as a nul-terminated string in the buffer pointed to by |
| 5243 ** zPath. |
| 5244 ** |
| 5245 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes |
| 5246 ** (in this case, MAX_PATHNAME bytes). The full-path is written to |
| 5247 ** this buffer before returning. |
| 5248 */ |
| 5249 static int unixFullPathname( |
| 5250 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| 5251 const char *zPath, /* Possibly relative input path */ |
| 5252 int nOut, /* Size of output buffer in bytes */ |
| 5253 char *zOut /* Output buffer */ |
| 5254 ){ |
| 5255 |
| 5256 /* It's odd to simulate an io-error here, but really this is just |
| 5257 ** using the io-error infrastructure to test that SQLite handles this |
| 5258 ** function failing. This function could fail if, for example, the |
| 5259 ** current working directory has been unlinked. |
| 5260 */ |
| 5261 SimulateIOError( return SQLITE_ERROR ); |
| 5262 |
| 5263 assert( pVfs->mxPathname==MAX_PATHNAME ); |
| 5264 UNUSED_PARAMETER(pVfs); |
| 5265 |
| 5266 zOut[nOut-1] = '\0'; |
| 5267 if( zPath[0]=='/' ){ |
| 5268 sqlite3_snprintf(nOut, zOut, "%s", zPath); |
| 5269 }else{ |
| 5270 int nCwd; |
| 5271 if( osGetcwd(zOut, nOut-1)==0 ){ |
| 5272 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); |
| 5273 } |
| 5274 nCwd = (int)strlen(zOut); |
| 5275 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); |
| 5276 } |
| 5277 return SQLITE_OK; |
| 5278 } |
| 5279 |
| 5280 |
| 5281 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 5282 /* |
| 5283 ** Interfaces for opening a shared library, finding entry points |
| 5284 ** within the shared library, and closing the shared library. |
| 5285 */ |
| 5286 #include <dlfcn.h> |
| 5287 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ |
| 5288 UNUSED_PARAMETER(NotUsed); |
| 5289 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); |
| 5290 } |
| 5291 |
| 5292 /* |
| 5293 ** SQLite calls this function immediately after a call to unixDlSym() or |
| 5294 ** unixDlOpen() fails (returns a null pointer). If a more detailed error |
| 5295 ** message is available, it is written to zBufOut. If no error message |
| 5296 ** is available, zBufOut is left unmodified and SQLite uses a default |
| 5297 ** error message. |
| 5298 */ |
| 5299 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ |
| 5300 const char *zErr; |
| 5301 UNUSED_PARAMETER(NotUsed); |
| 5302 unixEnterMutex(); |
| 5303 zErr = dlerror(); |
| 5304 if( zErr ){ |
| 5305 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); |
| 5306 } |
| 5307 unixLeaveMutex(); |
| 5308 } |
| 5309 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ |
| 5310 /* |
| 5311 ** GCC with -pedantic-errors says that C90 does not allow a void* to be |
| 5312 ** cast into a pointer to a function. And yet the library dlsym() routine |
| 5313 ** returns a void* which is really a pointer to a function. So how do we |
| 5314 ** use dlsym() with -pedantic-errors? |
| 5315 ** |
| 5316 ** Variable x below is defined to be a pointer to a function taking |
| 5317 ** parameters void* and const char* and returning a pointer to a function. |
| 5318 ** We initialize x by assigning it a pointer to the dlsym() function. |
| 5319 ** (That assignment requires a cast.) Then we call the function that |
| 5320 ** x points to. |
| 5321 ** |
| 5322 ** This work-around is unlikely to work correctly on any system where |
| 5323 ** you really cannot cast a function pointer into void*. But then, on the |
| 5324 ** other hand, dlsym() will not work on such a system either, so we have |
| 5325 ** not really lost anything. |
| 5326 */ |
| 5327 void (*(*x)(void*,const char*))(void); |
| 5328 UNUSED_PARAMETER(NotUsed); |
| 5329 x = (void(*(*)(void*,const char*))(void))dlsym; |
| 5330 return (*x)(p, zSym); |
| 5331 } |
| 5332 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ |
| 5333 UNUSED_PARAMETER(NotUsed); |
| 5334 dlclose(pHandle); |
| 5335 } |
| 5336 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ |
| 5337 #define unixDlOpen 0 |
| 5338 #define unixDlError 0 |
| 5339 #define unixDlSym 0 |
| 5340 #define unixDlClose 0 |
| 5341 #endif |
| 5342 |
| 5343 /* |
| 5344 ** Write nBuf bytes of random data to the supplied buffer zBuf. |
| 5345 */ |
| 5346 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ |
| 5347 UNUSED_PARAMETER(NotUsed); |
| 5348 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); |
| 5349 |
| 5350 /* We have to initialize zBuf to prevent valgrind from reporting |
| 5351 ** errors. The reports issued by valgrind are incorrect - we would |
| 5352 ** prefer that the randomness be increased by making use of the |
| 5353 ** uninitialized space in zBuf - but valgrind errors tend to worry |
| 5354 ** some users. Rather than argue, it seems easier just to initialize |
| 5355 ** the whole array and silence valgrind, even if that means less randomness |
| 5356 ** in the random seed. |
| 5357 ** |
| 5358 ** When testing, initializing zBuf[] to zero is all we do. That means |
| 5359 ** that we always use the same random number sequence. This makes the |
| 5360 ** tests repeatable. |
| 5361 */ |
| 5362 memset(zBuf, 0, nBuf); |
| 5363 #if !defined(SQLITE_TEST) |
| 5364 { |
| 5365 int pid, fd; |
| 5366 fd = robust_open("/dev/urandom", O_RDONLY, 0); |
| 5367 if( fd<0 ){ |
| 5368 time_t t; |
| 5369 time(&t); |
| 5370 memcpy(zBuf, &t, sizeof(t)); |
| 5371 pid = getpid(); |
| 5372 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); |
| 5373 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); |
| 5374 nBuf = sizeof(t) + sizeof(pid); |
| 5375 }else{ |
| 5376 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR ); |
| 5377 robust_close(0, fd, __LINE__); |
| 5378 } |
| 5379 } |
| 5380 #endif |
| 5381 return nBuf; |
| 5382 } |
| 5383 |
| 5384 |
| 5385 /* |
| 5386 ** Sleep for a little while. Return the amount of time slept. |
| 5387 ** The argument is the number of microseconds we want to sleep. |
| 5388 ** The return value is the number of microseconds of sleep actually |
| 5389 ** requested from the underlying operating system, a number which |
| 5390 ** might be greater than or equal to the argument, but not less |
| 5391 ** than the argument. |
| 5392 */ |
| 5393 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ |
| 5394 #if OS_VXWORKS |
| 5395 struct timespec sp; |
| 5396 |
| 5397 sp.tv_sec = microseconds / 1000000; |
| 5398 sp.tv_nsec = (microseconds % 1000000) * 1000; |
| 5399 nanosleep(&sp, NULL); |
| 5400 UNUSED_PARAMETER(NotUsed); |
| 5401 return microseconds; |
| 5402 #elif defined(HAVE_USLEEP) && HAVE_USLEEP |
| 5403 usleep(microseconds); |
| 5404 UNUSED_PARAMETER(NotUsed); |
| 5405 return microseconds; |
| 5406 #else |
| 5407 int seconds = (microseconds+999999)/1000000; |
| 5408 sleep(seconds); |
| 5409 UNUSED_PARAMETER(NotUsed); |
| 5410 return seconds*1000000; |
| 5411 #endif |
| 5412 } |
| 5413 |
| 5414 /* |
| 5415 ** The following variable, if set to a non-zero value, is interpreted as |
| 5416 ** the number of seconds since 1970 and is used to set the result of |
| 5417 ** sqlite3OsCurrentTime() during testing. |
| 5418 */ |
| 5419 #ifdef SQLITE_TEST |
| 5420 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ |
| 5421 #endif |
| 5422 |
| 5423 /* |
| 5424 ** Find the current time (in Universal Coordinated Time). Write into *piNow |
| 5425 ** the current time and date as a Julian Day number times 86_400_000. In |
| 5426 ** other words, write into *piNow the number of milliseconds since the Julian |
| 5427 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the |
| 5428 ** proleptic Gregorian calendar. |
| 5429 ** |
| 5430 ** On success, return 0. Return 1 if the time and date cannot be found. |
| 5431 */ |
| 5432 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ |
| 5433 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; |
| 5434 #if defined(NO_GETTOD) |
| 5435 time_t t; |
| 5436 time(&t); |
| 5437 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; |
| 5438 #elif OS_VXWORKS |
| 5439 struct timespec sNow; |
| 5440 clock_gettime(CLOCK_REALTIME, &sNow); |
| 5441 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; |
| 5442 #else |
| 5443 struct timeval sNow; |
| 5444 gettimeofday(&sNow, 0); |
| 5445 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; |
| 5446 #endif |
| 5447 |
| 5448 #ifdef SQLITE_TEST |
| 5449 if( sqlite3_current_time ){ |
| 5450 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; |
| 5451 } |
| 5452 #endif |
| 5453 UNUSED_PARAMETER(NotUsed); |
| 5454 return 0; |
| 5455 } |
| 5456 |
| 5457 /* |
| 5458 ** Find the current time (in Universal Coordinated Time). Write the |
| 5459 ** current time and date as a Julian Day number into *prNow and |
| 5460 ** return 0. Return 1 if the time and date cannot be found. |
| 5461 */ |
| 5462 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ |
| 5463 sqlite3_int64 i; |
| 5464 UNUSED_PARAMETER(NotUsed); |
| 5465 unixCurrentTimeInt64(0, &i); |
| 5466 *prNow = i/86400000.0; |
| 5467 return 0; |
| 5468 } |
| 5469 |
| 5470 /* |
| 5471 ** We added the xGetLastError() method with the intention of providing |
| 5472 ** better low-level error messages when operating-system problems come up |
| 5473 ** during SQLite operation. But so far, none of that has been implemented |
| 5474 ** in the core. So this routine is never called. For now, it is merely |
| 5475 ** a place-holder. |
| 5476 */ |
| 5477 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ |
| 5478 UNUSED_PARAMETER(NotUsed); |
| 5479 UNUSED_PARAMETER(NotUsed2); |
| 5480 UNUSED_PARAMETER(NotUsed3); |
| 5481 return 0; |
| 5482 } |
| 5483 |
| 5484 |
| 5485 /* |
| 5486 ************************ End of sqlite3_vfs methods *************************** |
| 5487 ******************************************************************************/ |
| 5488 |
| 5489 /****************************************************************************** |
| 5490 ************************** Begin Proxy Locking ******************************** |
| 5491 ** |
| 5492 ** Proxy locking is a "uber-locking-method" in this sense: It uses the |
| 5493 ** other locking methods on secondary lock files. Proxy locking is a |
| 5494 ** meta-layer over top of the primitive locking implemented above. For |
| 5495 ** this reason, the division that implements of proxy locking is deferred |
| 5496 ** until late in the file (here) after all of the other I/O methods have |
| 5497 ** been defined - so that the primitive locking methods are available |
| 5498 ** as services to help with the implementation of proxy locking. |
| 5499 ** |
| 5500 **** |
| 5501 ** |
| 5502 ** The default locking schemes in SQLite use byte-range locks on the |
| 5503 ** database file to coordinate safe, concurrent access by multiple readers |
| 5504 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking |
| 5505 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented |
| 5506 ** as POSIX read & write locks over fixed set of locations (via fsctl), |
| 5507 ** on AFP and SMB only exclusive byte-range locks are available via fsctl |
| 5508 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. |
| 5509 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected |
| 5510 ** address in the shared range is taken for a SHARED lock, the entire |
| 5511 ** shared range is taken for an EXCLUSIVE lock): |
| 5512 ** |
| 5513 ** PENDING_BYTE 0x40000000 |
| 5514 ** RESERVED_BYTE 0x40000001 |
| 5515 ** SHARED_RANGE 0x40000002 -> 0x40000200 |
| 5516 ** |
| 5517 ** This works well on the local file system, but shows a nearly 100x |
| 5518 ** slowdown in read performance on AFP because the AFP client disables |
| 5519 ** the read cache when byte-range locks are present. Enabling the read |
| 5520 ** cache exposes a cache coherency problem that is present on all OS X |
| 5521 ** supported network file systems. NFS and AFP both observe the |
| 5522 ** close-to-open semantics for ensuring cache coherency |
| 5523 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively |
| 5524 ** address the requirements for concurrent database access by multiple |
| 5525 ** readers and writers |
| 5526 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. |
| 5527 ** |
| 5528 ** To address the performance and cache coherency issues, proxy file locking |
| 5529 ** changes the way database access is controlled by limiting access to a |
| 5530 ** single host at a time and moving file locks off of the database file |
| 5531 ** and onto a proxy file on the local file system. |
| 5532 ** |
| 5533 ** |
| 5534 ** Using proxy locks |
| 5535 ** ----------------- |
| 5536 ** |
| 5537 ** C APIs |
| 5538 ** |
| 5539 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, |
| 5540 ** <proxy_path> | ":auto:"); |
| 5541 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); |
| 5542 ** |
| 5543 ** |
| 5544 ** SQL pragmas |
| 5545 ** |
| 5546 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: |
| 5547 ** PRAGMA [database.]lock_proxy_file |
| 5548 ** |
| 5549 ** Specifying ":auto:" means that if there is a conch file with a matching |
| 5550 ** host ID in it, the proxy path in the conch file will be used, otherwise |
| 5551 ** a proxy path based on the user's temp dir |
| 5552 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the |
| 5553 ** actual proxy file name is generated from the name and path of the |
| 5554 ** database file. For example: |
| 5555 ** |
| 5556 ** For database path "/Users/me/foo.db" |
| 5557 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") |
| 5558 ** |
| 5559 ** Once a lock proxy is configured for a database connection, it can not |
| 5560 ** be removed, however it may be switched to a different proxy path via |
| 5561 ** the above APIs (assuming the conch file is not being held by another |
| 5562 ** connection or process). |
| 5563 ** |
| 5564 ** |
| 5565 ** How proxy locking works |
| 5566 ** ----------------------- |
| 5567 ** |
| 5568 ** Proxy file locking relies primarily on two new supporting files: |
| 5569 ** |
| 5570 ** * conch file to limit access to the database file to a single host |
| 5571 ** at a time |
| 5572 ** |
| 5573 ** * proxy file to act as a proxy for the advisory locks normally |
| 5574 ** taken on the database |
| 5575 ** |
| 5576 ** The conch file - to use a proxy file, sqlite must first "hold the conch" |
| 5577 ** by taking an sqlite-style shared lock on the conch file, reading the |
| 5578 ** contents and comparing the host's unique host ID (see below) and lock |
| 5579 ** proxy path against the values stored in the conch. The conch file is |
| 5580 ** stored in the same directory as the database file and the file name |
| 5581 ** is patterned after the database file name as ".<databasename>-conch". |
| 5582 ** If the conch file does not exist, or it's contents do not match the |
| 5583 ** host ID and/or proxy path, then the lock is escalated to an exclusive |
| 5584 ** lock and the conch file contents is updated with the host ID and proxy |
| 5585 ** path and the lock is downgraded to a shared lock again. If the conch |
| 5586 ** is held by another process (with a shared lock), the exclusive lock |
| 5587 ** will fail and SQLITE_BUSY is returned. |
| 5588 ** |
| 5589 ** The proxy file - a single-byte file used for all advisory file locks |
| 5590 ** normally taken on the database file. This allows for safe sharing |
| 5591 ** of the database file for multiple readers and writers on the same |
| 5592 ** host (the conch ensures that they all use the same local lock file). |
| 5593 ** |
| 5594 ** Requesting the lock proxy does not immediately take the conch, it is |
| 5595 ** only taken when the first request to lock database file is made. |
| 5596 ** This matches the semantics of the traditional locking behavior, where |
| 5597 ** opening a connection to a database file does not take a lock on it. |
| 5598 ** The shared lock and an open file descriptor are maintained until |
| 5599 ** the connection to the database is closed. |
| 5600 ** |
| 5601 ** The proxy file and the lock file are never deleted so they only need |
| 5602 ** to be created the first time they are used. |
| 5603 ** |
| 5604 ** Configuration options |
| 5605 ** --------------------- |
| 5606 ** |
| 5607 ** SQLITE_PREFER_PROXY_LOCKING |
| 5608 ** |
| 5609 ** Database files accessed on non-local file systems are |
| 5610 ** automatically configured for proxy locking, lock files are |
| 5611 ** named automatically using the same logic as |
| 5612 ** PRAGMA lock_proxy_file=":auto:" |
| 5613 ** |
| 5614 ** SQLITE_PROXY_DEBUG |
| 5615 ** |
| 5616 ** Enables the logging of error messages during host id file |
| 5617 ** retrieval and creation |
| 5618 ** |
| 5619 ** LOCKPROXYDIR |
| 5620 ** |
| 5621 ** Overrides the default directory used for lock proxy files that |
| 5622 ** are named automatically via the ":auto:" setting |
| 5623 ** |
| 5624 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| 5625 ** |
| 5626 ** Permissions to use when creating a directory for storing the |
| 5627 ** lock proxy files, only used when LOCKPROXYDIR is not set. |
| 5628 ** |
| 5629 ** |
| 5630 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, |
| 5631 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will |
| 5632 ** force proxy locking to be used for every database file opened, and 0 |
| 5633 ** will force automatic proxy locking to be disabled for all database |
| 5634 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or |
| 5635 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). |
| 5636 */ |
| 5637 |
| 5638 /* |
| 5639 ** Proxy locking is only available on MacOSX |
| 5640 */ |
| 5641 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5642 |
| 5643 /* |
| 5644 ** The proxyLockingContext has the path and file structures for the remote |
| 5645 ** and local proxy files in it |
| 5646 */ |
| 5647 typedef struct proxyLockingContext proxyLockingContext; |
| 5648 struct proxyLockingContext { |
| 5649 unixFile *conchFile; /* Open conch file */ |
| 5650 char *conchFilePath; /* Name of the conch file */ |
| 5651 unixFile *lockProxy; /* Open proxy lock file */ |
| 5652 char *lockProxyPath; /* Name of the proxy lock file */ |
| 5653 char *dbPath; /* Name of the open file */ |
| 5654 int conchHeld; /* 1 if the conch is held, -1 if lockless */ |
| 5655 void *oldLockingContext; /* Original lockingcontext to restore on close */ |
| 5656 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ |
| 5657 }; |
| 5658 |
| 5659 /* |
| 5660 ** The proxy lock file path for the database at dbPath is written into lPath, |
| 5661 ** which must point to valid, writable memory large enough for a maxLen length |
| 5662 ** file path. |
| 5663 */ |
| 5664 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ |
| 5665 int len; |
| 5666 int dbLen; |
| 5667 int i; |
| 5668 |
| 5669 #ifdef LOCKPROXYDIR |
| 5670 len = strlcpy(lPath, LOCKPROXYDIR, maxLen); |
| 5671 #else |
| 5672 # ifdef _CS_DARWIN_USER_TEMP_DIR |
| 5673 { |
| 5674 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ |
| 5675 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", |
| 5676 lPath, errno, getpid())); |
| 5677 return SQLITE_IOERR_LOCK; |
| 5678 } |
| 5679 len = strlcat(lPath, "sqliteplocks", maxLen); |
| 5680 } |
| 5681 # else |
| 5682 len = strlcpy(lPath, "/tmp/", maxLen); |
| 5683 # endif |
| 5684 #endif |
| 5685 |
| 5686 if( lPath[len-1]!='/' ){ |
| 5687 len = strlcat(lPath, "/", maxLen); |
| 5688 } |
| 5689 |
| 5690 /* transform the db path to a unique cache name */ |
| 5691 dbLen = (int)strlen(dbPath); |
| 5692 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ |
| 5693 char c = dbPath[i]; |
| 5694 lPath[i+len] = (c=='/')?'_':c; |
| 5695 } |
| 5696 lPath[i+len]='\0'; |
| 5697 strlcat(lPath, ":auto:", maxLen); |
| 5698 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); |
| 5699 return SQLITE_OK; |
| 5700 } |
| 5701 |
| 5702 /* |
| 5703 ** Creates the lock file and any missing directories in lockPath |
| 5704 */ |
| 5705 static int proxyCreateLockPath(const char *lockPath){ |
| 5706 int i, len; |
| 5707 char buf[MAXPATHLEN]; |
| 5708 int start = 0; |
| 5709 |
| 5710 assert(lockPath!=NULL); |
| 5711 /* try to create all the intermediate directories */ |
| 5712 len = (int)strlen(lockPath); |
| 5713 buf[0] = lockPath[0]; |
| 5714 for( i=1; i<len; i++ ){ |
| 5715 if( lockPath[i] == '/' && (i - start > 0) ){ |
| 5716 /* only mkdir if leaf dir != "." or "/" or ".." */ |
| 5717 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') |
| 5718 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ |
| 5719 buf[i]='\0'; |
| 5720 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ |
| 5721 int err=errno; |
| 5722 if( err!=EEXIST ) { |
| 5723 OSTRACE(("CREATELOCKPATH FAILED creating %s, " |
| 5724 "'%s' proxy lock path=%s pid=%d\n", |
| 5725 buf, strerror(err), lockPath, getpid())); |
| 5726 return err; |
| 5727 } |
| 5728 } |
| 5729 } |
| 5730 start=i+1; |
| 5731 } |
| 5732 buf[i] = lockPath[i]; |
| 5733 } |
| 5734 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); |
| 5735 return 0; |
| 5736 } |
| 5737 |
| 5738 /* |
| 5739 ** Create a new VFS file descriptor (stored in memory obtained from |
| 5740 ** sqlite3_malloc) and open the file named "path" in the file descriptor. |
| 5741 ** |
| 5742 ** The caller is responsible not only for closing the file descriptor |
| 5743 ** but also for freeing the memory associated with the file descriptor. |
| 5744 */ |
| 5745 static int proxyCreateUnixFile( |
| 5746 const char *path, /* path for the new unixFile */ |
| 5747 unixFile **ppFile, /* unixFile created and returned by ref */ |
| 5748 int islockfile /* if non zero missing dirs will be created */ |
| 5749 ) { |
| 5750 int fd = -1; |
| 5751 unixFile *pNew; |
| 5752 int rc = SQLITE_OK; |
| 5753 int openFlags = O_RDWR | O_CREAT; |
| 5754 sqlite3_vfs dummyVfs; |
| 5755 int terrno = 0; |
| 5756 UnixUnusedFd *pUnused = NULL; |
| 5757 |
| 5758 /* 1. first try to open/create the file |
| 5759 ** 2. if that fails, and this is a lock file (not-conch), try creating |
| 5760 ** the parent directories and then try again. |
| 5761 ** 3. if that fails, try to open the file read-only |
| 5762 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file |
| 5763 */ |
| 5764 pUnused = findReusableFd(path, openFlags); |
| 5765 if( pUnused ){ |
| 5766 fd = pUnused->fd; |
| 5767 }else{ |
| 5768 pUnused = sqlite3_malloc(sizeof(*pUnused)); |
| 5769 if( !pUnused ){ |
| 5770 return SQLITE_NOMEM; |
| 5771 } |
| 5772 } |
| 5773 if( fd<0 ){ |
| 5774 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); |
| 5775 terrno = errno; |
| 5776 if( fd<0 && errno==ENOENT && islockfile ){ |
| 5777 if( proxyCreateLockPath(path) == SQLITE_OK ){ |
| 5778 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); |
| 5779 } |
| 5780 } |
| 5781 } |
| 5782 if( fd<0 ){ |
| 5783 openFlags = O_RDONLY; |
| 5784 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); |
| 5785 terrno = errno; |
| 5786 } |
| 5787 if( fd<0 ){ |
| 5788 if( islockfile ){ |
| 5789 return SQLITE_BUSY; |
| 5790 } |
| 5791 switch (terrno) { |
| 5792 case EACCES: |
| 5793 return SQLITE_PERM; |
| 5794 case EIO: |
| 5795 return SQLITE_IOERR_LOCK; /* even though it is the conch */ |
| 5796 default: |
| 5797 return SQLITE_CANTOPEN_BKPT; |
| 5798 } |
| 5799 } |
| 5800 |
| 5801 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); |
| 5802 if( pNew==NULL ){ |
| 5803 rc = SQLITE_NOMEM; |
| 5804 goto end_create_proxy; |
| 5805 } |
| 5806 memset(pNew, 0, sizeof(unixFile)); |
| 5807 pNew->openFlags = openFlags; |
| 5808 memset(&dummyVfs, 0, sizeof(dummyVfs)); |
| 5809 dummyVfs.pAppData = (void*)&autolockIoFinder; |
| 5810 dummyVfs.zName = "dummy"; |
| 5811 pUnused->fd = fd; |
| 5812 pUnused->flags = openFlags; |
| 5813 pNew->pUnused = pUnused; |
| 5814 |
| 5815 rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0); |
| 5816 if( rc==SQLITE_OK ){ |
| 5817 *ppFile = pNew; |
| 5818 return SQLITE_OK; |
| 5819 } |
| 5820 end_create_proxy: |
| 5821 robust_close(pNew, fd, __LINE__); |
| 5822 sqlite3_free(pNew); |
| 5823 sqlite3_free(pUnused); |
| 5824 return rc; |
| 5825 } |
| 5826 |
| 5827 #ifdef SQLITE_TEST |
| 5828 /* simulate multiple hosts by creating unique hostid file paths */ |
| 5829 int sqlite3_hostid_num = 0; |
| 5830 #endif |
| 5831 |
| 5832 #define PROXY_HOSTIDLEN 16 /* conch file host id length */ |
| 5833 |
| 5834 /* Not always defined in the headers as it ought to be */ |
| 5835 extern int gethostuuid(uuid_t id, const struct timespec *wait); |
| 5836 |
| 5837 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN |
| 5838 ** bytes of writable memory. |
| 5839 */ |
| 5840 static int proxyGetHostID(unsigned char *pHostID, int *pError){ |
| 5841 assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); |
| 5842 memset(pHostID, 0, PROXY_HOSTIDLEN); |
| 5843 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ |
| 5844 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 |
| 5845 { |
| 5846 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ |
| 5847 if( gethostuuid(pHostID, &timeout) ){ |
| 5848 int err = errno; |
| 5849 if( pError ){ |
| 5850 *pError = err; |
| 5851 } |
| 5852 return SQLITE_IOERR; |
| 5853 } |
| 5854 } |
| 5855 #endif |
| 5856 #ifdef SQLITE_TEST |
| 5857 /* simulate multiple hosts by creating unique hostid file paths */ |
| 5858 if( sqlite3_hostid_num != 0){ |
| 5859 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); |
| 5860 } |
| 5861 #endif |
| 5862 |
| 5863 return SQLITE_OK; |
| 5864 } |
| 5865 |
| 5866 /* The conch file contains the header, host id and lock file path |
| 5867 */ |
| 5868 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ |
| 5869 #define PROXY_HEADERLEN 1 /* conch file header length */ |
| 5870 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) |
| 5871 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) |
| 5872 |
| 5873 /* |
| 5874 ** Takes an open conch file, copies the contents to a new path and then moves |
| 5875 ** it back. The newly created file's file descriptor is assigned to the |
| 5876 ** conch file structure and finally the original conch file descriptor is |
| 5877 ** closed. Returns zero if successful. |
| 5878 */ |
| 5879 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ |
| 5880 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 5881 unixFile *conchFile = pCtx->conchFile; |
| 5882 char tPath[MAXPATHLEN]; |
| 5883 char buf[PROXY_MAXCONCHLEN]; |
| 5884 char *cPath = pCtx->conchFilePath; |
| 5885 size_t readLen = 0; |
| 5886 size_t pathLen = 0; |
| 5887 char errmsg[64] = ""; |
| 5888 int fd = -1; |
| 5889 int rc = -1; |
| 5890 UNUSED_PARAMETER(myHostID); |
| 5891 |
| 5892 /* create a new path by replace the trailing '-conch' with '-break' */ |
| 5893 pathLen = strlcpy(tPath, cPath, MAXPATHLEN); |
| 5894 if( pathLen>MAXPATHLEN || pathLen<6 || |
| 5895 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ |
| 5896 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); |
| 5897 goto end_breaklock; |
| 5898 } |
| 5899 /* read the conch content */ |
| 5900 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); |
| 5901 if( readLen<PROXY_PATHINDEX ){ |
| 5902 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); |
| 5903 goto end_breaklock; |
| 5904 } |
| 5905 /* write it out to the temporary break file */ |
| 5906 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), |
| 5907 SQLITE_DEFAULT_FILE_PERMISSIONS); |
| 5908 if( fd<0 ){ |
| 5909 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); |
| 5910 goto end_breaklock; |
| 5911 } |
| 5912 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ |
| 5913 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); |
| 5914 goto end_breaklock; |
| 5915 } |
| 5916 if( rename(tPath, cPath) ){ |
| 5917 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); |
| 5918 goto end_breaklock; |
| 5919 } |
| 5920 rc = 0; |
| 5921 fprintf(stderr, "broke stale lock on %s\n", cPath); |
| 5922 robust_close(pFile, conchFile->h, __LINE__); |
| 5923 conchFile->h = fd; |
| 5924 conchFile->openFlags = O_RDWR | O_CREAT; |
| 5925 |
| 5926 end_breaklock: |
| 5927 if( rc ){ |
| 5928 if( fd>=0 ){ |
| 5929 osUnlink(tPath); |
| 5930 robust_close(pFile, fd, __LINE__); |
| 5931 } |
| 5932 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); |
| 5933 } |
| 5934 return rc; |
| 5935 } |
| 5936 |
| 5937 /* Take the requested lock on the conch file and break a stale lock if the |
| 5938 ** host id matches. |
| 5939 */ |
| 5940 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ |
| 5941 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 5942 unixFile *conchFile = pCtx->conchFile; |
| 5943 int rc = SQLITE_OK; |
| 5944 int nTries = 0; |
| 5945 struct timespec conchModTime; |
| 5946 |
| 5947 do { |
| 5948 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| 5949 nTries ++; |
| 5950 if( rc==SQLITE_BUSY ){ |
| 5951 /* If the lock failed (busy): |
| 5952 * 1st try: get the mod time of the conch, wait 0.5s and try again. |
| 5953 * 2nd try: fail if the mod time changed or host id is different, wait |
| 5954 * 10 sec and try again |
| 5955 * 3rd try: break the lock unless the mod time has changed. |
| 5956 */ |
| 5957 struct stat buf; |
| 5958 if( osFstat(conchFile->h, &buf) ){ |
| 5959 pFile->lastErrno = errno; |
| 5960 return SQLITE_IOERR_LOCK; |
| 5961 } |
| 5962 |
| 5963 if( nTries==1 ){ |
| 5964 conchModTime = buf.st_mtimespec; |
| 5965 usleep(500000); /* wait 0.5 sec and try the lock again*/ |
| 5966 continue; |
| 5967 } |
| 5968 |
| 5969 assert( nTries>1 ); |
| 5970 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || |
| 5971 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ |
| 5972 return SQLITE_BUSY; |
| 5973 } |
| 5974 |
| 5975 if( nTries==2 ){ |
| 5976 char tBuf[PROXY_MAXCONCHLEN]; |
| 5977 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); |
| 5978 if( len<0 ){ |
| 5979 pFile->lastErrno = errno; |
| 5980 return SQLITE_IOERR_LOCK; |
| 5981 } |
| 5982 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ |
| 5983 /* don't break the lock if the host id doesn't match */ |
| 5984 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ |
| 5985 return SQLITE_BUSY; |
| 5986 } |
| 5987 }else{ |
| 5988 /* don't break the lock on short read or a version mismatch */ |
| 5989 return SQLITE_BUSY; |
| 5990 } |
| 5991 usleep(10000000); /* wait 10 sec and try the lock again */ |
| 5992 continue; |
| 5993 } |
| 5994 |
| 5995 assert( nTries==3 ); |
| 5996 if( 0==proxyBreakConchLock(pFile, myHostID) ){ |
| 5997 rc = SQLITE_OK; |
| 5998 if( lockType==EXCLUSIVE_LOCK ){ |
| 5999 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
|
| 6000 } |
| 6001 if( !rc ){ |
| 6002 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| 6003 } |
| 6004 } |
| 6005 } |
| 6006 } while( rc==SQLITE_BUSY && nTries<3 ); |
| 6007 |
| 6008 return rc; |
| 6009 } |
| 6010 |
| 6011 /* Takes the conch by taking a shared lock and read the contents conch, if |
| 6012 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL |
| 6013 ** lockPath means that the lockPath in the conch file will be used if the |
| 6014 ** host IDs match, or a new lock path will be generated automatically |
| 6015 ** and written to the conch file. |
| 6016 */ |
| 6017 static int proxyTakeConch(unixFile *pFile){ |
| 6018 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6019 |
| 6020 if( pCtx->conchHeld!=0 ){ |
| 6021 return SQLITE_OK; |
| 6022 }else{ |
| 6023 unixFile *conchFile = pCtx->conchFile; |
| 6024 uuid_t myHostID; |
| 6025 int pError = 0; |
| 6026 char readBuf[PROXY_MAXCONCHLEN]; |
| 6027 char lockPath[MAXPATHLEN]; |
| 6028 char *tempLockPath = NULL; |
| 6029 int rc = SQLITE_OK; |
| 6030 int createConch = 0; |
| 6031 int hostIdMatch = 0; |
| 6032 int readLen = 0; |
| 6033 int tryOldLockPath = 0; |
| 6034 int forceNewLockPath = 0; |
| 6035 |
| 6036 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, |
| 6037 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); |
| 6038 |
| 6039 rc = proxyGetHostID(myHostID, &pError); |
| 6040 if( (rc&0xff)==SQLITE_IOERR ){ |
| 6041 pFile->lastErrno = pError; |
| 6042 goto end_takeconch; |
| 6043 } |
| 6044 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
| 6045 if( rc!=SQLITE_OK ){ |
| 6046 goto end_takeconch; |
| 6047 } |
| 6048 /* read the existing conch file */ |
| 6049 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); |
| 6050 if( readLen<0 ){ |
| 6051 /* I/O error: lastErrno set by seekAndRead */ |
| 6052 pFile->lastErrno = conchFile->lastErrno; |
| 6053 rc = SQLITE_IOERR_READ; |
| 6054 goto end_takeconch; |
| 6055 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || |
| 6056 readBuf[0]!=(char)PROXY_CONCHVERSION ){ |
| 6057 /* a short read or version format mismatch means we need to create a new |
| 6058 ** conch file. |
| 6059 */ |
| 6060 createConch = 1; |
| 6061 } |
| 6062 /* if the host id matches and the lock path already exists in the conch |
| 6063 ** we'll try to use the path there, if we can't open that path, we'll |
| 6064 ** retry with a new auto-generated path |
| 6065 */ |
| 6066 do { /* in case we need to try again for an :auto: named lock file */ |
| 6067 |
| 6068 if( !createConch && !forceNewLockPath ){ |
| 6069 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, |
| 6070 PROXY_HOSTIDLEN); |
| 6071 /* if the conch has data compare the contents */ |
| 6072 if( !pCtx->lockProxyPath ){ |
| 6073 /* for auto-named local lock file, just check the host ID and we'll |
| 6074 ** use the local lock file path that's already in there |
| 6075 */ |
| 6076 if( hostIdMatch ){ |
| 6077 size_t pathLen = (readLen - PROXY_PATHINDEX); |
| 6078 |
| 6079 if( pathLen>=MAXPATHLEN ){ |
| 6080 pathLen=MAXPATHLEN-1; |
| 6081 } |
| 6082 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); |
| 6083 lockPath[pathLen] = 0; |
| 6084 tempLockPath = lockPath; |
| 6085 tryOldLockPath = 1; |
| 6086 /* create a copy of the lock path if the conch is taken */ |
| 6087 goto end_takeconch; |
| 6088 } |
| 6089 }else if( hostIdMatch |
| 6090 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], |
| 6091 readLen-PROXY_PATHINDEX) |
| 6092 ){ |
| 6093 /* conch host and lock path match */ |
| 6094 goto end_takeconch; |
| 6095 } |
| 6096 } |
| 6097 |
| 6098 /* if the conch isn't writable and doesn't match, we can't take it */ |
| 6099 if( (conchFile->openFlags&O_RDWR) == 0 ){ |
| 6100 rc = SQLITE_BUSY; |
| 6101 goto end_takeconch; |
| 6102 } |
| 6103 |
| 6104 /* either the conch didn't match or we need to create a new one */ |
| 6105 if( !pCtx->lockProxyPath ){ |
| 6106 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); |
| 6107 tempLockPath = lockPath; |
| 6108 /* create a copy of the lock path _only_ if the conch is taken */ |
| 6109 } |
| 6110 |
| 6111 /* update conch with host and path (this will fail if other process |
| 6112 ** has a shared lock already), if the host id matches, use the big |
| 6113 ** stick. |
| 6114 */ |
| 6115 futimes(conchFile->h, NULL); |
| 6116 if( hostIdMatch && !createConch ){ |
| 6117 if( conchFile->pInode && conchFile->pInode->nShared>1 ){ |
| 6118 /* We are trying for an exclusive lock but another thread in this |
| 6119 ** same process is still holding a shared lock. */ |
| 6120 rc = SQLITE_BUSY; |
| 6121 } else { |
| 6122 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
| 6123 } |
| 6124 }else{ |
| 6125 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK)
; |
| 6126 } |
| 6127 if( rc==SQLITE_OK ){ |
| 6128 char writeBuffer[PROXY_MAXCONCHLEN]; |
| 6129 int writeSize = 0; |
| 6130 |
| 6131 writeBuffer[0] = (char)PROXY_CONCHVERSION; |
| 6132 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); |
| 6133 if( pCtx->lockProxyPath!=NULL ){ |
| 6134 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN
); |
| 6135 }else{ |
| 6136 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); |
| 6137 } |
| 6138 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); |
| 6139 robust_ftruncate(conchFile->h, writeSize); |
| 6140 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); |
| 6141 fsync(conchFile->h); |
| 6142 /* If we created a new conch file (not just updated the contents of a |
| 6143 ** valid conch file), try to match the permissions of the database |
| 6144 */ |
| 6145 if( rc==SQLITE_OK && createConch ){ |
| 6146 struct stat buf; |
| 6147 int err = osFstat(pFile->h, &buf); |
| 6148 if( err==0 ){ |
| 6149 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | |
| 6150 S_IROTH|S_IWOTH); |
| 6151 /* try to match the database file R/W permissions, ignore failure */ |
| 6152 #ifndef SQLITE_PROXY_DEBUG |
| 6153 osFchmod(conchFile->h, cmode); |
| 6154 #else |
| 6155 do{ |
| 6156 rc = osFchmod(conchFile->h, cmode); |
| 6157 }while( rc==(-1) && errno==EINTR ); |
| 6158 if( rc!=0 ){ |
| 6159 int code = errno; |
| 6160 fprintf(stderr, "fchmod %o FAILED with %d %s\n", |
| 6161 cmode, code, strerror(code)); |
| 6162 } else { |
| 6163 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); |
| 6164 } |
| 6165 }else{ |
| 6166 int code = errno; |
| 6167 fprintf(stderr, "STAT FAILED[%d] with %d %s\n", |
| 6168 err, code, strerror(code)); |
| 6169 #endif |
| 6170 } |
| 6171 } |
| 6172 } |
| 6173 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); |
| 6174 |
| 6175 end_takeconch: |
| 6176 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); |
| 6177 if( rc==SQLITE_OK && pFile->openFlags ){ |
| 6178 if( pFile->h>=0 ){ |
| 6179 robust_close(pFile, pFile->h, __LINE__); |
| 6180 } |
| 6181 pFile->h = -1; |
| 6182 int fd = robust_open(pCtx->dbPath, pFile->openFlags, |
| 6183 SQLITE_DEFAULT_FILE_PERMISSIONS); |
| 6184 OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); |
| 6185 if( fd>=0 ){ |
| 6186 pFile->h = fd; |
| 6187 }else{ |
| 6188 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called |
| 6189 during locking */ |
| 6190 } |
| 6191 } |
| 6192 if( rc==SQLITE_OK && !pCtx->lockProxy ){ |
| 6193 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; |
| 6194 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); |
| 6195 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ |
| 6196 /* we couldn't create the proxy lock file with the old lock file path |
| 6197 ** so try again via auto-naming |
| 6198 */ |
| 6199 forceNewLockPath = 1; |
| 6200 tryOldLockPath = 0; |
| 6201 continue; /* go back to the do {} while start point, try again */ |
| 6202 } |
| 6203 } |
| 6204 if( rc==SQLITE_OK ){ |
| 6205 /* Need to make a copy of path if we extracted the value |
| 6206 ** from the conch file or the path was allocated on the stack |
| 6207 */ |
| 6208 if( tempLockPath ){ |
| 6209 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); |
| 6210 if( !pCtx->lockProxyPath ){ |
| 6211 rc = SQLITE_NOMEM; |
| 6212 } |
| 6213 } |
| 6214 } |
| 6215 if( rc==SQLITE_OK ){ |
| 6216 pCtx->conchHeld = 1; |
| 6217 |
| 6218 if( pCtx->lockProxy->pMethod == &afpIoMethods ){ |
| 6219 afpLockingContext *afpCtx; |
| 6220 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; |
| 6221 afpCtx->dbPath = pCtx->lockProxyPath; |
| 6222 } |
| 6223 } else { |
| 6224 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| 6225 } |
| 6226 OSTRACE(("TAKECONCH %d %s\n", conchFile->h, |
| 6227 rc==SQLITE_OK?"ok":"failed")); |
| 6228 return rc; |
| 6229 } while (1); /* in case we need to retry the :auto: lock file - |
| 6230 ** we should never get here except via the 'continue' call. */ |
| 6231 } |
| 6232 } |
| 6233 |
| 6234 /* |
| 6235 ** If pFile holds a lock on a conch file, then release that lock. |
| 6236 */ |
| 6237 static int proxyReleaseConch(unixFile *pFile){ |
| 6238 int rc = SQLITE_OK; /* Subroutine return code */ |
| 6239 proxyLockingContext *pCtx; /* The locking context for the proxy lock */ |
| 6240 unixFile *conchFile; /* Name of the conch file */ |
| 6241 |
| 6242 pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6243 conchFile = pCtx->conchFile; |
| 6244 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, |
| 6245 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
| 6246 getpid())); |
| 6247 if( pCtx->conchHeld>0 ){ |
| 6248 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| 6249 } |
| 6250 pCtx->conchHeld = 0; |
| 6251 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, |
| 6252 (rc==SQLITE_OK ? "ok" : "failed"))); |
| 6253 return rc; |
| 6254 } |
| 6255 |
| 6256 /* |
| 6257 ** Given the name of a database file, compute the name of its conch file. |
| 6258 ** Store the conch filename in memory obtained from sqlite3_malloc(). |
| 6259 ** Make *pConchPath point to the new name. Return SQLITE_OK on success |
| 6260 ** or SQLITE_NOMEM if unable to obtain memory. |
| 6261 ** |
| 6262 ** The caller is responsible for ensuring that the allocated memory |
| 6263 ** space is eventually freed. |
| 6264 ** |
| 6265 ** *pConchPath is set to NULL if a memory allocation error occurs. |
| 6266 */ |
| 6267 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ |
| 6268 int i; /* Loop counter */ |
| 6269 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ |
| 6270 char *conchPath; /* buffer in which to construct conch name */ |
| 6271 |
| 6272 /* Allocate space for the conch filename and initialize the name to |
| 6273 ** the name of the original database file. */ |
| 6274 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); |
| 6275 if( conchPath==0 ){ |
| 6276 return SQLITE_NOMEM; |
| 6277 } |
| 6278 memcpy(conchPath, dbPath, len+1); |
| 6279 |
| 6280 /* now insert a "." before the last / character */ |
| 6281 for( i=(len-1); i>=0; i-- ){ |
| 6282 if( conchPath[i]=='/' ){ |
| 6283 i++; |
| 6284 break; |
| 6285 } |
| 6286 } |
| 6287 conchPath[i]='.'; |
| 6288 while ( i<len ){ |
| 6289 conchPath[i+1]=dbPath[i]; |
| 6290 i++; |
| 6291 } |
| 6292 |
| 6293 /* append the "-conch" suffix to the file */ |
| 6294 memcpy(&conchPath[i+1], "-conch", 7); |
| 6295 assert( (int)strlen(conchPath) == len+7 ); |
| 6296 |
| 6297 return SQLITE_OK; |
| 6298 } |
| 6299 |
| 6300 |
| 6301 /* Takes a fully configured proxy locking-style unix file and switches |
| 6302 ** the local lock file path |
| 6303 */ |
| 6304 static int switchLockProxyPath(unixFile *pFile, const char *path) { |
| 6305 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| 6306 char *oldPath = pCtx->lockProxyPath; |
| 6307 int rc = SQLITE_OK; |
| 6308 |
| 6309 if( pFile->eFileLock!=NO_LOCK ){ |
| 6310 return SQLITE_BUSY; |
| 6311 } |
| 6312 |
| 6313 /* nothing to do if the path is NULL, :auto: or matches the existing path */ |
| 6314 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || |
| 6315 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ |
| 6316 return SQLITE_OK; |
| 6317 }else{ |
| 6318 unixFile *lockProxy = pCtx->lockProxy; |
| 6319 pCtx->lockProxy=NULL; |
| 6320 pCtx->conchHeld = 0; |
| 6321 if( lockProxy!=NULL ){ |
| 6322 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); |
| 6323 if( rc ) return rc; |
| 6324 sqlite3_free(lockProxy); |
| 6325 } |
| 6326 sqlite3_free(oldPath); |
| 6327 pCtx->lockProxyPath = sqlite3DbStrDup(0, path); |
| 6328 } |
| 6329 |
| 6330 return rc; |
| 6331 } |
| 6332 |
| 6333 /* |
| 6334 ** pFile is a file that has been opened by a prior xOpen call. dbPath |
| 6335 ** is a string buffer at least MAXPATHLEN+1 characters in size. |
| 6336 ** |
| 6337 ** This routine find the filename associated with pFile and writes it |
| 6338 ** int dbPath. |
| 6339 */ |
| 6340 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ |
| 6341 #if defined(__APPLE__) |
| 6342 if( pFile->pMethod == &afpIoMethods ){ |
| 6343 /* afp style keeps a reference to the db path in the filePath field |
| 6344 ** of the struct */ |
| 6345 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| 6346 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPAT
HLEN); |
| 6347 } else |
| 6348 #endif |
| 6349 if( pFile->pMethod == &dotlockIoMethods ){ |
| 6350 /* dot lock style uses the locking context to store the dot lock |
| 6351 ** file path */ |
| 6352 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); |
| 6353 memcpy(dbPath, (char *)pFile->lockingContext, len + 1); |
| 6354 }else{ |
| 6355 /* all other styles use the locking context to store the db file path */ |
| 6356 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| 6357 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); |
| 6358 } |
| 6359 return SQLITE_OK; |
| 6360 } |
| 6361 |
| 6362 /* |
| 6363 ** Takes an already filled in unix file and alters it so all file locking |
| 6364 ** will be performed on the local proxy lock file. The following fields |
| 6365 ** are preserved in the locking context so that they can be restored and |
| 6366 ** the unix structure properly cleaned up at close time: |
| 6367 ** ->lockingContext |
| 6368 ** ->pMethod |
| 6369 */ |
| 6370 static int proxyTransformUnixFile(unixFile *pFile, const char *path) { |
| 6371 proxyLockingContext *pCtx; |
| 6372 char dbPath[MAXPATHLEN+1]; /* Name of the database file */ |
| 6373 char *lockPath=NULL; |
| 6374 int rc = SQLITE_OK; |
| 6375 |
| 6376 if( pFile->eFileLock!=NO_LOCK ){ |
| 6377 return SQLITE_BUSY; |
| 6378 } |
| 6379 proxyGetDbPathForUnixFile(pFile, dbPath); |
| 6380 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ |
| 6381 lockPath=NULL; |
| 6382 }else{ |
| 6383 lockPath=(char *)path; |
| 6384 } |
| 6385 |
| 6386 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, |
| 6387 (lockPath ? lockPath : ":auto:"), getpid())); |
| 6388 |
| 6389 pCtx = sqlite3_malloc( sizeof(*pCtx) ); |
| 6390 if( pCtx==0 ){ |
| 6391 return SQLITE_NOMEM; |
| 6392 } |
| 6393 memset(pCtx, 0, sizeof(*pCtx)); |
| 6394 |
| 6395 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); |
| 6396 if( rc==SQLITE_OK ){ |
| 6397 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); |
| 6398 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ |
| 6399 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and |
| 6400 ** (c) the file system is read-only, then enable no-locking access. |
| 6401 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts |
| 6402 ** that openFlags will have only one of O_RDONLY or O_RDWR. |
| 6403 */ |
| 6404 struct statfs fsInfo; |
| 6405 struct stat conchInfo; |
| 6406 int goLockless = 0; |
| 6407 |
| 6408 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { |
| 6409 int err = errno; |
| 6410 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ |
| 6411 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; |
| 6412 } |
| 6413 } |
| 6414 if( goLockless ){ |
| 6415 pCtx->conchHeld = -1; /* read only FS/ lockless */ |
| 6416 rc = SQLITE_OK; |
| 6417 } |
| 6418 } |
| 6419 } |
| 6420 if( rc==SQLITE_OK && lockPath ){ |
| 6421 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); |
| 6422 } |
| 6423 |
| 6424 if( rc==SQLITE_OK ){ |
| 6425 pCtx->dbPath = sqlite3DbStrDup(0, dbPath); |
| 6426 if( pCtx->dbPath==NULL ){ |
| 6427 rc = SQLITE_NOMEM; |
| 6428 } |
| 6429 } |
| 6430 if( rc==SQLITE_OK ){ |
| 6431 /* all memory is allocated, proxys are created and assigned, |
| 6432 ** switch the locking context and pMethod then return. |
| 6433 */ |
| 6434 pCtx->oldLockingContext = pFile->lockingContext; |
| 6435 pFile->lockingContext = pCtx; |
| 6436 pCtx->pOldMethod = pFile->pMethod; |
| 6437 pFile->pMethod = &proxyIoMethods; |
| 6438 }else{ |
| 6439 if( pCtx->conchFile ){ |
| 6440 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); |
| 6441 sqlite3_free(pCtx->conchFile); |
| 6442 } |
| 6443 sqlite3DbFree(0, pCtx->lockProxyPath); |
| 6444 sqlite3_free(pCtx->conchFilePath); |
| 6445 sqlite3_free(pCtx); |
| 6446 } |
| 6447 OSTRACE(("TRANSPROXY %d %s\n", pFile->h, |
| 6448 (rc==SQLITE_OK ? "ok" : "failed"))); |
| 6449 return rc; |
| 6450 } |
| 6451 |
| 6452 |
| 6453 /* |
| 6454 ** This routine handles sqlite3_file_control() calls that are specific |
| 6455 ** to proxy locking. |
| 6456 */ |
| 6457 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ |
| 6458 switch( op ){ |
| 6459 case SQLITE_GET_LOCKPROXYFILE: { |
| 6460 unixFile *pFile = (unixFile*)id; |
| 6461 if( pFile->pMethod == &proxyIoMethods ){ |
| 6462 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| 6463 proxyTakeConch(pFile); |
| 6464 if( pCtx->lockProxyPath ){ |
| 6465 *(const char **)pArg = pCtx->lockProxyPath; |
| 6466 }else{ |
| 6467 *(const char **)pArg = ":auto: (not held)"; |
| 6468 } |
| 6469 } else { |
| 6470 *(const char **)pArg = NULL; |
| 6471 } |
| 6472 return SQLITE_OK; |
| 6473 } |
| 6474 case SQLITE_SET_LOCKPROXYFILE: { |
| 6475 unixFile *pFile = (unixFile*)id; |
| 6476 int rc = SQLITE_OK; |
| 6477 int isProxyStyle = (pFile->pMethod == &proxyIoMethods); |
| 6478 if( pArg==NULL || (const char *)pArg==0 ){ |
| 6479 if( isProxyStyle ){ |
| 6480 /* turn off proxy locking - not supported */ |
| 6481 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; |
| 6482 }else{ |
| 6483 /* turn off proxy locking - already off - NOOP */ |
| 6484 rc = SQLITE_OK; |
| 6485 } |
| 6486 }else{ |
| 6487 const char *proxyPath = (const char *)pArg; |
| 6488 if( isProxyStyle ){ |
| 6489 proxyLockingContext *pCtx = |
| 6490 (proxyLockingContext*)pFile->lockingContext; |
| 6491 if( !strcmp(pArg, ":auto:") |
| 6492 || (pCtx->lockProxyPath && |
| 6493 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) |
| 6494 ){ |
| 6495 rc = SQLITE_OK; |
| 6496 }else{ |
| 6497 rc = switchLockProxyPath(pFile, proxyPath); |
| 6498 } |
| 6499 }else{ |
| 6500 /* turn on proxy file locking */ |
| 6501 rc = proxyTransformUnixFile(pFile, proxyPath); |
| 6502 } |
| 6503 } |
| 6504 return rc; |
| 6505 } |
| 6506 default: { |
| 6507 assert( 0 ); /* The call assures that only valid opcodes are sent */ |
| 6508 } |
| 6509 } |
| 6510 /*NOTREACHED*/ |
| 6511 return SQLITE_ERROR; |
| 6512 } |
| 6513 |
| 6514 /* |
| 6515 ** Within this division (the proxying locking implementation) the procedures |
| 6516 ** above this point are all utilities. The lock-related methods of the |
| 6517 ** proxy-locking sqlite3_io_method object follow. |
| 6518 */ |
| 6519 |
| 6520 |
| 6521 /* |
| 6522 ** This routine checks if there is a RESERVED lock held on the specified |
| 6523 ** file by this or any other process. If such a lock is held, set *pResOut |
| 6524 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 6525 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 6526 */ |
| 6527 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 6528 unixFile *pFile = (unixFile*)id; |
| 6529 int rc = proxyTakeConch(pFile); |
| 6530 if( rc==SQLITE_OK ){ |
| 6531 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6532 if( pCtx->conchHeld>0 ){ |
| 6533 unixFile *proxy = pCtx->lockProxy; |
| 6534 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); |
| 6535 }else{ /* conchHeld < 0 is lockless */ |
| 6536 pResOut=0; |
| 6537 } |
| 6538 } |
| 6539 return rc; |
| 6540 } |
| 6541 |
| 6542 /* |
| 6543 ** Lock the file with the lock specified by parameter eFileLock - one |
| 6544 ** of the following: |
| 6545 ** |
| 6546 ** (1) SHARED_LOCK |
| 6547 ** (2) RESERVED_LOCK |
| 6548 ** (3) PENDING_LOCK |
| 6549 ** (4) EXCLUSIVE_LOCK |
| 6550 ** |
| 6551 ** Sometimes when requesting one lock state, additional lock states |
| 6552 ** are inserted in between. The locking might fail on one of the later |
| 6553 ** transitions leaving the lock state different from what it started but |
| 6554 ** still short of its goal. The following chart shows the allowed |
| 6555 ** transitions and the inserted intermediate states: |
| 6556 ** |
| 6557 ** UNLOCKED -> SHARED |
| 6558 ** SHARED -> RESERVED |
| 6559 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 6560 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 6561 ** PENDING -> EXCLUSIVE |
| 6562 ** |
| 6563 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 6564 ** routine to lower a locking level. |
| 6565 */ |
| 6566 static int proxyLock(sqlite3_file *id, int eFileLock) { |
| 6567 unixFile *pFile = (unixFile*)id; |
| 6568 int rc = proxyTakeConch(pFile); |
| 6569 if( rc==SQLITE_OK ){ |
| 6570 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6571 if( pCtx->conchHeld>0 ){ |
| 6572 unixFile *proxy = pCtx->lockProxy; |
| 6573 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); |
| 6574 pFile->eFileLock = proxy->eFileLock; |
| 6575 }else{ |
| 6576 /* conchHeld < 0 is lockless */ |
| 6577 } |
| 6578 } |
| 6579 return rc; |
| 6580 } |
| 6581 |
| 6582 |
| 6583 /* |
| 6584 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 6585 ** must be either NO_LOCK or SHARED_LOCK. |
| 6586 ** |
| 6587 ** If the locking level of the file descriptor is already at or below |
| 6588 ** the requested locking level, this routine is a no-op. |
| 6589 */ |
| 6590 static int proxyUnlock(sqlite3_file *id, int eFileLock) { |
| 6591 unixFile *pFile = (unixFile*)id; |
| 6592 int rc = proxyTakeConch(pFile); |
| 6593 if( rc==SQLITE_OK ){ |
| 6594 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6595 if( pCtx->conchHeld>0 ){ |
| 6596 unixFile *proxy = pCtx->lockProxy; |
| 6597 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); |
| 6598 pFile->eFileLock = proxy->eFileLock; |
| 6599 }else{ |
| 6600 /* conchHeld < 0 is lockless */ |
| 6601 } |
| 6602 } |
| 6603 return rc; |
| 6604 } |
| 6605 |
| 6606 /* |
| 6607 ** Close a file that uses proxy locks. |
| 6608 */ |
| 6609 static int proxyClose(sqlite3_file *id) { |
| 6610 if( id ){ |
| 6611 unixFile *pFile = (unixFile*)id; |
| 6612 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6613 unixFile *lockProxy = pCtx->lockProxy; |
| 6614 unixFile *conchFile = pCtx->conchFile; |
| 6615 int rc = SQLITE_OK; |
| 6616 |
| 6617 if( lockProxy ){ |
| 6618 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); |
| 6619 if( rc ) return rc; |
| 6620 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); |
| 6621 if( rc ) return rc; |
| 6622 sqlite3_free(lockProxy); |
| 6623 pCtx->lockProxy = 0; |
| 6624 } |
| 6625 if( conchFile ){ |
| 6626 if( pCtx->conchHeld ){ |
| 6627 rc = proxyReleaseConch(pFile); |
| 6628 if( rc ) return rc; |
| 6629 } |
| 6630 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); |
| 6631 if( rc ) return rc; |
| 6632 sqlite3_free(conchFile); |
| 6633 } |
| 6634 sqlite3DbFree(0, pCtx->lockProxyPath); |
| 6635 sqlite3_free(pCtx->conchFilePath); |
| 6636 sqlite3DbFree(0, pCtx->dbPath); |
| 6637 /* restore the original locking context and pMethod then close it */ |
| 6638 pFile->lockingContext = pCtx->oldLockingContext; |
| 6639 pFile->pMethod = pCtx->pOldMethod; |
| 6640 sqlite3_free(pCtx); |
| 6641 return pFile->pMethod->xClose(id); |
| 6642 } |
| 6643 return SQLITE_OK; |
| 6644 } |
| 6645 |
| 6646 |
| 6647 |
| 6648 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 6649 /* |
| 6650 ** The proxy locking style is intended for use with AFP filesystems. |
| 6651 ** And since AFP is only supported on MacOSX, the proxy locking is also |
| 6652 ** restricted to MacOSX. |
| 6653 ** |
| 6654 ** |
| 6655 ******************* End of the proxy lock implementation ********************** |
| 6656 ******************************************************************************/ |
| 6657 |
| 6658 /* |
| 6659 ** Initialize the operating system interface. |
| 6660 ** |
| 6661 ** This routine registers all VFS implementations for unix-like operating |
| 6662 ** systems. This routine, and the sqlite3_os_end() routine that follows, |
| 6663 ** should be the only routines in this file that are visible from other |
| 6664 ** files. |
| 6665 ** |
| 6666 ** This routine is called once during SQLite initialization and by a |
| 6667 ** single thread. The memory allocation and mutex subsystems have not |
| 6668 ** necessarily been initialized when this routine is called, and so they |
| 6669 ** should not be used. |
| 6670 */ |
| 6671 int sqlite3_os_init(void){ |
| 6672 /* |
| 6673 ** The following macro defines an initializer for an sqlite3_vfs object. |
| 6674 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer |
| 6675 ** to the "finder" function. (pAppData is a pointer to a pointer because |
| 6676 ** silly C90 rules prohibit a void* from being cast to a function pointer |
| 6677 ** and so we have to go through the intermediate pointer to avoid problems |
| 6678 ** when compiling with -pedantic-errors on GCC.) |
| 6679 ** |
| 6680 ** The FINDER parameter to this macro is the name of the pointer to the |
| 6681 ** finder-function. The finder-function returns a pointer to the |
| 6682 ** sqlite_io_methods object that implements the desired locking |
| 6683 ** behaviors. See the division above that contains the IOMETHODS |
| 6684 ** macro for addition information on finder-functions. |
| 6685 ** |
| 6686 ** Most finders simply return a pointer to a fixed sqlite3_io_methods |
| 6687 ** object. But the "autolockIoFinder" available on MacOSX does a little |
| 6688 ** more than that; it looks at the filesystem type that hosts the |
| 6689 ** database file and tries to choose an locking method appropriate for |
| 6690 ** that filesystem time. |
| 6691 */ |
| 6692 #define UNIXVFS(VFSNAME, FINDER) { \ |
| 6693 3, /* iVersion */ \ |
| 6694 sizeof(unixFile), /* szOsFile */ \ |
| 6695 MAX_PATHNAME, /* mxPathname */ \ |
| 6696 0, /* pNext */ \ |
| 6697 VFSNAME, /* zName */ \ |
| 6698 (void*)&FINDER, /* pAppData */ \ |
| 6699 unixOpen, /* xOpen */ \ |
| 6700 unixDelete, /* xDelete */ \ |
| 6701 unixAccess, /* xAccess */ \ |
| 6702 unixFullPathname, /* xFullPathname */ \ |
| 6703 unixDlOpen, /* xDlOpen */ \ |
| 6704 unixDlError, /* xDlError */ \ |
| 6705 unixDlSym, /* xDlSym */ \ |
| 6706 unixDlClose, /* xDlClose */ \ |
| 6707 unixRandomness, /* xRandomness */ \ |
| 6708 unixSleep, /* xSleep */ \ |
| 6709 unixCurrentTime, /* xCurrentTime */ \ |
| 6710 unixGetLastError, /* xGetLastError */ \ |
| 6711 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ |
| 6712 unixSetSystemCall, /* xSetSystemCall */ \ |
| 6713 unixGetSystemCall, /* xGetSystemCall */ \ |
| 6714 unixNextSystemCall, /* xNextSystemCall */ \ |
| 6715 } |
| 6716 |
| 6717 /* |
| 6718 ** All default VFSes for unix are contained in the following array. |
| 6719 ** |
| 6720 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified |
| 6721 ** by the SQLite core when the VFS is registered. So the following |
| 6722 ** array cannot be const. |
| 6723 */ |
| 6724 static sqlite3_vfs aVfs[] = { |
| 6725 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) |
| 6726 UNIXVFS("unix", autolockIoFinder ), |
| 6727 #else |
| 6728 UNIXVFS("unix", posixIoFinder ), |
| 6729 #endif |
| 6730 UNIXVFS("unix-none", nolockIoFinder ), |
| 6731 UNIXVFS("unix-dotfile", dotlockIoFinder ), |
| 6732 UNIXVFS("unix-excl", posixIoFinder ), |
| 6733 #if OS_VXWORKS |
| 6734 UNIXVFS("unix-namedsem", semIoFinder ), |
| 6735 #endif |
| 6736 #if SQLITE_ENABLE_LOCKING_STYLE |
| 6737 UNIXVFS("unix-posix", posixIoFinder ), |
| 6738 #if !OS_VXWORKS |
| 6739 UNIXVFS("unix-flock", flockIoFinder ), |
| 6740 #endif |
| 6741 #endif |
| 6742 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 6743 UNIXVFS("unix-afp", afpIoFinder ), |
| 6744 UNIXVFS("unix-nfs", nfsIoFinder ), |
| 6745 UNIXVFS("unix-proxy", proxyIoFinder ), |
| 6746 #endif |
| 6747 }; |
| 6748 unsigned int i; /* Loop counter */ |
| 6749 |
| 6750 /* Double-check that the aSyscall[] array has been constructed |
| 6751 ** correctly. See ticket [bb3a86e890c8e96ab] */ |
| 6752 assert( ArraySize(aSyscall)==18 ); |
| 6753 |
| 6754 /* Register all VFSes defined in the aVfs[] array */ |
| 6755 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ |
| 6756 sqlite3_vfs_register(&aVfs[i], i==0); |
| 6757 } |
| 6758 return SQLITE_OK; |
| 6759 } |
| 6760 |
| 6761 /* |
| 6762 ** Shutdown the operating system interface. |
| 6763 ** |
| 6764 ** Some operating systems might need to do some cleanup in this routine, |
| 6765 ** to release dynamically allocated objects. But not on unix. |
| 6766 ** This routine is a no-op for unix. |
| 6767 */ |
| 6768 int sqlite3_os_end(void){ |
| 6769 return SQLITE_OK; |
| 6770 } |
| 6771 |
| 6772 #endif /* SQLITE_OS_UNIX */ |
OLD | NEW |