Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(101)

Side by Side Diff: third_party/sqlite/src/src/os_unix.c

Issue 694353003: Get `gn gen` to succeed on Windows (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: add bison and gperf Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15 **
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
21 **
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
26 **
27 ** The layout of divisions is as follows:
28 **
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
33 ** + for no-op locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
45 */
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
48
49 /*
50 ** There are various methods for file locking used for concurrency
51 ** control:
52 **
53 ** 1. POSIX locking (the default),
54 ** 2. No locking,
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
60 **
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
65 */
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
69 # else
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
71 # endif
72 #endif
73
74 /*
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
77 */
78 #ifndef OS_VXWORKS
79 # if defined(__RTP__) || defined(_WRS_KERNEL)
80 # define OS_VXWORKS 1
81 # else
82 # define OS_VXWORKS 0
83 # endif
84 #endif
85
86 /*
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it. If the OS lacks
89 ** large file support, these should be no-ops.
90 **
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line. This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
95 ** without this option, LFS is enable. But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
97 ** portability you should omit LFS.
98 **
99 ** The previous paragraph was written in 2005. (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled. But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
103 */
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE 1
106 # ifndef _FILE_OFFSET_BITS
107 # define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
111
112 /*
113 ** standard include files.
114 */
115 #include <sys/types.h>
116 #include <sys/stat.h>
117 #include <fcntl.h>
118 #include <unistd.h>
119 #include <time.h>
120 #include <sys/time.h>
121 #include <errno.h>
122 #ifndef SQLITE_OMIT_WAL
123 #include <sys/mman.h>
124 #endif
125
126 #if SQLITE_ENABLE_LOCKING_STYLE
127 # include <sys/ioctl.h>
128 # if OS_VXWORKS
129 # include <semaphore.h>
130 # include <limits.h>
131 # else
132 # include <sys/file.h>
133 # include <sys/param.h>
134 # endif
135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
136
137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
138 # include <sys/mount.h>
139 #endif
140
141 /*
142 ** Allowed values of unixFile.fsFlags
143 */
144 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
145
146 /*
147 ** If we are to be thread-safe, include the pthreads header and define
148 ** the SQLITE_UNIX_THREADS macro.
149 */
150 #if SQLITE_THREADSAFE
151 # include <pthread.h>
152 # define SQLITE_UNIX_THREADS 1
153 #endif
154
155 /*
156 ** Default permissions when creating a new file
157 */
158 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
159 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
160 #endif
161
162 /*
163 ** Default permissions when creating auto proxy dir
164 */
165 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
166 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
167 #endif
168
169 /*
170 ** Maximum supported path-length.
171 */
172 #define MAX_PATHNAME 512
173
174 /*
175 ** Only set the lastErrno if the error code is a real error and not
176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
177 */
178 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
179
180 /* Forward references */
181 typedef struct unixShm unixShm; /* Connection shared memory */
182 typedef struct unixShmNode unixShmNode; /* Shared memory instance */
183 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
184 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
185
186 /*
187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
188 ** cannot be closed immediately. In these cases, instances of the following
189 ** structure are used to store the file descriptor while waiting for an
190 ** opportunity to either close or reuse it.
191 */
192 struct UnixUnusedFd {
193 int fd; /* File descriptor to close */
194 int flags; /* Flags this file descriptor was opened with */
195 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
196 };
197
198 /*
199 ** The unixFile structure is subclass of sqlite3_file specific to the unix
200 ** VFS implementations.
201 */
202 typedef struct unixFile unixFile;
203 struct unixFile {
204 sqlite3_io_methods const *pMethod; /* Always the first entry */
205 unixInodeInfo *pInode; /* Info about locks on this inode */
206 int h; /* The file descriptor */
207 unsigned char eFileLock; /* The type of lock held on this fd */
208 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
209 int lastErrno; /* The unix errno from last I/O error */
210 void *lockingContext; /* Locking style specific state */
211 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
212 const char *zPath; /* Name of the file */
213 unixShm *pShm; /* Shared memory segment information */
214 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
215 #if SQLITE_ENABLE_LOCKING_STYLE
216 int openFlags; /* The flags specified at open() */
217 #endif
218 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
219 unsigned fsFlags; /* cached details from statfs() */
220 #endif
221 #if OS_VXWORKS
222 int isDelete; /* Delete on close if true */
223 struct vxworksFileId *pId; /* Unique file ID */
224 #endif
225 #ifndef NDEBUG
226 /* The next group of variables are used to track whether or not the
227 ** transaction counter in bytes 24-27 of database files are updated
228 ** whenever any part of the database changes. An assertion fault will
229 ** occur if a file is updated without also updating the transaction
230 ** counter. This test is made to avoid new problems similar to the
231 ** one described by ticket #3584.
232 */
233 unsigned char transCntrChng; /* True if the transaction counter changed */
234 unsigned char dbUpdate; /* True if any part of database file changed */
235 unsigned char inNormalWrite; /* True if in a normal write operation */
236 #endif
237 #ifdef SQLITE_TEST
238 /* In test mode, increase the size of this structure a bit so that
239 ** it is larger than the struct CrashFile defined in test6.c.
240 */
241 char aPadding[32];
242 #endif
243 };
244
245 /*
246 ** Allowed values for the unixFile.ctrlFlags bitmask:
247 */
248 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
249 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
250 #define UNIXFILE_DIRSYNC 0x04 /* Directory sync needed */
251
252 /*
253 ** Include code that is common to all os_*.c files
254 */
255 #include "os_common.h"
256
257 /*
258 ** Define various macros that are missing from some systems.
259 */
260 #ifndef O_LARGEFILE
261 # define O_LARGEFILE 0
262 #endif
263 #ifdef SQLITE_DISABLE_LFS
264 # undef O_LARGEFILE
265 # define O_LARGEFILE 0
266 #endif
267 #ifndef O_NOFOLLOW
268 # define O_NOFOLLOW 0
269 #endif
270 #ifndef O_BINARY
271 # define O_BINARY 0
272 #endif
273
274 /*
275 ** The threadid macro resolves to the thread-id or to 0. Used for
276 ** testing and debugging only.
277 */
278 #if SQLITE_THREADSAFE
279 #define threadid pthread_self()
280 #else
281 #define threadid 0
282 #endif
283
284 /* Forward reference */
285 static int openDirectory(const char*, int*);
286
287 /*
288 ** Many system calls are accessed through pointer-to-functions so that
289 ** they may be overridden at runtime to facilitate fault injection during
290 ** testing and sandboxing. The following array holds the names and pointers
291 ** to all overrideable system calls.
292 */
293 static struct unix_syscall {
294 const char *zName; /* Name of the sytem call */
295 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
296 sqlite3_syscall_ptr pDefault; /* Default value */
297 } aSyscall[] = {
298 { "open", (sqlite3_syscall_ptr)open, 0 },
299 #define osOpen ((int(*)(const char*,int,...))aSyscall[0].pCurrent)
300
301 { "close", (sqlite3_syscall_ptr)close, 0 },
302 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
303
304 { "access", (sqlite3_syscall_ptr)access, 0 },
305 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
306
307 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
308 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
309
310 { "stat", (sqlite3_syscall_ptr)stat, 0 },
311 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
312
313 /*
314 ** The DJGPP compiler environment looks mostly like Unix, but it
315 ** lacks the fcntl() system call. So redefine fcntl() to be something
316 ** that always succeeds. This means that locking does not occur under
317 ** DJGPP. But it is DOS - what did you expect?
318 */
319 #ifdef __DJGPP__
320 { "fstat", 0, 0 },
321 #define osFstat(a,b,c) 0
322 #else
323 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
324 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
325 #endif
326
327 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
328 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
329
330 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
331 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
332
333 { "read", (sqlite3_syscall_ptr)read, 0 },
334 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
335
336 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
337 { "pread", (sqlite3_syscall_ptr)pread, 0 },
338 #else
339 { "pread", (sqlite3_syscall_ptr)0, 0 },
340 #endif
341 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
342
343 #if defined(USE_PREAD64)
344 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
345 #else
346 { "pread64", (sqlite3_syscall_ptr)0, 0 },
347 #endif
348 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
349
350 { "write", (sqlite3_syscall_ptr)write, 0 },
351 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
352
353 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
354 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
355 #else
356 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
357 #endif
358 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
359 aSyscall[12].pCurrent)
360
361 #if defined(USE_PREAD64)
362 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
363 #else
364 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
365 #endif
366 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
367 aSyscall[13].pCurrent)
368
369 #if SQLITE_ENABLE_LOCKING_STYLE
370 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
371 #else
372 { "fchmod", (sqlite3_syscall_ptr)0, 0 },
373 #endif
374 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
375
376 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
377 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
378 #else
379 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
380 #endif
381 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
382
383 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
384 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
385
386 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
387 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
388
389 }; /* End of the overrideable system calls */
390
391 /*
392 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
393 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
394 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
395 ** system call named zName.
396 */
397 static int unixSetSystemCall(
398 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
399 const char *zName, /* Name of system call to override */
400 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
401 ){
402 unsigned int i;
403 int rc = SQLITE_NOTFOUND;
404
405 UNUSED_PARAMETER(pNotUsed);
406 if( zName==0 ){
407 /* If no zName is given, restore all system calls to their default
408 ** settings and return NULL
409 */
410 rc = SQLITE_OK;
411 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
412 if( aSyscall[i].pDefault ){
413 aSyscall[i].pCurrent = aSyscall[i].pDefault;
414 }
415 }
416 }else{
417 /* If zName is specified, operate on only the one system call
418 ** specified.
419 */
420 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
421 if( strcmp(zName, aSyscall[i].zName)==0 ){
422 if( aSyscall[i].pDefault==0 ){
423 aSyscall[i].pDefault = aSyscall[i].pCurrent;
424 }
425 rc = SQLITE_OK;
426 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
427 aSyscall[i].pCurrent = pNewFunc;
428 break;
429 }
430 }
431 }
432 return rc;
433 }
434
435 /*
436 ** Return the value of a system call. Return NULL if zName is not a
437 ** recognized system call name. NULL is also returned if the system call
438 ** is currently undefined.
439 */
440 static sqlite3_syscall_ptr unixGetSystemCall(
441 sqlite3_vfs *pNotUsed,
442 const char *zName
443 ){
444 unsigned int i;
445
446 UNUSED_PARAMETER(pNotUsed);
447 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
448 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
449 }
450 return 0;
451 }
452
453 /*
454 ** Return the name of the first system call after zName. If zName==NULL
455 ** then return the name of the first system call. Return NULL if zName
456 ** is the last system call or if zName is not the name of a valid
457 ** system call.
458 */
459 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
460 int i = -1;
461
462 UNUSED_PARAMETER(p);
463 if( zName ){
464 for(i=0; i<ArraySize(aSyscall)-1; i++){
465 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
466 }
467 }
468 for(i++; i<ArraySize(aSyscall); i++){
469 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
470 }
471 return 0;
472 }
473
474 /*
475 ** Retry open() calls that fail due to EINTR
476 */
477 static int robust_open(const char *z, int f, int m){
478 int rc;
479 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
480 return rc;
481 }
482
483 /*
484 ** Helper functions to obtain and relinquish the global mutex. The
485 ** global mutex is used to protect the unixInodeInfo and
486 ** vxworksFileId objects used by this file, all of which may be
487 ** shared by multiple threads.
488 **
489 ** Function unixMutexHeld() is used to assert() that the global mutex
490 ** is held when required. This function is only used as part of assert()
491 ** statements. e.g.
492 **
493 ** unixEnterMutex()
494 ** assert( unixMutexHeld() );
495 ** unixEnterLeave()
496 */
497 static void unixEnterMutex(void){
498 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
499 }
500 static void unixLeaveMutex(void){
501 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
502 }
503 #ifdef SQLITE_DEBUG
504 static int unixMutexHeld(void) {
505 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
506 }
507 #endif
508
509
510 #ifdef SQLITE_DEBUG
511 /*
512 ** Helper function for printing out trace information from debugging
513 ** binaries. This returns the string represetation of the supplied
514 ** integer lock-type.
515 */
516 static const char *azFileLock(int eFileLock){
517 switch( eFileLock ){
518 case NO_LOCK: return "NONE";
519 case SHARED_LOCK: return "SHARED";
520 case RESERVED_LOCK: return "RESERVED";
521 case PENDING_LOCK: return "PENDING";
522 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
523 }
524 return "ERROR";
525 }
526 #endif
527
528 #ifdef SQLITE_LOCK_TRACE
529 /*
530 ** Print out information about all locking operations.
531 **
532 ** This routine is used for troubleshooting locks on multithreaded
533 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
534 ** command-line option on the compiler. This code is normally
535 ** turned off.
536 */
537 static int lockTrace(int fd, int op, struct flock *p){
538 char *zOpName, *zType;
539 int s;
540 int savedErrno;
541 if( op==F_GETLK ){
542 zOpName = "GETLK";
543 }else if( op==F_SETLK ){
544 zOpName = "SETLK";
545 }else{
546 s = osFcntl(fd, op, p);
547 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
548 return s;
549 }
550 if( p->l_type==F_RDLCK ){
551 zType = "RDLCK";
552 }else if( p->l_type==F_WRLCK ){
553 zType = "WRLCK";
554 }else if( p->l_type==F_UNLCK ){
555 zType = "UNLCK";
556 }else{
557 assert( 0 );
558 }
559 assert( p->l_whence==SEEK_SET );
560 s = osFcntl(fd, op, p);
561 savedErrno = errno;
562 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
563 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
564 (int)p->l_pid, s);
565 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
566 struct flock l2;
567 l2 = *p;
568 osFcntl(fd, F_GETLK, &l2);
569 if( l2.l_type==F_RDLCK ){
570 zType = "RDLCK";
571 }else if( l2.l_type==F_WRLCK ){
572 zType = "WRLCK";
573 }else if( l2.l_type==F_UNLCK ){
574 zType = "UNLCK";
575 }else{
576 assert( 0 );
577 }
578 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
579 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
580 }
581 errno = savedErrno;
582 return s;
583 }
584 #undef osFcntl
585 #define osFcntl lockTrace
586 #endif /* SQLITE_LOCK_TRACE */
587
588 /*
589 ** Retry ftruncate() calls that fail due to EINTR
590 */
591 static int robust_ftruncate(int h, sqlite3_int64 sz){
592 int rc;
593 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
594 return rc;
595 }
596
597 /*
598 ** This routine translates a standard POSIX errno code into something
599 ** useful to the clients of the sqlite3 functions. Specifically, it is
600 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
601 ** and a variety of "please close the file descriptor NOW" errors into
602 ** SQLITE_IOERR
603 **
604 ** Errors during initialization of locks, or file system support for locks,
605 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
606 */
607 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
608 switch (posixError) {
609 #if 0
610 /* At one point this code was not commented out. In theory, this branch
611 ** should never be hit, as this function should only be called after
612 ** a locking-related function (i.e. fcntl()) has returned non-zero with
613 ** the value of errno as the first argument. Since a system call has failed,
614 ** errno should be non-zero.
615 **
616 ** Despite this, if errno really is zero, we still don't want to return
617 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
618 ** propagated back to the caller. Commenting this branch out means errno==0
619 ** will be handled by the "default:" case below.
620 */
621 case 0:
622 return SQLITE_OK;
623 #endif
624
625 case EAGAIN:
626 case ETIMEDOUT:
627 case EBUSY:
628 case EINTR:
629 case ENOLCK:
630 /* random NFS retry error, unless during file system support
631 * introspection, in which it actually means what it says */
632 return SQLITE_BUSY;
633
634 case EACCES:
635 /* EACCES is like EAGAIN during locking operations, but not any other time*/
636 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
637 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
638 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
639 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
640 return SQLITE_BUSY;
641 }
642 /* else fall through */
643 case EPERM:
644 return SQLITE_PERM;
645
646 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
647 ** this module never makes such a call. And the code in SQLite itself
648 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
649 ** this case is also commented out. If the system does set errno to EDEADLK,
650 ** the default SQLITE_IOERR_XXX code will be returned. */
651 #if 0
652 case EDEADLK:
653 return SQLITE_IOERR_BLOCKED;
654 #endif
655
656 #if EOPNOTSUPP!=ENOTSUP
657 case EOPNOTSUPP:
658 /* something went terribly awry, unless during file system support
659 * introspection, in which it actually means what it says */
660 #endif
661 #ifdef ENOTSUP
662 case ENOTSUP:
663 /* invalid fd, unless during file system support introspection, in which
664 * it actually means what it says */
665 #endif
666 case EIO:
667 case EBADF:
668 case EINVAL:
669 case ENOTCONN:
670 case ENODEV:
671 case ENXIO:
672 case ENOENT:
673 case ESTALE:
674 case ENOSYS:
675 /* these should force the client to close the file and reconnect */
676
677 default:
678 return sqliteIOErr;
679 }
680 }
681
682
683
684 /******************************************************************************
685 ****************** Begin Unique File ID Utility Used By VxWorks ***************
686 **
687 ** On most versions of unix, we can get a unique ID for a file by concatenating
688 ** the device number and the inode number. But this does not work on VxWorks.
689 ** On VxWorks, a unique file id must be based on the canonical filename.
690 **
691 ** A pointer to an instance of the following structure can be used as a
692 ** unique file ID in VxWorks. Each instance of this structure contains
693 ** a copy of the canonical filename. There is also a reference count.
694 ** The structure is reclaimed when the number of pointers to it drops to
695 ** zero.
696 **
697 ** There are never very many files open at one time and lookups are not
698 ** a performance-critical path, so it is sufficient to put these
699 ** structures on a linked list.
700 */
701 struct vxworksFileId {
702 struct vxworksFileId *pNext; /* Next in a list of them all */
703 int nRef; /* Number of references to this one */
704 int nName; /* Length of the zCanonicalName[] string */
705 char *zCanonicalName; /* Canonical filename */
706 };
707
708 #if OS_VXWORKS
709 /*
710 ** All unique filenames are held on a linked list headed by this
711 ** variable:
712 */
713 static struct vxworksFileId *vxworksFileList = 0;
714
715 /*
716 ** Simplify a filename into its canonical form
717 ** by making the following changes:
718 **
719 ** * removing any trailing and duplicate /
720 ** * convert /./ into just /
721 ** * convert /A/../ where A is any simple name into just /
722 **
723 ** Changes are made in-place. Return the new name length.
724 **
725 ** The original filename is in z[0..n-1]. Return the number of
726 ** characters in the simplified name.
727 */
728 static int vxworksSimplifyName(char *z, int n){
729 int i, j;
730 while( n>1 && z[n-1]=='/' ){ n--; }
731 for(i=j=0; i<n; i++){
732 if( z[i]=='/' ){
733 if( z[i+1]=='/' ) continue;
734 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
735 i += 1;
736 continue;
737 }
738 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
739 while( j>0 && z[j-1]!='/' ){ j--; }
740 if( j>0 ){ j--; }
741 i += 2;
742 continue;
743 }
744 }
745 z[j++] = z[i];
746 }
747 z[j] = 0;
748 return j;
749 }
750
751 /*
752 ** Find a unique file ID for the given absolute pathname. Return
753 ** a pointer to the vxworksFileId object. This pointer is the unique
754 ** file ID.
755 **
756 ** The nRef field of the vxworksFileId object is incremented before
757 ** the object is returned. A new vxworksFileId object is created
758 ** and added to the global list if necessary.
759 **
760 ** If a memory allocation error occurs, return NULL.
761 */
762 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
763 struct vxworksFileId *pNew; /* search key and new file ID */
764 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
765 int n; /* Length of zAbsoluteName string */
766
767 assert( zAbsoluteName[0]=='/' );
768 n = (int)strlen(zAbsoluteName);
769 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
770 if( pNew==0 ) return 0;
771 pNew->zCanonicalName = (char*)&pNew[1];
772 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
773 n = vxworksSimplifyName(pNew->zCanonicalName, n);
774
775 /* Search for an existing entry that matching the canonical name.
776 ** If found, increment the reference count and return a pointer to
777 ** the existing file ID.
778 */
779 unixEnterMutex();
780 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
781 if( pCandidate->nName==n
782 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
783 ){
784 sqlite3_free(pNew);
785 pCandidate->nRef++;
786 unixLeaveMutex();
787 return pCandidate;
788 }
789 }
790
791 /* No match was found. We will make a new file ID */
792 pNew->nRef = 1;
793 pNew->nName = n;
794 pNew->pNext = vxworksFileList;
795 vxworksFileList = pNew;
796 unixLeaveMutex();
797 return pNew;
798 }
799
800 /*
801 ** Decrement the reference count on a vxworksFileId object. Free
802 ** the object when the reference count reaches zero.
803 */
804 static void vxworksReleaseFileId(struct vxworksFileId *pId){
805 unixEnterMutex();
806 assert( pId->nRef>0 );
807 pId->nRef--;
808 if( pId->nRef==0 ){
809 struct vxworksFileId **pp;
810 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
811 assert( *pp==pId );
812 *pp = pId->pNext;
813 sqlite3_free(pId);
814 }
815 unixLeaveMutex();
816 }
817 #endif /* OS_VXWORKS */
818 /*************** End of Unique File ID Utility Used By VxWorks ****************
819 ******************************************************************************/
820
821
822 /******************************************************************************
823 *************************** Posix Advisory Locking ****************************
824 **
825 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
826 ** section 6.5.2.2 lines 483 through 490 specify that when a process
827 ** sets or clears a lock, that operation overrides any prior locks set
828 ** by the same process. It does not explicitly say so, but this implies
829 ** that it overrides locks set by the same process using a different
830 ** file descriptor. Consider this test case:
831 **
832 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
833 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
834 **
835 ** Suppose ./file1 and ./file2 are really the same file (because
836 ** one is a hard or symbolic link to the other) then if you set
837 ** an exclusive lock on fd1, then try to get an exclusive lock
838 ** on fd2, it works. I would have expected the second lock to
839 ** fail since there was already a lock on the file due to fd1.
840 ** But not so. Since both locks came from the same process, the
841 ** second overrides the first, even though they were on different
842 ** file descriptors opened on different file names.
843 **
844 ** This means that we cannot use POSIX locks to synchronize file access
845 ** among competing threads of the same process. POSIX locks will work fine
846 ** to synchronize access for threads in separate processes, but not
847 ** threads within the same process.
848 **
849 ** To work around the problem, SQLite has to manage file locks internally
850 ** on its own. Whenever a new database is opened, we have to find the
851 ** specific inode of the database file (the inode is determined by the
852 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
853 ** and check for locks already existing on that inode. When locks are
854 ** created or removed, we have to look at our own internal record of the
855 ** locks to see if another thread has previously set a lock on that same
856 ** inode.
857 **
858 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
859 ** For VxWorks, we have to use the alternative unique ID system based on
860 ** canonical filename and implemented in the previous division.)
861 **
862 ** The sqlite3_file structure for POSIX is no longer just an integer file
863 ** descriptor. It is now a structure that holds the integer file
864 ** descriptor and a pointer to a structure that describes the internal
865 ** locks on the corresponding inode. There is one locking structure
866 ** per inode, so if the same inode is opened twice, both unixFile structures
867 ** point to the same locking structure. The locking structure keeps
868 ** a reference count (so we will know when to delete it) and a "cnt"
869 ** field that tells us its internal lock status. cnt==0 means the
870 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
871 ** cnt>0 means there are cnt shared locks on the file.
872 **
873 ** Any attempt to lock or unlock a file first checks the locking
874 ** structure. The fcntl() system call is only invoked to set a
875 ** POSIX lock if the internal lock structure transitions between
876 ** a locked and an unlocked state.
877 **
878 ** But wait: there are yet more problems with POSIX advisory locks.
879 **
880 ** If you close a file descriptor that points to a file that has locks,
881 ** all locks on that file that are owned by the current process are
882 ** released. To work around this problem, each unixInodeInfo object
883 ** maintains a count of the number of pending locks on tha inode.
884 ** When an attempt is made to close an unixFile, if there are
885 ** other unixFile open on the same inode that are holding locks, the call
886 ** to close() the file descriptor is deferred until all of the locks clear.
887 ** The unixInodeInfo structure keeps a list of file descriptors that need to
888 ** be closed and that list is walked (and cleared) when the last lock
889 ** clears.
890 **
891 ** Yet another problem: LinuxThreads do not play well with posix locks.
892 **
893 ** Many older versions of linux use the LinuxThreads library which is
894 ** not posix compliant. Under LinuxThreads, a lock created by thread
895 ** A cannot be modified or overridden by a different thread B.
896 ** Only thread A can modify the lock. Locking behavior is correct
897 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
898 ** on linux - with NPTL a lock created by thread A can override locks
899 ** in thread B. But there is no way to know at compile-time which
900 ** threading library is being used. So there is no way to know at
901 ** compile-time whether or not thread A can override locks on thread B.
902 ** One has to do a run-time check to discover the behavior of the
903 ** current process.
904 **
905 ** SQLite used to support LinuxThreads. But support for LinuxThreads
906 ** was dropped beginning with version 3.7.0. SQLite will still work with
907 ** LinuxThreads provided that (1) there is no more than one connection
908 ** per database file in the same process and (2) database connections
909 ** do not move across threads.
910 */
911
912 /*
913 ** An instance of the following structure serves as the key used
914 ** to locate a particular unixInodeInfo object.
915 */
916 struct unixFileId {
917 dev_t dev; /* Device number */
918 #if OS_VXWORKS
919 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
920 #else
921 ino_t ino; /* Inode number */
922 #endif
923 };
924
925 /*
926 ** An instance of the following structure is allocated for each open
927 ** inode. Or, on LinuxThreads, there is one of these structures for
928 ** each inode opened by each thread.
929 **
930 ** A single inode can have multiple file descriptors, so each unixFile
931 ** structure contains a pointer to an instance of this object and this
932 ** object keeps a count of the number of unixFile pointing to it.
933 */
934 struct unixInodeInfo {
935 struct unixFileId fileId; /* The lookup key */
936 int nShared; /* Number of SHARED locks held */
937 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
938 unsigned char bProcessLock; /* An exclusive process lock is held */
939 int nRef; /* Number of pointers to this structure */
940 unixShmNode *pShmNode; /* Shared memory associated with this inode */
941 int nLock; /* Number of outstanding file locks */
942 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
943 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
944 unixInodeInfo *pPrev; /* .... doubly linked */
945 #if defined(SQLITE_ENABLE_LOCKING_STYLE)
946 unsigned long long sharedByte; /* for AFP simulated shared lock */
947 #endif
948 #if OS_VXWORKS
949 sem_t *pSem; /* Named POSIX semaphore */
950 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
951 #endif
952 };
953
954 /*
955 ** A lists of all unixInodeInfo objects.
956 */
957 static unixInodeInfo *inodeList = 0;
958
959 /*
960 **
961 ** This function - unixLogError_x(), is only ever called via the macro
962 ** unixLogError().
963 **
964 ** It is invoked after an error occurs in an OS function and errno has been
965 ** set. It logs a message using sqlite3_log() containing the current value of
966 ** errno and, if possible, the human-readable equivalent from strerror() or
967 ** strerror_r().
968 **
969 ** The first argument passed to the macro should be the error code that
970 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
971 ** The two subsequent arguments should be the name of the OS function that
972 ** failed (e.g. "unlink", "open") and the the associated file-system path,
973 ** if any.
974 */
975 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
976 static int unixLogErrorAtLine(
977 int errcode, /* SQLite error code */
978 const char *zFunc, /* Name of OS function that failed */
979 const char *zPath, /* File path associated with error */
980 int iLine /* Source line number where error occurred */
981 ){
982 char *zErr; /* Message from strerror() or equivalent */
983 int iErrno = errno; /* Saved syscall error number */
984
985 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
986 ** the strerror() function to obtain the human-readable error message
987 ** equivalent to errno. Otherwise, use strerror_r().
988 */
989 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
990 char aErr[80];
991 memset(aErr, 0, sizeof(aErr));
992 zErr = aErr;
993
994 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
995 ** assume that the system provides the the GNU version of strerror_r() that
996 ** returns a pointer to a buffer containing the error message. That pointer
997 ** may point to aErr[], or it may point to some static storage somewhere.
998 ** Otherwise, assume that the system provides the POSIX version of
999 ** strerror_r(), which always writes an error message into aErr[].
1000 **
1001 ** If the code incorrectly assumes that it is the POSIX version that is
1002 ** available, the error message will often be an empty string. Not a
1003 ** huge problem. Incorrectly concluding that the GNU version is available
1004 ** could lead to a segfault though.
1005 */
1006 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1007 zErr =
1008 # endif
1009 strerror_r(iErrno, aErr, sizeof(aErr)-1);
1010
1011 #elif SQLITE_THREADSAFE
1012 /* This is a threadsafe build, but strerror_r() is not available. */
1013 zErr = "";
1014 #else
1015 /* Non-threadsafe build, use strerror(). */
1016 zErr = strerror(iErrno);
1017 #endif
1018
1019 assert( errcode!=SQLITE_OK );
1020 if( zPath==0 ) zPath = "";
1021 sqlite3_log(errcode,
1022 "os_unix.c:%d: (%d) %s(%s) - %s",
1023 iLine, iErrno, zFunc, zPath, zErr
1024 );
1025
1026 return errcode;
1027 }
1028
1029 /*
1030 ** Close a file descriptor.
1031 **
1032 ** We assume that close() almost always works, since it is only in a
1033 ** very sick application or on a very sick platform that it might fail.
1034 ** If it does fail, simply leak the file descriptor, but do log the
1035 ** error.
1036 **
1037 ** Note that it is not safe to retry close() after EINTR since the
1038 ** file descriptor might have already been reused by another thread.
1039 ** So we don't even try to recover from an EINTR. Just log the error
1040 ** and move on.
1041 */
1042 static void robust_close(unixFile *pFile, int h, int lineno){
1043 if( osClose(h) ){
1044 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1045 pFile ? pFile->zPath : 0, lineno);
1046 }
1047 }
1048
1049 /*
1050 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1051 */
1052 static void closePendingFds(unixFile *pFile){
1053 unixInodeInfo *pInode = pFile->pInode;
1054 UnixUnusedFd *p;
1055 UnixUnusedFd *pNext;
1056 for(p=pInode->pUnused; p; p=pNext){
1057 pNext = p->pNext;
1058 robust_close(pFile, p->fd, __LINE__);
1059 sqlite3_free(p);
1060 }
1061 pInode->pUnused = 0;
1062 }
1063
1064 /*
1065 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1066 **
1067 ** The mutex entered using the unixEnterMutex() function must be held
1068 ** when this function is called.
1069 */
1070 static void releaseInodeInfo(unixFile *pFile){
1071 unixInodeInfo *pInode = pFile->pInode;
1072 assert( unixMutexHeld() );
1073 if( ALWAYS(pInode) ){
1074 pInode->nRef--;
1075 if( pInode->nRef==0 ){
1076 assert( pInode->pShmNode==0 );
1077 closePendingFds(pFile);
1078 if( pInode->pPrev ){
1079 assert( pInode->pPrev->pNext==pInode );
1080 pInode->pPrev->pNext = pInode->pNext;
1081 }else{
1082 assert( inodeList==pInode );
1083 inodeList = pInode->pNext;
1084 }
1085 if( pInode->pNext ){
1086 assert( pInode->pNext->pPrev==pInode );
1087 pInode->pNext->pPrev = pInode->pPrev;
1088 }
1089 sqlite3_free(pInode);
1090 }
1091 }
1092 }
1093
1094 /*
1095 ** Given a file descriptor, locate the unixInodeInfo object that
1096 ** describes that file descriptor. Create a new one if necessary. The
1097 ** return value might be uninitialized if an error occurs.
1098 **
1099 ** The mutex entered using the unixEnterMutex() function must be held
1100 ** when this function is called.
1101 **
1102 ** Return an appropriate error code.
1103 */
1104 static int findInodeInfo(
1105 unixFile *pFile, /* Unix file with file desc used in the key */
1106 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
1107 ){
1108 int rc; /* System call return code */
1109 int fd; /* The file descriptor for pFile */
1110 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
1111 struct stat statbuf; /* Low-level file information */
1112 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
1113
1114 assert( unixMutexHeld() );
1115
1116 /* Get low-level information about the file that we can used to
1117 ** create a unique name for the file.
1118 */
1119 fd = pFile->h;
1120 rc = osFstat(fd, &statbuf);
1121 if( rc!=0 ){
1122 pFile->lastErrno = errno;
1123 #ifdef EOVERFLOW
1124 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1125 #endif
1126 return SQLITE_IOERR;
1127 }
1128
1129 #ifdef __APPLE__
1130 /* On OS X on an msdos filesystem, the inode number is reported
1131 ** incorrectly for zero-size files. See ticket #3260. To work
1132 ** around this problem (we consider it a bug in OS X, not SQLite)
1133 ** we always increase the file size to 1 by writing a single byte
1134 ** prior to accessing the inode number. The one byte written is
1135 ** an ASCII 'S' character which also happens to be the first byte
1136 ** in the header of every SQLite database. In this way, if there
1137 ** is a race condition such that another thread has already populated
1138 ** the first page of the database, no damage is done.
1139 */
1140 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1141 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1142 if( rc!=1 ){
1143 pFile->lastErrno = errno;
1144 return SQLITE_IOERR;
1145 }
1146 rc = osFstat(fd, &statbuf);
1147 if( rc!=0 ){
1148 pFile->lastErrno = errno;
1149 return SQLITE_IOERR;
1150 }
1151 }
1152 #endif
1153
1154 memset(&fileId, 0, sizeof(fileId));
1155 fileId.dev = statbuf.st_dev;
1156 #if OS_VXWORKS
1157 fileId.pId = pFile->pId;
1158 #else
1159 fileId.ino = statbuf.st_ino;
1160 #endif
1161 pInode = inodeList;
1162 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1163 pInode = pInode->pNext;
1164 }
1165 if( pInode==0 ){
1166 pInode = sqlite3_malloc( sizeof(*pInode) );
1167 if( pInode==0 ){
1168 return SQLITE_NOMEM;
1169 }
1170 memset(pInode, 0, sizeof(*pInode));
1171 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1172 pInode->nRef = 1;
1173 pInode->pNext = inodeList;
1174 pInode->pPrev = 0;
1175 if( inodeList ) inodeList->pPrev = pInode;
1176 inodeList = pInode;
1177 }else{
1178 pInode->nRef++;
1179 }
1180 *ppInode = pInode;
1181 return SQLITE_OK;
1182 }
1183
1184
1185 /*
1186 ** This routine checks if there is a RESERVED lock held on the specified
1187 ** file by this or any other process. If such a lock is held, set *pResOut
1188 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1189 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1190 */
1191 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1192 int rc = SQLITE_OK;
1193 int reserved = 0;
1194 unixFile *pFile = (unixFile*)id;
1195
1196 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1197
1198 assert( pFile );
1199 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1200
1201 /* Check if a thread in this process holds such a lock */
1202 if( pFile->pInode->eFileLock>SHARED_LOCK ){
1203 reserved = 1;
1204 }
1205
1206 /* Otherwise see if some other process holds it.
1207 */
1208 #ifndef __DJGPP__
1209 if( !reserved && !pFile->pInode->bProcessLock ){
1210 struct flock lock;
1211 lock.l_whence = SEEK_SET;
1212 lock.l_start = RESERVED_BYTE;
1213 lock.l_len = 1;
1214 lock.l_type = F_WRLCK;
1215 if( osFcntl(pFile->h, F_GETLK, &lock) ){
1216 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1217 pFile->lastErrno = errno;
1218 } else if( lock.l_type!=F_UNLCK ){
1219 reserved = 1;
1220 }
1221 }
1222 #endif
1223
1224 unixLeaveMutex();
1225 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1226
1227 *pResOut = reserved;
1228 return rc;
1229 }
1230
1231 /*
1232 ** Attempt to set a system-lock on the file pFile. The lock is
1233 ** described by pLock.
1234 **
1235 ** If the pFile was opened read/write from unix-excl, then the only lock
1236 ** ever obtained is an exclusive lock, and it is obtained exactly once
1237 ** the first time any lock is attempted. All subsequent system locking
1238 ** operations become no-ops. Locking operations still happen internally,
1239 ** in order to coordinate access between separate database connections
1240 ** within this process, but all of that is handled in memory and the
1241 ** operating system does not participate.
1242 **
1243 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1244 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1245 ** and is read-only.
1246 **
1247 ** Zero is returned if the call completes successfully, or -1 if a call
1248 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1249 */
1250 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1251 int rc;
1252 unixInodeInfo *pInode = pFile->pInode;
1253 assert( unixMutexHeld() );
1254 assert( pInode!=0 );
1255 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1256 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1257 ){
1258 if( pInode->bProcessLock==0 ){
1259 struct flock lock;
1260 assert( pInode->nLock==0 );
1261 lock.l_whence = SEEK_SET;
1262 lock.l_start = SHARED_FIRST;
1263 lock.l_len = SHARED_SIZE;
1264 lock.l_type = F_WRLCK;
1265 rc = osFcntl(pFile->h, F_SETLK, &lock);
1266 if( rc<0 ) return rc;
1267 pInode->bProcessLock = 1;
1268 pInode->nLock++;
1269 }else{
1270 rc = 0;
1271 }
1272 }else{
1273 rc = osFcntl(pFile->h, F_SETLK, pLock);
1274 }
1275 return rc;
1276 }
1277
1278 /*
1279 ** Lock the file with the lock specified by parameter eFileLock - one
1280 ** of the following:
1281 **
1282 ** (1) SHARED_LOCK
1283 ** (2) RESERVED_LOCK
1284 ** (3) PENDING_LOCK
1285 ** (4) EXCLUSIVE_LOCK
1286 **
1287 ** Sometimes when requesting one lock state, additional lock states
1288 ** are inserted in between. The locking might fail on one of the later
1289 ** transitions leaving the lock state different from what it started but
1290 ** still short of its goal. The following chart shows the allowed
1291 ** transitions and the inserted intermediate states:
1292 **
1293 ** UNLOCKED -> SHARED
1294 ** SHARED -> RESERVED
1295 ** SHARED -> (PENDING) -> EXCLUSIVE
1296 ** RESERVED -> (PENDING) -> EXCLUSIVE
1297 ** PENDING -> EXCLUSIVE
1298 **
1299 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1300 ** routine to lower a locking level.
1301 */
1302 static int unixLock(sqlite3_file *id, int eFileLock){
1303 /* The following describes the implementation of the various locks and
1304 ** lock transitions in terms of the POSIX advisory shared and exclusive
1305 ** lock primitives (called read-locks and write-locks below, to avoid
1306 ** confusion with SQLite lock names). The algorithms are complicated
1307 ** slightly in order to be compatible with windows systems simultaneously
1308 ** accessing the same database file, in case that is ever required.
1309 **
1310 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1311 ** byte', each single bytes at well known offsets, and the 'shared byte
1312 ** range', a range of 510 bytes at a well known offset.
1313 **
1314 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1315 ** byte'. If this is successful, a random byte from the 'shared byte
1316 ** range' is read-locked and the lock on the 'pending byte' released.
1317 **
1318 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1319 ** A RESERVED lock is implemented by grabbing a write-lock on the
1320 ** 'reserved byte'.
1321 **
1322 ** A process may only obtain a PENDING lock after it has obtained a
1323 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1324 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1325 ** obtained, but existing SHARED locks are allowed to persist. A process
1326 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1327 ** This property is used by the algorithm for rolling back a journal file
1328 ** after a crash.
1329 **
1330 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1331 ** implemented by obtaining a write-lock on the entire 'shared byte
1332 ** range'. Since all other locks require a read-lock on one of the bytes
1333 ** within this range, this ensures that no other locks are held on the
1334 ** database.
1335 **
1336 ** The reason a single byte cannot be used instead of the 'shared byte
1337 ** range' is that some versions of windows do not support read-locks. By
1338 ** locking a random byte from a range, concurrent SHARED locks may exist
1339 ** even if the locking primitive used is always a write-lock.
1340 */
1341 int rc = SQLITE_OK;
1342 unixFile *pFile = (unixFile*)id;
1343 unixInodeInfo *pInode = pFile->pInode;
1344 struct flock lock;
1345 int tErrno = 0;
1346
1347 assert( pFile );
1348 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1349 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1350 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
1351
1352 /* If there is already a lock of this type or more restrictive on the
1353 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1354 ** unixEnterMutex() hasn't been called yet.
1355 */
1356 if( pFile->eFileLock>=eFileLock ){
1357 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
1358 azFileLock(eFileLock)));
1359 return SQLITE_OK;
1360 }
1361
1362 /* Make sure the locking sequence is correct.
1363 ** (1) We never move from unlocked to anything higher than shared lock.
1364 ** (2) SQLite never explicitly requests a pendig lock.
1365 ** (3) A shared lock is always held when a reserve lock is requested.
1366 */
1367 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1368 assert( eFileLock!=PENDING_LOCK );
1369 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1370
1371 /* This mutex is needed because pFile->pInode is shared across threads
1372 */
1373 unixEnterMutex();
1374 pInode = pFile->pInode;
1375
1376 /* If some thread using this PID has a lock via a different unixFile*
1377 ** handle that precludes the requested lock, return BUSY.
1378 */
1379 if( (pFile->eFileLock!=pInode->eFileLock &&
1380 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1381 ){
1382 rc = SQLITE_BUSY;
1383 goto end_lock;
1384 }
1385
1386 /* If a SHARED lock is requested, and some thread using this PID already
1387 ** has a SHARED or RESERVED lock, then increment reference counts and
1388 ** return SQLITE_OK.
1389 */
1390 if( eFileLock==SHARED_LOCK &&
1391 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1392 assert( eFileLock==SHARED_LOCK );
1393 assert( pFile->eFileLock==0 );
1394 assert( pInode->nShared>0 );
1395 pFile->eFileLock = SHARED_LOCK;
1396 pInode->nShared++;
1397 pInode->nLock++;
1398 goto end_lock;
1399 }
1400
1401
1402 /* A PENDING lock is needed before acquiring a SHARED lock and before
1403 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1404 ** be released.
1405 */
1406 lock.l_len = 1L;
1407 lock.l_whence = SEEK_SET;
1408 if( eFileLock==SHARED_LOCK
1409 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1410 ){
1411 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1412 lock.l_start = PENDING_BYTE;
1413 if( unixFileLock(pFile, &lock) ){
1414 tErrno = errno;
1415 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1416 if( rc!=SQLITE_BUSY ){
1417 pFile->lastErrno = tErrno;
1418 }
1419 goto end_lock;
1420 }
1421 }
1422
1423
1424 /* If control gets to this point, then actually go ahead and make
1425 ** operating system calls for the specified lock.
1426 */
1427 if( eFileLock==SHARED_LOCK ){
1428 assert( pInode->nShared==0 );
1429 assert( pInode->eFileLock==0 );
1430 assert( rc==SQLITE_OK );
1431
1432 /* Now get the read-lock */
1433 lock.l_start = SHARED_FIRST;
1434 lock.l_len = SHARED_SIZE;
1435 if( unixFileLock(pFile, &lock) ){
1436 tErrno = errno;
1437 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1438 }
1439
1440 /* Drop the temporary PENDING lock */
1441 lock.l_start = PENDING_BYTE;
1442 lock.l_len = 1L;
1443 lock.l_type = F_UNLCK;
1444 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1445 /* This could happen with a network mount */
1446 tErrno = errno;
1447 rc = SQLITE_IOERR_UNLOCK;
1448 }
1449
1450 if( rc ){
1451 if( rc!=SQLITE_BUSY ){
1452 pFile->lastErrno = tErrno;
1453 }
1454 goto end_lock;
1455 }else{
1456 pFile->eFileLock = SHARED_LOCK;
1457 pInode->nLock++;
1458 pInode->nShared = 1;
1459 }
1460 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1461 /* We are trying for an exclusive lock but another thread in this
1462 ** same process is still holding a shared lock. */
1463 rc = SQLITE_BUSY;
1464 }else{
1465 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1466 ** assumed that there is a SHARED or greater lock on the file
1467 ** already.
1468 */
1469 assert( 0!=pFile->eFileLock );
1470 lock.l_type = F_WRLCK;
1471
1472 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1473 if( eFileLock==RESERVED_LOCK ){
1474 lock.l_start = RESERVED_BYTE;
1475 lock.l_len = 1L;
1476 }else{
1477 lock.l_start = SHARED_FIRST;
1478 lock.l_len = SHARED_SIZE;
1479 }
1480
1481 if( unixFileLock(pFile, &lock) ){
1482 tErrno = errno;
1483 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1484 if( rc!=SQLITE_BUSY ){
1485 pFile->lastErrno = tErrno;
1486 }
1487 }
1488 }
1489
1490
1491 #ifndef NDEBUG
1492 /* Set up the transaction-counter change checking flags when
1493 ** transitioning from a SHARED to a RESERVED lock. The change
1494 ** from SHARED to RESERVED marks the beginning of a normal
1495 ** write operation (not a hot journal rollback).
1496 */
1497 if( rc==SQLITE_OK
1498 && pFile->eFileLock<=SHARED_LOCK
1499 && eFileLock==RESERVED_LOCK
1500 ){
1501 pFile->transCntrChng = 0;
1502 pFile->dbUpdate = 0;
1503 pFile->inNormalWrite = 1;
1504 }
1505 #endif
1506
1507
1508 if( rc==SQLITE_OK ){
1509 pFile->eFileLock = eFileLock;
1510 pInode->eFileLock = eFileLock;
1511 }else if( eFileLock==EXCLUSIVE_LOCK ){
1512 pFile->eFileLock = PENDING_LOCK;
1513 pInode->eFileLock = PENDING_LOCK;
1514 }
1515
1516 end_lock:
1517 unixLeaveMutex();
1518 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1519 rc==SQLITE_OK ? "ok" : "failed"));
1520 return rc;
1521 }
1522
1523 /*
1524 ** Add the file descriptor used by file handle pFile to the corresponding
1525 ** pUnused list.
1526 */
1527 static void setPendingFd(unixFile *pFile){
1528 unixInodeInfo *pInode = pFile->pInode;
1529 UnixUnusedFd *p = pFile->pUnused;
1530 p->pNext = pInode->pUnused;
1531 pInode->pUnused = p;
1532 pFile->h = -1;
1533 pFile->pUnused = 0;
1534 }
1535
1536 /*
1537 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1538 ** must be either NO_LOCK or SHARED_LOCK.
1539 **
1540 ** If the locking level of the file descriptor is already at or below
1541 ** the requested locking level, this routine is a no-op.
1542 **
1543 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1544 ** the byte range is divided into 2 parts and the first part is unlocked then
1545 ** set to a read lock, then the other part is simply unlocked. This works
1546 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1547 ** remove the write lock on a region when a read lock is set.
1548 */
1549 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1550 unixFile *pFile = (unixFile*)id;
1551 unixInodeInfo *pInode;
1552 struct flock lock;
1553 int rc = SQLITE_OK;
1554 int h;
1555
1556 assert( pFile );
1557 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1558 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1559 getpid()));
1560
1561 assert( eFileLock<=SHARED_LOCK );
1562 if( pFile->eFileLock<=eFileLock ){
1563 return SQLITE_OK;
1564 }
1565 unixEnterMutex();
1566 h = pFile->h;
1567 pInode = pFile->pInode;
1568 assert( pInode->nShared!=0 );
1569 if( pFile->eFileLock>SHARED_LOCK ){
1570 assert( pInode->eFileLock==pFile->eFileLock );
1571 SimulateIOErrorBenign(1);
1572 SimulateIOError( h=(-1) )
1573 SimulateIOErrorBenign(0);
1574
1575 #ifndef NDEBUG
1576 /* When reducing a lock such that other processes can start
1577 ** reading the database file again, make sure that the
1578 ** transaction counter was updated if any part of the database
1579 ** file changed. If the transaction counter is not updated,
1580 ** other connections to the same file might not realize that
1581 ** the file has changed and hence might not know to flush their
1582 ** cache. The use of a stale cache can lead to database corruption.
1583 */
1584 #if 0
1585 assert( pFile->inNormalWrite==0
1586 || pFile->dbUpdate==0
1587 || pFile->transCntrChng==1 );
1588 #endif
1589 pFile->inNormalWrite = 0;
1590 #endif
1591
1592 /* downgrading to a shared lock on NFS involves clearing the write lock
1593 ** before establishing the readlock - to avoid a race condition we downgrade
1594 ** the lock in 2 blocks, so that part of the range will be covered by a
1595 ** write lock until the rest is covered by a read lock:
1596 ** 1: [WWWWW]
1597 ** 2: [....W]
1598 ** 3: [RRRRW]
1599 ** 4: [RRRR.]
1600 */
1601 if( eFileLock==SHARED_LOCK ){
1602
1603 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1604 (void)handleNFSUnlock;
1605 assert( handleNFSUnlock==0 );
1606 #endif
1607 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1608 if( handleNFSUnlock ){
1609 int tErrno; /* Error code from system call errors */
1610 off_t divSize = SHARED_SIZE - 1;
1611
1612 lock.l_type = F_UNLCK;
1613 lock.l_whence = SEEK_SET;
1614 lock.l_start = SHARED_FIRST;
1615 lock.l_len = divSize;
1616 if( unixFileLock(pFile, &lock)==(-1) ){
1617 tErrno = errno;
1618 rc = SQLITE_IOERR_UNLOCK;
1619 if( IS_LOCK_ERROR(rc) ){
1620 pFile->lastErrno = tErrno;
1621 }
1622 goto end_unlock;
1623 }
1624 lock.l_type = F_RDLCK;
1625 lock.l_whence = SEEK_SET;
1626 lock.l_start = SHARED_FIRST;
1627 lock.l_len = divSize;
1628 if( unixFileLock(pFile, &lock)==(-1) ){
1629 tErrno = errno;
1630 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1631 if( IS_LOCK_ERROR(rc) ){
1632 pFile->lastErrno = tErrno;
1633 }
1634 goto end_unlock;
1635 }
1636 lock.l_type = F_UNLCK;
1637 lock.l_whence = SEEK_SET;
1638 lock.l_start = SHARED_FIRST+divSize;
1639 lock.l_len = SHARED_SIZE-divSize;
1640 if( unixFileLock(pFile, &lock)==(-1) ){
1641 tErrno = errno;
1642 rc = SQLITE_IOERR_UNLOCK;
1643 if( IS_LOCK_ERROR(rc) ){
1644 pFile->lastErrno = tErrno;
1645 }
1646 goto end_unlock;
1647 }
1648 }else
1649 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1650 {
1651 lock.l_type = F_RDLCK;
1652 lock.l_whence = SEEK_SET;
1653 lock.l_start = SHARED_FIRST;
1654 lock.l_len = SHARED_SIZE;
1655 if( unixFileLock(pFile, &lock) ){
1656 /* In theory, the call to unixFileLock() cannot fail because another
1657 ** process is holding an incompatible lock. If it does, this
1658 ** indicates that the other process is not following the locking
1659 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1660 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1661 ** an assert to fail). */
1662 rc = SQLITE_IOERR_RDLOCK;
1663 pFile->lastErrno = errno;
1664 goto end_unlock;
1665 }
1666 }
1667 }
1668 lock.l_type = F_UNLCK;
1669 lock.l_whence = SEEK_SET;
1670 lock.l_start = PENDING_BYTE;
1671 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1672 if( unixFileLock(pFile, &lock)==0 ){
1673 pInode->eFileLock = SHARED_LOCK;
1674 }else{
1675 rc = SQLITE_IOERR_UNLOCK;
1676 pFile->lastErrno = errno;
1677 goto end_unlock;
1678 }
1679 }
1680 if( eFileLock==NO_LOCK ){
1681 /* Decrement the shared lock counter. Release the lock using an
1682 ** OS call only when all threads in this same process have released
1683 ** the lock.
1684 */
1685 pInode->nShared--;
1686 if( pInode->nShared==0 ){
1687 lock.l_type = F_UNLCK;
1688 lock.l_whence = SEEK_SET;
1689 lock.l_start = lock.l_len = 0L;
1690 SimulateIOErrorBenign(1);
1691 SimulateIOError( h=(-1) )
1692 SimulateIOErrorBenign(0);
1693 if( unixFileLock(pFile, &lock)==0 ){
1694 pInode->eFileLock = NO_LOCK;
1695 }else{
1696 rc = SQLITE_IOERR_UNLOCK;
1697 pFile->lastErrno = errno;
1698 pInode->eFileLock = NO_LOCK;
1699 pFile->eFileLock = NO_LOCK;
1700 }
1701 }
1702
1703 /* Decrement the count of locks against this same file. When the
1704 ** count reaches zero, close any other file descriptors whose close
1705 ** was deferred because of outstanding locks.
1706 */
1707 pInode->nLock--;
1708 assert( pInode->nLock>=0 );
1709 if( pInode->nLock==0 ){
1710 closePendingFds(pFile);
1711 }
1712 }
1713
1714 end_unlock:
1715 unixLeaveMutex();
1716 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1717 return rc;
1718 }
1719
1720 /*
1721 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1722 ** must be either NO_LOCK or SHARED_LOCK.
1723 **
1724 ** If the locking level of the file descriptor is already at or below
1725 ** the requested locking level, this routine is a no-op.
1726 */
1727 static int unixUnlock(sqlite3_file *id, int eFileLock){
1728 return posixUnlock(id, eFileLock, 0);
1729 }
1730
1731 /*
1732 ** This function performs the parts of the "close file" operation
1733 ** common to all locking schemes. It closes the directory and file
1734 ** handles, if they are valid, and sets all fields of the unixFile
1735 ** structure to 0.
1736 **
1737 ** It is *not* necessary to hold the mutex when this routine is called,
1738 ** even on VxWorks. A mutex will be acquired on VxWorks by the
1739 ** vxworksReleaseFileId() routine.
1740 */
1741 static int closeUnixFile(sqlite3_file *id){
1742 unixFile *pFile = (unixFile*)id;
1743 if( pFile->h>=0 ){
1744 robust_close(pFile, pFile->h, __LINE__);
1745 pFile->h = -1;
1746 }
1747 #if OS_VXWORKS
1748 if( pFile->pId ){
1749 if( pFile->isDelete ){
1750 osUnlink(pFile->pId->zCanonicalName);
1751 }
1752 vxworksReleaseFileId(pFile->pId);
1753 pFile->pId = 0;
1754 }
1755 #endif
1756 OSTRACE(("CLOSE %-3d\n", pFile->h));
1757 OpenCounter(-1);
1758 sqlite3_free(pFile->pUnused);
1759 memset(pFile, 0, sizeof(unixFile));
1760 return SQLITE_OK;
1761 }
1762
1763 /*
1764 ** Close a file.
1765 */
1766 static int unixClose(sqlite3_file *id){
1767 int rc = SQLITE_OK;
1768 unixFile *pFile = (unixFile *)id;
1769 unixUnlock(id, NO_LOCK);
1770 unixEnterMutex();
1771
1772 /* unixFile.pInode is always valid here. Otherwise, a different close
1773 ** routine (e.g. nolockClose()) would be called instead.
1774 */
1775 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1776 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1777 /* If there are outstanding locks, do not actually close the file just
1778 ** yet because that would clear those locks. Instead, add the file
1779 ** descriptor to pInode->pUnused list. It will be automatically closed
1780 ** when the last lock is cleared.
1781 */
1782 setPendingFd(pFile);
1783 }
1784 releaseInodeInfo(pFile);
1785 rc = closeUnixFile(id);
1786 unixLeaveMutex();
1787 return rc;
1788 }
1789
1790 /************** End of the posix advisory lock implementation *****************
1791 ******************************************************************************/
1792
1793 /******************************************************************************
1794 ****************************** No-op Locking **********************************
1795 **
1796 ** Of the various locking implementations available, this is by far the
1797 ** simplest: locking is ignored. No attempt is made to lock the database
1798 ** file for reading or writing.
1799 **
1800 ** This locking mode is appropriate for use on read-only databases
1801 ** (ex: databases that are burned into CD-ROM, for example.) It can
1802 ** also be used if the application employs some external mechanism to
1803 ** prevent simultaneous access of the same database by two or more
1804 ** database connections. But there is a serious risk of database
1805 ** corruption if this locking mode is used in situations where multiple
1806 ** database connections are accessing the same database file at the same
1807 ** time and one or more of those connections are writing.
1808 */
1809
1810 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1811 UNUSED_PARAMETER(NotUsed);
1812 *pResOut = 0;
1813 return SQLITE_OK;
1814 }
1815 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1816 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1817 return SQLITE_OK;
1818 }
1819 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1820 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1821 return SQLITE_OK;
1822 }
1823
1824 /*
1825 ** Close the file.
1826 */
1827 static int nolockClose(sqlite3_file *id) {
1828 return closeUnixFile(id);
1829 }
1830
1831 /******************* End of the no-op lock implementation *********************
1832 ******************************************************************************/
1833
1834 /******************************************************************************
1835 ************************* Begin dot-file Locking ******************************
1836 **
1837 ** The dotfile locking implementation uses the existance of separate lock
1838 ** files in order to control access to the database. This works on just
1839 ** about every filesystem imaginable. But there are serious downsides:
1840 **
1841 ** (1) There is zero concurrency. A single reader blocks all other
1842 ** connections from reading or writing the database.
1843 **
1844 ** (2) An application crash or power loss can leave stale lock files
1845 ** sitting around that need to be cleared manually.
1846 **
1847 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1848 ** other locking strategy is available.
1849 **
1850 ** Dotfile locking works by creating a file in the same directory as the
1851 ** database and with the same name but with a ".lock" extension added.
1852 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock
1853 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1854 */
1855
1856 /*
1857 ** The file suffix added to the data base filename in order to create the
1858 ** lock file.
1859 */
1860 #define DOTLOCK_SUFFIX ".lock"
1861
1862 /*
1863 ** This routine checks if there is a RESERVED lock held on the specified
1864 ** file by this or any other process. If such a lock is held, set *pResOut
1865 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1866 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1867 **
1868 ** In dotfile locking, either a lock exists or it does not. So in this
1869 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1870 ** is held on the file and false if the file is unlocked.
1871 */
1872 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1873 int rc = SQLITE_OK;
1874 int reserved = 0;
1875 unixFile *pFile = (unixFile*)id;
1876
1877 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1878
1879 assert( pFile );
1880
1881 /* Check if a thread in this process holds such a lock */
1882 if( pFile->eFileLock>SHARED_LOCK ){
1883 /* Either this connection or some other connection in the same process
1884 ** holds a lock on the file. No need to check further. */
1885 reserved = 1;
1886 }else{
1887 /* The lock is held if and only if the lockfile exists */
1888 const char *zLockFile = (const char*)pFile->lockingContext;
1889 reserved = osAccess(zLockFile, 0)==0;
1890 }
1891 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
1892 *pResOut = reserved;
1893 return rc;
1894 }
1895
1896 /*
1897 ** Lock the file with the lock specified by parameter eFileLock - one
1898 ** of the following:
1899 **
1900 ** (1) SHARED_LOCK
1901 ** (2) RESERVED_LOCK
1902 ** (3) PENDING_LOCK
1903 ** (4) EXCLUSIVE_LOCK
1904 **
1905 ** Sometimes when requesting one lock state, additional lock states
1906 ** are inserted in between. The locking might fail on one of the later
1907 ** transitions leaving the lock state different from what it started but
1908 ** still short of its goal. The following chart shows the allowed
1909 ** transitions and the inserted intermediate states:
1910 **
1911 ** UNLOCKED -> SHARED
1912 ** SHARED -> RESERVED
1913 ** SHARED -> (PENDING) -> EXCLUSIVE
1914 ** RESERVED -> (PENDING) -> EXCLUSIVE
1915 ** PENDING -> EXCLUSIVE
1916 **
1917 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1918 ** routine to lower a locking level.
1919 **
1920 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1921 ** But we track the other locking levels internally.
1922 */
1923 static int dotlockLock(sqlite3_file *id, int eFileLock) {
1924 unixFile *pFile = (unixFile*)id;
1925 int fd;
1926 char *zLockFile = (char *)pFile->lockingContext;
1927 int rc = SQLITE_OK;
1928
1929
1930 /* If we have any lock, then the lock file already exists. All we have
1931 ** to do is adjust our internal record of the lock level.
1932 */
1933 if( pFile->eFileLock > NO_LOCK ){
1934 pFile->eFileLock = eFileLock;
1935 #if !OS_VXWORKS
1936 /* Always update the timestamp on the old file */
1937 utimes(zLockFile, NULL);
1938 #endif
1939 return SQLITE_OK;
1940 }
1941
1942 /* grab an exclusive lock */
1943 fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1944 if( fd<0 ){
1945 /* failed to open/create the file, someone else may have stolen the lock */
1946 int tErrno = errno;
1947 if( EEXIST == tErrno ){
1948 rc = SQLITE_BUSY;
1949 } else {
1950 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1951 if( IS_LOCK_ERROR(rc) ){
1952 pFile->lastErrno = tErrno;
1953 }
1954 }
1955 return rc;
1956 }
1957 robust_close(pFile, fd, __LINE__);
1958
1959 /* got it, set the type and return ok */
1960 pFile->eFileLock = eFileLock;
1961 return rc;
1962 }
1963
1964 /*
1965 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1966 ** must be either NO_LOCK or SHARED_LOCK.
1967 **
1968 ** If the locking level of the file descriptor is already at or below
1969 ** the requested locking level, this routine is a no-op.
1970 **
1971 ** When the locking level reaches NO_LOCK, delete the lock file.
1972 */
1973 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
1974 unixFile *pFile = (unixFile*)id;
1975 char *zLockFile = (char *)pFile->lockingContext;
1976
1977 assert( pFile );
1978 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
1979 pFile->eFileLock, getpid()));
1980 assert( eFileLock<=SHARED_LOCK );
1981
1982 /* no-op if possible */
1983 if( pFile->eFileLock==eFileLock ){
1984 return SQLITE_OK;
1985 }
1986
1987 /* To downgrade to shared, simply update our internal notion of the
1988 ** lock state. No need to mess with the file on disk.
1989 */
1990 if( eFileLock==SHARED_LOCK ){
1991 pFile->eFileLock = SHARED_LOCK;
1992 return SQLITE_OK;
1993 }
1994
1995 /* To fully unlock the database, delete the lock file */
1996 assert( eFileLock==NO_LOCK );
1997 if( osUnlink(zLockFile) ){
1998 int rc = 0;
1999 int tErrno = errno;
2000 if( ENOENT != tErrno ){
2001 rc = SQLITE_IOERR_UNLOCK;
2002 }
2003 if( IS_LOCK_ERROR(rc) ){
2004 pFile->lastErrno = tErrno;
2005 }
2006 return rc;
2007 }
2008 pFile->eFileLock = NO_LOCK;
2009 return SQLITE_OK;
2010 }
2011
2012 /*
2013 ** Close a file. Make sure the lock has been released before closing.
2014 */
2015 static int dotlockClose(sqlite3_file *id) {
2016 int rc;
2017 if( id ){
2018 unixFile *pFile = (unixFile*)id;
2019 dotlockUnlock(id, NO_LOCK);
2020 sqlite3_free(pFile->lockingContext);
2021 }
2022 rc = closeUnixFile(id);
2023 return rc;
2024 }
2025 /****************** End of the dot-file lock implementation *******************
2026 ******************************************************************************/
2027
2028 /******************************************************************************
2029 ************************** Begin flock Locking ********************************
2030 **
2031 ** Use the flock() system call to do file locking.
2032 **
2033 ** flock() locking is like dot-file locking in that the various
2034 ** fine-grain locking levels supported by SQLite are collapsed into
2035 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2036 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2037 ** still works when you do this, but concurrency is reduced since
2038 ** only a single process can be reading the database at a time.
2039 **
2040 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2041 ** compiling for VXWORKS.
2042 */
2043 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2044
2045 /*
2046 ** Retry flock() calls that fail with EINTR
2047 */
2048 #ifdef EINTR
2049 static int robust_flock(int fd, int op){
2050 int rc;
2051 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2052 return rc;
2053 }
2054 #else
2055 # define robust_flock(a,b) flock(a,b)
2056 #endif
2057
2058
2059 /*
2060 ** This routine checks if there is a RESERVED lock held on the specified
2061 ** file by this or any other process. If such a lock is held, set *pResOut
2062 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2063 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2064 */
2065 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2066 int rc = SQLITE_OK;
2067 int reserved = 0;
2068 unixFile *pFile = (unixFile*)id;
2069
2070 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2071
2072 assert( pFile );
2073
2074 /* Check if a thread in this process holds such a lock */
2075 if( pFile->eFileLock>SHARED_LOCK ){
2076 reserved = 1;
2077 }
2078
2079 /* Otherwise see if some other process holds it. */
2080 if( !reserved ){
2081 /* attempt to get the lock */
2082 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2083 if( !lrc ){
2084 /* got the lock, unlock it */
2085 lrc = robust_flock(pFile->h, LOCK_UN);
2086 if ( lrc ) {
2087 int tErrno = errno;
2088 /* unlock failed with an error */
2089 lrc = SQLITE_IOERR_UNLOCK;
2090 if( IS_LOCK_ERROR(lrc) ){
2091 pFile->lastErrno = tErrno;
2092 rc = lrc;
2093 }
2094 }
2095 } else {
2096 int tErrno = errno;
2097 reserved = 1;
2098 /* someone else might have it reserved */
2099 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2100 if( IS_LOCK_ERROR(lrc) ){
2101 pFile->lastErrno = tErrno;
2102 rc = lrc;
2103 }
2104 }
2105 }
2106 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2107
2108 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2109 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2110 rc = SQLITE_OK;
2111 reserved=1;
2112 }
2113 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2114 *pResOut = reserved;
2115 return rc;
2116 }
2117
2118 /*
2119 ** Lock the file with the lock specified by parameter eFileLock - one
2120 ** of the following:
2121 **
2122 ** (1) SHARED_LOCK
2123 ** (2) RESERVED_LOCK
2124 ** (3) PENDING_LOCK
2125 ** (4) EXCLUSIVE_LOCK
2126 **
2127 ** Sometimes when requesting one lock state, additional lock states
2128 ** are inserted in between. The locking might fail on one of the later
2129 ** transitions leaving the lock state different from what it started but
2130 ** still short of its goal. The following chart shows the allowed
2131 ** transitions and the inserted intermediate states:
2132 **
2133 ** UNLOCKED -> SHARED
2134 ** SHARED -> RESERVED
2135 ** SHARED -> (PENDING) -> EXCLUSIVE
2136 ** RESERVED -> (PENDING) -> EXCLUSIVE
2137 ** PENDING -> EXCLUSIVE
2138 **
2139 ** flock() only really support EXCLUSIVE locks. We track intermediate
2140 ** lock states in the sqlite3_file structure, but all locks SHARED or
2141 ** above are really EXCLUSIVE locks and exclude all other processes from
2142 ** access the file.
2143 **
2144 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2145 ** routine to lower a locking level.
2146 */
2147 static int flockLock(sqlite3_file *id, int eFileLock) {
2148 int rc = SQLITE_OK;
2149 unixFile *pFile = (unixFile*)id;
2150
2151 assert( pFile );
2152
2153 /* if we already have a lock, it is exclusive.
2154 ** Just adjust level and punt on outta here. */
2155 if (pFile->eFileLock > NO_LOCK) {
2156 pFile->eFileLock = eFileLock;
2157 return SQLITE_OK;
2158 }
2159
2160 /* grab an exclusive lock */
2161
2162 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2163 int tErrno = errno;
2164 /* didn't get, must be busy */
2165 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2166 if( IS_LOCK_ERROR(rc) ){
2167 pFile->lastErrno = tErrno;
2168 }
2169 } else {
2170 /* got it, set the type and return ok */
2171 pFile->eFileLock = eFileLock;
2172 }
2173 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2174 rc==SQLITE_OK ? "ok" : "failed"));
2175 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2176 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2177 rc = SQLITE_BUSY;
2178 }
2179 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2180 return rc;
2181 }
2182
2183
2184 /*
2185 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2186 ** must be either NO_LOCK or SHARED_LOCK.
2187 **
2188 ** If the locking level of the file descriptor is already at or below
2189 ** the requested locking level, this routine is a no-op.
2190 */
2191 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2192 unixFile *pFile = (unixFile*)id;
2193
2194 assert( pFile );
2195 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2196 pFile->eFileLock, getpid()));
2197 assert( eFileLock<=SHARED_LOCK );
2198
2199 /* no-op if possible */
2200 if( pFile->eFileLock==eFileLock ){
2201 return SQLITE_OK;
2202 }
2203
2204 /* shared can just be set because we always have an exclusive */
2205 if (eFileLock==SHARED_LOCK) {
2206 pFile->eFileLock = eFileLock;
2207 return SQLITE_OK;
2208 }
2209
2210 /* no, really, unlock. */
2211 if( robust_flock(pFile->h, LOCK_UN) ){
2212 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2213 return SQLITE_OK;
2214 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2215 return SQLITE_IOERR_UNLOCK;
2216 }else{
2217 pFile->eFileLock = NO_LOCK;
2218 return SQLITE_OK;
2219 }
2220 }
2221
2222 /*
2223 ** Close a file.
2224 */
2225 static int flockClose(sqlite3_file *id) {
2226 if( id ){
2227 flockUnlock(id, NO_LOCK);
2228 }
2229 return closeUnixFile(id);
2230 }
2231
2232 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2233
2234 /******************* End of the flock lock implementation *********************
2235 ******************************************************************************/
2236
2237 /******************************************************************************
2238 ************************ Begin Named Semaphore Locking ************************
2239 **
2240 ** Named semaphore locking is only supported on VxWorks.
2241 **
2242 ** Semaphore locking is like dot-lock and flock in that it really only
2243 ** supports EXCLUSIVE locking. Only a single process can read or write
2244 ** the database file at a time. This reduces potential concurrency, but
2245 ** makes the lock implementation much easier.
2246 */
2247 #if OS_VXWORKS
2248
2249 /*
2250 ** This routine checks if there is a RESERVED lock held on the specified
2251 ** file by this or any other process. If such a lock is held, set *pResOut
2252 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2253 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2254 */
2255 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2256 int rc = SQLITE_OK;
2257 int reserved = 0;
2258 unixFile *pFile = (unixFile*)id;
2259
2260 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2261
2262 assert( pFile );
2263
2264 /* Check if a thread in this process holds such a lock */
2265 if( pFile->eFileLock>SHARED_LOCK ){
2266 reserved = 1;
2267 }
2268
2269 /* Otherwise see if some other process holds it. */
2270 if( !reserved ){
2271 sem_t *pSem = pFile->pInode->pSem;
2272 struct stat statBuf;
2273
2274 if( sem_trywait(pSem)==-1 ){
2275 int tErrno = errno;
2276 if( EAGAIN != tErrno ){
2277 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2278 pFile->lastErrno = tErrno;
2279 } else {
2280 /* someone else has the lock when we are in NO_LOCK */
2281 reserved = (pFile->eFileLock < SHARED_LOCK);
2282 }
2283 }else{
2284 /* we could have it if we want it */
2285 sem_post(pSem);
2286 }
2287 }
2288 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2289
2290 *pResOut = reserved;
2291 return rc;
2292 }
2293
2294 /*
2295 ** Lock the file with the lock specified by parameter eFileLock - one
2296 ** of the following:
2297 **
2298 ** (1) SHARED_LOCK
2299 ** (2) RESERVED_LOCK
2300 ** (3) PENDING_LOCK
2301 ** (4) EXCLUSIVE_LOCK
2302 **
2303 ** Sometimes when requesting one lock state, additional lock states
2304 ** are inserted in between. The locking might fail on one of the later
2305 ** transitions leaving the lock state different from what it started but
2306 ** still short of its goal. The following chart shows the allowed
2307 ** transitions and the inserted intermediate states:
2308 **
2309 ** UNLOCKED -> SHARED
2310 ** SHARED -> RESERVED
2311 ** SHARED -> (PENDING) -> EXCLUSIVE
2312 ** RESERVED -> (PENDING) -> EXCLUSIVE
2313 ** PENDING -> EXCLUSIVE
2314 **
2315 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2316 ** lock states in the sqlite3_file structure, but all locks SHARED or
2317 ** above are really EXCLUSIVE locks and exclude all other processes from
2318 ** access the file.
2319 **
2320 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2321 ** routine to lower a locking level.
2322 */
2323 static int semLock(sqlite3_file *id, int eFileLock) {
2324 unixFile *pFile = (unixFile*)id;
2325 int fd;
2326 sem_t *pSem = pFile->pInode->pSem;
2327 int rc = SQLITE_OK;
2328
2329 /* if we already have a lock, it is exclusive.
2330 ** Just adjust level and punt on outta here. */
2331 if (pFile->eFileLock > NO_LOCK) {
2332 pFile->eFileLock = eFileLock;
2333 rc = SQLITE_OK;
2334 goto sem_end_lock;
2335 }
2336
2337 /* lock semaphore now but bail out when already locked. */
2338 if( sem_trywait(pSem)==-1 ){
2339 rc = SQLITE_BUSY;
2340 goto sem_end_lock;
2341 }
2342
2343 /* got it, set the type and return ok */
2344 pFile->eFileLock = eFileLock;
2345
2346 sem_end_lock:
2347 return rc;
2348 }
2349
2350 /*
2351 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2352 ** must be either NO_LOCK or SHARED_LOCK.
2353 **
2354 ** If the locking level of the file descriptor is already at or below
2355 ** the requested locking level, this routine is a no-op.
2356 */
2357 static int semUnlock(sqlite3_file *id, int eFileLock) {
2358 unixFile *pFile = (unixFile*)id;
2359 sem_t *pSem = pFile->pInode->pSem;
2360
2361 assert( pFile );
2362 assert( pSem );
2363 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2364 pFile->eFileLock, getpid()));
2365 assert( eFileLock<=SHARED_LOCK );
2366
2367 /* no-op if possible */
2368 if( pFile->eFileLock==eFileLock ){
2369 return SQLITE_OK;
2370 }
2371
2372 /* shared can just be set because we always have an exclusive */
2373 if (eFileLock==SHARED_LOCK) {
2374 pFile->eFileLock = eFileLock;
2375 return SQLITE_OK;
2376 }
2377
2378 /* no, really unlock. */
2379 if ( sem_post(pSem)==-1 ) {
2380 int rc, tErrno = errno;
2381 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2382 if( IS_LOCK_ERROR(rc) ){
2383 pFile->lastErrno = tErrno;
2384 }
2385 return rc;
2386 }
2387 pFile->eFileLock = NO_LOCK;
2388 return SQLITE_OK;
2389 }
2390
2391 /*
2392 ** Close a file.
2393 */
2394 static int semClose(sqlite3_file *id) {
2395 if( id ){
2396 unixFile *pFile = (unixFile*)id;
2397 semUnlock(id, NO_LOCK);
2398 assert( pFile );
2399 unixEnterMutex();
2400 releaseInodeInfo(pFile);
2401 unixLeaveMutex();
2402 closeUnixFile(id);
2403 }
2404 return SQLITE_OK;
2405 }
2406
2407 #endif /* OS_VXWORKS */
2408 /*
2409 ** Named semaphore locking is only available on VxWorks.
2410 **
2411 *************** End of the named semaphore lock implementation ****************
2412 ******************************************************************************/
2413
2414
2415 /******************************************************************************
2416 *************************** Begin AFP Locking *********************************
2417 **
2418 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2419 ** on Apple Macintosh computers - both OS9 and OSX.
2420 **
2421 ** Third-party implementations of AFP are available. But this code here
2422 ** only works on OSX.
2423 */
2424
2425 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2426 /*
2427 ** The afpLockingContext structure contains all afp lock specific state
2428 */
2429 typedef struct afpLockingContext afpLockingContext;
2430 struct afpLockingContext {
2431 int reserved;
2432 const char *dbPath; /* Name of the open file */
2433 };
2434
2435 struct ByteRangeLockPB2
2436 {
2437 unsigned long long offset; /* offset to first byte to lock */
2438 unsigned long long length; /* nbr of bytes to lock */
2439 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2440 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2441 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2442 int fd; /* file desc to assoc this lock with */
2443 };
2444
2445 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2446
2447 /*
2448 ** This is a utility for setting or clearing a bit-range lock on an
2449 ** AFP filesystem.
2450 **
2451 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2452 */
2453 static int afpSetLock(
2454 const char *path, /* Name of the file to be locked or unlocked */
2455 unixFile *pFile, /* Open file descriptor on path */
2456 unsigned long long offset, /* First byte to be locked */
2457 unsigned long long length, /* Number of bytes to lock */
2458 int setLockFlag /* True to set lock. False to clear lock */
2459 ){
2460 struct ByteRangeLockPB2 pb;
2461 int err;
2462
2463 pb.unLockFlag = setLockFlag ? 0 : 1;
2464 pb.startEndFlag = 0;
2465 pb.offset = offset;
2466 pb.length = length;
2467 pb.fd = pFile->h;
2468
2469 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2470 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2471 offset, length));
2472 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2473 if ( err==-1 ) {
2474 int rc;
2475 int tErrno = errno;
2476 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2477 path, tErrno, strerror(tErrno)));
2478 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2479 rc = SQLITE_BUSY;
2480 #else
2481 rc = sqliteErrorFromPosixError(tErrno,
2482 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2483 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2484 if( IS_LOCK_ERROR(rc) ){
2485 pFile->lastErrno = tErrno;
2486 }
2487 return rc;
2488 } else {
2489 return SQLITE_OK;
2490 }
2491 }
2492
2493 /*
2494 ** This routine checks if there is a RESERVED lock held on the specified
2495 ** file by this or any other process. If such a lock is held, set *pResOut
2496 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2497 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2498 */
2499 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2500 int rc = SQLITE_OK;
2501 int reserved = 0;
2502 unixFile *pFile = (unixFile*)id;
2503
2504 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2505
2506 assert( pFile );
2507 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2508 if( context->reserved ){
2509 *pResOut = 1;
2510 return SQLITE_OK;
2511 }
2512 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2513
2514 /* Check if a thread in this process holds such a lock */
2515 if( pFile->pInode->eFileLock>SHARED_LOCK ){
2516 reserved = 1;
2517 }
2518
2519 /* Otherwise see if some other process holds it.
2520 */
2521 if( !reserved ){
2522 /* lock the RESERVED byte */
2523 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2524 if( SQLITE_OK==lrc ){
2525 /* if we succeeded in taking the reserved lock, unlock it to restore
2526 ** the original state */
2527 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2528 } else {
2529 /* if we failed to get the lock then someone else must have it */
2530 reserved = 1;
2531 }
2532 if( IS_LOCK_ERROR(lrc) ){
2533 rc=lrc;
2534 }
2535 }
2536
2537 unixLeaveMutex();
2538 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2539
2540 *pResOut = reserved;
2541 return rc;
2542 }
2543
2544 /*
2545 ** Lock the file with the lock specified by parameter eFileLock - one
2546 ** of the following:
2547 **
2548 ** (1) SHARED_LOCK
2549 ** (2) RESERVED_LOCK
2550 ** (3) PENDING_LOCK
2551 ** (4) EXCLUSIVE_LOCK
2552 **
2553 ** Sometimes when requesting one lock state, additional lock states
2554 ** are inserted in between. The locking might fail on one of the later
2555 ** transitions leaving the lock state different from what it started but
2556 ** still short of its goal. The following chart shows the allowed
2557 ** transitions and the inserted intermediate states:
2558 **
2559 ** UNLOCKED -> SHARED
2560 ** SHARED -> RESERVED
2561 ** SHARED -> (PENDING) -> EXCLUSIVE
2562 ** RESERVED -> (PENDING) -> EXCLUSIVE
2563 ** PENDING -> EXCLUSIVE
2564 **
2565 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2566 ** routine to lower a locking level.
2567 */
2568 static int afpLock(sqlite3_file *id, int eFileLock){
2569 int rc = SQLITE_OK;
2570 unixFile *pFile = (unixFile*)id;
2571 unixInodeInfo *pInode = pFile->pInode;
2572 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2573
2574 assert( pFile );
2575 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2576 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2577 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
2578
2579 /* If there is already a lock of this type or more restrictive on the
2580 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2581 ** unixEnterMutex() hasn't been called yet.
2582 */
2583 if( pFile->eFileLock>=eFileLock ){
2584 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
2585 azFileLock(eFileLock)));
2586 return SQLITE_OK;
2587 }
2588
2589 /* Make sure the locking sequence is correct
2590 ** (1) We never move from unlocked to anything higher than shared lock.
2591 ** (2) SQLite never explicitly requests a pendig lock.
2592 ** (3) A shared lock is always held when a reserve lock is requested.
2593 */
2594 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2595 assert( eFileLock!=PENDING_LOCK );
2596 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2597
2598 /* This mutex is needed because pFile->pInode is shared across threads
2599 */
2600 unixEnterMutex();
2601 pInode = pFile->pInode;
2602
2603 /* If some thread using this PID has a lock via a different unixFile*
2604 ** handle that precludes the requested lock, return BUSY.
2605 */
2606 if( (pFile->eFileLock!=pInode->eFileLock &&
2607 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2608 ){
2609 rc = SQLITE_BUSY;
2610 goto afp_end_lock;
2611 }
2612
2613 /* If a SHARED lock is requested, and some thread using this PID already
2614 ** has a SHARED or RESERVED lock, then increment reference counts and
2615 ** return SQLITE_OK.
2616 */
2617 if( eFileLock==SHARED_LOCK &&
2618 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2619 assert( eFileLock==SHARED_LOCK );
2620 assert( pFile->eFileLock==0 );
2621 assert( pInode->nShared>0 );
2622 pFile->eFileLock = SHARED_LOCK;
2623 pInode->nShared++;
2624 pInode->nLock++;
2625 goto afp_end_lock;
2626 }
2627
2628 /* A PENDING lock is needed before acquiring a SHARED lock and before
2629 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2630 ** be released.
2631 */
2632 if( eFileLock==SHARED_LOCK
2633 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2634 ){
2635 int failed;
2636 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2637 if (failed) {
2638 rc = failed;
2639 goto afp_end_lock;
2640 }
2641 }
2642
2643 /* If control gets to this point, then actually go ahead and make
2644 ** operating system calls for the specified lock.
2645 */
2646 if( eFileLock==SHARED_LOCK ){
2647 int lrc1, lrc2, lrc1Errno;
2648 long lk, mask;
2649
2650 assert( pInode->nShared==0 );
2651 assert( pInode->eFileLock==0 );
2652
2653 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2654 /* Now get the read-lock SHARED_LOCK */
2655 /* note that the quality of the randomness doesn't matter that much */
2656 lk = random();
2657 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2658 lrc1 = afpSetLock(context->dbPath, pFile,
2659 SHARED_FIRST+pInode->sharedByte, 1, 1);
2660 if( IS_LOCK_ERROR(lrc1) ){
2661 lrc1Errno = pFile->lastErrno;
2662 }
2663 /* Drop the temporary PENDING lock */
2664 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2665
2666 if( IS_LOCK_ERROR(lrc1) ) {
2667 pFile->lastErrno = lrc1Errno;
2668 rc = lrc1;
2669 goto afp_end_lock;
2670 } else if( IS_LOCK_ERROR(lrc2) ){
2671 rc = lrc2;
2672 goto afp_end_lock;
2673 } else if( lrc1 != SQLITE_OK ) {
2674 rc = lrc1;
2675 } else {
2676 pFile->eFileLock = SHARED_LOCK;
2677 pInode->nLock++;
2678 pInode->nShared = 1;
2679 }
2680 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2681 /* We are trying for an exclusive lock but another thread in this
2682 ** same process is still holding a shared lock. */
2683 rc = SQLITE_BUSY;
2684 }else{
2685 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2686 ** assumed that there is a SHARED or greater lock on the file
2687 ** already.
2688 */
2689 int failed = 0;
2690 assert( 0!=pFile->eFileLock );
2691 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2692 /* Acquire a RESERVED lock */
2693 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2694 if( !failed ){
2695 context->reserved = 1;
2696 }
2697 }
2698 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2699 /* Acquire an EXCLUSIVE lock */
2700
2701 /* Remove the shared lock before trying the range. we'll need to
2702 ** reestablish the shared lock if we can't get the afpUnlock
2703 */
2704 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2705 pInode->sharedByte, 1, 0)) ){
2706 int failed2 = SQLITE_OK;
2707 /* now attemmpt to get the exclusive lock range */
2708 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2709 SHARED_SIZE, 1);
2710 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2711 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2712 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2713 ** a critical I/O error
2714 */
2715 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2716 SQLITE_IOERR_LOCK;
2717 goto afp_end_lock;
2718 }
2719 }else{
2720 rc = failed;
2721 }
2722 }
2723 if( failed ){
2724 rc = failed;
2725 }
2726 }
2727
2728 if( rc==SQLITE_OK ){
2729 pFile->eFileLock = eFileLock;
2730 pInode->eFileLock = eFileLock;
2731 }else if( eFileLock==EXCLUSIVE_LOCK ){
2732 pFile->eFileLock = PENDING_LOCK;
2733 pInode->eFileLock = PENDING_LOCK;
2734 }
2735
2736 afp_end_lock:
2737 unixLeaveMutex();
2738 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2739 rc==SQLITE_OK ? "ok" : "failed"));
2740 return rc;
2741 }
2742
2743 /*
2744 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2745 ** must be either NO_LOCK or SHARED_LOCK.
2746 **
2747 ** If the locking level of the file descriptor is already at or below
2748 ** the requested locking level, this routine is a no-op.
2749 */
2750 static int afpUnlock(sqlite3_file *id, int eFileLock) {
2751 int rc = SQLITE_OK;
2752 unixFile *pFile = (unixFile*)id;
2753 unixInodeInfo *pInode;
2754 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2755 int skipShared = 0;
2756 #ifdef SQLITE_TEST
2757 int h = pFile->h;
2758 #endif
2759
2760 assert( pFile );
2761 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2762 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2763 getpid()));
2764
2765 assert( eFileLock<=SHARED_LOCK );
2766 if( pFile->eFileLock<=eFileLock ){
2767 return SQLITE_OK;
2768 }
2769 unixEnterMutex();
2770 pInode = pFile->pInode;
2771 assert( pInode->nShared!=0 );
2772 if( pFile->eFileLock>SHARED_LOCK ){
2773 assert( pInode->eFileLock==pFile->eFileLock );
2774 SimulateIOErrorBenign(1);
2775 SimulateIOError( h=(-1) )
2776 SimulateIOErrorBenign(0);
2777
2778 #ifndef NDEBUG
2779 /* When reducing a lock such that other processes can start
2780 ** reading the database file again, make sure that the
2781 ** transaction counter was updated if any part of the database
2782 ** file changed. If the transaction counter is not updated,
2783 ** other connections to the same file might not realize that
2784 ** the file has changed and hence might not know to flush their
2785 ** cache. The use of a stale cache can lead to database corruption.
2786 */
2787 assert( pFile->inNormalWrite==0
2788 || pFile->dbUpdate==0
2789 || pFile->transCntrChng==1 );
2790 pFile->inNormalWrite = 0;
2791 #endif
2792
2793 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2794 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2795 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2796 /* only re-establish the shared lock if necessary */
2797 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2798 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2799 } else {
2800 skipShared = 1;
2801 }
2802 }
2803 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2804 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2805 }
2806 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2807 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2808 if( !rc ){
2809 context->reserved = 0;
2810 }
2811 }
2812 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2813 pInode->eFileLock = SHARED_LOCK;
2814 }
2815 }
2816 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
2817
2818 /* Decrement the shared lock counter. Release the lock using an
2819 ** OS call only when all threads in this same process have released
2820 ** the lock.
2821 */
2822 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2823 pInode->nShared--;
2824 if( pInode->nShared==0 ){
2825 SimulateIOErrorBenign(1);
2826 SimulateIOError( h=(-1) )
2827 SimulateIOErrorBenign(0);
2828 if( !skipShared ){
2829 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2830 }
2831 if( !rc ){
2832 pInode->eFileLock = NO_LOCK;
2833 pFile->eFileLock = NO_LOCK;
2834 }
2835 }
2836 if( rc==SQLITE_OK ){
2837 pInode->nLock--;
2838 assert( pInode->nLock>=0 );
2839 if( pInode->nLock==0 ){
2840 closePendingFds(pFile);
2841 }
2842 }
2843 }
2844
2845 unixLeaveMutex();
2846 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
2847 return rc;
2848 }
2849
2850 /*
2851 ** Close a file & cleanup AFP specific locking context
2852 */
2853 static int afpClose(sqlite3_file *id) {
2854 int rc = SQLITE_OK;
2855 if( id ){
2856 unixFile *pFile = (unixFile*)id;
2857 afpUnlock(id, NO_LOCK);
2858 unixEnterMutex();
2859 if( pFile->pInode && pFile->pInode->nLock ){
2860 /* If there are outstanding locks, do not actually close the file just
2861 ** yet because that would clear those locks. Instead, add the file
2862 ** descriptor to pInode->aPending. It will be automatically closed when
2863 ** the last lock is cleared.
2864 */
2865 setPendingFd(pFile);
2866 }
2867 releaseInodeInfo(pFile);
2868 sqlite3_free(pFile->lockingContext);
2869 rc = closeUnixFile(id);
2870 unixLeaveMutex();
2871 }
2872 return rc;
2873 }
2874
2875 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2876 /*
2877 ** The code above is the AFP lock implementation. The code is specific
2878 ** to MacOSX and does not work on other unix platforms. No alternative
2879 ** is available. If you don't compile for a mac, then the "unix-afp"
2880 ** VFS is not available.
2881 **
2882 ********************* End of the AFP lock implementation **********************
2883 ******************************************************************************/
2884
2885 /******************************************************************************
2886 *************************** Begin NFS Locking ********************************/
2887
2888 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2889 /*
2890 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2891 ** must be either NO_LOCK or SHARED_LOCK.
2892 **
2893 ** If the locking level of the file descriptor is already at or below
2894 ** the requested locking level, this routine is a no-op.
2895 */
2896 static int nfsUnlock(sqlite3_file *id, int eFileLock){
2897 return posixUnlock(id, eFileLock, 1);
2898 }
2899
2900 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2901 /*
2902 ** The code above is the NFS lock implementation. The code is specific
2903 ** to MacOSX and does not work on other unix platforms. No alternative
2904 ** is available.
2905 **
2906 ********************* End of the NFS lock implementation **********************
2907 ******************************************************************************/
2908
2909 /******************************************************************************
2910 **************** Non-locking sqlite3_file methods *****************************
2911 **
2912 ** The next division contains implementations for all methods of the
2913 ** sqlite3_file object other than the locking methods. The locking
2914 ** methods were defined in divisions above (one locking method per
2915 ** division). Those methods that are common to all locking modes
2916 ** are gather together into this division.
2917 */
2918
2919 /*
2920 ** Seek to the offset passed as the second argument, then read cnt
2921 ** bytes into pBuf. Return the number of bytes actually read.
2922 **
2923 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
2924 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
2925 ** one system to another. Since SQLite does not define USE_PREAD
2926 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2927 ** See tickets #2741 and #2681.
2928 **
2929 ** To avoid stomping the errno value on a failed read the lastErrno value
2930 ** is set before returning.
2931 */
2932 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2933 int got;
2934 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2935 i64 newOffset;
2936 #endif
2937 TIMER_START;
2938 #if defined(USE_PREAD)
2939 do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
2940 SimulateIOError( got = -1 );
2941 #elif defined(USE_PREAD64)
2942 do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR);
2943 SimulateIOError( got = -1 );
2944 #else
2945 newOffset = lseek(id->h, offset, SEEK_SET);
2946 SimulateIOError( newOffset-- );
2947 if( newOffset!=offset ){
2948 if( newOffset == -1 ){
2949 ((unixFile*)id)->lastErrno = errno;
2950 }else{
2951 ((unixFile*)id)->lastErrno = 0;
2952 }
2953 return -1;
2954 }
2955 do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
2956 #endif
2957 TIMER_END;
2958 if( got<0 ){
2959 ((unixFile*)id)->lastErrno = errno;
2960 }
2961 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
2962 return got;
2963 }
2964
2965 /*
2966 ** Read data from a file into a buffer. Return SQLITE_OK if all
2967 ** bytes were read successfully and SQLITE_IOERR if anything goes
2968 ** wrong.
2969 */
2970 static int unixRead(
2971 sqlite3_file *id,
2972 void *pBuf,
2973 int amt,
2974 sqlite3_int64 offset
2975 ){
2976 unixFile *pFile = (unixFile *)id;
2977 int got;
2978 assert( id );
2979
2980 /* If this is a database file (not a journal, master-journal or temp
2981 ** file), the bytes in the locking range should never be read or written. */
2982 #if 0
2983 assert( pFile->pUnused==0
2984 || offset>=PENDING_BYTE+512
2985 || offset+amt<=PENDING_BYTE
2986 );
2987 #endif
2988
2989 got = seekAndRead(pFile, offset, pBuf, amt);
2990 if( got==amt ){
2991 return SQLITE_OK;
2992 }else if( got<0 ){
2993 /* lastErrno set by seekAndRead */
2994 return SQLITE_IOERR_READ;
2995 }else{
2996 pFile->lastErrno = 0; /* not a system error */
2997 /* Unread parts of the buffer must be zero-filled */
2998 memset(&((char*)pBuf)[got], 0, amt-got);
2999 return SQLITE_IOERR_SHORT_READ;
3000 }
3001 }
3002
3003 /*
3004 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3005 ** Return the number of bytes actually read. Update the offset.
3006 **
3007 ** To avoid stomping the errno value on a failed write the lastErrno value
3008 ** is set before returning.
3009 */
3010 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3011 int got;
3012 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3013 i64 newOffset;
3014 #endif
3015 TIMER_START;
3016 #if defined(USE_PREAD)
3017 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
3018 #elif defined(USE_PREAD64)
3019 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
3020 #else
3021 newOffset = lseek(id->h, offset, SEEK_SET);
3022 SimulateIOError( newOffset-- );
3023 if( newOffset!=offset ){
3024 if( newOffset == -1 ){
3025 ((unixFile*)id)->lastErrno = errno;
3026 }else{
3027 ((unixFile*)id)->lastErrno = 0;
3028 }
3029 return -1;
3030 }
3031 do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
3032 #endif
3033 TIMER_END;
3034 if( got<0 ){
3035 ((unixFile*)id)->lastErrno = errno;
3036 }
3037
3038 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
3039 return got;
3040 }
3041
3042
3043 /*
3044 ** Write data from a buffer into a file. Return SQLITE_OK on success
3045 ** or some other error code on failure.
3046 */
3047 static int unixWrite(
3048 sqlite3_file *id,
3049 const void *pBuf,
3050 int amt,
3051 sqlite3_int64 offset
3052 ){
3053 unixFile *pFile = (unixFile*)id;
3054 int wrote = 0;
3055 assert( id );
3056 assert( amt>0 );
3057
3058 /* If this is a database file (not a journal, master-journal or temp
3059 ** file), the bytes in the locking range should never be read or written. */
3060 #if 0
3061 assert( pFile->pUnused==0
3062 || offset>=PENDING_BYTE+512
3063 || offset+amt<=PENDING_BYTE
3064 );
3065 #endif
3066
3067 #ifndef NDEBUG
3068 /* If we are doing a normal write to a database file (as opposed to
3069 ** doing a hot-journal rollback or a write to some file other than a
3070 ** normal database file) then record the fact that the database
3071 ** has changed. If the transaction counter is modified, record that
3072 ** fact too.
3073 */
3074 if( pFile->inNormalWrite ){
3075 pFile->dbUpdate = 1; /* The database has been modified */
3076 if( offset<=24 && offset+amt>=27 ){
3077 int rc;
3078 char oldCntr[4];
3079 SimulateIOErrorBenign(1);
3080 rc = seekAndRead(pFile, 24, oldCntr, 4);
3081 SimulateIOErrorBenign(0);
3082 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3083 pFile->transCntrChng = 1; /* The transaction counter has changed */
3084 }
3085 }
3086 }
3087 #endif
3088
3089 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
3090 amt -= wrote;
3091 offset += wrote;
3092 pBuf = &((char*)pBuf)[wrote];
3093 }
3094 SimulateIOError(( wrote=(-1), amt=1 ));
3095 SimulateDiskfullError(( wrote=0, amt=1 ));
3096
3097 if( amt>0 ){
3098 if( wrote<0 ){
3099 /* lastErrno set by seekAndWrite */
3100 return SQLITE_IOERR_WRITE;
3101 }else{
3102 pFile->lastErrno = 0; /* not a system error */
3103 return SQLITE_FULL;
3104 }
3105 }
3106
3107 return SQLITE_OK;
3108 }
3109
3110 #ifdef SQLITE_TEST
3111 /*
3112 ** Count the number of fullsyncs and normal syncs. This is used to test
3113 ** that syncs and fullsyncs are occurring at the right times.
3114 */
3115 int sqlite3_sync_count = 0;
3116 int sqlite3_fullsync_count = 0;
3117 #endif
3118
3119 /*
3120 ** We do not trust systems to provide a working fdatasync(). Some do.
3121 ** Others do no. To be safe, we will stick with the (slower) fsync().
3122 ** If you know that your system does support fdatasync() correctly,
3123 ** then simply compile with -Dfdatasync=fdatasync
3124 */
3125 #if !defined(fdatasync) && !defined(__linux__)
3126 # define fdatasync fsync
3127 #endif
3128
3129 /*
3130 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3131 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3132 ** only available on Mac OS X. But that could change.
3133 */
3134 #ifdef F_FULLFSYNC
3135 # define HAVE_FULLFSYNC 1
3136 #else
3137 # define HAVE_FULLFSYNC 0
3138 #endif
3139
3140
3141 /*
3142 ** The fsync() system call does not work as advertised on many
3143 ** unix systems. The following procedure is an attempt to make
3144 ** it work better.
3145 **
3146 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3147 ** for testing when we want to run through the test suite quickly.
3148 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3149 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3150 ** or power failure will likely corrupt the database file.
3151 **
3152 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3153 ** The idea behind dataOnly is that it should only write the file content
3154 ** to disk, not the inode. We only set dataOnly if the file size is
3155 ** unchanged since the file size is part of the inode. However,
3156 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3157 ** file size has changed. The only real difference between fdatasync()
3158 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3159 ** inode if the mtime or owner or other inode attributes have changed.
3160 ** We only care about the file size, not the other file attributes, so
3161 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3162 ** So, we always use fdatasync() if it is available, regardless of
3163 ** the value of the dataOnly flag.
3164 */
3165 static int full_fsync(int fd, int fullSync, int dataOnly){
3166 int rc;
3167
3168 /* The following "ifdef/elif/else/" block has the same structure as
3169 ** the one below. It is replicated here solely to avoid cluttering
3170 ** up the real code with the UNUSED_PARAMETER() macros.
3171 */
3172 #ifdef SQLITE_NO_SYNC
3173 UNUSED_PARAMETER(fd);
3174 UNUSED_PARAMETER(fullSync);
3175 UNUSED_PARAMETER(dataOnly);
3176 #elif HAVE_FULLFSYNC
3177 UNUSED_PARAMETER(dataOnly);
3178 #else
3179 UNUSED_PARAMETER(fullSync);
3180 UNUSED_PARAMETER(dataOnly);
3181 #endif
3182
3183 /* Record the number of times that we do a normal fsync() and
3184 ** FULLSYNC. This is used during testing to verify that this procedure
3185 ** gets called with the correct arguments.
3186 */
3187 #ifdef SQLITE_TEST
3188 if( fullSync ) sqlite3_fullsync_count++;
3189 sqlite3_sync_count++;
3190 #endif
3191
3192 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3193 ** no-op
3194 */
3195 #ifdef SQLITE_NO_SYNC
3196 rc = SQLITE_OK;
3197 #elif HAVE_FULLFSYNC
3198 if( fullSync ){
3199 rc = osFcntl(fd, F_FULLFSYNC, 0);
3200 }else{
3201 rc = 1;
3202 }
3203 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3204 ** It shouldn't be possible for fullfsync to fail on the local
3205 ** file system (on OSX), so failure indicates that FULLFSYNC
3206 ** isn't supported for this file system. So, attempt an fsync
3207 ** and (for now) ignore the overhead of a superfluous fcntl call.
3208 ** It'd be better to detect fullfsync support once and avoid
3209 ** the fcntl call every time sync is called.
3210 */
3211 if( rc ) rc = fsync(fd);
3212
3213 #elif defined(__APPLE__)
3214 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3215 ** so currently we default to the macro that redefines fdatasync to fsync
3216 */
3217 rc = fsync(fd);
3218 #else
3219 rc = fdatasync(fd);
3220 #if OS_VXWORKS
3221 if( rc==-1 && errno==ENOTSUP ){
3222 rc = fsync(fd);
3223 }
3224 #endif /* OS_VXWORKS */
3225 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3226
3227 if( OS_VXWORKS && rc!= -1 ){
3228 rc = 0;
3229 }
3230 return rc;
3231 }
3232
3233 /*
3234 ** Open a file descriptor to the directory containing file zFilename.
3235 ** If successful, *pFd is set to the opened file descriptor and
3236 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3237 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3238 ** value.
3239 **
3240 ** The directory file descriptor is used for only one thing - to
3241 ** fsync() a directory to make sure file creation and deletion events
3242 ** are flushed to disk. Such fsyncs are not needed on newer
3243 ** journaling filesystems, but are required on older filesystems.
3244 **
3245 ** This routine can be overridden using the xSetSysCall interface.
3246 ** The ability to override this routine was added in support of the
3247 ** chromium sandbox. Opening a directory is a security risk (we are
3248 ** told) so making it overrideable allows the chromium sandbox to
3249 ** replace this routine with a harmless no-op. To make this routine
3250 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3251 ** *pFd set to a negative number.
3252 **
3253 ** If SQLITE_OK is returned, the caller is responsible for closing
3254 ** the file descriptor *pFd using close().
3255 */
3256 static int openDirectory(const char *zFilename, int *pFd){
3257 int ii;
3258 int fd = -1;
3259 char zDirname[MAX_PATHNAME+1];
3260
3261 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3262 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3263 if( ii>0 ){
3264 zDirname[ii] = '\0';
3265 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3266 if( fd>=0 ){
3267 #ifdef FD_CLOEXEC
3268 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3269 #endif
3270 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3271 }
3272 }
3273 *pFd = fd;
3274 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3275 }
3276
3277 /*
3278 ** Make sure all writes to a particular file are committed to disk.
3279 **
3280 ** If dataOnly==0 then both the file itself and its metadata (file
3281 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3282 ** file data is synced.
3283 **
3284 ** Under Unix, also make sure that the directory entry for the file
3285 ** has been created by fsync-ing the directory that contains the file.
3286 ** If we do not do this and we encounter a power failure, the directory
3287 ** entry for the journal might not exist after we reboot. The next
3288 ** SQLite to access the file will not know that the journal exists (because
3289 ** the directory entry for the journal was never created) and the transaction
3290 ** will not roll back - possibly leading to database corruption.
3291 */
3292 static int unixSync(sqlite3_file *id, int flags){
3293 int rc;
3294 unixFile *pFile = (unixFile*)id;
3295
3296 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3297 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3298
3299 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3300 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3301 || (flags&0x0F)==SQLITE_SYNC_FULL
3302 );
3303
3304 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3305 ** line is to test that doing so does not cause any problems.
3306 */
3307 SimulateDiskfullError( return SQLITE_FULL );
3308
3309 assert( pFile );
3310 OSTRACE(("SYNC %-3d\n", pFile->h));
3311 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3312 SimulateIOError( rc=1 );
3313 if( rc ){
3314 pFile->lastErrno = errno;
3315 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3316 }
3317
3318 /* Also fsync the directory containing the file if the DIRSYNC flag
3319 ** is set. This is a one-time occurrance. Many systems (examples: AIX)
3320 ** are unable to fsync a directory, so ignore errors on the fsync.
3321 */
3322 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3323 int dirfd;
3324 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3325 HAVE_FULLFSYNC, isFullsync));
3326 rc = osOpenDirectory(pFile->zPath, &dirfd);
3327 if( rc==SQLITE_OK && dirfd>=0 ){
3328 full_fsync(dirfd, 0, 0);
3329 robust_close(pFile, dirfd, __LINE__);
3330 }else if( rc==SQLITE_CANTOPEN ){
3331 rc = SQLITE_OK;
3332 }
3333 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3334 }
3335 return rc;
3336 }
3337
3338 /*
3339 ** Truncate an open file to a specified size
3340 */
3341 static int unixTruncate(sqlite3_file *id, i64 nByte){
3342 unixFile *pFile = (unixFile *)id;
3343 int rc;
3344 assert( pFile );
3345 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3346
3347 /* If the user has configured a chunk-size for this file, truncate the
3348 ** file so that it consists of an integer number of chunks (i.e. the
3349 ** actual file size after the operation may be larger than the requested
3350 ** size).
3351 */
3352 if( pFile->szChunk ){
3353 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3354 }
3355
3356 rc = robust_ftruncate(pFile->h, (off_t)nByte);
3357 if( rc ){
3358 pFile->lastErrno = errno;
3359 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3360 }else{
3361 #ifndef NDEBUG
3362 /* If we are doing a normal write to a database file (as opposed to
3363 ** doing a hot-journal rollback or a write to some file other than a
3364 ** normal database file) and we truncate the file to zero length,
3365 ** that effectively updates the change counter. This might happen
3366 ** when restoring a database using the backup API from a zero-length
3367 ** source.
3368 */
3369 if( pFile->inNormalWrite && nByte==0 ){
3370 pFile->transCntrChng = 1;
3371 }
3372 #endif
3373
3374 return SQLITE_OK;
3375 }
3376 }
3377
3378 /*
3379 ** Determine the current size of a file in bytes
3380 */
3381 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3382 int rc;
3383 struct stat buf;
3384 assert( id );
3385 rc = osFstat(((unixFile*)id)->h, &buf);
3386 SimulateIOError( rc=1 );
3387 if( rc!=0 ){
3388 ((unixFile*)id)->lastErrno = errno;
3389 return SQLITE_IOERR_FSTAT;
3390 }
3391 *pSize = buf.st_size;
3392
3393 /* When opening a zero-size database, the findInodeInfo() procedure
3394 ** writes a single byte into that file in order to work around a bug
3395 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3396 ** layers, we need to report this file size as zero even though it is
3397 ** really 1. Ticket #3260.
3398 */
3399 if( *pSize==1 ) *pSize = 0;
3400
3401
3402 return SQLITE_OK;
3403 }
3404
3405 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3406 /*
3407 ** Handler for proxy-locking file-control verbs. Defined below in the
3408 ** proxying locking division.
3409 */
3410 static int proxyFileControl(sqlite3_file*,int,void*);
3411 #endif
3412
3413 /*
3414 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3415 ** file-control operation.
3416 **
3417 ** If the user has configured a chunk-size for this file, it could be
3418 ** that the file needs to be extended at this point. Otherwise, the
3419 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.
3420 */
3421 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3422 if( pFile->szChunk ){
3423 i64 nSize; /* Required file size */
3424 struct stat buf; /* Used to hold return values of fstat() */
3425
3426 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
3427
3428 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3429 if( nSize>(i64)buf.st_size ){
3430
3431 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3432 /* The code below is handling the return value of osFallocate()
3433 ** correctly. posix_fallocate() is defined to "returns zero on success,
3434 ** or an error number on failure". See the manpage for details. */
3435 int err;
3436 do{
3437 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3438 }while( err==EINTR );
3439 if( err ) return SQLITE_IOERR_WRITE;
3440 #else
3441 /* If the OS does not have posix_fallocate(), fake it. First use
3442 ** ftruncate() to set the file size, then write a single byte to
3443 ** the last byte in each block within the extended region. This
3444 ** is the same technique used by glibc to implement posix_fallocate()
3445 ** on systems that do not have a real fallocate() system call.
3446 */
3447 int nBlk = buf.st_blksize; /* File-system block size */
3448 i64 iWrite; /* Next offset to write to */
3449
3450 if( robust_ftruncate(pFile->h, nSize) ){
3451 pFile->lastErrno = errno;
3452 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3453 }
3454 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
3455 while( iWrite<nSize ){
3456 int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3457 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3458 iWrite += nBlk;
3459 }
3460 #endif
3461 }
3462 }
3463
3464 return SQLITE_OK;
3465 }
3466
3467 /*
3468 ** Information and control of an open file handle.
3469 */
3470 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3471 switch( op ){
3472 case SQLITE_FCNTL_LOCKSTATE: {
3473 *(int*)pArg = ((unixFile*)id)->eFileLock;
3474 return SQLITE_OK;
3475 }
3476 case SQLITE_LAST_ERRNO: {
3477 *(int*)pArg = ((unixFile*)id)->lastErrno;
3478 return SQLITE_OK;
3479 }
3480 case SQLITE_FCNTL_CHUNK_SIZE: {
3481 ((unixFile*)id)->szChunk = *(int *)pArg;
3482 return SQLITE_OK;
3483 }
3484 case SQLITE_FCNTL_SIZE_HINT: {
3485 return fcntlSizeHint((unixFile *)id, *(i64 *)pArg);
3486 }
3487 #ifndef NDEBUG
3488 /* The pager calls this method to signal that it has done
3489 ** a rollback and that the database is therefore unchanged and
3490 ** it hence it is OK for the transaction change counter to be
3491 ** unchanged.
3492 */
3493 case SQLITE_FCNTL_DB_UNCHANGED: {
3494 ((unixFile*)id)->dbUpdate = 0;
3495 return SQLITE_OK;
3496 }
3497 #endif
3498 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3499 case SQLITE_SET_LOCKPROXYFILE:
3500 case SQLITE_GET_LOCKPROXYFILE: {
3501 return proxyFileControl(id,op,pArg);
3502 }
3503 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3504 case SQLITE_FCNTL_SYNC_OMITTED: {
3505 return SQLITE_OK; /* A no-op */
3506 }
3507 }
3508 return SQLITE_NOTFOUND;
3509 }
3510
3511 /*
3512 ** Return the sector size in bytes of the underlying block device for
3513 ** the specified file. This is almost always 512 bytes, but may be
3514 ** larger for some devices.
3515 **
3516 ** SQLite code assumes this function cannot fail. It also assumes that
3517 ** if two files are created in the same file-system directory (i.e.
3518 ** a database and its journal file) that the sector size will be the
3519 ** same for both.
3520 */
3521 static int unixSectorSize(sqlite3_file *NotUsed){
3522 UNUSED_PARAMETER(NotUsed);
3523 return SQLITE_DEFAULT_SECTOR_SIZE;
3524 }
3525
3526 /*
3527 ** Return the device characteristics for the file. This is always 0 for unix.
3528 */
3529 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
3530 UNUSED_PARAMETER(NotUsed);
3531 return 0;
3532 }
3533
3534 #ifndef SQLITE_OMIT_WAL
3535
3536
3537 /*
3538 ** Object used to represent an shared memory buffer.
3539 **
3540 ** When multiple threads all reference the same wal-index, each thread
3541 ** has its own unixShm object, but they all point to a single instance
3542 ** of this unixShmNode object. In other words, each wal-index is opened
3543 ** only once per process.
3544 **
3545 ** Each unixShmNode object is connected to a single unixInodeInfo object.
3546 ** We could coalesce this object into unixInodeInfo, but that would mean
3547 ** every open file that does not use shared memory (in other words, most
3548 ** open files) would have to carry around this extra information. So
3549 ** the unixInodeInfo object contains a pointer to this unixShmNode object
3550 ** and the unixShmNode object is created only when needed.
3551 **
3552 ** unixMutexHeld() must be true when creating or destroying
3553 ** this object or while reading or writing the following fields:
3554 **
3555 ** nRef
3556 **
3557 ** The following fields are read-only after the object is created:
3558 **
3559 ** fid
3560 ** zFilename
3561 **
3562 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3563 ** unixMutexHeld() is true when reading or writing any other field
3564 ** in this structure.
3565 */
3566 struct unixShmNode {
3567 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
3568 sqlite3_mutex *mutex; /* Mutex to access this object */
3569 char *zFilename; /* Name of the mmapped file */
3570 int h; /* Open file descriptor */
3571 int szRegion; /* Size of shared-memory regions */
3572 int nRegion; /* Size of array apRegion */
3573 char **apRegion; /* Array of mapped shared-memory regions */
3574 int nRef; /* Number of unixShm objects pointing to this */
3575 unixShm *pFirst; /* All unixShm objects pointing to this */
3576 #ifdef SQLITE_DEBUG
3577 u8 exclMask; /* Mask of exclusive locks held */
3578 u8 sharedMask; /* Mask of shared locks held */
3579 u8 nextShmId; /* Next available unixShm.id value */
3580 #endif
3581 };
3582
3583 /*
3584 ** Structure used internally by this VFS to record the state of an
3585 ** open shared memory connection.
3586 **
3587 ** The following fields are initialized when this object is created and
3588 ** are read-only thereafter:
3589 **
3590 ** unixShm.pFile
3591 ** unixShm.id
3592 **
3593 ** All other fields are read/write. The unixShm.pFile->mutex must be held
3594 ** while accessing any read/write fields.
3595 */
3596 struct unixShm {
3597 unixShmNode *pShmNode; /* The underlying unixShmNode object */
3598 unixShm *pNext; /* Next unixShm with the same unixShmNode */
3599 u8 hasMutex; /* True if holding the unixShmNode mutex */
3600 u16 sharedMask; /* Mask of shared locks held */
3601 u16 exclMask; /* Mask of exclusive locks held */
3602 #ifdef SQLITE_DEBUG
3603 u8 id; /* Id of this connection within its unixShmNode */
3604 #endif
3605 };
3606
3607 /*
3608 ** Constants used for locking
3609 */
3610 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
3611 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
3612
3613 /*
3614 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3615 **
3616 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3617 ** otherwise.
3618 */
3619 static int unixShmSystemLock(
3620 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3621 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
3622 int ofst, /* First byte of the locking range */
3623 int n /* Number of bytes to lock */
3624 ){
3625 struct flock f; /* The posix advisory locking structure */
3626 int rc = SQLITE_OK; /* Result code form fcntl() */
3627
3628 /* Access to the unixShmNode object is serialized by the caller */
3629 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
3630
3631 /* Shared locks never span more than one byte */
3632 assert( n==1 || lockType!=F_RDLCK );
3633
3634 /* Locks are within range */
3635 assert( n>=1 && n<SQLITE_SHM_NLOCK );
3636
3637 if( pShmNode->h>=0 ){
3638 /* Initialize the locking parameters */
3639 memset(&f, 0, sizeof(f));
3640 f.l_type = lockType;
3641 f.l_whence = SEEK_SET;
3642 f.l_start = ofst;
3643 f.l_len = n;
3644
3645 rc = osFcntl(pShmNode->h, F_SETLK, &f);
3646 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3647 }
3648
3649 /* Update the global lock state and do debug tracing */
3650 #ifdef SQLITE_DEBUG
3651 { u16 mask;
3652 OSTRACE(("SHM-LOCK "));
3653 mask = (1<<(ofst+n)) - (1<<ofst);
3654 if( rc==SQLITE_OK ){
3655 if( lockType==F_UNLCK ){
3656 OSTRACE(("unlock %d ok", ofst));
3657 pShmNode->exclMask &= ~mask;
3658 pShmNode->sharedMask &= ~mask;
3659 }else if( lockType==F_RDLCK ){
3660 OSTRACE(("read-lock %d ok", ofst));
3661 pShmNode->exclMask &= ~mask;
3662 pShmNode->sharedMask |= mask;
3663 }else{
3664 assert( lockType==F_WRLCK );
3665 OSTRACE(("write-lock %d ok", ofst));
3666 pShmNode->exclMask |= mask;
3667 pShmNode->sharedMask &= ~mask;
3668 }
3669 }else{
3670 if( lockType==F_UNLCK ){
3671 OSTRACE(("unlock %d failed", ofst));
3672 }else if( lockType==F_RDLCK ){
3673 OSTRACE(("read-lock failed"));
3674 }else{
3675 assert( lockType==F_WRLCK );
3676 OSTRACE(("write-lock %d failed", ofst));
3677 }
3678 }
3679 OSTRACE((" - afterwards %03x,%03x\n",
3680 pShmNode->sharedMask, pShmNode->exclMask));
3681 }
3682 #endif
3683
3684 return rc;
3685 }
3686
3687
3688 /*
3689 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3690 **
3691 ** This is not a VFS shared-memory method; it is a utility function called
3692 ** by VFS shared-memory methods.
3693 */
3694 static void unixShmPurge(unixFile *pFd){
3695 unixShmNode *p = pFd->pInode->pShmNode;
3696 assert( unixMutexHeld() );
3697 if( p && p->nRef==0 ){
3698 int i;
3699 assert( p->pInode==pFd->pInode );
3700 if( p->mutex ) sqlite3_mutex_free(p->mutex);
3701 for(i=0; i<p->nRegion; i++){
3702 if( p->h>=0 ){
3703 munmap(p->apRegion[i], p->szRegion);
3704 }else{
3705 sqlite3_free(p->apRegion[i]);
3706 }
3707 }
3708 sqlite3_free(p->apRegion);
3709 if( p->h>=0 ){
3710 robust_close(pFd, p->h, __LINE__);
3711 p->h = -1;
3712 }
3713 p->pInode->pShmNode = 0;
3714 sqlite3_free(p);
3715 }
3716 }
3717
3718 /*
3719 ** Open a shared-memory area associated with open database file pDbFd.
3720 ** This particular implementation uses mmapped files.
3721 **
3722 ** The file used to implement shared-memory is in the same directory
3723 ** as the open database file and has the same name as the open database
3724 ** file with the "-shm" suffix added. For example, if the database file
3725 ** is "/home/user1/config.db" then the file that is created and mmapped
3726 ** for shared memory will be called "/home/user1/config.db-shm".
3727 **
3728 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
3729 ** some other tmpfs mount. But if a file in a different directory
3730 ** from the database file is used, then differing access permissions
3731 ** or a chroot() might cause two different processes on the same
3732 ** database to end up using different files for shared memory -
3733 ** meaning that their memory would not really be shared - resulting
3734 ** in database corruption. Nevertheless, this tmpfs file usage
3735 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3736 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
3737 ** option results in an incompatible build of SQLite; builds of SQLite
3738 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3739 ** same database file at the same time, database corruption will likely
3740 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3741 ** "unsupported" and may go away in a future SQLite release.
3742 **
3743 ** When opening a new shared-memory file, if no other instances of that
3744 ** file are currently open, in this process or in other processes, then
3745 ** the file must be truncated to zero length or have its header cleared.
3746 **
3747 ** If the original database file (pDbFd) is using the "unix-excl" VFS
3748 ** that means that an exclusive lock is held on the database file and
3749 ** that no other processes are able to read or write the database. In
3750 ** that case, we do not really need shared memory. No shared memory
3751 ** file is created. The shared memory will be simulated with heap memory.
3752 */
3753 static int unixOpenSharedMemory(unixFile *pDbFd){
3754 struct unixShm *p = 0; /* The connection to be opened */
3755 struct unixShmNode *pShmNode; /* The underlying mmapped file */
3756 int rc; /* Result code */
3757 unixInodeInfo *pInode; /* The inode of fd */
3758 char *zShmFilename; /* Name of the file used for SHM */
3759 int nShmFilename; /* Size of the SHM filename in bytes */
3760
3761 /* Allocate space for the new unixShm object. */
3762 p = sqlite3_malloc( sizeof(*p) );
3763 if( p==0 ) return SQLITE_NOMEM;
3764 memset(p, 0, sizeof(*p));
3765 assert( pDbFd->pShm==0 );
3766
3767 /* Check to see if a unixShmNode object already exists. Reuse an existing
3768 ** one if present. Create a new one if necessary.
3769 */
3770 unixEnterMutex();
3771 pInode = pDbFd->pInode;
3772 pShmNode = pInode->pShmNode;
3773 if( pShmNode==0 ){
3774 struct stat sStat; /* fstat() info for database file */
3775
3776 /* Call fstat() to figure out the permissions on the database file. If
3777 ** a new *-shm file is created, an attempt will be made to create it
3778 ** with the same permissions. The actual permissions the file is created
3779 ** with are subject to the current umask setting.
3780 */
3781 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
3782 rc = SQLITE_IOERR_FSTAT;
3783 goto shm_open_err;
3784 }
3785
3786 #ifdef SQLITE_SHM_DIRECTORY
3787 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30;
3788 #else
3789 nShmFilename = 5 + (int)strlen(pDbFd->zPath);
3790 #endif
3791 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
3792 if( pShmNode==0 ){
3793 rc = SQLITE_NOMEM;
3794 goto shm_open_err;
3795 }
3796 memset(pShmNode, 0, sizeof(*pShmNode));
3797 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
3798 #ifdef SQLITE_SHM_DIRECTORY
3799 sqlite3_snprintf(nShmFilename, zShmFilename,
3800 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
3801 (u32)sStat.st_ino, (u32)sStat.st_dev);
3802 #else
3803 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
3804 #endif
3805 pShmNode->h = -1;
3806 pDbFd->pInode->pShmNode = pShmNode;
3807 pShmNode->pInode = pDbFd->pInode;
3808 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3809 if( pShmNode->mutex==0 ){
3810 rc = SQLITE_NOMEM;
3811 goto shm_open_err;
3812 }
3813
3814 if( pInode->bProcessLock==0 ){
3815 pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
3816 (sStat.st_mode & 0777));
3817 if( pShmNode->h<0 ){
3818 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
3819 goto shm_open_err;
3820 }
3821
3822 /* Check to see if another process is holding the dead-man switch.
3823 ** If not, truncate the file to zero length.
3824 */
3825 rc = SQLITE_OK;
3826 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3827 if( robust_ftruncate(pShmNode->h, 0) ){
3828 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
3829 }
3830 }
3831 if( rc==SQLITE_OK ){
3832 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
3833 }
3834 if( rc ) goto shm_open_err;
3835 }
3836 }
3837
3838 /* Make the new connection a child of the unixShmNode */
3839 p->pShmNode = pShmNode;
3840 #ifdef SQLITE_DEBUG
3841 p->id = pShmNode->nextShmId++;
3842 #endif
3843 pShmNode->nRef++;
3844 pDbFd->pShm = p;
3845 unixLeaveMutex();
3846
3847 /* The reference count on pShmNode has already been incremented under
3848 ** the cover of the unixEnterMutex() mutex and the pointer from the
3849 ** new (struct unixShm) object to the pShmNode has been set. All that is
3850 ** left to do is to link the new object into the linked list starting
3851 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3852 ** mutex.
3853 */
3854 sqlite3_mutex_enter(pShmNode->mutex);
3855 p->pNext = pShmNode->pFirst;
3856 pShmNode->pFirst = p;
3857 sqlite3_mutex_leave(pShmNode->mutex);
3858 return SQLITE_OK;
3859
3860 /* Jump here on any error */
3861 shm_open_err:
3862 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
3863 sqlite3_free(p);
3864 unixLeaveMutex();
3865 return rc;
3866 }
3867
3868 /*
3869 ** This function is called to obtain a pointer to region iRegion of the
3870 ** shared-memory associated with the database file fd. Shared-memory regions
3871 ** are numbered starting from zero. Each shared-memory region is szRegion
3872 ** bytes in size.
3873 **
3874 ** If an error occurs, an error code is returned and *pp is set to NULL.
3875 **
3876 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3877 ** region has not been allocated (by any client, including one running in a
3878 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3879 ** bExtend is non-zero and the requested shared-memory region has not yet
3880 ** been allocated, it is allocated by this function.
3881 **
3882 ** If the shared-memory region has already been allocated or is allocated by
3883 ** this call as described above, then it is mapped into this processes
3884 ** address space (if it is not already), *pp is set to point to the mapped
3885 ** memory and SQLITE_OK returned.
3886 */
3887 static int unixShmMap(
3888 sqlite3_file *fd, /* Handle open on database file */
3889 int iRegion, /* Region to retrieve */
3890 int szRegion, /* Size of regions */
3891 int bExtend, /* True to extend file if necessary */
3892 void volatile **pp /* OUT: Mapped memory */
3893 ){
3894 unixFile *pDbFd = (unixFile*)fd;
3895 unixShm *p;
3896 unixShmNode *pShmNode;
3897 int rc = SQLITE_OK;
3898
3899 /* If the shared-memory file has not yet been opened, open it now. */
3900 if( pDbFd->pShm==0 ){
3901 rc = unixOpenSharedMemory(pDbFd);
3902 if( rc!=SQLITE_OK ) return rc;
3903 }
3904
3905 p = pDbFd->pShm;
3906 pShmNode = p->pShmNode;
3907 sqlite3_mutex_enter(pShmNode->mutex);
3908 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
3909 assert( pShmNode->pInode==pDbFd->pInode );
3910 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
3911 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
3912
3913 if( pShmNode->nRegion<=iRegion ){
3914 char **apNew; /* New apRegion[] array */
3915 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
3916 struct stat sStat; /* Used by fstat() */
3917
3918 pShmNode->szRegion = szRegion;
3919
3920 if( pShmNode->h>=0 ){
3921 /* The requested region is not mapped into this processes address space.
3922 ** Check to see if it has been allocated (i.e. if the wal-index file is
3923 ** large enough to contain the requested region).
3924 */
3925 if( osFstat(pShmNode->h, &sStat) ){
3926 rc = SQLITE_IOERR_SHMSIZE;
3927 goto shmpage_out;
3928 }
3929
3930 if( sStat.st_size<nByte ){
3931 /* The requested memory region does not exist. If bExtend is set to
3932 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
3933 **
3934 ** Alternatively, if bExtend is true, use ftruncate() to allocate
3935 ** the requested memory region.
3936 */
3937 if( !bExtend ) goto shmpage_out;
3938 if( robust_ftruncate(pShmNode->h, nByte) ){
3939 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
3940 pShmNode->zFilename);
3941 goto shmpage_out;
3942 }
3943 }
3944 }
3945
3946 /* Map the requested memory region into this processes address space. */
3947 apNew = (char **)sqlite3_realloc(
3948 pShmNode->apRegion, (iRegion+1)*sizeof(char *)
3949 );
3950 if( !apNew ){
3951 rc = SQLITE_IOERR_NOMEM;
3952 goto shmpage_out;
3953 }
3954 pShmNode->apRegion = apNew;
3955 while(pShmNode->nRegion<=iRegion){
3956 void *pMem;
3957 if( pShmNode->h>=0 ){
3958 pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE,
3959 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
3960 );
3961 if( pMem==MAP_FAILED ){
3962 rc = SQLITE_IOERR;
3963 goto shmpage_out;
3964 }
3965 }else{
3966 pMem = sqlite3_malloc(szRegion);
3967 if( pMem==0 ){
3968 rc = SQLITE_NOMEM;
3969 goto shmpage_out;
3970 }
3971 memset(pMem, 0, szRegion);
3972 }
3973 pShmNode->apRegion[pShmNode->nRegion] = pMem;
3974 pShmNode->nRegion++;
3975 }
3976 }
3977
3978 shmpage_out:
3979 if( pShmNode->nRegion>iRegion ){
3980 *pp = pShmNode->apRegion[iRegion];
3981 }else{
3982 *pp = 0;
3983 }
3984 sqlite3_mutex_leave(pShmNode->mutex);
3985 return rc;
3986 }
3987
3988 /*
3989 ** Change the lock state for a shared-memory segment.
3990 **
3991 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
3992 ** different here than in posix. In xShmLock(), one can go from unlocked
3993 ** to shared and back or from unlocked to exclusive and back. But one may
3994 ** not go from shared to exclusive or from exclusive to shared.
3995 */
3996 static int unixShmLock(
3997 sqlite3_file *fd, /* Database file holding the shared memory */
3998 int ofst, /* First lock to acquire or release */
3999 int n, /* Number of locks to acquire or release */
4000 int flags /* What to do with the lock */
4001 ){
4002 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
4003 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
4004 unixShm *pX; /* For looping over all siblings */
4005 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
4006 int rc = SQLITE_OK; /* Result code */
4007 u16 mask; /* Mask of locks to take or release */
4008
4009 assert( pShmNode==pDbFd->pInode->pShmNode );
4010 assert( pShmNode->pInode==pDbFd->pInode );
4011 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4012 assert( n>=1 );
4013 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4014 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4015 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4016 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4017 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4018 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4019 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4020
4021 mask = (1<<(ofst+n)) - (1<<ofst);
4022 assert( n>1 || mask==(1<<ofst) );
4023 sqlite3_mutex_enter(pShmNode->mutex);
4024 if( flags & SQLITE_SHM_UNLOCK ){
4025 u16 allMask = 0; /* Mask of locks held by siblings */
4026
4027 /* See if any siblings hold this same lock */
4028 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4029 if( pX==p ) continue;
4030 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4031 allMask |= pX->sharedMask;
4032 }
4033
4034 /* Unlock the system-level locks */
4035 if( (mask & allMask)==0 ){
4036 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4037 }else{
4038 rc = SQLITE_OK;
4039 }
4040
4041 /* Undo the local locks */
4042 if( rc==SQLITE_OK ){
4043 p->exclMask &= ~mask;
4044 p->sharedMask &= ~mask;
4045 }
4046 }else if( flags & SQLITE_SHM_SHARED ){
4047 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4048
4049 /* Find out which shared locks are already held by sibling connections.
4050 ** If any sibling already holds an exclusive lock, go ahead and return
4051 ** SQLITE_BUSY.
4052 */
4053 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4054 if( (pX->exclMask & mask)!=0 ){
4055 rc = SQLITE_BUSY;
4056 break;
4057 }
4058 allShared |= pX->sharedMask;
4059 }
4060
4061 /* Get shared locks at the system level, if necessary */
4062 if( rc==SQLITE_OK ){
4063 if( (allShared & mask)==0 ){
4064 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4065 }else{
4066 rc = SQLITE_OK;
4067 }
4068 }
4069
4070 /* Get the local shared locks */
4071 if( rc==SQLITE_OK ){
4072 p->sharedMask |= mask;
4073 }
4074 }else{
4075 /* Make sure no sibling connections hold locks that will block this
4076 ** lock. If any do, return SQLITE_BUSY right away.
4077 */
4078 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4079 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4080 rc = SQLITE_BUSY;
4081 break;
4082 }
4083 }
4084
4085 /* Get the exclusive locks at the system level. Then if successful
4086 ** also mark the local connection as being locked.
4087 */
4088 if( rc==SQLITE_OK ){
4089 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4090 if( rc==SQLITE_OK ){
4091 assert( (p->sharedMask & mask)==0 );
4092 p->exclMask |= mask;
4093 }
4094 }
4095 }
4096 sqlite3_mutex_leave(pShmNode->mutex);
4097 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4098 p->id, getpid(), p->sharedMask, p->exclMask));
4099 return rc;
4100 }
4101
4102 /*
4103 ** Implement a memory barrier or memory fence on shared memory.
4104 **
4105 ** All loads and stores begun before the barrier must complete before
4106 ** any load or store begun after the barrier.
4107 */
4108 static void unixShmBarrier(
4109 sqlite3_file *fd /* Database file holding the shared memory */
4110 ){
4111 UNUSED_PARAMETER(fd);
4112 unixEnterMutex();
4113 unixLeaveMutex();
4114 }
4115
4116 /*
4117 ** Close a connection to shared-memory. Delete the underlying
4118 ** storage if deleteFlag is true.
4119 **
4120 ** If there is no shared memory associated with the connection then this
4121 ** routine is a harmless no-op.
4122 */
4123 static int unixShmUnmap(
4124 sqlite3_file *fd, /* The underlying database file */
4125 int deleteFlag /* Delete shared-memory if true */
4126 ){
4127 unixShm *p; /* The connection to be closed */
4128 unixShmNode *pShmNode; /* The underlying shared-memory file */
4129 unixShm **pp; /* For looping over sibling connections */
4130 unixFile *pDbFd; /* The underlying database file */
4131
4132 pDbFd = (unixFile*)fd;
4133 p = pDbFd->pShm;
4134 if( p==0 ) return SQLITE_OK;
4135 pShmNode = p->pShmNode;
4136
4137 assert( pShmNode==pDbFd->pInode->pShmNode );
4138 assert( pShmNode->pInode==pDbFd->pInode );
4139
4140 /* Remove connection p from the set of connections associated
4141 ** with pShmNode */
4142 sqlite3_mutex_enter(pShmNode->mutex);
4143 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4144 *pp = p->pNext;
4145
4146 /* Free the connection p */
4147 sqlite3_free(p);
4148 pDbFd->pShm = 0;
4149 sqlite3_mutex_leave(pShmNode->mutex);
4150
4151 /* If pShmNode->nRef has reached 0, then close the underlying
4152 ** shared-memory file, too */
4153 unixEnterMutex();
4154 assert( pShmNode->nRef>0 );
4155 pShmNode->nRef--;
4156 if( pShmNode->nRef==0 ){
4157 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
4158 unixShmPurge(pDbFd);
4159 }
4160 unixLeaveMutex();
4161
4162 return SQLITE_OK;
4163 }
4164
4165
4166 #else
4167 # define unixShmMap 0
4168 # define unixShmLock 0
4169 # define unixShmBarrier 0
4170 # define unixShmUnmap 0
4171 #endif /* #ifndef SQLITE_OMIT_WAL */
4172
4173 /*
4174 ** Here ends the implementation of all sqlite3_file methods.
4175 **
4176 ********************** End sqlite3_file Methods *******************************
4177 ******************************************************************************/
4178
4179 /*
4180 ** This division contains definitions of sqlite3_io_methods objects that
4181 ** implement various file locking strategies. It also contains definitions
4182 ** of "finder" functions. A finder-function is used to locate the appropriate
4183 ** sqlite3_io_methods object for a particular database file. The pAppData
4184 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4185 ** the correct finder-function for that VFS.
4186 **
4187 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4188 ** object. The only interesting finder-function is autolockIoFinder, which
4189 ** looks at the filesystem type and tries to guess the best locking
4190 ** strategy from that.
4191 **
4192 ** For finder-funtion F, two objects are created:
4193 **
4194 ** (1) The real finder-function named "FImpt()".
4195 **
4196 ** (2) A constant pointer to this function named just "F".
4197 **
4198 **
4199 ** A pointer to the F pointer is used as the pAppData value for VFS
4200 ** objects. We have to do this instead of letting pAppData point
4201 ** directly at the finder-function since C90 rules prevent a void*
4202 ** from be cast into a function pointer.
4203 **
4204 **
4205 ** Each instance of this macro generates two objects:
4206 **
4207 ** * A constant sqlite3_io_methods object call METHOD that has locking
4208 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4209 **
4210 ** * An I/O method finder function called FINDER that returns a pointer
4211 ** to the METHOD object in the previous bullet.
4212 */
4213 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
4214 static const sqlite3_io_methods METHOD = { \
4215 VERSION, /* iVersion */ \
4216 CLOSE, /* xClose */ \
4217 unixRead, /* xRead */ \
4218 unixWrite, /* xWrite */ \
4219 unixTruncate, /* xTruncate */ \
4220 unixSync, /* xSync */ \
4221 unixFileSize, /* xFileSize */ \
4222 LOCK, /* xLock */ \
4223 UNLOCK, /* xUnlock */ \
4224 CKLOCK, /* xCheckReservedLock */ \
4225 unixFileControl, /* xFileControl */ \
4226 unixSectorSize, /* xSectorSize */ \
4227 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
4228 unixShmMap, /* xShmMap */ \
4229 unixShmLock, /* xShmLock */ \
4230 unixShmBarrier, /* xShmBarrier */ \
4231 unixShmUnmap /* xShmUnmap */ \
4232 }; \
4233 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
4234 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
4235 return &METHOD; \
4236 } \
4237 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
4238 = FINDER##Impl;
4239
4240 /*
4241 ** Here are all of the sqlite3_io_methods objects for each of the
4242 ** locking strategies. Functions that return pointers to these methods
4243 ** are also created.
4244 */
4245 IOMETHODS(
4246 posixIoFinder, /* Finder function name */
4247 posixIoMethods, /* sqlite3_io_methods object name */
4248 2, /* shared memory is enabled */
4249 unixClose, /* xClose method */
4250 unixLock, /* xLock method */
4251 unixUnlock, /* xUnlock method */
4252 unixCheckReservedLock /* xCheckReservedLock method */
4253 )
4254 IOMETHODS(
4255 nolockIoFinder, /* Finder function name */
4256 nolockIoMethods, /* sqlite3_io_methods object name */
4257 1, /* shared memory is disabled */
4258 nolockClose, /* xClose method */
4259 nolockLock, /* xLock method */
4260 nolockUnlock, /* xUnlock method */
4261 nolockCheckReservedLock /* xCheckReservedLock method */
4262 )
4263 IOMETHODS(
4264 dotlockIoFinder, /* Finder function name */
4265 dotlockIoMethods, /* sqlite3_io_methods object name */
4266 1, /* shared memory is disabled */
4267 dotlockClose, /* xClose method */
4268 dotlockLock, /* xLock method */
4269 dotlockUnlock, /* xUnlock method */
4270 dotlockCheckReservedLock /* xCheckReservedLock method */
4271 )
4272
4273 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4274 IOMETHODS(
4275 flockIoFinder, /* Finder function name */
4276 flockIoMethods, /* sqlite3_io_methods object name */
4277 1, /* shared memory is disabled */
4278 flockClose, /* xClose method */
4279 flockLock, /* xLock method */
4280 flockUnlock, /* xUnlock method */
4281 flockCheckReservedLock /* xCheckReservedLock method */
4282 )
4283 #endif
4284
4285 #if OS_VXWORKS
4286 IOMETHODS(
4287 semIoFinder, /* Finder function name */
4288 semIoMethods, /* sqlite3_io_methods object name */
4289 1, /* shared memory is disabled */
4290 semClose, /* xClose method */
4291 semLock, /* xLock method */
4292 semUnlock, /* xUnlock method */
4293 semCheckReservedLock /* xCheckReservedLock method */
4294 )
4295 #endif
4296
4297 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4298 IOMETHODS(
4299 afpIoFinder, /* Finder function name */
4300 afpIoMethods, /* sqlite3_io_methods object name */
4301 1, /* shared memory is disabled */
4302 afpClose, /* xClose method */
4303 afpLock, /* xLock method */
4304 afpUnlock, /* xUnlock method */
4305 afpCheckReservedLock /* xCheckReservedLock method */
4306 )
4307 #endif
4308
4309 /*
4310 ** The proxy locking method is a "super-method" in the sense that it
4311 ** opens secondary file descriptors for the conch and lock files and
4312 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
4313 ** secondary files. For this reason, the division that implements
4314 ** proxy locking is located much further down in the file. But we need
4315 ** to go ahead and define the sqlite3_io_methods and finder function
4316 ** for proxy locking here. So we forward declare the I/O methods.
4317 */
4318 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4319 static int proxyClose(sqlite3_file*);
4320 static int proxyLock(sqlite3_file*, int);
4321 static int proxyUnlock(sqlite3_file*, int);
4322 static int proxyCheckReservedLock(sqlite3_file*, int*);
4323 IOMETHODS(
4324 proxyIoFinder, /* Finder function name */
4325 proxyIoMethods, /* sqlite3_io_methods object name */
4326 1, /* shared memory is disabled */
4327 proxyClose, /* xClose method */
4328 proxyLock, /* xLock method */
4329 proxyUnlock, /* xUnlock method */
4330 proxyCheckReservedLock /* xCheckReservedLock method */
4331 )
4332 #endif
4333
4334 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4335 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4336 IOMETHODS(
4337 nfsIoFinder, /* Finder function name */
4338 nfsIoMethods, /* sqlite3_io_methods object name */
4339 1, /* shared memory is disabled */
4340 unixClose, /* xClose method */
4341 unixLock, /* xLock method */
4342 nfsUnlock, /* xUnlock method */
4343 unixCheckReservedLock /* xCheckReservedLock method */
4344 )
4345 #endif
4346
4347 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4348 /*
4349 ** This "finder" function attempts to determine the best locking strategy
4350 ** for the database file "filePath". It then returns the sqlite3_io_methods
4351 ** object that implements that strategy.
4352 **
4353 ** This is for MacOSX only.
4354 */
4355 static const sqlite3_io_methods *autolockIoFinderImpl(
4356 const char *filePath, /* name of the database file */
4357 unixFile *pNew /* open file object for the database file */
4358 ){
4359 static const struct Mapping {
4360 const char *zFilesystem; /* Filesystem type name */
4361 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
4362 } aMap[] = {
4363 { "hfs", &posixIoMethods },
4364 { "ufs", &posixIoMethods },
4365 { "afpfs", &afpIoMethods },
4366 { "smbfs", &afpIoMethods },
4367 { "webdav", &nolockIoMethods },
4368 { 0, 0 }
4369 };
4370 int i;
4371 struct statfs fsInfo;
4372 struct flock lockInfo;
4373
4374 if( !filePath ){
4375 /* If filePath==NULL that means we are dealing with a transient file
4376 ** that does not need to be locked. */
4377 return &nolockIoMethods;
4378 }
4379 if( statfs(filePath, &fsInfo) != -1 ){
4380 if( fsInfo.f_flags & MNT_RDONLY ){
4381 return &nolockIoMethods;
4382 }
4383 for(i=0; aMap[i].zFilesystem; i++){
4384 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4385 return aMap[i].pMethods;
4386 }
4387 }
4388 }
4389
4390 /* Default case. Handles, amongst others, "nfs".
4391 ** Test byte-range lock using fcntl(). If the call succeeds,
4392 ** assume that the file-system supports POSIX style locks.
4393 */
4394 lockInfo.l_len = 1;
4395 lockInfo.l_start = 0;
4396 lockInfo.l_whence = SEEK_SET;
4397 lockInfo.l_type = F_RDLCK;
4398 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4399 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4400 return &nfsIoMethods;
4401 } else {
4402 return &posixIoMethods;
4403 }
4404 }else{
4405 return &dotlockIoMethods;
4406 }
4407 }
4408 static const sqlite3_io_methods
4409 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4410
4411 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4412
4413 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4414 /*
4415 ** This "finder" function attempts to determine the best locking strategy
4416 ** for the database file "filePath". It then returns the sqlite3_io_methods
4417 ** object that implements that strategy.
4418 **
4419 ** This is for VXWorks only.
4420 */
4421 static const sqlite3_io_methods *autolockIoFinderImpl(
4422 const char *filePath, /* name of the database file */
4423 unixFile *pNew /* the open file object */
4424 ){
4425 struct flock lockInfo;
4426
4427 if( !filePath ){
4428 /* If filePath==NULL that means we are dealing with a transient file
4429 ** that does not need to be locked. */
4430 return &nolockIoMethods;
4431 }
4432
4433 /* Test if fcntl() is supported and use POSIX style locks.
4434 ** Otherwise fall back to the named semaphore method.
4435 */
4436 lockInfo.l_len = 1;
4437 lockInfo.l_start = 0;
4438 lockInfo.l_whence = SEEK_SET;
4439 lockInfo.l_type = F_RDLCK;
4440 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4441 return &posixIoMethods;
4442 }else{
4443 return &semIoMethods;
4444 }
4445 }
4446 static const sqlite3_io_methods
4447 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4448
4449 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4450
4451 /*
4452 ** An abstract type for a pointer to a IO method finder function:
4453 */
4454 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
4455
4456
4457 /****************************************************************************
4458 **************************** sqlite3_vfs methods ****************************
4459 **
4460 ** This division contains the implementation of methods on the
4461 ** sqlite3_vfs object.
4462 */
4463
4464 /*
4465 ** Initializes a unixFile structure with zeros.
4466 */
4467 void initUnixFile(sqlite3_file* file) {
4468 memset(file, 0, sizeof(unixFile));
4469 }
4470
4471 /*
4472 ** Initialize the contents of the unixFile structure pointed to by pId.
4473 */
4474 int fillInUnixFile(
4475 sqlite3_vfs *pVfs, /* Pointer to vfs object */
4476 int h, /* Open file descriptor of file being opened */
4477 int syncDir, /* True to sync directory on first sync */
4478 sqlite3_file *pId, /* Write to the unixFile structure here */
4479 const char *zFilename, /* Name of the file being opened */
4480 int noLock, /* Omit locking if true */
4481 int isDelete, /* Delete on close if true */
4482 int isReadOnly /* True if the file is opened read-only */
4483 ){
4484 const sqlite3_io_methods *pLockingStyle;
4485 unixFile *pNew = (unixFile *)pId;
4486 int rc = SQLITE_OK;
4487
4488 assert( pNew->pInode==NULL );
4489
4490 /* Parameter isDelete is only used on vxworks. Express this explicitly
4491 ** here to prevent compiler warnings about unused parameters.
4492 */
4493 UNUSED_PARAMETER(isDelete);
4494
4495 /* Usually the path zFilename should not be a relative pathname. The
4496 ** exception is when opening the proxy "conch" file in builds that
4497 ** include the special Apple locking styles.
4498 */
4499 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4500 assert( zFilename==0 || zFilename[0]=='/'
4501 || pVfs->pAppData==(void*)&autolockIoFinder );
4502 #else
4503 assert( zFilename==0 || zFilename[0]=='/' );
4504 #endif
4505
4506 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
4507 pNew->h = h;
4508 pNew->zPath = zFilename;
4509 if( strcmp(pVfs->zName,"unix-excl")==0 ){
4510 pNew->ctrlFlags = UNIXFILE_EXCL;
4511 }else{
4512 pNew->ctrlFlags = 0;
4513 }
4514 if( isReadOnly ){
4515 pNew->ctrlFlags |= UNIXFILE_RDONLY;
4516 }
4517 if( syncDir ){
4518 pNew->ctrlFlags |= UNIXFILE_DIRSYNC;
4519 }
4520
4521 #if OS_VXWORKS
4522 pNew->pId = vxworksFindFileId(zFilename);
4523 if( pNew->pId==0 ){
4524 noLock = 1;
4525 rc = SQLITE_NOMEM;
4526 }
4527 #endif
4528
4529 if( noLock ){
4530 pLockingStyle = &nolockIoMethods;
4531 }else{
4532 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
4533 #if SQLITE_ENABLE_LOCKING_STYLE
4534 /* Cache zFilename in the locking context (AFP and dotlock override) for
4535 ** proxyLock activation is possible (remote proxy is based on db name)
4536 ** zFilename remains valid until file is closed, to support */
4537 pNew->lockingContext = (void*)zFilename;
4538 #endif
4539 }
4540
4541 if( pLockingStyle == &posixIoMethods
4542 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4543 || pLockingStyle == &nfsIoMethods
4544 #endif
4545 ){
4546 unixEnterMutex();
4547 rc = findInodeInfo(pNew, &pNew->pInode);
4548 if( rc!=SQLITE_OK ){
4549 /* If an error occured in findInodeInfo(), close the file descriptor
4550 ** immediately, before releasing the mutex. findInodeInfo() may fail
4551 ** in two scenarios:
4552 **
4553 ** (a) A call to fstat() failed.
4554 ** (b) A malloc failed.
4555 **
4556 ** Scenario (b) may only occur if the process is holding no other
4557 ** file descriptors open on the same file. If there were other file
4558 ** descriptors on this file, then no malloc would be required by
4559 ** findInodeInfo(). If this is the case, it is quite safe to close
4560 ** handle h - as it is guaranteed that no posix locks will be released
4561 ** by doing so.
4562 **
4563 ** If scenario (a) caused the error then things are not so safe. The
4564 ** implicit assumption here is that if fstat() fails, things are in
4565 ** such bad shape that dropping a lock or two doesn't matter much.
4566 */
4567 robust_close(pNew, h, __LINE__);
4568 h = -1;
4569 }
4570 unixLeaveMutex();
4571 }
4572
4573 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4574 else if( pLockingStyle == &afpIoMethods ){
4575 /* AFP locking uses the file path so it needs to be included in
4576 ** the afpLockingContext.
4577 */
4578 afpLockingContext *pCtx;
4579 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
4580 if( pCtx==0 ){
4581 rc = SQLITE_NOMEM;
4582 }else{
4583 /* NB: zFilename exists and remains valid until the file is closed
4584 ** according to requirement F11141. So we do not need to make a
4585 ** copy of the filename. */
4586 pCtx->dbPath = zFilename;
4587 pCtx->reserved = 0;
4588 srandomdev();
4589 unixEnterMutex();
4590 rc = findInodeInfo(pNew, &pNew->pInode);
4591 if( rc!=SQLITE_OK ){
4592 sqlite3_free(pNew->lockingContext);
4593 robust_close(pNew, h, __LINE__);
4594 h = -1;
4595 }
4596 unixLeaveMutex();
4597 }
4598 }
4599 #endif
4600
4601 else if( pLockingStyle == &dotlockIoMethods ){
4602 /* Dotfile locking uses the file path so it needs to be included in
4603 ** the dotlockLockingContext
4604 */
4605 char *zLockFile;
4606 int nFilename;
4607 nFilename = (int)strlen(zFilename) + 6;
4608 zLockFile = (char *)sqlite3_malloc(nFilename);
4609 if( zLockFile==0 ){
4610 rc = SQLITE_NOMEM;
4611 }else{
4612 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
4613 }
4614 pNew->lockingContext = zLockFile;
4615 }
4616
4617 #if OS_VXWORKS
4618 else if( pLockingStyle == &semIoMethods ){
4619 /* Named semaphore locking uses the file path so it needs to be
4620 ** included in the semLockingContext
4621 */
4622 unixEnterMutex();
4623 rc = findInodeInfo(pNew, &pNew->pInode);
4624 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
4625 char *zSemName = pNew->pInode->aSemName;
4626 int n;
4627 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
4628 pNew->pId->zCanonicalName);
4629 for( n=1; zSemName[n]; n++ )
4630 if( zSemName[n]=='/' ) zSemName[n] = '_';
4631 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
4632 if( pNew->pInode->pSem == SEM_FAILED ){
4633 rc = SQLITE_NOMEM;
4634 pNew->pInode->aSemName[0] = '\0';
4635 }
4636 }
4637 unixLeaveMutex();
4638 }
4639 #endif
4640
4641 pNew->lastErrno = 0;
4642 #if OS_VXWORKS
4643 if( rc!=SQLITE_OK ){
4644 if( h>=0 ) robust_close(pNew, h, __LINE__);
4645 h = -1;
4646 osUnlink(zFilename);
4647 isDelete = 0;
4648 }
4649 pNew->isDelete = isDelete;
4650 #endif
4651 if( rc!=SQLITE_OK ){
4652 if( h>=0 ) robust_close(pNew, h, __LINE__);
4653 }else{
4654 pNew->pMethod = pLockingStyle;
4655 OpenCounter(+1);
4656 }
4657 return rc;
4658 }
4659
4660 /*
4661 ** Return the name of a directory in which to put temporary files.
4662 ** If no suitable temporary file directory can be found, return NULL.
4663 */
4664 static const char *unixTempFileDir(void){
4665 static const char *azDirs[] = {
4666 0,
4667 0,
4668 "/var/tmp",
4669 "/usr/tmp",
4670 "/tmp",
4671 0 /* List terminator */
4672 };
4673 unsigned int i;
4674 struct stat buf;
4675 const char *zDir = 0;
4676
4677 azDirs[0] = sqlite3_temp_directory;
4678 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4679 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4680 if( zDir==0 ) continue;
4681 if( osStat(zDir, &buf) ) continue;
4682 if( !S_ISDIR(buf.st_mode) ) continue;
4683 if( osAccess(zDir, 07) ) continue;
4684 break;
4685 }
4686 return zDir;
4687 }
4688
4689 /*
4690 ** Create a temporary file name in zBuf. zBuf must be allocated
4691 ** by the calling process and must be big enough to hold at least
4692 ** pVfs->mxPathname bytes.
4693 */
4694 static int unixGetTempname(int nBuf, char *zBuf){
4695 static const unsigned char zChars[] =
4696 "abcdefghijklmnopqrstuvwxyz"
4697 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4698 "0123456789";
4699 unsigned int i, j;
4700 const char *zDir;
4701
4702 /* It's odd to simulate an io-error here, but really this is just
4703 ** using the io-error infrastructure to test that SQLite handles this
4704 ** function failing.
4705 */
4706 SimulateIOError( return SQLITE_IOERR );
4707
4708 zDir = unixTempFileDir();
4709 if( zDir==0 ) zDir = ".";
4710
4711 /* Check that the output buffer is large enough for the temporary file
4712 ** name. If it is not, return SQLITE_ERROR.
4713 */
4714 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
4715 return SQLITE_ERROR;
4716 }
4717
4718 do{
4719 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
4720 j = (int)strlen(zBuf);
4721 sqlite3_randomness(15, &zBuf[j]);
4722 for(i=0; i<15; i++, j++){
4723 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4724 }
4725 zBuf[j] = 0;
4726 }while( osAccess(zBuf,0)==0 );
4727 return SQLITE_OK;
4728 }
4729
4730 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4731 /*
4732 ** Routine to transform a unixFile into a proxy-locking unixFile.
4733 ** Implementation in the proxy-lock division, but used by unixOpen()
4734 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
4735 */
4736 static int proxyTransformUnixFile(unixFile*, const char*);
4737 #endif
4738
4739 /*
4740 ** Search for an unused file descriptor that was opened on the database
4741 ** file (not a journal or master-journal file) identified by pathname
4742 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4743 ** argument to this function.
4744 **
4745 ** Such a file descriptor may exist if a database connection was closed
4746 ** but the associated file descriptor could not be closed because some
4747 ** other file descriptor open on the same file is holding a file-lock.
4748 ** Refer to comments in the unixClose() function and the lengthy comment
4749 ** describing "Posix Advisory Locking" at the start of this file for
4750 ** further details. Also, ticket #4018.
4751 **
4752 ** If a suitable file descriptor is found, then it is returned. If no
4753 ** such file descriptor is located, -1 is returned.
4754 */
4755 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
4756 UnixUnusedFd *pUnused = 0;
4757
4758 /* Do not search for an unused file descriptor on vxworks. Not because
4759 ** vxworks would not benefit from the change (it might, we're not sure),
4760 ** but because no way to test it is currently available. It is better
4761 ** not to risk breaking vxworks support for the sake of such an obscure
4762 ** feature. */
4763 #if !OS_VXWORKS
4764 struct stat sStat; /* Results of stat() call */
4765
4766 /* A stat() call may fail for various reasons. If this happens, it is
4767 ** almost certain that an open() call on the same path will also fail.
4768 ** For this reason, if an error occurs in the stat() call here, it is
4769 ** ignored and -1 is returned. The caller will try to open a new file
4770 ** descriptor on the same path, fail, and return an error to SQLite.
4771 **
4772 ** Even if a subsequent open() call does succeed, the consequences of
4773 ** not searching for a resusable file descriptor are not dire. */
4774 if( 0==osStat(zPath, &sStat) ){
4775 unixInodeInfo *pInode;
4776
4777 unixEnterMutex();
4778 pInode = inodeList;
4779 while( pInode && (pInode->fileId.dev!=sStat.st_dev
4780 || pInode->fileId.ino!=sStat.st_ino) ){
4781 pInode = pInode->pNext;
4782 }
4783 if( pInode ){
4784 UnixUnusedFd **pp;
4785 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
4786 pUnused = *pp;
4787 if( pUnused ){
4788 *pp = pUnused->pNext;
4789 }
4790 }
4791 unixLeaveMutex();
4792 }
4793 #endif /* if !OS_VXWORKS */
4794 return pUnused;
4795 }
4796
4797 /*
4798 ** This function is called by unixOpen() to determine the unix permissions
4799 ** to create new files with. If no error occurs, then SQLITE_OK is returned
4800 ** and a value suitable for passing as the third argument to open(2) is
4801 ** written to *pMode. If an IO error occurs, an SQLite error code is
4802 ** returned and the value of *pMode is not modified.
4803 **
4804 ** If the file being opened is a temporary file, it is always created with
4805 ** the octal permissions 0600 (read/writable by owner only). If the file
4806 ** is a database or master journal file, it is created with the permissions
4807 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4808 **
4809 ** Finally, if the file being opened is a WAL or regular journal file, then
4810 ** this function queries the file-system for the permissions on the
4811 ** corresponding database file and sets *pMode to this value. Whenever
4812 ** possible, WAL and journal files are created using the same permissions
4813 ** as the associated database file.
4814 */
4815 static int findCreateFileMode(
4816 const char *zPath, /* Path of file (possibly) being created */
4817 int flags, /* Flags passed as 4th argument to xOpen() */
4818 mode_t *pMode /* OUT: Permissions to open file with */
4819 ){
4820 int rc = SQLITE_OK; /* Return Code */
4821 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
4822 char zDb[MAX_PATHNAME+1]; /* Database file path */
4823 int nDb; /* Number of valid bytes in zDb */
4824 struct stat sStat; /* Output of stat() on database file */
4825
4826 /* zPath is a path to a WAL or journal file. The following block derives
4827 ** the path to the associated database file from zPath. This block handles
4828 ** the following naming conventions:
4829 **
4830 ** "<path to db>-journal"
4831 ** "<path to db>-wal"
4832 ** "<path to db>-journal-NNNN"
4833 ** "<path to db>-wal-NNNN"
4834 **
4835 ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are
4836 ** used by the test_multiplex.c module.
4837 */
4838 nDb = sqlite3Strlen30(zPath) - 1;
4839 while( nDb>0 && zPath[nDb]!='l' ) nDb--;
4840 nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7);
4841 memcpy(zDb, zPath, nDb);
4842 zDb[nDb] = '\0';
4843
4844 if( 0==osStat(zDb, &sStat) ){
4845 *pMode = sStat.st_mode & 0777;
4846 }else{
4847 rc = SQLITE_IOERR_FSTAT;
4848 }
4849 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
4850 *pMode = 0600;
4851 }else{
4852 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
4853 }
4854 return rc;
4855 }
4856
4857 /*
4858 ** Initializes a unixFile structure with zeros.
4859 */
4860 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) {
4861 memset(file, 0, sizeof(unixFile));
4862 }
4863
4864 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs,
4865 int fd,
4866 int dirfd,
4867 sqlite3_file* file,
4868 const char* fileName,
4869 int noLock,
4870 int isDelete) {
4871 return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0);
4872 }
4873
4874 /*
4875 ** Search for an unused file descriptor that was opened on the database file.
4876 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise,
4877 ** *fd is not modified.
4878 **
4879 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot
4880 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned.
4881 */
4882 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file,
4883 const char* fileName,
4884 int flags,
4885 int* fd) {
4886 unixFile* unixSQLite3File = (unixFile*)file;
4887 int fileType = flags & 0xFFFFFF00;
4888 if (fileType == SQLITE_OPEN_MAIN_DB) {
4889 UnixUnusedFd *unusedFd = findReusableFd(fileName, flags);
4890 if (unusedFd) {
4891 *fd = unusedFd->fd;
4892 } else {
4893 unusedFd = sqlite3_malloc(sizeof(*unusedFd));
4894 if (!unusedFd) {
4895 return SQLITE_NOMEM;
4896 }
4897 }
4898 unixSQLite3File->pUnused = unusedFd;
4899 }
4900 return SQLITE_OK;
4901 }
4902
4903 /*
4904 ** Marks 'fd' as the unused file descriptor for 'pFile'.
4905 */
4906 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file,
4907 int fd,
4908 int flags) {
4909 unixFile* unixSQLite3File = (unixFile*)file;
4910 if (unixSQLite3File->pUnused) {
4911 unixSQLite3File->pUnused->fd = fd;
4912 unixSQLite3File->pUnused->flags = flags;
4913 }
4914 }
4915
4916 /*
4917 ** Destroys pFile's field that keeps track of the unused file descriptor.
4918 */
4919 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) {
4920 unixFile* unixSQLite3File = (unixFile*)file;
4921 sqlite3_free(unixSQLite3File->pUnused);
4922 }
4923
4924 /*
4925 ** Open the file zPath.
4926 **
4927 ** Previously, the SQLite OS layer used three functions in place of this
4928 ** one:
4929 **
4930 ** sqlite3OsOpenReadWrite();
4931 ** sqlite3OsOpenReadOnly();
4932 ** sqlite3OsOpenExclusive();
4933 **
4934 ** These calls correspond to the following combinations of flags:
4935 **
4936 ** ReadWrite() -> (READWRITE | CREATE)
4937 ** ReadOnly() -> (READONLY)
4938 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4939 **
4940 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4941 ** true, the file was configured to be automatically deleted when the
4942 ** file handle closed. To achieve the same effect using this new
4943 ** interface, add the DELETEONCLOSE flag to those specified above for
4944 ** OpenExclusive().
4945 */
4946 static int unixOpen(
4947 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
4948 const char *zPath, /* Pathname of file to be opened */
4949 sqlite3_file *pFile, /* The file descriptor to be filled in */
4950 int flags, /* Input flags to control the opening */
4951 int *pOutFlags /* Output flags returned to SQLite core */
4952 ){
4953 unixFile *p = (unixFile *)pFile;
4954 int fd = -1; /* File descriptor returned by open() */
4955 int openFlags = 0; /* Flags to pass to open() */
4956 int eType = flags&0xFFFFFF00; /* Type of file to open */
4957 int noLock; /* True to omit locking primitives */
4958 int rc = SQLITE_OK; /* Function Return Code */
4959
4960 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
4961 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
4962 int isCreate = (flags & SQLITE_OPEN_CREATE);
4963 int isReadonly = (flags & SQLITE_OPEN_READONLY);
4964 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
4965 #if SQLITE_ENABLE_LOCKING_STYLE
4966 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
4967 #endif
4968
4969 /* If creating a master or main-file journal, this function will open
4970 ** a file-descriptor on the directory too. The first time unixSync()
4971 ** is called the directory file descriptor will be fsync()ed and close()d.
4972 */
4973 int syncDir = (isCreate && (
4974 eType==SQLITE_OPEN_MASTER_JOURNAL
4975 || eType==SQLITE_OPEN_MAIN_JOURNAL
4976 || eType==SQLITE_OPEN_WAL
4977 ));
4978
4979 /* If argument zPath is a NULL pointer, this function is required to open
4980 ** a temporary file. Use this buffer to store the file name in.
4981 */
4982 char zTmpname[MAX_PATHNAME+1];
4983 const char *zName = zPath;
4984
4985 /* Check the following statements are true:
4986 **
4987 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
4988 ** (b) if CREATE is set, then READWRITE must also be set, and
4989 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
4990 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
4991 */
4992 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
4993 assert(isCreate==0 || isReadWrite);
4994 assert(isExclusive==0 || isCreate);
4995 assert(isDelete==0 || isCreate);
4996
4997 /* The main DB, main journal, WAL file and master journal are never
4998 ** automatically deleted. Nor are they ever temporary files. */
4999 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5000 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5001 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5002 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5003
5004 /* Assert that the upper layer has set one of the "file-type" flags. */
5005 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
5006 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5007 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
5008 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5009 );
5010
5011 chromium_sqlite3_initialize_unix_sqlite3_file(pFile);
5012
5013 if( eType==SQLITE_OPEN_MAIN_DB ){
5014 rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd);
5015 if( rc!=SQLITE_OK ){
5016 return rc;
5017 }
5018 }else if( !zName ){
5019 /* If zName is NULL, the upper layer is requesting a temp file. */
5020 assert(isDelete && !syncDir);
5021 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname);
5022 if( rc!=SQLITE_OK ){
5023 return rc;
5024 }
5025 zName = zTmpname;
5026 }
5027
5028 /* Determine the value of the flags parameter passed to POSIX function
5029 ** open(). These must be calculated even if open() is not called, as
5030 ** they may be stored as part of the file handle and used by the
5031 ** 'conch file' locking functions later on. */
5032 if( isReadonly ) openFlags |= O_RDONLY;
5033 if( isReadWrite ) openFlags |= O_RDWR;
5034 if( isCreate ) openFlags |= O_CREAT;
5035 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5036 openFlags |= (O_LARGEFILE|O_BINARY);
5037
5038 if( fd<0 ){
5039 mode_t openMode; /* Permissions to create file with */
5040 rc = findCreateFileMode(zName, flags, &openMode);
5041 if( rc!=SQLITE_OK ){
5042 assert( !p->pUnused );
5043 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5044 return rc;
5045 }
5046 fd = robust_open(zName, openFlags, openMode);
5047 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
5048 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5049 /* Failed to open the file for read/write access. Try read-only. */
5050 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5051 openFlags &= ~(O_RDWR|O_CREAT);
5052 flags |= SQLITE_OPEN_READONLY;
5053 openFlags |= O_RDONLY;
5054 isReadonly = 1;
5055 fd = robust_open(zName, openFlags, openMode);
5056 }
5057 if( fd<0 ){
5058 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5059 goto open_finished;
5060 }
5061 }
5062 assert( fd>=0 );
5063 if( pOutFlags ){
5064 *pOutFlags = flags;
5065 }
5066
5067 chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags);
5068
5069 if( isDelete ){
5070 #if OS_VXWORKS
5071 zPath = zName;
5072 #else
5073 osUnlink(zName);
5074 #endif
5075 }
5076 #if SQLITE_ENABLE_LOCKING_STYLE
5077 else{
5078 p->openFlags = openFlags;
5079 }
5080 #endif
5081
5082 #ifdef FD_CLOEXEC
5083 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
5084 #endif
5085
5086 noLock = eType!=SQLITE_OPEN_MAIN_DB;
5087
5088
5089 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5090 struct statfs fsInfo;
5091 if( fstatfs(fd, &fsInfo) == -1 ){
5092 ((unixFile*)pFile)->lastErrno = errno;
5093 robust_close(p, fd, __LINE__);
5094 return SQLITE_IOERR_ACCESS;
5095 }
5096 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5097 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5098 }
5099 #endif
5100
5101 #if SQLITE_ENABLE_LOCKING_STYLE
5102 #if SQLITE_PREFER_PROXY_LOCKING
5103 isAutoProxy = 1;
5104 #endif
5105 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5106 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5107 int useProxy = 0;
5108
5109 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5110 ** never use proxy, NULL means use proxy for non-local files only. */
5111 if( envforce!=NULL ){
5112 useProxy = atoi(envforce)>0;
5113 }else{
5114 struct statfs fsInfo;
5115 if( statfs(zPath, &fsInfo) == -1 ){
5116 /* In theory, the close(fd) call is sub-optimal. If the file opened
5117 ** with fd is a database file, and there are other connections open
5118 ** on that file that are currently holding advisory locks on it,
5119 ** then the call to close() will cancel those locks. In practice,
5120 ** we're assuming that statfs() doesn't fail very often. At least
5121 ** not while other file descriptors opened by the same process on
5122 ** the same file are working. */
5123 p->lastErrno = errno;
5124 robust_close(p, fd, __LINE__);
5125 rc = SQLITE_IOERR_ACCESS;
5126 goto open_finished;
5127 }
5128 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5129 }
5130 if( useProxy ){
5131 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5132 isDelete, isReadonly);
5133 if( rc==SQLITE_OK ){
5134 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5135 if( rc!=SQLITE_OK ){
5136 /* Use unixClose to clean up the resources added in fillInUnixFile
5137 ** and clear all the structure's references. Specifically,
5138 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5139 */
5140 unixClose(pFile);
5141 return rc;
5142 }
5143 }
5144 goto open_finished;
5145 }
5146 }
5147 #endif
5148
5149 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5150 isDelete, isReadonly);
5151 open_finished:
5152 if( rc!=SQLITE_OK ){
5153 chromium_sqlite3_destroy_reusable_file_handle(pFile);
5154 }
5155 return rc;
5156 }
5157
5158
5159 /*
5160 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5161 ** the directory after deleting the file.
5162 */
5163 static int unixDelete(
5164 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
5165 const char *zPath, /* Name of file to be deleted */
5166 int dirSync /* If true, fsync() directory after deleting file */
5167 ){
5168 int rc = SQLITE_OK;
5169 UNUSED_PARAMETER(NotUsed);
5170 SimulateIOError(return SQLITE_IOERR_DELETE);
5171 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
5172 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5173 }
5174 #ifndef SQLITE_DISABLE_DIRSYNC
5175 if( dirSync ){
5176 int fd;
5177 rc = osOpenDirectory(zPath, &fd);
5178 if( rc==SQLITE_OK ){
5179 #if OS_VXWORKS
5180 if( fsync(fd)==-1 )
5181 #else
5182 if( fsync(fd) )
5183 #endif
5184 {
5185 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5186 }
5187 robust_close(0, fd, __LINE__);
5188 }else if( rc==SQLITE_CANTOPEN ){
5189 rc = SQLITE_OK;
5190 }
5191 }
5192 #endif
5193 return rc;
5194 }
5195
5196 /*
5197 ** Test the existance of or access permissions of file zPath. The
5198 ** test performed depends on the value of flags:
5199 **
5200 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5201 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5202 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5203 **
5204 ** Otherwise return 0.
5205 */
5206 static int unixAccess(
5207 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
5208 const char *zPath, /* Path of the file to examine */
5209 int flags, /* What do we want to learn about the zPath file? */
5210 int *pResOut /* Write result boolean here */
5211 ){
5212 int amode = 0;
5213 UNUSED_PARAMETER(NotUsed);
5214 SimulateIOError( return SQLITE_IOERR_ACCESS; );
5215 switch( flags ){
5216 case SQLITE_ACCESS_EXISTS:
5217 amode = F_OK;
5218 break;
5219 case SQLITE_ACCESS_READWRITE:
5220 amode = W_OK|R_OK;
5221 break;
5222 case SQLITE_ACCESS_READ:
5223 amode = R_OK;
5224 break;
5225
5226 default:
5227 assert(!"Invalid flags argument");
5228 }
5229 *pResOut = (osAccess(zPath, amode)==0);
5230 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5231 struct stat buf;
5232 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
5233 *pResOut = 0;
5234 }
5235 }
5236 return SQLITE_OK;
5237 }
5238
5239
5240 /*
5241 ** Turn a relative pathname into a full pathname. The relative path
5242 ** is stored as a nul-terminated string in the buffer pointed to by
5243 ** zPath.
5244 **
5245 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5246 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
5247 ** this buffer before returning.
5248 */
5249 static int unixFullPathname(
5250 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5251 const char *zPath, /* Possibly relative input path */
5252 int nOut, /* Size of output buffer in bytes */
5253 char *zOut /* Output buffer */
5254 ){
5255
5256 /* It's odd to simulate an io-error here, but really this is just
5257 ** using the io-error infrastructure to test that SQLite handles this
5258 ** function failing. This function could fail if, for example, the
5259 ** current working directory has been unlinked.
5260 */
5261 SimulateIOError( return SQLITE_ERROR );
5262
5263 assert( pVfs->mxPathname==MAX_PATHNAME );
5264 UNUSED_PARAMETER(pVfs);
5265
5266 zOut[nOut-1] = '\0';
5267 if( zPath[0]=='/' ){
5268 sqlite3_snprintf(nOut, zOut, "%s", zPath);
5269 }else{
5270 int nCwd;
5271 if( osGetcwd(zOut, nOut-1)==0 ){
5272 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5273 }
5274 nCwd = (int)strlen(zOut);
5275 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
5276 }
5277 return SQLITE_OK;
5278 }
5279
5280
5281 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5282 /*
5283 ** Interfaces for opening a shared library, finding entry points
5284 ** within the shared library, and closing the shared library.
5285 */
5286 #include <dlfcn.h>
5287 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5288 UNUSED_PARAMETER(NotUsed);
5289 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5290 }
5291
5292 /*
5293 ** SQLite calls this function immediately after a call to unixDlSym() or
5294 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
5295 ** message is available, it is written to zBufOut. If no error message
5296 ** is available, zBufOut is left unmodified and SQLite uses a default
5297 ** error message.
5298 */
5299 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
5300 const char *zErr;
5301 UNUSED_PARAMETER(NotUsed);
5302 unixEnterMutex();
5303 zErr = dlerror();
5304 if( zErr ){
5305 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
5306 }
5307 unixLeaveMutex();
5308 }
5309 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5310 /*
5311 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5312 ** cast into a pointer to a function. And yet the library dlsym() routine
5313 ** returns a void* which is really a pointer to a function. So how do we
5314 ** use dlsym() with -pedantic-errors?
5315 **
5316 ** Variable x below is defined to be a pointer to a function taking
5317 ** parameters void* and const char* and returning a pointer to a function.
5318 ** We initialize x by assigning it a pointer to the dlsym() function.
5319 ** (That assignment requires a cast.) Then we call the function that
5320 ** x points to.
5321 **
5322 ** This work-around is unlikely to work correctly on any system where
5323 ** you really cannot cast a function pointer into void*. But then, on the
5324 ** other hand, dlsym() will not work on such a system either, so we have
5325 ** not really lost anything.
5326 */
5327 void (*(*x)(void*,const char*))(void);
5328 UNUSED_PARAMETER(NotUsed);
5329 x = (void(*(*)(void*,const char*))(void))dlsym;
5330 return (*x)(p, zSym);
5331 }
5332 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5333 UNUSED_PARAMETER(NotUsed);
5334 dlclose(pHandle);
5335 }
5336 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5337 #define unixDlOpen 0
5338 #define unixDlError 0
5339 #define unixDlSym 0
5340 #define unixDlClose 0
5341 #endif
5342
5343 /*
5344 ** Write nBuf bytes of random data to the supplied buffer zBuf.
5345 */
5346 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5347 UNUSED_PARAMETER(NotUsed);
5348 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
5349
5350 /* We have to initialize zBuf to prevent valgrind from reporting
5351 ** errors. The reports issued by valgrind are incorrect - we would
5352 ** prefer that the randomness be increased by making use of the
5353 ** uninitialized space in zBuf - but valgrind errors tend to worry
5354 ** some users. Rather than argue, it seems easier just to initialize
5355 ** the whole array and silence valgrind, even if that means less randomness
5356 ** in the random seed.
5357 **
5358 ** When testing, initializing zBuf[] to zero is all we do. That means
5359 ** that we always use the same random number sequence. This makes the
5360 ** tests repeatable.
5361 */
5362 memset(zBuf, 0, nBuf);
5363 #if !defined(SQLITE_TEST)
5364 {
5365 int pid, fd;
5366 fd = robust_open("/dev/urandom", O_RDONLY, 0);
5367 if( fd<0 ){
5368 time_t t;
5369 time(&t);
5370 memcpy(zBuf, &t, sizeof(t));
5371 pid = getpid();
5372 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
5373 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
5374 nBuf = sizeof(t) + sizeof(pid);
5375 }else{
5376 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
5377 robust_close(0, fd, __LINE__);
5378 }
5379 }
5380 #endif
5381 return nBuf;
5382 }
5383
5384
5385 /*
5386 ** Sleep for a little while. Return the amount of time slept.
5387 ** The argument is the number of microseconds we want to sleep.
5388 ** The return value is the number of microseconds of sleep actually
5389 ** requested from the underlying operating system, a number which
5390 ** might be greater than or equal to the argument, but not less
5391 ** than the argument.
5392 */
5393 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
5394 #if OS_VXWORKS
5395 struct timespec sp;
5396
5397 sp.tv_sec = microseconds / 1000000;
5398 sp.tv_nsec = (microseconds % 1000000) * 1000;
5399 nanosleep(&sp, NULL);
5400 UNUSED_PARAMETER(NotUsed);
5401 return microseconds;
5402 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
5403 usleep(microseconds);
5404 UNUSED_PARAMETER(NotUsed);
5405 return microseconds;
5406 #else
5407 int seconds = (microseconds+999999)/1000000;
5408 sleep(seconds);
5409 UNUSED_PARAMETER(NotUsed);
5410 return seconds*1000000;
5411 #endif
5412 }
5413
5414 /*
5415 ** The following variable, if set to a non-zero value, is interpreted as
5416 ** the number of seconds since 1970 and is used to set the result of
5417 ** sqlite3OsCurrentTime() during testing.
5418 */
5419 #ifdef SQLITE_TEST
5420 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
5421 #endif
5422
5423 /*
5424 ** Find the current time (in Universal Coordinated Time). Write into *piNow
5425 ** the current time and date as a Julian Day number times 86_400_000. In
5426 ** other words, write into *piNow the number of milliseconds since the Julian
5427 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5428 ** proleptic Gregorian calendar.
5429 **
5430 ** On success, return 0. Return 1 if the time and date cannot be found.
5431 */
5432 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5433 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5434 #if defined(NO_GETTOD)
5435 time_t t;
5436 time(&t);
5437 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
5438 #elif OS_VXWORKS
5439 struct timespec sNow;
5440 clock_gettime(CLOCK_REALTIME, &sNow);
5441 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5442 #else
5443 struct timeval sNow;
5444 gettimeofday(&sNow, 0);
5445 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5446 #endif
5447
5448 #ifdef SQLITE_TEST
5449 if( sqlite3_current_time ){
5450 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5451 }
5452 #endif
5453 UNUSED_PARAMETER(NotUsed);
5454 return 0;
5455 }
5456
5457 /*
5458 ** Find the current time (in Universal Coordinated Time). Write the
5459 ** current time and date as a Julian Day number into *prNow and
5460 ** return 0. Return 1 if the time and date cannot be found.
5461 */
5462 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
5463 sqlite3_int64 i;
5464 UNUSED_PARAMETER(NotUsed);
5465 unixCurrentTimeInt64(0, &i);
5466 *prNow = i/86400000.0;
5467 return 0;
5468 }
5469
5470 /*
5471 ** We added the xGetLastError() method with the intention of providing
5472 ** better low-level error messages when operating-system problems come up
5473 ** during SQLite operation. But so far, none of that has been implemented
5474 ** in the core. So this routine is never called. For now, it is merely
5475 ** a place-holder.
5476 */
5477 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
5478 UNUSED_PARAMETER(NotUsed);
5479 UNUSED_PARAMETER(NotUsed2);
5480 UNUSED_PARAMETER(NotUsed3);
5481 return 0;
5482 }
5483
5484
5485 /*
5486 ************************ End of sqlite3_vfs methods ***************************
5487 ******************************************************************************/
5488
5489 /******************************************************************************
5490 ************************** Begin Proxy Locking ********************************
5491 **
5492 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
5493 ** other locking methods on secondary lock files. Proxy locking is a
5494 ** meta-layer over top of the primitive locking implemented above. For
5495 ** this reason, the division that implements of proxy locking is deferred
5496 ** until late in the file (here) after all of the other I/O methods have
5497 ** been defined - so that the primitive locking methods are available
5498 ** as services to help with the implementation of proxy locking.
5499 **
5500 ****
5501 **
5502 ** The default locking schemes in SQLite use byte-range locks on the
5503 ** database file to coordinate safe, concurrent access by multiple readers
5504 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
5505 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5506 ** as POSIX read & write locks over fixed set of locations (via fsctl),
5507 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
5508 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5509 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5510 ** address in the shared range is taken for a SHARED lock, the entire
5511 ** shared range is taken for an EXCLUSIVE lock):
5512 **
5513 ** PENDING_BYTE 0x40000000
5514 ** RESERVED_BYTE 0x40000001
5515 ** SHARED_RANGE 0x40000002 -> 0x40000200
5516 **
5517 ** This works well on the local file system, but shows a nearly 100x
5518 ** slowdown in read performance on AFP because the AFP client disables
5519 ** the read cache when byte-range locks are present. Enabling the read
5520 ** cache exposes a cache coherency problem that is present on all OS X
5521 ** supported network file systems. NFS and AFP both observe the
5522 ** close-to-open semantics for ensuring cache coherency
5523 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5524 ** address the requirements for concurrent database access by multiple
5525 ** readers and writers
5526 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5527 **
5528 ** To address the performance and cache coherency issues, proxy file locking
5529 ** changes the way database access is controlled by limiting access to a
5530 ** single host at a time and moving file locks off of the database file
5531 ** and onto a proxy file on the local file system.
5532 **
5533 **
5534 ** Using proxy locks
5535 ** -----------------
5536 **
5537 ** C APIs
5538 **
5539 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5540 ** <proxy_path> | ":auto:");
5541 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5542 **
5543 **
5544 ** SQL pragmas
5545 **
5546 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5547 ** PRAGMA [database.]lock_proxy_file
5548 **
5549 ** Specifying ":auto:" means that if there is a conch file with a matching
5550 ** host ID in it, the proxy path in the conch file will be used, otherwise
5551 ** a proxy path based on the user's temp dir
5552 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5553 ** actual proxy file name is generated from the name and path of the
5554 ** database file. For example:
5555 **
5556 ** For database path "/Users/me/foo.db"
5557 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5558 **
5559 ** Once a lock proxy is configured for a database connection, it can not
5560 ** be removed, however it may be switched to a different proxy path via
5561 ** the above APIs (assuming the conch file is not being held by another
5562 ** connection or process).
5563 **
5564 **
5565 ** How proxy locking works
5566 ** -----------------------
5567 **
5568 ** Proxy file locking relies primarily on two new supporting files:
5569 **
5570 ** * conch file to limit access to the database file to a single host
5571 ** at a time
5572 **
5573 ** * proxy file to act as a proxy for the advisory locks normally
5574 ** taken on the database
5575 **
5576 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
5577 ** by taking an sqlite-style shared lock on the conch file, reading the
5578 ** contents and comparing the host's unique host ID (see below) and lock
5579 ** proxy path against the values stored in the conch. The conch file is
5580 ** stored in the same directory as the database file and the file name
5581 ** is patterned after the database file name as ".<databasename>-conch".
5582 ** If the conch file does not exist, or it's contents do not match the
5583 ** host ID and/or proxy path, then the lock is escalated to an exclusive
5584 ** lock and the conch file contents is updated with the host ID and proxy
5585 ** path and the lock is downgraded to a shared lock again. If the conch
5586 ** is held by another process (with a shared lock), the exclusive lock
5587 ** will fail and SQLITE_BUSY is returned.
5588 **
5589 ** The proxy file - a single-byte file used for all advisory file locks
5590 ** normally taken on the database file. This allows for safe sharing
5591 ** of the database file for multiple readers and writers on the same
5592 ** host (the conch ensures that they all use the same local lock file).
5593 **
5594 ** Requesting the lock proxy does not immediately take the conch, it is
5595 ** only taken when the first request to lock database file is made.
5596 ** This matches the semantics of the traditional locking behavior, where
5597 ** opening a connection to a database file does not take a lock on it.
5598 ** The shared lock and an open file descriptor are maintained until
5599 ** the connection to the database is closed.
5600 **
5601 ** The proxy file and the lock file are never deleted so they only need
5602 ** to be created the first time they are used.
5603 **
5604 ** Configuration options
5605 ** ---------------------
5606 **
5607 ** SQLITE_PREFER_PROXY_LOCKING
5608 **
5609 ** Database files accessed on non-local file systems are
5610 ** automatically configured for proxy locking, lock files are
5611 ** named automatically using the same logic as
5612 ** PRAGMA lock_proxy_file=":auto:"
5613 **
5614 ** SQLITE_PROXY_DEBUG
5615 **
5616 ** Enables the logging of error messages during host id file
5617 ** retrieval and creation
5618 **
5619 ** LOCKPROXYDIR
5620 **
5621 ** Overrides the default directory used for lock proxy files that
5622 ** are named automatically via the ":auto:" setting
5623 **
5624 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5625 **
5626 ** Permissions to use when creating a directory for storing the
5627 ** lock proxy files, only used when LOCKPROXYDIR is not set.
5628 **
5629 **
5630 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5631 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5632 ** force proxy locking to be used for every database file opened, and 0
5633 ** will force automatic proxy locking to be disabled for all database
5634 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5635 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5636 */
5637
5638 /*
5639 ** Proxy locking is only available on MacOSX
5640 */
5641 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5642
5643 /*
5644 ** The proxyLockingContext has the path and file structures for the remote
5645 ** and local proxy files in it
5646 */
5647 typedef struct proxyLockingContext proxyLockingContext;
5648 struct proxyLockingContext {
5649 unixFile *conchFile; /* Open conch file */
5650 char *conchFilePath; /* Name of the conch file */
5651 unixFile *lockProxy; /* Open proxy lock file */
5652 char *lockProxyPath; /* Name of the proxy lock file */
5653 char *dbPath; /* Name of the open file */
5654 int conchHeld; /* 1 if the conch is held, -1 if lockless */
5655 void *oldLockingContext; /* Original lockingcontext to restore on close */
5656 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
5657 };
5658
5659 /*
5660 ** The proxy lock file path for the database at dbPath is written into lPath,
5661 ** which must point to valid, writable memory large enough for a maxLen length
5662 ** file path.
5663 */
5664 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
5665 int len;
5666 int dbLen;
5667 int i;
5668
5669 #ifdef LOCKPROXYDIR
5670 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
5671 #else
5672 # ifdef _CS_DARWIN_USER_TEMP_DIR
5673 {
5674 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
5675 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
5676 lPath, errno, getpid()));
5677 return SQLITE_IOERR_LOCK;
5678 }
5679 len = strlcat(lPath, "sqliteplocks", maxLen);
5680 }
5681 # else
5682 len = strlcpy(lPath, "/tmp/", maxLen);
5683 # endif
5684 #endif
5685
5686 if( lPath[len-1]!='/' ){
5687 len = strlcat(lPath, "/", maxLen);
5688 }
5689
5690 /* transform the db path to a unique cache name */
5691 dbLen = (int)strlen(dbPath);
5692 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
5693 char c = dbPath[i];
5694 lPath[i+len] = (c=='/')?'_':c;
5695 }
5696 lPath[i+len]='\0';
5697 strlcat(lPath, ":auto:", maxLen);
5698 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid()));
5699 return SQLITE_OK;
5700 }
5701
5702 /*
5703 ** Creates the lock file and any missing directories in lockPath
5704 */
5705 static int proxyCreateLockPath(const char *lockPath){
5706 int i, len;
5707 char buf[MAXPATHLEN];
5708 int start = 0;
5709
5710 assert(lockPath!=NULL);
5711 /* try to create all the intermediate directories */
5712 len = (int)strlen(lockPath);
5713 buf[0] = lockPath[0];
5714 for( i=1; i<len; i++ ){
5715 if( lockPath[i] == '/' && (i - start > 0) ){
5716 /* only mkdir if leaf dir != "." or "/" or ".." */
5717 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
5718 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
5719 buf[i]='\0';
5720 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
5721 int err=errno;
5722 if( err!=EEXIST ) {
5723 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
5724 "'%s' proxy lock path=%s pid=%d\n",
5725 buf, strerror(err), lockPath, getpid()));
5726 return err;
5727 }
5728 }
5729 }
5730 start=i+1;
5731 }
5732 buf[i] = lockPath[i];
5733 }
5734 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid()));
5735 return 0;
5736 }
5737
5738 /*
5739 ** Create a new VFS file descriptor (stored in memory obtained from
5740 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
5741 **
5742 ** The caller is responsible not only for closing the file descriptor
5743 ** but also for freeing the memory associated with the file descriptor.
5744 */
5745 static int proxyCreateUnixFile(
5746 const char *path, /* path for the new unixFile */
5747 unixFile **ppFile, /* unixFile created and returned by ref */
5748 int islockfile /* if non zero missing dirs will be created */
5749 ) {
5750 int fd = -1;
5751 unixFile *pNew;
5752 int rc = SQLITE_OK;
5753 int openFlags = O_RDWR | O_CREAT;
5754 sqlite3_vfs dummyVfs;
5755 int terrno = 0;
5756 UnixUnusedFd *pUnused = NULL;
5757
5758 /* 1. first try to open/create the file
5759 ** 2. if that fails, and this is a lock file (not-conch), try creating
5760 ** the parent directories and then try again.
5761 ** 3. if that fails, try to open the file read-only
5762 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5763 */
5764 pUnused = findReusableFd(path, openFlags);
5765 if( pUnused ){
5766 fd = pUnused->fd;
5767 }else{
5768 pUnused = sqlite3_malloc(sizeof(*pUnused));
5769 if( !pUnused ){
5770 return SQLITE_NOMEM;
5771 }
5772 }
5773 if( fd<0 ){
5774 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5775 terrno = errno;
5776 if( fd<0 && errno==ENOENT && islockfile ){
5777 if( proxyCreateLockPath(path) == SQLITE_OK ){
5778 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5779 }
5780 }
5781 }
5782 if( fd<0 ){
5783 openFlags = O_RDONLY;
5784 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5785 terrno = errno;
5786 }
5787 if( fd<0 ){
5788 if( islockfile ){
5789 return SQLITE_BUSY;
5790 }
5791 switch (terrno) {
5792 case EACCES:
5793 return SQLITE_PERM;
5794 case EIO:
5795 return SQLITE_IOERR_LOCK; /* even though it is the conch */
5796 default:
5797 return SQLITE_CANTOPEN_BKPT;
5798 }
5799 }
5800
5801 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
5802 if( pNew==NULL ){
5803 rc = SQLITE_NOMEM;
5804 goto end_create_proxy;
5805 }
5806 memset(pNew, 0, sizeof(unixFile));
5807 pNew->openFlags = openFlags;
5808 memset(&dummyVfs, 0, sizeof(dummyVfs));
5809 dummyVfs.pAppData = (void*)&autolockIoFinder;
5810 dummyVfs.zName = "dummy";
5811 pUnused->fd = fd;
5812 pUnused->flags = openFlags;
5813 pNew->pUnused = pUnused;
5814
5815 rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0);
5816 if( rc==SQLITE_OK ){
5817 *ppFile = pNew;
5818 return SQLITE_OK;
5819 }
5820 end_create_proxy:
5821 robust_close(pNew, fd, __LINE__);
5822 sqlite3_free(pNew);
5823 sqlite3_free(pUnused);
5824 return rc;
5825 }
5826
5827 #ifdef SQLITE_TEST
5828 /* simulate multiple hosts by creating unique hostid file paths */
5829 int sqlite3_hostid_num = 0;
5830 #endif
5831
5832 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
5833
5834 /* Not always defined in the headers as it ought to be */
5835 extern int gethostuuid(uuid_t id, const struct timespec *wait);
5836
5837 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5838 ** bytes of writable memory.
5839 */
5840 static int proxyGetHostID(unsigned char *pHostID, int *pError){
5841 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
5842 memset(pHostID, 0, PROXY_HOSTIDLEN);
5843 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5844 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5845 {
5846 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
5847 if( gethostuuid(pHostID, &timeout) ){
5848 int err = errno;
5849 if( pError ){
5850 *pError = err;
5851 }
5852 return SQLITE_IOERR;
5853 }
5854 }
5855 #endif
5856 #ifdef SQLITE_TEST
5857 /* simulate multiple hosts by creating unique hostid file paths */
5858 if( sqlite3_hostid_num != 0){
5859 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
5860 }
5861 #endif
5862
5863 return SQLITE_OK;
5864 }
5865
5866 /* The conch file contains the header, host id and lock file path
5867 */
5868 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
5869 #define PROXY_HEADERLEN 1 /* conch file header length */
5870 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5871 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5872
5873 /*
5874 ** Takes an open conch file, copies the contents to a new path and then moves
5875 ** it back. The newly created file's file descriptor is assigned to the
5876 ** conch file structure and finally the original conch file descriptor is
5877 ** closed. Returns zero if successful.
5878 */
5879 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
5880 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5881 unixFile *conchFile = pCtx->conchFile;
5882 char tPath[MAXPATHLEN];
5883 char buf[PROXY_MAXCONCHLEN];
5884 char *cPath = pCtx->conchFilePath;
5885 size_t readLen = 0;
5886 size_t pathLen = 0;
5887 char errmsg[64] = "";
5888 int fd = -1;
5889 int rc = -1;
5890 UNUSED_PARAMETER(myHostID);
5891
5892 /* create a new path by replace the trailing '-conch' with '-break' */
5893 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
5894 if( pathLen>MAXPATHLEN || pathLen<6 ||
5895 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
5896 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
5897 goto end_breaklock;
5898 }
5899 /* read the conch content */
5900 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
5901 if( readLen<PROXY_PATHINDEX ){
5902 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
5903 goto end_breaklock;
5904 }
5905 /* write it out to the temporary break file */
5906 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
5907 SQLITE_DEFAULT_FILE_PERMISSIONS);
5908 if( fd<0 ){
5909 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
5910 goto end_breaklock;
5911 }
5912 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
5913 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
5914 goto end_breaklock;
5915 }
5916 if( rename(tPath, cPath) ){
5917 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
5918 goto end_breaklock;
5919 }
5920 rc = 0;
5921 fprintf(stderr, "broke stale lock on %s\n", cPath);
5922 robust_close(pFile, conchFile->h, __LINE__);
5923 conchFile->h = fd;
5924 conchFile->openFlags = O_RDWR | O_CREAT;
5925
5926 end_breaklock:
5927 if( rc ){
5928 if( fd>=0 ){
5929 osUnlink(tPath);
5930 robust_close(pFile, fd, __LINE__);
5931 }
5932 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
5933 }
5934 return rc;
5935 }
5936
5937 /* Take the requested lock on the conch file and break a stale lock if the
5938 ** host id matches.
5939 */
5940 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
5941 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5942 unixFile *conchFile = pCtx->conchFile;
5943 int rc = SQLITE_OK;
5944 int nTries = 0;
5945 struct timespec conchModTime;
5946
5947 do {
5948 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
5949 nTries ++;
5950 if( rc==SQLITE_BUSY ){
5951 /* If the lock failed (busy):
5952 * 1st try: get the mod time of the conch, wait 0.5s and try again.
5953 * 2nd try: fail if the mod time changed or host id is different, wait
5954 * 10 sec and try again
5955 * 3rd try: break the lock unless the mod time has changed.
5956 */
5957 struct stat buf;
5958 if( osFstat(conchFile->h, &buf) ){
5959 pFile->lastErrno = errno;
5960 return SQLITE_IOERR_LOCK;
5961 }
5962
5963 if( nTries==1 ){
5964 conchModTime = buf.st_mtimespec;
5965 usleep(500000); /* wait 0.5 sec and try the lock again*/
5966 continue;
5967 }
5968
5969 assert( nTries>1 );
5970 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
5971 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
5972 return SQLITE_BUSY;
5973 }
5974
5975 if( nTries==2 ){
5976 char tBuf[PROXY_MAXCONCHLEN];
5977 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
5978 if( len<0 ){
5979 pFile->lastErrno = errno;
5980 return SQLITE_IOERR_LOCK;
5981 }
5982 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
5983 /* don't break the lock if the host id doesn't match */
5984 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
5985 return SQLITE_BUSY;
5986 }
5987 }else{
5988 /* don't break the lock on short read or a version mismatch */
5989 return SQLITE_BUSY;
5990 }
5991 usleep(10000000); /* wait 10 sec and try the lock again */
5992 continue;
5993 }
5994
5995 assert( nTries==3 );
5996 if( 0==proxyBreakConchLock(pFile, myHostID) ){
5997 rc = SQLITE_OK;
5998 if( lockType==EXCLUSIVE_LOCK ){
5999 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6000 }
6001 if( !rc ){
6002 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6003 }
6004 }
6005 }
6006 } while( rc==SQLITE_BUSY && nTries<3 );
6007
6008 return rc;
6009 }
6010
6011 /* Takes the conch by taking a shared lock and read the contents conch, if
6012 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
6013 ** lockPath means that the lockPath in the conch file will be used if the
6014 ** host IDs match, or a new lock path will be generated automatically
6015 ** and written to the conch file.
6016 */
6017 static int proxyTakeConch(unixFile *pFile){
6018 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6019
6020 if( pCtx->conchHeld!=0 ){
6021 return SQLITE_OK;
6022 }else{
6023 unixFile *conchFile = pCtx->conchFile;
6024 uuid_t myHostID;
6025 int pError = 0;
6026 char readBuf[PROXY_MAXCONCHLEN];
6027 char lockPath[MAXPATHLEN];
6028 char *tempLockPath = NULL;
6029 int rc = SQLITE_OK;
6030 int createConch = 0;
6031 int hostIdMatch = 0;
6032 int readLen = 0;
6033 int tryOldLockPath = 0;
6034 int forceNewLockPath = 0;
6035
6036 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
6037 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
6038
6039 rc = proxyGetHostID(myHostID, &pError);
6040 if( (rc&0xff)==SQLITE_IOERR ){
6041 pFile->lastErrno = pError;
6042 goto end_takeconch;
6043 }
6044 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6045 if( rc!=SQLITE_OK ){
6046 goto end_takeconch;
6047 }
6048 /* read the existing conch file */
6049 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6050 if( readLen<0 ){
6051 /* I/O error: lastErrno set by seekAndRead */
6052 pFile->lastErrno = conchFile->lastErrno;
6053 rc = SQLITE_IOERR_READ;
6054 goto end_takeconch;
6055 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6056 readBuf[0]!=(char)PROXY_CONCHVERSION ){
6057 /* a short read or version format mismatch means we need to create a new
6058 ** conch file.
6059 */
6060 createConch = 1;
6061 }
6062 /* if the host id matches and the lock path already exists in the conch
6063 ** we'll try to use the path there, if we can't open that path, we'll
6064 ** retry with a new auto-generated path
6065 */
6066 do { /* in case we need to try again for an :auto: named lock file */
6067
6068 if( !createConch && !forceNewLockPath ){
6069 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6070 PROXY_HOSTIDLEN);
6071 /* if the conch has data compare the contents */
6072 if( !pCtx->lockProxyPath ){
6073 /* for auto-named local lock file, just check the host ID and we'll
6074 ** use the local lock file path that's already in there
6075 */
6076 if( hostIdMatch ){
6077 size_t pathLen = (readLen - PROXY_PATHINDEX);
6078
6079 if( pathLen>=MAXPATHLEN ){
6080 pathLen=MAXPATHLEN-1;
6081 }
6082 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6083 lockPath[pathLen] = 0;
6084 tempLockPath = lockPath;
6085 tryOldLockPath = 1;
6086 /* create a copy of the lock path if the conch is taken */
6087 goto end_takeconch;
6088 }
6089 }else if( hostIdMatch
6090 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6091 readLen-PROXY_PATHINDEX)
6092 ){
6093 /* conch host and lock path match */
6094 goto end_takeconch;
6095 }
6096 }
6097
6098 /* if the conch isn't writable and doesn't match, we can't take it */
6099 if( (conchFile->openFlags&O_RDWR) == 0 ){
6100 rc = SQLITE_BUSY;
6101 goto end_takeconch;
6102 }
6103
6104 /* either the conch didn't match or we need to create a new one */
6105 if( !pCtx->lockProxyPath ){
6106 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6107 tempLockPath = lockPath;
6108 /* create a copy of the lock path _only_ if the conch is taken */
6109 }
6110
6111 /* update conch with host and path (this will fail if other process
6112 ** has a shared lock already), if the host id matches, use the big
6113 ** stick.
6114 */
6115 futimes(conchFile->h, NULL);
6116 if( hostIdMatch && !createConch ){
6117 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6118 /* We are trying for an exclusive lock but another thread in this
6119 ** same process is still holding a shared lock. */
6120 rc = SQLITE_BUSY;
6121 } else {
6122 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6123 }
6124 }else{
6125 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK) ;
6126 }
6127 if( rc==SQLITE_OK ){
6128 char writeBuffer[PROXY_MAXCONCHLEN];
6129 int writeSize = 0;
6130
6131 writeBuffer[0] = (char)PROXY_CONCHVERSION;
6132 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6133 if( pCtx->lockProxyPath!=NULL ){
6134 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN );
6135 }else{
6136 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6137 }
6138 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6139 robust_ftruncate(conchFile->h, writeSize);
6140 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6141 fsync(conchFile->h);
6142 /* If we created a new conch file (not just updated the contents of a
6143 ** valid conch file), try to match the permissions of the database
6144 */
6145 if( rc==SQLITE_OK && createConch ){
6146 struct stat buf;
6147 int err = osFstat(pFile->h, &buf);
6148 if( err==0 ){
6149 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6150 S_IROTH|S_IWOTH);
6151 /* try to match the database file R/W permissions, ignore failure */
6152 #ifndef SQLITE_PROXY_DEBUG
6153 osFchmod(conchFile->h, cmode);
6154 #else
6155 do{
6156 rc = osFchmod(conchFile->h, cmode);
6157 }while( rc==(-1) && errno==EINTR );
6158 if( rc!=0 ){
6159 int code = errno;
6160 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6161 cmode, code, strerror(code));
6162 } else {
6163 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6164 }
6165 }else{
6166 int code = errno;
6167 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6168 err, code, strerror(code));
6169 #endif
6170 }
6171 }
6172 }
6173 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6174
6175 end_takeconch:
6176 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
6177 if( rc==SQLITE_OK && pFile->openFlags ){
6178 if( pFile->h>=0 ){
6179 robust_close(pFile, pFile->h, __LINE__);
6180 }
6181 pFile->h = -1;
6182 int fd = robust_open(pCtx->dbPath, pFile->openFlags,
6183 SQLITE_DEFAULT_FILE_PERMISSIONS);
6184 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
6185 if( fd>=0 ){
6186 pFile->h = fd;
6187 }else{
6188 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
6189 during locking */
6190 }
6191 }
6192 if( rc==SQLITE_OK && !pCtx->lockProxy ){
6193 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6194 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6195 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6196 /* we couldn't create the proxy lock file with the old lock file path
6197 ** so try again via auto-naming
6198 */
6199 forceNewLockPath = 1;
6200 tryOldLockPath = 0;
6201 continue; /* go back to the do {} while start point, try again */
6202 }
6203 }
6204 if( rc==SQLITE_OK ){
6205 /* Need to make a copy of path if we extracted the value
6206 ** from the conch file or the path was allocated on the stack
6207 */
6208 if( tempLockPath ){
6209 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6210 if( !pCtx->lockProxyPath ){
6211 rc = SQLITE_NOMEM;
6212 }
6213 }
6214 }
6215 if( rc==SQLITE_OK ){
6216 pCtx->conchHeld = 1;
6217
6218 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6219 afpLockingContext *afpCtx;
6220 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6221 afpCtx->dbPath = pCtx->lockProxyPath;
6222 }
6223 } else {
6224 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6225 }
6226 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
6227 rc==SQLITE_OK?"ok":"failed"));
6228 return rc;
6229 } while (1); /* in case we need to retry the :auto: lock file -
6230 ** we should never get here except via the 'continue' call. */
6231 }
6232 }
6233
6234 /*
6235 ** If pFile holds a lock on a conch file, then release that lock.
6236 */
6237 static int proxyReleaseConch(unixFile *pFile){
6238 int rc = SQLITE_OK; /* Subroutine return code */
6239 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
6240 unixFile *conchFile; /* Name of the conch file */
6241
6242 pCtx = (proxyLockingContext *)pFile->lockingContext;
6243 conchFile = pCtx->conchFile;
6244 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
6245 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6246 getpid()));
6247 if( pCtx->conchHeld>0 ){
6248 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6249 }
6250 pCtx->conchHeld = 0;
6251 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
6252 (rc==SQLITE_OK ? "ok" : "failed")));
6253 return rc;
6254 }
6255
6256 /*
6257 ** Given the name of a database file, compute the name of its conch file.
6258 ** Store the conch filename in memory obtained from sqlite3_malloc().
6259 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
6260 ** or SQLITE_NOMEM if unable to obtain memory.
6261 **
6262 ** The caller is responsible for ensuring that the allocated memory
6263 ** space is eventually freed.
6264 **
6265 ** *pConchPath is set to NULL if a memory allocation error occurs.
6266 */
6267 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6268 int i; /* Loop counter */
6269 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
6270 char *conchPath; /* buffer in which to construct conch name */
6271
6272 /* Allocate space for the conch filename and initialize the name to
6273 ** the name of the original database file. */
6274 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6275 if( conchPath==0 ){
6276 return SQLITE_NOMEM;
6277 }
6278 memcpy(conchPath, dbPath, len+1);
6279
6280 /* now insert a "." before the last / character */
6281 for( i=(len-1); i>=0; i-- ){
6282 if( conchPath[i]=='/' ){
6283 i++;
6284 break;
6285 }
6286 }
6287 conchPath[i]='.';
6288 while ( i<len ){
6289 conchPath[i+1]=dbPath[i];
6290 i++;
6291 }
6292
6293 /* append the "-conch" suffix to the file */
6294 memcpy(&conchPath[i+1], "-conch", 7);
6295 assert( (int)strlen(conchPath) == len+7 );
6296
6297 return SQLITE_OK;
6298 }
6299
6300
6301 /* Takes a fully configured proxy locking-style unix file and switches
6302 ** the local lock file path
6303 */
6304 static int switchLockProxyPath(unixFile *pFile, const char *path) {
6305 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6306 char *oldPath = pCtx->lockProxyPath;
6307 int rc = SQLITE_OK;
6308
6309 if( pFile->eFileLock!=NO_LOCK ){
6310 return SQLITE_BUSY;
6311 }
6312
6313 /* nothing to do if the path is NULL, :auto: or matches the existing path */
6314 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6315 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6316 return SQLITE_OK;
6317 }else{
6318 unixFile *lockProxy = pCtx->lockProxy;
6319 pCtx->lockProxy=NULL;
6320 pCtx->conchHeld = 0;
6321 if( lockProxy!=NULL ){
6322 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6323 if( rc ) return rc;
6324 sqlite3_free(lockProxy);
6325 }
6326 sqlite3_free(oldPath);
6327 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6328 }
6329
6330 return rc;
6331 }
6332
6333 /*
6334 ** pFile is a file that has been opened by a prior xOpen call. dbPath
6335 ** is a string buffer at least MAXPATHLEN+1 characters in size.
6336 **
6337 ** This routine find the filename associated with pFile and writes it
6338 ** int dbPath.
6339 */
6340 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
6341 #if defined(__APPLE__)
6342 if( pFile->pMethod == &afpIoMethods ){
6343 /* afp style keeps a reference to the db path in the filePath field
6344 ** of the struct */
6345 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6346 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPAT HLEN);
6347 } else
6348 #endif
6349 if( pFile->pMethod == &dotlockIoMethods ){
6350 /* dot lock style uses the locking context to store the dot lock
6351 ** file path */
6352 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6353 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6354 }else{
6355 /* all other styles use the locking context to store the db file path */
6356 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6357 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
6358 }
6359 return SQLITE_OK;
6360 }
6361
6362 /*
6363 ** Takes an already filled in unix file and alters it so all file locking
6364 ** will be performed on the local proxy lock file. The following fields
6365 ** are preserved in the locking context so that they can be restored and
6366 ** the unix structure properly cleaned up at close time:
6367 ** ->lockingContext
6368 ** ->pMethod
6369 */
6370 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6371 proxyLockingContext *pCtx;
6372 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
6373 char *lockPath=NULL;
6374 int rc = SQLITE_OK;
6375
6376 if( pFile->eFileLock!=NO_LOCK ){
6377 return SQLITE_BUSY;
6378 }
6379 proxyGetDbPathForUnixFile(pFile, dbPath);
6380 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6381 lockPath=NULL;
6382 }else{
6383 lockPath=(char *)path;
6384 }
6385
6386 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
6387 (lockPath ? lockPath : ":auto:"), getpid()));
6388
6389 pCtx = sqlite3_malloc( sizeof(*pCtx) );
6390 if( pCtx==0 ){
6391 return SQLITE_NOMEM;
6392 }
6393 memset(pCtx, 0, sizeof(*pCtx));
6394
6395 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6396 if( rc==SQLITE_OK ){
6397 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6398 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6399 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6400 ** (c) the file system is read-only, then enable no-locking access.
6401 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6402 ** that openFlags will have only one of O_RDONLY or O_RDWR.
6403 */
6404 struct statfs fsInfo;
6405 struct stat conchInfo;
6406 int goLockless = 0;
6407
6408 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
6409 int err = errno;
6410 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6411 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6412 }
6413 }
6414 if( goLockless ){
6415 pCtx->conchHeld = -1; /* read only FS/ lockless */
6416 rc = SQLITE_OK;
6417 }
6418 }
6419 }
6420 if( rc==SQLITE_OK && lockPath ){
6421 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6422 }
6423
6424 if( rc==SQLITE_OK ){
6425 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6426 if( pCtx->dbPath==NULL ){
6427 rc = SQLITE_NOMEM;
6428 }
6429 }
6430 if( rc==SQLITE_OK ){
6431 /* all memory is allocated, proxys are created and assigned,
6432 ** switch the locking context and pMethod then return.
6433 */
6434 pCtx->oldLockingContext = pFile->lockingContext;
6435 pFile->lockingContext = pCtx;
6436 pCtx->pOldMethod = pFile->pMethod;
6437 pFile->pMethod = &proxyIoMethods;
6438 }else{
6439 if( pCtx->conchFile ){
6440 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
6441 sqlite3_free(pCtx->conchFile);
6442 }
6443 sqlite3DbFree(0, pCtx->lockProxyPath);
6444 sqlite3_free(pCtx->conchFilePath);
6445 sqlite3_free(pCtx);
6446 }
6447 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
6448 (rc==SQLITE_OK ? "ok" : "failed")));
6449 return rc;
6450 }
6451
6452
6453 /*
6454 ** This routine handles sqlite3_file_control() calls that are specific
6455 ** to proxy locking.
6456 */
6457 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
6458 switch( op ){
6459 case SQLITE_GET_LOCKPROXYFILE: {
6460 unixFile *pFile = (unixFile*)id;
6461 if( pFile->pMethod == &proxyIoMethods ){
6462 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6463 proxyTakeConch(pFile);
6464 if( pCtx->lockProxyPath ){
6465 *(const char **)pArg = pCtx->lockProxyPath;
6466 }else{
6467 *(const char **)pArg = ":auto: (not held)";
6468 }
6469 } else {
6470 *(const char **)pArg = NULL;
6471 }
6472 return SQLITE_OK;
6473 }
6474 case SQLITE_SET_LOCKPROXYFILE: {
6475 unixFile *pFile = (unixFile*)id;
6476 int rc = SQLITE_OK;
6477 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
6478 if( pArg==NULL || (const char *)pArg==0 ){
6479 if( isProxyStyle ){
6480 /* turn off proxy locking - not supported */
6481 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6482 }else{
6483 /* turn off proxy locking - already off - NOOP */
6484 rc = SQLITE_OK;
6485 }
6486 }else{
6487 const char *proxyPath = (const char *)pArg;
6488 if( isProxyStyle ){
6489 proxyLockingContext *pCtx =
6490 (proxyLockingContext*)pFile->lockingContext;
6491 if( !strcmp(pArg, ":auto:")
6492 || (pCtx->lockProxyPath &&
6493 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
6494 ){
6495 rc = SQLITE_OK;
6496 }else{
6497 rc = switchLockProxyPath(pFile, proxyPath);
6498 }
6499 }else{
6500 /* turn on proxy file locking */
6501 rc = proxyTransformUnixFile(pFile, proxyPath);
6502 }
6503 }
6504 return rc;
6505 }
6506 default: {
6507 assert( 0 ); /* The call assures that only valid opcodes are sent */
6508 }
6509 }
6510 /*NOTREACHED*/
6511 return SQLITE_ERROR;
6512 }
6513
6514 /*
6515 ** Within this division (the proxying locking implementation) the procedures
6516 ** above this point are all utilities. The lock-related methods of the
6517 ** proxy-locking sqlite3_io_method object follow.
6518 */
6519
6520
6521 /*
6522 ** This routine checks if there is a RESERVED lock held on the specified
6523 ** file by this or any other process. If such a lock is held, set *pResOut
6524 ** to a non-zero value otherwise *pResOut is set to zero. The return value
6525 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6526 */
6527 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
6528 unixFile *pFile = (unixFile*)id;
6529 int rc = proxyTakeConch(pFile);
6530 if( rc==SQLITE_OK ){
6531 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6532 if( pCtx->conchHeld>0 ){
6533 unixFile *proxy = pCtx->lockProxy;
6534 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
6535 }else{ /* conchHeld < 0 is lockless */
6536 pResOut=0;
6537 }
6538 }
6539 return rc;
6540 }
6541
6542 /*
6543 ** Lock the file with the lock specified by parameter eFileLock - one
6544 ** of the following:
6545 **
6546 ** (1) SHARED_LOCK
6547 ** (2) RESERVED_LOCK
6548 ** (3) PENDING_LOCK
6549 ** (4) EXCLUSIVE_LOCK
6550 **
6551 ** Sometimes when requesting one lock state, additional lock states
6552 ** are inserted in between. The locking might fail on one of the later
6553 ** transitions leaving the lock state different from what it started but
6554 ** still short of its goal. The following chart shows the allowed
6555 ** transitions and the inserted intermediate states:
6556 **
6557 ** UNLOCKED -> SHARED
6558 ** SHARED -> RESERVED
6559 ** SHARED -> (PENDING) -> EXCLUSIVE
6560 ** RESERVED -> (PENDING) -> EXCLUSIVE
6561 ** PENDING -> EXCLUSIVE
6562 **
6563 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
6564 ** routine to lower a locking level.
6565 */
6566 static int proxyLock(sqlite3_file *id, int eFileLock) {
6567 unixFile *pFile = (unixFile*)id;
6568 int rc = proxyTakeConch(pFile);
6569 if( rc==SQLITE_OK ){
6570 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6571 if( pCtx->conchHeld>0 ){
6572 unixFile *proxy = pCtx->lockProxy;
6573 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
6574 pFile->eFileLock = proxy->eFileLock;
6575 }else{
6576 /* conchHeld < 0 is lockless */
6577 }
6578 }
6579 return rc;
6580 }
6581
6582
6583 /*
6584 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
6585 ** must be either NO_LOCK or SHARED_LOCK.
6586 **
6587 ** If the locking level of the file descriptor is already at or below
6588 ** the requested locking level, this routine is a no-op.
6589 */
6590 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
6591 unixFile *pFile = (unixFile*)id;
6592 int rc = proxyTakeConch(pFile);
6593 if( rc==SQLITE_OK ){
6594 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6595 if( pCtx->conchHeld>0 ){
6596 unixFile *proxy = pCtx->lockProxy;
6597 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
6598 pFile->eFileLock = proxy->eFileLock;
6599 }else{
6600 /* conchHeld < 0 is lockless */
6601 }
6602 }
6603 return rc;
6604 }
6605
6606 /*
6607 ** Close a file that uses proxy locks.
6608 */
6609 static int proxyClose(sqlite3_file *id) {
6610 if( id ){
6611 unixFile *pFile = (unixFile*)id;
6612 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6613 unixFile *lockProxy = pCtx->lockProxy;
6614 unixFile *conchFile = pCtx->conchFile;
6615 int rc = SQLITE_OK;
6616
6617 if( lockProxy ){
6618 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
6619 if( rc ) return rc;
6620 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
6621 if( rc ) return rc;
6622 sqlite3_free(lockProxy);
6623 pCtx->lockProxy = 0;
6624 }
6625 if( conchFile ){
6626 if( pCtx->conchHeld ){
6627 rc = proxyReleaseConch(pFile);
6628 if( rc ) return rc;
6629 }
6630 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
6631 if( rc ) return rc;
6632 sqlite3_free(conchFile);
6633 }
6634 sqlite3DbFree(0, pCtx->lockProxyPath);
6635 sqlite3_free(pCtx->conchFilePath);
6636 sqlite3DbFree(0, pCtx->dbPath);
6637 /* restore the original locking context and pMethod then close it */
6638 pFile->lockingContext = pCtx->oldLockingContext;
6639 pFile->pMethod = pCtx->pOldMethod;
6640 sqlite3_free(pCtx);
6641 return pFile->pMethod->xClose(id);
6642 }
6643 return SQLITE_OK;
6644 }
6645
6646
6647
6648 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6649 /*
6650 ** The proxy locking style is intended for use with AFP filesystems.
6651 ** And since AFP is only supported on MacOSX, the proxy locking is also
6652 ** restricted to MacOSX.
6653 **
6654 **
6655 ******************* End of the proxy lock implementation **********************
6656 ******************************************************************************/
6657
6658 /*
6659 ** Initialize the operating system interface.
6660 **
6661 ** This routine registers all VFS implementations for unix-like operating
6662 ** systems. This routine, and the sqlite3_os_end() routine that follows,
6663 ** should be the only routines in this file that are visible from other
6664 ** files.
6665 **
6666 ** This routine is called once during SQLite initialization and by a
6667 ** single thread. The memory allocation and mutex subsystems have not
6668 ** necessarily been initialized when this routine is called, and so they
6669 ** should not be used.
6670 */
6671 int sqlite3_os_init(void){
6672 /*
6673 ** The following macro defines an initializer for an sqlite3_vfs object.
6674 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
6675 ** to the "finder" function. (pAppData is a pointer to a pointer because
6676 ** silly C90 rules prohibit a void* from being cast to a function pointer
6677 ** and so we have to go through the intermediate pointer to avoid problems
6678 ** when compiling with -pedantic-errors on GCC.)
6679 **
6680 ** The FINDER parameter to this macro is the name of the pointer to the
6681 ** finder-function. The finder-function returns a pointer to the
6682 ** sqlite_io_methods object that implements the desired locking
6683 ** behaviors. See the division above that contains the IOMETHODS
6684 ** macro for addition information on finder-functions.
6685 **
6686 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6687 ** object. But the "autolockIoFinder" available on MacOSX does a little
6688 ** more than that; it looks at the filesystem type that hosts the
6689 ** database file and tries to choose an locking method appropriate for
6690 ** that filesystem time.
6691 */
6692 #define UNIXVFS(VFSNAME, FINDER) { \
6693 3, /* iVersion */ \
6694 sizeof(unixFile), /* szOsFile */ \
6695 MAX_PATHNAME, /* mxPathname */ \
6696 0, /* pNext */ \
6697 VFSNAME, /* zName */ \
6698 (void*)&FINDER, /* pAppData */ \
6699 unixOpen, /* xOpen */ \
6700 unixDelete, /* xDelete */ \
6701 unixAccess, /* xAccess */ \
6702 unixFullPathname, /* xFullPathname */ \
6703 unixDlOpen, /* xDlOpen */ \
6704 unixDlError, /* xDlError */ \
6705 unixDlSym, /* xDlSym */ \
6706 unixDlClose, /* xDlClose */ \
6707 unixRandomness, /* xRandomness */ \
6708 unixSleep, /* xSleep */ \
6709 unixCurrentTime, /* xCurrentTime */ \
6710 unixGetLastError, /* xGetLastError */ \
6711 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
6712 unixSetSystemCall, /* xSetSystemCall */ \
6713 unixGetSystemCall, /* xGetSystemCall */ \
6714 unixNextSystemCall, /* xNextSystemCall */ \
6715 }
6716
6717 /*
6718 ** All default VFSes for unix are contained in the following array.
6719 **
6720 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6721 ** by the SQLite core when the VFS is registered. So the following
6722 ** array cannot be const.
6723 */
6724 static sqlite3_vfs aVfs[] = {
6725 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6726 UNIXVFS("unix", autolockIoFinder ),
6727 #else
6728 UNIXVFS("unix", posixIoFinder ),
6729 #endif
6730 UNIXVFS("unix-none", nolockIoFinder ),
6731 UNIXVFS("unix-dotfile", dotlockIoFinder ),
6732 UNIXVFS("unix-excl", posixIoFinder ),
6733 #if OS_VXWORKS
6734 UNIXVFS("unix-namedsem", semIoFinder ),
6735 #endif
6736 #if SQLITE_ENABLE_LOCKING_STYLE
6737 UNIXVFS("unix-posix", posixIoFinder ),
6738 #if !OS_VXWORKS
6739 UNIXVFS("unix-flock", flockIoFinder ),
6740 #endif
6741 #endif
6742 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6743 UNIXVFS("unix-afp", afpIoFinder ),
6744 UNIXVFS("unix-nfs", nfsIoFinder ),
6745 UNIXVFS("unix-proxy", proxyIoFinder ),
6746 #endif
6747 };
6748 unsigned int i; /* Loop counter */
6749
6750 /* Double-check that the aSyscall[] array has been constructed
6751 ** correctly. See ticket [bb3a86e890c8e96ab] */
6752 assert( ArraySize(aSyscall)==18 );
6753
6754 /* Register all VFSes defined in the aVfs[] array */
6755 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
6756 sqlite3_vfs_register(&aVfs[i], i==0);
6757 }
6758 return SQLITE_OK;
6759 }
6760
6761 /*
6762 ** Shutdown the operating system interface.
6763 **
6764 ** Some operating systems might need to do some cleanup in this routine,
6765 ** to release dynamically allocated objects. But not on unix.
6766 ** This routine is a no-op for unix.
6767 */
6768 int sqlite3_os_end(void){
6769 return SQLITE_OK;
6770 }
6771
6772 #endif /* SQLITE_OS_UNIX */
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698