| Index: sdk/lib/_internal/compiler/implementation/dart_backend/statement_rewriter.dart
|
| diff --git a/sdk/lib/_internal/compiler/implementation/dart_backend/statement_rewriter.dart b/sdk/lib/_internal/compiler/implementation/dart_backend/statement_rewriter.dart
|
| deleted file mode 100644
|
| index 4151d2d910f90d93a602e53ee4263c65d4d865b8..0000000000000000000000000000000000000000
|
| --- a/sdk/lib/_internal/compiler/implementation/dart_backend/statement_rewriter.dart
|
| +++ /dev/null
|
| @@ -1,553 +0,0 @@
|
| -// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -library statement_rewriter;
|
| -
|
| -import 'tree_ir_nodes.dart';
|
| -
|
| -/**
|
| - * Performs the following transformations on the tree:
|
| - * - Assignment propagation
|
| - * - If-to-conditional conversion
|
| - * - Flatten nested ifs
|
| - * - Break inlining
|
| - * - Redirect breaks
|
| - *
|
| - * The above transformations all eliminate statements from the tree, and may
|
| - * introduce redexes of each other.
|
| - *
|
| - *
|
| - * ASSIGNMENT PROPAGATION:
|
| - * Single-use definitions are propagated to their use site when possible.
|
| - * For example:
|
| - *
|
| - * { v0 = foo(); return v0; }
|
| - * ==>
|
| - * return foo()
|
| - *
|
| - * After translating out of CPS, all intermediate values are bound by [Assign].
|
| - * This transformation propagates such definitions to their uses when it is
|
| - * safe and profitable. Bindings are processed "on demand" when their uses are
|
| - * seen, but are only processed once to keep this transformation linear in
|
| - * the size of the tree.
|
| - *
|
| - * The transformation builds an environment containing [Assign] bindings that
|
| - * are in scope. These bindings have yet-untranslated definitions. When a use
|
| - * is encountered the transformation determines if it is safe and profitable
|
| - * to propagate the definition to its use. If so, it is removed from the
|
| - * environment and the definition is recursively processed (in the
|
| - * new environment at the use site) before being propagated.
|
| - *
|
| - * See [visitVariable] for the implementation of the heuristic for propagating
|
| - * a definition.
|
| - *
|
| - *
|
| - * IF-TO-CONDITIONAL CONVERSION:
|
| - * If-statement are converted to conditional expressions when possible.
|
| - * For example:
|
| - *
|
| - * if (v0) { v1 = foo(); break L } else { v1 = bar(); break L }
|
| - * ==>
|
| - * { v1 = v0 ? foo() : bar(); break L }
|
| - *
|
| - * This can lead to inlining of L, which in turn can lead to further propagation
|
| - * of the variable v1.
|
| - *
|
| - * See [visitIf].
|
| - *
|
| - *
|
| - * FLATTEN NESTED IFS:
|
| - * An if inside an if is converted to an if with a logical operator.
|
| - * For example:
|
| - *
|
| - * if (E1) { if (E2) {S} else break L } else break L
|
| - * ==>
|
| - * if (E1 && E2) {S} else break L
|
| - *
|
| - * This may lead to inlining of L.
|
| - *
|
| - *
|
| - * BREAK INLINING:
|
| - * Single-use labels are inlined at [Break] statements.
|
| - * For example:
|
| - *
|
| - * L0: { v0 = foo(); break L0 }; return v0;
|
| - * ==>
|
| - * v0 = foo(); return v0;
|
| - *
|
| - * This can lead to propagation of v0.
|
| - *
|
| - * See [visitBreak] and [visitLabeledStatement].
|
| - *
|
| - *
|
| - * REDIRECT BREAKS:
|
| - * Labeled statements whose next is a break become flattened and all breaks
|
| - * to their label are redirected.
|
| - * For example, where 'jump' is either break or continue:
|
| - *
|
| - * L0: {... break L0 ...}; jump L1
|
| - * ==>
|
| - * {... jump L1 ...}
|
| - *
|
| - * This may trigger a flattening of nested ifs in case the eliminated label
|
| - * separated two ifs.
|
| - */
|
| -class StatementRewriter extends Visitor<Statement, Expression> {
|
| - // The binding environment. The rightmost element of the list is the nearest
|
| - // available enclosing binding.
|
| - List<Assign> environment;
|
| -
|
| - /// Substitution map for labels. Any break to a label L should be substituted
|
| - /// for a break to L' if L maps to L'.
|
| - Map<Label, Jump> labelRedirects = <Label, Jump>{};
|
| -
|
| - /// Returns the redirect target of [label] or [label] itself if it should not
|
| - /// be redirected.
|
| - Jump redirect(Jump jump) {
|
| - Jump newJump = labelRedirects[jump.target];
|
| - return newJump != null ? newJump : jump;
|
| - }
|
| -
|
| - void rewrite(FunctionDefinition definition) {
|
| - if (definition.isAbstract) return;
|
| -
|
| - environment = <Assign>[];
|
| - definition.body = visitStatement(definition.body);
|
| -
|
| - // TODO(kmillikin): Allow definitions that are not propagated. Here,
|
| - // this means rebuilding the binding with a recursively unnamed definition,
|
| - // or else introducing a variable definition and an assignment.
|
| - assert(environment.isEmpty);
|
| - }
|
| -
|
| - Expression visitExpression(Expression e) => e.processed ? e : e.accept(this);
|
| -
|
| - Expression visitVariable(Variable node) {
|
| - // Propagate a variable's definition to its use site if:
|
| - // 1. It has a single use, to avoid code growth and potential duplication
|
| - // of side effects, AND
|
| - // 2. It was the most recent expression evaluated so that we do not
|
| - // reorder expressions with side effects.
|
| - if (!environment.isEmpty &&
|
| - environment.last.variable == node &&
|
| - environment.last.hasExactlyOneUse) {
|
| - return visitExpression(environment.removeLast().definition);
|
| - }
|
| - // If the definition could not be propagated, leave the variable use.
|
| - return node;
|
| - }
|
| -
|
| -
|
| - Statement visitAssign(Assign node) {
|
| - environment.add(node);
|
| - Statement next = visitStatement(node.next);
|
| -
|
| - if (!environment.isEmpty && environment.last == node) {
|
| - // The definition could not be propagated. Residualize the let binding.
|
| - node.next = next;
|
| - environment.removeLast();
|
| - node.definition = visitExpression(node.definition);
|
| - return node;
|
| - }
|
| - assert(!environment.contains(node));
|
| - return next;
|
| - }
|
| -
|
| - Expression visitInvokeStatic(InvokeStatic node) {
|
| - // Process arguments right-to-left, the opposite of evaluation order.
|
| - for (int i = node.arguments.length - 1; i >= 0; --i) {
|
| - node.arguments[i] = visitExpression(node.arguments[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitInvokeMethod(InvokeMethod node) {
|
| - for (int i = node.arguments.length - 1; i >= 0; --i) {
|
| - node.arguments[i] = visitExpression(node.arguments[i]);
|
| - }
|
| - node.receiver = visitExpression(node.receiver);
|
| - return node;
|
| - }
|
| -
|
| - Expression visitInvokeSuperMethod(InvokeSuperMethod node) {
|
| - for (int i = node.arguments.length - 1; i >= 0; --i) {
|
| - node.arguments[i] = visitExpression(node.arguments[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitInvokeConstructor(InvokeConstructor node) {
|
| - for (int i = node.arguments.length - 1; i >= 0; --i) {
|
| - node.arguments[i] = visitExpression(node.arguments[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitConcatenateStrings(ConcatenateStrings node) {
|
| - for (int i = node.arguments.length - 1; i >= 0; --i) {
|
| - node.arguments[i] = visitExpression(node.arguments[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitConditional(Conditional node) {
|
| - node.condition = visitExpression(node.condition);
|
| -
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - node.thenExpression = visitExpression(node.thenExpression);
|
| - assert(environment.isEmpty);
|
| - node.elseExpression = visitExpression(node.elseExpression);
|
| - assert(environment.isEmpty);
|
| - environment = savedEnvironment;
|
| -
|
| - return node;
|
| - }
|
| -
|
| - Expression visitLogicalOperator(LogicalOperator node) {
|
| - node.left = visitExpression(node.left);
|
| -
|
| - environment.add(null); // impure expressions may not propagate across branch
|
| - node.right = visitExpression(node.right);
|
| - environment.removeLast();
|
| -
|
| - return node;
|
| - }
|
| -
|
| - Expression visitNot(Not node) {
|
| - node.operand = visitExpression(node.operand);
|
| - return node;
|
| - }
|
| -
|
| - Expression visitFunctionExpression(FunctionExpression node) {
|
| - new StatementRewriter().rewrite(node.definition);
|
| - return node;
|
| - }
|
| -
|
| - Statement visitFunctionDeclaration(FunctionDeclaration node) {
|
| - new StatementRewriter().rewrite(node.definition);
|
| - node.next = visitStatement(node.next);
|
| - return node;
|
| - }
|
| -
|
| - Statement visitReturn(Return node) {
|
| - node.value = visitExpression(node.value);
|
| - return node;
|
| - }
|
| -
|
| -
|
| - Statement visitBreak(Break node) {
|
| - // Redirect through chain of breaks.
|
| - // Note that useCount was accounted for at visitLabeledStatement.
|
| - // Note redirect may return either a Break or Continue statement.
|
| - Jump jump = redirect(node);
|
| - if (jump is Break && jump.target.useCount == 1) {
|
| - --jump.target.useCount;
|
| - return visitStatement(jump.target.binding.next);
|
| - }
|
| - return jump;
|
| - }
|
| -
|
| - Statement visitContinue(Continue node) {
|
| - return node;
|
| - }
|
| -
|
| - Statement visitLabeledStatement(LabeledStatement node) {
|
| - if (node.next is Jump) {
|
| - // Eliminate label if next is a break or continue statement
|
| - // Breaks to this label are redirected to the outer label.
|
| - // Note that breakCount for the two labels is updated proactively here
|
| - // so breaks can reliably tell if they should inline their target.
|
| - Jump next = node.next;
|
| - Jump newJump = redirect(next);
|
| - labelRedirects[node.label] = newJump;
|
| - newJump.target.useCount += node.label.useCount - 1;
|
| - node.label.useCount = 0;
|
| - Statement result = visitStatement(node.body);
|
| - labelRedirects.remove(node.label); // Save some space.
|
| - return result;
|
| - }
|
| -
|
| - node.body = visitStatement(node.body);
|
| -
|
| - if (node.label.useCount == 0) {
|
| - // Eliminate the label if next was inlined at a break
|
| - return node.body;
|
| - }
|
| -
|
| - // Do not propagate assignments into the successor statements, since they
|
| - // may be overwritten by assignments in the body.
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - node.next = visitStatement(node.next);
|
| - environment = savedEnvironment;
|
| -
|
| - return node;
|
| - }
|
| -
|
| - Statement visitIf(If node) {
|
| - node.condition = visitExpression(node.condition);
|
| -
|
| - // Do not propagate assignments into branches. Doing so will lead to code
|
| - // duplication.
|
| - // TODO(kmillikin): Rethink this. Propagating some assignments (e.g.,
|
| - // constants or variables) is benign. If they can occur here, they should
|
| - // be handled well.
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - node.thenStatement = visitStatement(node.thenStatement);
|
| - assert(environment.isEmpty);
|
| - node.elseStatement = visitStatement(node.elseStatement);
|
| - assert(environment.isEmpty);
|
| - environment = savedEnvironment;
|
| -
|
| - tryCollapseIf(node);
|
| -
|
| - Statement reduced = combineStatementsWithSubexpressions(
|
| - node.thenStatement,
|
| - node.elseStatement,
|
| - (t,f) => new Conditional(node.condition, t, f)..processed = true);
|
| - if (reduced != null) {
|
| - if (reduced.next is Break) {
|
| - // In case the break can now be inlined.
|
| - reduced = visitStatement(reduced);
|
| - }
|
| - return reduced;
|
| - }
|
| -
|
| - return node;
|
| - }
|
| -
|
| - Statement visitWhileTrue(WhileTrue node) {
|
| - // Do not propagate assignments into loops. Doing so is not safe for
|
| - // variables modified in the loop (the initial value will be propagated).
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - node.body = visitStatement(node.body);
|
| - assert(environment.isEmpty);
|
| - environment = savedEnvironment;
|
| - return node;
|
| - }
|
| -
|
| - Statement visitWhileCondition(WhileCondition node) {
|
| - // Not introduced yet
|
| - throw "Unexpected WhileCondition in StatementRewriter";
|
| - }
|
| -
|
| - Expression visitConstant(Constant node) {
|
| - return node;
|
| - }
|
| -
|
| - Expression visitThis(This node) {
|
| - return node;
|
| - }
|
| -
|
| - Expression visitReifyTypeVar(ReifyTypeVar node) {
|
| - return node;
|
| - }
|
| -
|
| - Expression visitLiteralList(LiteralList node) {
|
| - // Process values right-to-left, the opposite of evaluation order.
|
| - for (int i = node.values.length - 1; i >= 0; --i) {
|
| - node.values[i] = visitExpression(node.values[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitLiteralMap(LiteralMap node) {
|
| - // Process arguments right-to-left, the opposite of evaluation order.
|
| - for (int i = node.values.length - 1; i >= 0; --i) {
|
| - node.values[i] = visitExpression(node.values[i]);
|
| - node.keys[i] = visitExpression(node.keys[i]);
|
| - }
|
| - return node;
|
| - }
|
| -
|
| - Expression visitTypeOperator(TypeOperator node) {
|
| - node.receiver = visitExpression(node.receiver);
|
| - return node;
|
| - }
|
| -
|
| - Statement visitExpressionStatement(ExpressionStatement node) {
|
| - node.expression = visitExpression(node.expression);
|
| - // Do not allow propagation of assignments past an expression evaluated
|
| - // for its side effects because it risks reordering side effects.
|
| - // TODO(kmillikin): Rethink this. Some propagation is benign, e.g.,
|
| - // constants, variables, or other pure values that are not destroyed by
|
| - // the expression statement. If they can occur here they should be
|
| - // handled well.
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - node.next = visitStatement(node.next);
|
| - assert(environment.isEmpty);
|
| - environment = savedEnvironment;
|
| - return node;
|
| - }
|
| -
|
| - /// If [s] and [t] are similar statements we extract their subexpressions
|
| - /// and returns a new statement of the same type using expressions combined
|
| - /// with the [combine] callback. For example:
|
| - ///
|
| - /// combineStatements(Return E1, Return E2) = Return combine(E1, E2)
|
| - ///
|
| - /// If [combine] returns E1 then the unified statement is equivalent to [s],
|
| - /// and if [combine] returns E2 the unified statement is equivalence to [t].
|
| - ///
|
| - /// It is guaranteed that no side effects occur between the beginning of the
|
| - /// statement and the position of the combined expression.
|
| - ///
|
| - /// Returns null if the statements are too different.
|
| - ///
|
| - /// If non-null is returned, the caller MUST discard [s] and [t] and use
|
| - /// the returned statement instead.
|
| - static Statement combineStatementsWithSubexpressions(
|
| - Statement s,
|
| - Statement t,
|
| - Expression combine(Expression s, Expression t)) {
|
| - if (s is Return && t is Return) {
|
| - return new Return(combine(s.value, t.value));
|
| - }
|
| - if (s is Assign && t is Assign && s.variable == t.variable) {
|
| - Statement next = combineStatements(s.next, t.next);
|
| - if (next != null) {
|
| - --t.variable.writeCount; // Two assignments become one.
|
| - return new Assign(s.variable,
|
| - combine(s.definition, t.definition),
|
| - next);
|
| - }
|
| - }
|
| - if (s is ExpressionStatement && t is ExpressionStatement) {
|
| - Statement next = combineStatements(s.next, t.next);
|
| - if (next != null) {
|
| - return new ExpressionStatement(combine(s.expression, t.expression),
|
| - next);
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /// Returns a statement equivalent to both [s] and [t], or null if [s] and
|
| - /// [t] are incompatible.
|
| - /// If non-null is returned, the caller MUST discard [s] and [t] and use
|
| - /// the returned statement instead.
|
| - /// If two breaks are combined, the label's break counter will be decremented.
|
| - static Statement combineStatements(Statement s, Statement t) {
|
| - if (s is Break && t is Break && s.target == t.target) {
|
| - --t.target.useCount; // Two breaks become one.
|
| - return s;
|
| - }
|
| - if (s is Continue && t is Continue && s.target == t.target) {
|
| - --t.target.useCount; // Two continues become one.
|
| - return s;
|
| - }
|
| - if (s is Return && t is Return) {
|
| - Expression e = combineExpressions(s.value, t.value);
|
| - if (e != null) {
|
| - return new Return(e);
|
| - }
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /// Returns an expression equivalent to both [e1] and [e2].
|
| - /// If non-null is returned, the caller must discard [e1] and [e2] and use
|
| - /// the resulting expression in the tree.
|
| - static Expression combineExpressions(Expression e1, Expression e2) {
|
| - if (e1 is Variable && e1 == e2) {
|
| - --e1.readCount; // Two references become one.
|
| - return e1;
|
| - }
|
| - if (e1 is Constant && e2 is Constant && e1.value == e2.value) {
|
| - return e1;
|
| - }
|
| - return null;
|
| - }
|
| -
|
| - /// Try to collapse nested ifs using && and || expressions.
|
| - /// For example:
|
| - ///
|
| - /// if (E1) { if (E2) S else break L } else break L
|
| - /// ==>
|
| - /// if (E1 && E2) S else break L
|
| - ///
|
| - /// [branch1] and [branch2] control the position of the S statement.
|
| - ///
|
| - /// Returns true if another collapse redex might have been introduced.
|
| - void tryCollapseIf(If node) {
|
| - // Repeatedly try to collapse nested ifs.
|
| - // The transformation is shrinking (destroys an if) so it remains linear.
|
| - // Here is an example where more than one iteration is required:
|
| - //
|
| - // if (E1)
|
| - // if (E2) break L2 else break L1
|
| - // else
|
| - // break L1
|
| - //
|
| - // L1.target ::=
|
| - // if (E3) S else break L2
|
| - //
|
| - // After first collapse:
|
| - //
|
| - // if (E1 && E2)
|
| - // break L2
|
| - // else
|
| - // {if (E3) S else break L2} (inlined from break L1)
|
| - //
|
| - // We can then do another collapse using the inlined nested if.
|
| - bool changed = true;
|
| - while (changed) {
|
| - changed = false;
|
| - if (tryCollapseIfAux(node, true, true)) {
|
| - changed = true;
|
| - }
|
| - if (tryCollapseIfAux(node, true, false)) {
|
| - changed = true;
|
| - }
|
| - if (tryCollapseIfAux(node, false, true)) {
|
| - changed = true;
|
| - }
|
| - if (tryCollapseIfAux(node, false, false)) {
|
| - changed = true;
|
| - }
|
| - }
|
| - }
|
| -
|
| - bool tryCollapseIfAux(If outerIf, bool branch1, bool branch2) {
|
| - // NOTE: We name variables here as if S is in the then-then position.
|
| - Statement outerThen = getBranch(outerIf, branch1);
|
| - Statement outerElse = getBranch(outerIf, !branch1);
|
| - if (outerThen is If && outerElse is Break) {
|
| - If innerIf = outerThen;
|
| - Statement innerThen = getBranch(innerIf, branch2);
|
| - Statement innerElse = getBranch(innerIf, !branch2);
|
| - if (innerElse is Break && innerElse.target == outerElse.target) {
|
| - // We always put S in the then branch of the result, and adjust the
|
| - // condition expression if S was actually found in the else branch(es).
|
| - outerIf.condition = new LogicalOperator.and(
|
| - makeCondition(outerIf.condition, branch1),
|
| - makeCondition(innerIf.condition, branch2));
|
| - outerIf.thenStatement = innerThen;
|
| - --innerElse.target.useCount;
|
| -
|
| - // Try to inline the remaining break. Do not propagate assignments.
|
| - List<Assign> savedEnvironment = environment;
|
| - environment = <Assign>[];
|
| - outerIf.elseStatement = visitStatement(outerElse);
|
| - assert(environment.isEmpty);
|
| - environment = savedEnvironment;
|
| -
|
| - return outerIf.elseStatement is If && innerThen is Break;
|
| - }
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - Expression makeCondition(Expression e, bool polarity) {
|
| - return polarity ? e : new Not(e);
|
| - }
|
| -
|
| - Statement getBranch(If node, bool polarity) {
|
| - return polarity ? node.thenStatement : node.elseStatement;
|
| - }
|
| -}
|
|
|