| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 part of resolution; | |
| 6 | |
| 7 abstract class TreeElements { | |
| 8 AnalyzableElement get analyzedElement; | |
| 9 Iterable<Node> get superUses; | |
| 10 | |
| 11 /// Iterables of the dependencies that this [TreeElement] records of | |
| 12 /// [analyzedElement]. | |
| 13 Iterable<Element> get allElements; | |
| 14 void forEachConstantNode(f(Node n, ConstantExpression c)); | |
| 15 | |
| 16 /// A set of additional dependencies. See [registerDependency] below. | |
| 17 Iterable<Element> get otherDependencies; | |
| 18 | |
| 19 Element operator[](Node node); | |
| 20 | |
| 21 // TODO(johnniwinther): Investigate whether [Node] could be a [Send]. | |
| 22 Selector getSelector(Node node); | |
| 23 Selector getGetterSelectorInComplexSendSet(SendSet node); | |
| 24 Selector getOperatorSelectorInComplexSendSet(SendSet node); | |
| 25 DartType getType(Node node); | |
| 26 void setSelector(Node node, Selector selector); | |
| 27 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector); | |
| 28 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector); | |
| 29 | |
| 30 /// Returns the for-in loop variable for [node]. | |
| 31 Element getForInVariable(ForIn node); | |
| 32 Selector getIteratorSelector(ForIn node); | |
| 33 Selector getMoveNextSelector(ForIn node); | |
| 34 Selector getCurrentSelector(ForIn node); | |
| 35 void setIteratorSelector(ForIn node, Selector selector); | |
| 36 void setMoveNextSelector(ForIn node, Selector selector); | |
| 37 void setCurrentSelector(ForIn node, Selector selector); | |
| 38 void setConstant(Node node, ConstantExpression constant); | |
| 39 ConstantExpression getConstant(Node node); | |
| 40 bool isAssert(Send send); | |
| 41 | |
| 42 /// Returns the [FunctionElement] defined by [node]. | |
| 43 FunctionElement getFunctionDefinition(FunctionExpression node); | |
| 44 | |
| 45 /// Returns target constructor for the redirecting factory body [node]. | |
| 46 ConstructorElement getRedirectingTargetConstructor( | |
| 47 RedirectingFactoryBody node); | |
| 48 | |
| 49 /** | |
| 50 * Returns [:true:] if [node] is a type literal. | |
| 51 * | |
| 52 * Resolution marks this by setting the type on the node to be the | |
| 53 * type that the literal refers to. | |
| 54 */ | |
| 55 bool isTypeLiteral(Send node); | |
| 56 | |
| 57 /// Returns the type that the type literal [node] refers to. | |
| 58 DartType getTypeLiteralType(Send node); | |
| 59 | |
| 60 /// Register additional dependencies required by [analyzedElement]. | |
| 61 /// For example, elements that are used by a backend. | |
| 62 void registerDependency(Element element); | |
| 63 | |
| 64 /// Returns a list of nodes that potentially mutate [element] anywhere in its | |
| 65 /// scope. | |
| 66 List<Node> getPotentialMutations(VariableElement element); | |
| 67 | |
| 68 /// Returns a list of nodes that potentially mutate [element] in [node]. | |
| 69 List<Node> getPotentialMutationsIn(Node node, VariableElement element); | |
| 70 | |
| 71 /// Returns a list of nodes that potentially mutate [element] in a closure. | |
| 72 List<Node> getPotentialMutationsInClosure(VariableElement element); | |
| 73 | |
| 74 /// Returns a list of nodes that access [element] within a closure in [node]. | |
| 75 List<Node> getAccessesByClosureIn(Node node, VariableElement element); | |
| 76 | |
| 77 /// Returns the jump target defined by [node]. | |
| 78 JumpTarget getTargetDefinition(Node node); | |
| 79 | |
| 80 /// Returns the jump target of the [node]. | |
| 81 JumpTarget getTargetOf(GotoStatement node); | |
| 82 | |
| 83 /// Returns the label defined by [node]. | |
| 84 LabelDefinition getLabelDefinition(Label node); | |
| 85 | |
| 86 /// Returns the label that [node] targets. | |
| 87 LabelDefinition getTargetLabel(GotoStatement node); | |
| 88 } | |
| 89 | |
| 90 class TreeElementMapping implements TreeElements { | |
| 91 final AnalyzableElement analyzedElement; | |
| 92 Map<Spannable, Selector> _selectors; | |
| 93 Map<Node, DartType> _types; | |
| 94 Setlet<Node> _superUses; | |
| 95 Setlet<Element> _otherDependencies; | |
| 96 Map<Node, ConstantExpression> _constants; | |
| 97 Map<VariableElement, List<Node>> _potentiallyMutated; | |
| 98 Map<Node, Map<VariableElement, List<Node>>> _potentiallyMutatedIn; | |
| 99 Map<VariableElement, List<Node>> _potentiallyMutatedInClosure; | |
| 100 Map<Node, Map<VariableElement, List<Node>>> _accessedByClosureIn; | |
| 101 Setlet<Element> _elements; | |
| 102 Setlet<Send> _asserts; | |
| 103 | |
| 104 /// Map from nodes to the targets they define. | |
| 105 Map<Node, JumpTarget> _definedTargets; | |
| 106 | |
| 107 /// Map from goto statements to their targets. | |
| 108 Map<GotoStatement, JumpTarget> _usedTargets; | |
| 109 | |
| 110 /// Map from labels to their label definition. | |
| 111 Map<Label, LabelDefinition> _definedLabels; | |
| 112 | |
| 113 /// Map from labeled goto statements to the labels they target. | |
| 114 Map<GotoStatement, LabelDefinition> _targetLabels; | |
| 115 | |
| 116 final int hashCode = ++_hashCodeCounter; | |
| 117 static int _hashCodeCounter = 0; | |
| 118 | |
| 119 TreeElementMapping(this.analyzedElement); | |
| 120 | |
| 121 operator []=(Node node, Element element) { | |
| 122 assert(invariant(node, () { | |
| 123 FunctionExpression functionExpression = node.asFunctionExpression(); | |
| 124 if (functionExpression != null) { | |
| 125 return !functionExpression.modifiers.isExternal; | |
| 126 } | |
| 127 return true; | |
| 128 })); | |
| 129 // TODO(johnniwinther): Simplify this invariant to use only declarations in | |
| 130 // [TreeElements]. | |
| 131 assert(invariant(node, () { | |
| 132 if (!element.isErroneous && analyzedElement != null && element.isPatch) { | |
| 133 return analyzedElement.implementationLibrary.isPatch; | |
| 134 } | |
| 135 return true; | |
| 136 })); | |
| 137 // TODO(ahe): Investigate why the invariant below doesn't hold. | |
| 138 // assert(invariant(node, | |
| 139 // getTreeElement(node) == element || | |
| 140 // getTreeElement(node) == null, | |
| 141 // message: '${getTreeElement(node)}; $element')); | |
| 142 | |
| 143 if (_elements == null) { | |
| 144 _elements = new Setlet<Element>(); | |
| 145 } | |
| 146 _elements.add(element); | |
| 147 setTreeElement(node, element); | |
| 148 } | |
| 149 | |
| 150 operator [](Node node) => getTreeElement(node); | |
| 151 | |
| 152 void setType(Node node, DartType type) { | |
| 153 if (_types == null) { | |
| 154 _types = new Maplet<Node, DartType>(); | |
| 155 } | |
| 156 _types[node] = type; | |
| 157 } | |
| 158 | |
| 159 DartType getType(Node node) => _types != null ? _types[node] : null; | |
| 160 | |
| 161 Iterable<Node> get superUses { | |
| 162 return _superUses != null ? _superUses : const <Node>[]; | |
| 163 } | |
| 164 | |
| 165 void addSuperUse(Node node) { | |
| 166 if (_superUses == null) { | |
| 167 _superUses = new Setlet<Node>(); | |
| 168 } | |
| 169 _superUses.add(node); | |
| 170 } | |
| 171 | |
| 172 Selector _getSelector(Spannable node) { | |
| 173 return _selectors != null ? _selectors[node] : null; | |
| 174 } | |
| 175 | |
| 176 void _setSelector(Spannable node, Selector selector) { | |
| 177 if (_selectors == null) { | |
| 178 _selectors = new Maplet<Spannable, Selector>(); | |
| 179 } | |
| 180 _selectors[node] = selector; | |
| 181 } | |
| 182 | |
| 183 void setSelector(Node node, Selector selector) { | |
| 184 _setSelector(node, selector); | |
| 185 } | |
| 186 | |
| 187 Selector getSelector(Node node) => _getSelector(node); | |
| 188 | |
| 189 int getSelectorCount() => _selectors == null ? 0 : _selectors.length; | |
| 190 | |
| 191 void setGetterSelectorInComplexSendSet(SendSet node, Selector selector) { | |
| 192 _setSelector(node.selector, selector); | |
| 193 } | |
| 194 | |
| 195 Selector getGetterSelectorInComplexSendSet(SendSet node) { | |
| 196 return _getSelector(node.selector); | |
| 197 } | |
| 198 | |
| 199 void setOperatorSelectorInComplexSendSet(SendSet node, Selector selector) { | |
| 200 _setSelector(node.assignmentOperator, selector); | |
| 201 } | |
| 202 | |
| 203 Selector getOperatorSelectorInComplexSendSet(SendSet node) { | |
| 204 return _getSelector(node.assignmentOperator); | |
| 205 } | |
| 206 | |
| 207 // The following methods set selectors on the "for in" node. Since | |
| 208 // we're using three selectors, we need to use children of the node, | |
| 209 // and we arbitrarily choose which ones. | |
| 210 | |
| 211 void setIteratorSelector(ForIn node, Selector selector) { | |
| 212 _setSelector(node, selector); | |
| 213 } | |
| 214 | |
| 215 Selector getIteratorSelector(ForIn node) { | |
| 216 return _getSelector(node); | |
| 217 } | |
| 218 | |
| 219 void setMoveNextSelector(ForIn node, Selector selector) { | |
| 220 _setSelector(node.forToken, selector); | |
| 221 } | |
| 222 | |
| 223 Selector getMoveNextSelector(ForIn node) { | |
| 224 return _getSelector(node.forToken); | |
| 225 } | |
| 226 | |
| 227 void setCurrentSelector(ForIn node, Selector selector) { | |
| 228 _setSelector(node.inToken, selector); | |
| 229 } | |
| 230 | |
| 231 Selector getCurrentSelector(ForIn node) { | |
| 232 return _getSelector(node.inToken); | |
| 233 } | |
| 234 | |
| 235 Element getForInVariable(ForIn node) { | |
| 236 return this[node]; | |
| 237 } | |
| 238 | |
| 239 void setConstant(Node node, ConstantExpression constant) { | |
| 240 if (_constants == null) { | |
| 241 _constants = new Maplet<Node, ConstantExpression>(); | |
| 242 } | |
| 243 _constants[node] = constant; | |
| 244 } | |
| 245 | |
| 246 ConstantExpression getConstant(Node node) { | |
| 247 return _constants != null ? _constants[node] : null; | |
| 248 } | |
| 249 | |
| 250 bool isTypeLiteral(Send node) { | |
| 251 return getType(node) != null; | |
| 252 } | |
| 253 | |
| 254 DartType getTypeLiteralType(Send node) { | |
| 255 return getType(node); | |
| 256 } | |
| 257 | |
| 258 void registerDependency(Element element) { | |
| 259 if (element == null) return; | |
| 260 if (_otherDependencies == null) { | |
| 261 _otherDependencies = new Setlet<Element>(); | |
| 262 } | |
| 263 _otherDependencies.add(element.implementation); | |
| 264 } | |
| 265 | |
| 266 Iterable<Element> get otherDependencies { | |
| 267 return _otherDependencies != null ? _otherDependencies : const <Element>[]; | |
| 268 } | |
| 269 | |
| 270 List<Node> getPotentialMutations(VariableElement element) { | |
| 271 if (_potentiallyMutated == null) return const <Node>[]; | |
| 272 List<Node> mutations = _potentiallyMutated[element]; | |
| 273 if (mutations == null) return const <Node>[]; | |
| 274 return mutations; | |
| 275 } | |
| 276 | |
| 277 void registerPotentialMutation(VariableElement element, Node mutationNode) { | |
| 278 if (_potentiallyMutated == null) { | |
| 279 _potentiallyMutated = new Maplet<VariableElement, List<Node>>(); | |
| 280 } | |
| 281 _potentiallyMutated.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
| 282 } | |
| 283 | |
| 284 List<Node> getPotentialMutationsIn(Node node, VariableElement element) { | |
| 285 if (_potentiallyMutatedIn == null) return const <Node>[]; | |
| 286 Map<VariableElement, List<Node>> mutationsIn = _potentiallyMutatedIn[node]; | |
| 287 if (mutationsIn == null) return const <Node>[]; | |
| 288 List<Node> mutations = mutationsIn[element]; | |
| 289 if (mutations == null) return const <Node>[]; | |
| 290 return mutations; | |
| 291 } | |
| 292 | |
| 293 void registerPotentialMutationIn(Node contextNode, VariableElement element, | |
| 294 Node mutationNode) { | |
| 295 if (_potentiallyMutatedIn == null) { | |
| 296 _potentiallyMutatedIn = | |
| 297 new Maplet<Node, Map<VariableElement, List<Node>>>(); | |
| 298 } | |
| 299 Map<VariableElement, List<Node>> mutationMap = | |
| 300 _potentiallyMutatedIn.putIfAbsent(contextNode, | |
| 301 () => new Maplet<VariableElement, List<Node>>()); | |
| 302 mutationMap.putIfAbsent(element, () => <Node>[]).add(mutationNode); | |
| 303 } | |
| 304 | |
| 305 List<Node> getPotentialMutationsInClosure(VariableElement element) { | |
| 306 if (_potentiallyMutatedInClosure == null) return const <Node>[]; | |
| 307 List<Node> mutations = _potentiallyMutatedInClosure[element]; | |
| 308 if (mutations == null) return const <Node>[]; | |
| 309 return mutations; | |
| 310 } | |
| 311 | |
| 312 void registerPotentialMutationInClosure(VariableElement element, | |
| 313 Node mutationNode) { | |
| 314 if (_potentiallyMutatedInClosure == null) { | |
| 315 _potentiallyMutatedInClosure = new Maplet<VariableElement, List<Node>>(); | |
| 316 } | |
| 317 _potentiallyMutatedInClosure.putIfAbsent( | |
| 318 element, () => <Node>[]).add(mutationNode); | |
| 319 } | |
| 320 | |
| 321 List<Node> getAccessesByClosureIn(Node node, VariableElement element) { | |
| 322 if (_accessedByClosureIn == null) return const <Node>[]; | |
| 323 Map<VariableElement, List<Node>> accessesIn = _accessedByClosureIn[node]; | |
| 324 if (accessesIn == null) return const <Node>[]; | |
| 325 List<Node> accesses = accessesIn[element]; | |
| 326 if (accesses == null) return const <Node>[]; | |
| 327 return accesses; | |
| 328 } | |
| 329 | |
| 330 void setAccessedByClosureIn(Node contextNode, VariableElement element, | |
| 331 Node accessNode) { | |
| 332 if (_accessedByClosureIn == null) { | |
| 333 _accessedByClosureIn = new Map<Node, Map<VariableElement, List<Node>>>(); | |
| 334 } | |
| 335 Map<VariableElement, List<Node>> accessMap = | |
| 336 _accessedByClosureIn.putIfAbsent(contextNode, | |
| 337 () => new Maplet<VariableElement, List<Node>>()); | |
| 338 accessMap.putIfAbsent(element, () => <Node>[]).add(accessNode); | |
| 339 } | |
| 340 | |
| 341 String toString() => 'TreeElementMapping($analyzedElement)'; | |
| 342 | |
| 343 Iterable<Element> get allElements { | |
| 344 return _elements != null ? _elements : const <Element>[]; | |
| 345 } | |
| 346 | |
| 347 void forEachConstantNode(f(Node n, ConstantExpression c)) { | |
| 348 if (_constants != null) { | |
| 349 _constants.forEach(f); | |
| 350 } | |
| 351 } | |
| 352 | |
| 353 void setAssert(Send node) { | |
| 354 if (_asserts == null) { | |
| 355 _asserts = new Setlet<Send>(); | |
| 356 } | |
| 357 _asserts.add(node); | |
| 358 } | |
| 359 | |
| 360 bool isAssert(Send node) { | |
| 361 return _asserts != null && _asserts.contains(node); | |
| 362 } | |
| 363 | |
| 364 FunctionElement getFunctionDefinition(FunctionExpression node) { | |
| 365 return this[node]; | |
| 366 } | |
| 367 | |
| 368 ConstructorElement getRedirectingTargetConstructor( | |
| 369 RedirectingFactoryBody node) { | |
| 370 return this[node]; | |
| 371 } | |
| 372 | |
| 373 void defineTarget(Node node, JumpTarget target) { | |
| 374 if (_definedTargets == null) { | |
| 375 _definedTargets = new Maplet<Node, JumpTarget>(); | |
| 376 } | |
| 377 _definedTargets[node] = target; | |
| 378 } | |
| 379 | |
| 380 void undefineTarget(Node node) { | |
| 381 if (_definedTargets != null) { | |
| 382 _definedTargets.remove(node); | |
| 383 if (_definedTargets.isEmpty) { | |
| 384 _definedTargets = null; | |
| 385 } | |
| 386 } | |
| 387 } | |
| 388 | |
| 389 JumpTarget getTargetDefinition(Node node) { | |
| 390 return _definedTargets != null ? _definedTargets[node] : null; | |
| 391 } | |
| 392 | |
| 393 void registerTargetOf(GotoStatement node, JumpTarget target) { | |
| 394 if (_usedTargets == null) { | |
| 395 _usedTargets = new Maplet<GotoStatement, JumpTarget>(); | |
| 396 } | |
| 397 _usedTargets[node] = target; | |
| 398 } | |
| 399 | |
| 400 JumpTarget getTargetOf(GotoStatement node) { | |
| 401 return _usedTargets != null ? _usedTargets[node] : null; | |
| 402 } | |
| 403 | |
| 404 void defineLabel(Label label, LabelDefinition target) { | |
| 405 if (_definedLabels == null) { | |
| 406 _definedLabels = new Maplet<Label, LabelDefinition>(); | |
| 407 } | |
| 408 _definedLabels[label] = target; | |
| 409 } | |
| 410 | |
| 411 void undefineLabel(Label label) { | |
| 412 if (_definedLabels != null) { | |
| 413 _definedLabels.remove(label); | |
| 414 if (_definedLabels.isEmpty) { | |
| 415 _definedLabels = null; | |
| 416 } | |
| 417 } | |
| 418 } | |
| 419 | |
| 420 LabelDefinition getLabelDefinition(Label label) { | |
| 421 return _definedLabels != null ? _definedLabels[label] : null; | |
| 422 } | |
| 423 | |
| 424 void registerTargetLabel(GotoStatement node, LabelDefinition label) { | |
| 425 assert(node.target != null); | |
| 426 if (_targetLabels == null) { | |
| 427 _targetLabels = new Maplet<GotoStatement, LabelDefinition>(); | |
| 428 } | |
| 429 _targetLabels[node] = label; | |
| 430 } | |
| 431 | |
| 432 LabelDefinition getTargetLabel(GotoStatement node) { | |
| 433 assert(node.target != null); | |
| 434 return _targetLabels != null ? _targetLabels[node] : null; | |
| 435 } | |
| 436 } | |
| 437 | |
| 438 class ResolverTask extends CompilerTask { | |
| 439 final ConstantCompiler constantCompiler; | |
| 440 | |
| 441 ResolverTask(Compiler compiler, this.constantCompiler) : super(compiler); | |
| 442 | |
| 443 String get name => 'Resolver'; | |
| 444 | |
| 445 TreeElements resolve(Element element) { | |
| 446 return measure(() { | |
| 447 if (Elements.isErroneousElement(element)) return null; | |
| 448 | |
| 449 processMetadata([result]) { | |
| 450 for (MetadataAnnotation metadata in element.metadata) { | |
| 451 metadata.ensureResolved(compiler); | |
| 452 } | |
| 453 return result; | |
| 454 } | |
| 455 | |
| 456 ElementKind kind = element.kind; | |
| 457 if (identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR) || | |
| 458 identical(kind, ElementKind.FUNCTION) || | |
| 459 identical(kind, ElementKind.GETTER) || | |
| 460 identical(kind, ElementKind.SETTER)) { | |
| 461 return processMetadata(resolveMethodElement(element)); | |
| 462 } | |
| 463 | |
| 464 if (identical(kind, ElementKind.FIELD)) { | |
| 465 return processMetadata(resolveField(element)); | |
| 466 } | |
| 467 if (element.isClass) { | |
| 468 ClassElement cls = element; | |
| 469 cls.ensureResolved(compiler); | |
| 470 return processMetadata(); | |
| 471 } else if (element.isTypedef) { | |
| 472 TypedefElement typdef = element; | |
| 473 return processMetadata(resolveTypedef(typdef)); | |
| 474 } | |
| 475 | |
| 476 compiler.unimplemented(element, "resolve($element)"); | |
| 477 }); | |
| 478 } | |
| 479 | |
| 480 void resolveRedirectingConstructor(InitializerResolver resolver, | |
| 481 Node node, | |
| 482 FunctionElement constructor, | |
| 483 FunctionElement redirection) { | |
| 484 assert(invariant(node, constructor.isImplementation, | |
| 485 message: 'Redirecting constructors must be resolved on implementation ' | |
| 486 'elements.')); | |
| 487 Setlet<FunctionElement> seen = new Setlet<FunctionElement>(); | |
| 488 seen.add(constructor); | |
| 489 while (redirection != null) { | |
| 490 // Ensure that we follow redirections through implementation elements. | |
| 491 redirection = redirection.implementation; | |
| 492 if (seen.contains(redirection)) { | |
| 493 resolver.visitor.error(node, MessageKind.REDIRECTING_CONSTRUCTOR_CYCLE); | |
| 494 return; | |
| 495 } | |
| 496 seen.add(redirection); | |
| 497 redirection = resolver.visitor.resolveConstructorRedirection(redirection); | |
| 498 } | |
| 499 } | |
| 500 | |
| 501 void checkMatchingPatchParameters(FunctionElement origin, | |
| 502 Link<Element> originParameters, | |
| 503 Link<Element> patchParameters) { | |
| 504 while (!originParameters.isEmpty) { | |
| 505 ParameterElementX originParameter = originParameters.head; | |
| 506 ParameterElementX patchParameter = patchParameters.head; | |
| 507 // TODO(johnniwinther): Remove the conditional patching when we never | |
| 508 // resolve the same method twice. | |
| 509 if (!originParameter.isPatched) { | |
| 510 originParameter.applyPatch(patchParameter); | |
| 511 } else { | |
| 512 assert(invariant(origin, originParameter.patch == patchParameter, | |
| 513 message: "Inconsistent repatch of $originParameter.")); | |
| 514 } | |
| 515 DartType originParameterType = originParameter.computeType(compiler); | |
| 516 DartType patchParameterType = patchParameter.computeType(compiler); | |
| 517 if (originParameterType != patchParameterType) { | |
| 518 compiler.reportError( | |
| 519 originParameter.parseNode(compiler), | |
| 520 MessageKind.PATCH_PARAMETER_TYPE_MISMATCH, | |
| 521 {'methodName': origin.name, | |
| 522 'parameterName': originParameter.name, | |
| 523 'originParameterType': originParameterType, | |
| 524 'patchParameterType': patchParameterType}); | |
| 525 compiler.reportInfo(patchParameter, | |
| 526 MessageKind.PATCH_POINT_TO_PARAMETER, | |
| 527 {'parameterName': patchParameter.name}); | |
| 528 } else { | |
| 529 // Hack: Use unparser to test parameter equality. This only works | |
| 530 // because we are restricting patch uses and the approach cannot be used | |
| 531 // elsewhere. | |
| 532 | |
| 533 // The node contains the type, so there is a potential overlap. | |
| 534 // Therefore we only check the text if the types are identical. | |
| 535 String originParameterText = | |
| 536 originParameter.parseNode(compiler).toString(); | |
| 537 String patchParameterText = | |
| 538 patchParameter.parseNode(compiler).toString(); | |
| 539 if (originParameterText != patchParameterText | |
| 540 // We special case the list constructor because of the | |
| 541 // optional parameter. | |
| 542 && origin != compiler.unnamedListConstructor) { | |
| 543 compiler.reportError( | |
| 544 originParameter.parseNode(compiler), | |
| 545 MessageKind.PATCH_PARAMETER_MISMATCH, | |
| 546 {'methodName': origin.name, | |
| 547 'originParameter': originParameterText, | |
| 548 'patchParameter': patchParameterText}); | |
| 549 compiler.reportInfo(patchParameter, | |
| 550 MessageKind.PATCH_POINT_TO_PARAMETER, | |
| 551 {'parameterName': patchParameter.name}); | |
| 552 } | |
| 553 } | |
| 554 | |
| 555 originParameters = originParameters.tail; | |
| 556 patchParameters = patchParameters.tail; | |
| 557 } | |
| 558 } | |
| 559 | |
| 560 void checkMatchingPatchSignatures(FunctionElement origin, | |
| 561 FunctionElement patch) { | |
| 562 // TODO(johnniwinther): Show both origin and patch locations on errors. | |
| 563 FunctionExpression originTree = origin.node; | |
| 564 FunctionSignature originSignature = origin.functionSignature; | |
| 565 FunctionExpression patchTree = patch.node; | |
| 566 FunctionSignature patchSignature = patch.functionSignature; | |
| 567 | |
| 568 if (originSignature.type.returnType != patchSignature.type.returnType) { | |
| 569 compiler.withCurrentElement(patch, () { | |
| 570 Node errorNode = | |
| 571 patchTree.returnType != null ? patchTree.returnType : patchTree; | |
| 572 error(errorNode, MessageKind.PATCH_RETURN_TYPE_MISMATCH, | |
| 573 {'methodName': origin.name, | |
| 574 'originReturnType': originSignature.type.returnType, | |
| 575 'patchReturnType': patchSignature.type.returnType}); | |
| 576 }); | |
| 577 } | |
| 578 if (originSignature.requiredParameterCount != | |
| 579 patchSignature.requiredParameterCount) { | |
| 580 compiler.withCurrentElement(patch, () { | |
| 581 error(patchTree, | |
| 582 MessageKind.PATCH_REQUIRED_PARAMETER_COUNT_MISMATCH, | |
| 583 {'methodName': origin.name, | |
| 584 'originParameterCount': originSignature.requiredParameterCount, | |
| 585 'patchParameterCount': patchSignature.requiredParameterCount}); | |
| 586 }); | |
| 587 } else { | |
| 588 checkMatchingPatchParameters(origin, | |
| 589 originSignature.requiredParameters, | |
| 590 patchSignature.requiredParameters); | |
| 591 } | |
| 592 if (originSignature.optionalParameterCount != 0 && | |
| 593 patchSignature.optionalParameterCount != 0) { | |
| 594 if (originSignature.optionalParametersAreNamed != | |
| 595 patchSignature.optionalParametersAreNamed) { | |
| 596 compiler.withCurrentElement(patch, () { | |
| 597 error(patchTree, | |
| 598 MessageKind.PATCH_OPTIONAL_PARAMETER_NAMED_MISMATCH, | |
| 599 {'methodName': origin.name}); | |
| 600 }); | |
| 601 } | |
| 602 } | |
| 603 if (originSignature.optionalParameterCount != | |
| 604 patchSignature.optionalParameterCount) { | |
| 605 compiler.withCurrentElement(patch, () { | |
| 606 error(patchTree, | |
| 607 MessageKind.PATCH_OPTIONAL_PARAMETER_COUNT_MISMATCH, | |
| 608 {'methodName': origin.name, | |
| 609 'originParameterCount': originSignature.optionalParameterCount, | |
| 610 'patchParameterCount': patchSignature.optionalParameterCount}); | |
| 611 }); | |
| 612 } else { | |
| 613 checkMatchingPatchParameters(origin, | |
| 614 originSignature.optionalParameters, | |
| 615 patchSignature.optionalParameters); | |
| 616 } | |
| 617 } | |
| 618 | |
| 619 TreeElements resolveMethodElement(FunctionElementX element) { | |
| 620 assert(invariant(element, element.isDeclaration)); | |
| 621 return compiler.withCurrentElement(element, () { | |
| 622 bool isConstructor = | |
| 623 identical(element.kind, ElementKind.GENERATIVE_CONSTRUCTOR); | |
| 624 if (compiler.enqueuer.resolution.hasBeenResolved(element)) { | |
| 625 // TODO(karlklose): Remove the check for [isConstructor]. [elememts] | |
| 626 // should never be non-null, not even for constructors. | |
| 627 assert(invariant(element, element.isConstructor, | |
| 628 message: 'Non-constructor element $element ' | |
| 629 'has already been analyzed.')); | |
| 630 return element.resolvedAst.elements; | |
| 631 } | |
| 632 if (element.isSynthesized) { | |
| 633 if (isConstructor) { | |
| 634 ResolutionRegistry registry = | |
| 635 new ResolutionRegistry(compiler, element); | |
| 636 ConstructorElement constructor = element.asFunctionElement(); | |
| 637 ConstructorElement target = constructor.definingConstructor; | |
| 638 // Ensure the signature of the synthesized element is | |
| 639 // resolved. This is the only place where the resolver is | |
| 640 // seeing this element. | |
| 641 element.computeSignature(compiler); | |
| 642 if (!target.isErroneous) { | |
| 643 registry.registerStaticUse(target); | |
| 644 registry.registerImplicitSuperCall(target); | |
| 645 } | |
| 646 return registry.mapping; | |
| 647 } else { | |
| 648 assert(element.isDeferredLoaderGetter); | |
| 649 return _ensureTreeElements(element); | |
| 650 } | |
| 651 } | |
| 652 element.parseNode(compiler); | |
| 653 element.computeType(compiler); | |
| 654 if (element.isPatched) { | |
| 655 FunctionElementX patch = element.patch; | |
| 656 compiler.withCurrentElement(patch, () { | |
| 657 patch.parseNode(compiler); | |
| 658 patch.computeType(compiler); | |
| 659 }); | |
| 660 checkMatchingPatchSignatures(element, patch); | |
| 661 element = patch; | |
| 662 } | |
| 663 return compiler.withCurrentElement(element, () { | |
| 664 FunctionExpression tree = element.node; | |
| 665 if (tree.modifiers.isExternal) { | |
| 666 error(tree, MessageKind.PATCH_EXTERNAL_WITHOUT_IMPLEMENTATION); | |
| 667 return null; | |
| 668 } | |
| 669 if (isConstructor || element.isFactoryConstructor) { | |
| 670 if (tree.returnType != null) { | |
| 671 error(tree, MessageKind.CONSTRUCTOR_WITH_RETURN_TYPE); | |
| 672 } | |
| 673 if (element.modifiers.isConst && | |
| 674 tree.hasBody() && | |
| 675 !tree.isRedirectingFactory) { | |
| 676 compiler.reportError(tree, MessageKind.CONST_CONSTRUCTOR_HAS_BODY); | |
| 677 } | |
| 678 } | |
| 679 | |
| 680 ResolverVisitor visitor = visitorFor(element); | |
| 681 ResolutionRegistry registry = visitor.registry; | |
| 682 registry.defineFunction(tree, element); | |
| 683 visitor.setupFunction(tree, element); | |
| 684 | |
| 685 if (isConstructor && !element.isForwardingConstructor) { | |
| 686 // Even if there is no initializer list we still have to do the | |
| 687 // resolution in case there is an implicit super constructor call. | |
| 688 InitializerResolver resolver = new InitializerResolver(visitor); | |
| 689 FunctionElement redirection = | |
| 690 resolver.resolveInitializers(element, tree); | |
| 691 if (redirection != null) { | |
| 692 resolveRedirectingConstructor(resolver, tree, element, redirection); | |
| 693 } | |
| 694 } else if (element.isForwardingConstructor) { | |
| 695 // Initializers will be checked on the original constructor. | |
| 696 } else if (tree.initializers != null) { | |
| 697 error(tree, MessageKind.FUNCTION_WITH_INITIALIZER); | |
| 698 } | |
| 699 | |
| 700 if (!compiler.analyzeSignaturesOnly || tree.isRedirectingFactory) { | |
| 701 // We need to analyze the redirecting factory bodies to ensure that | |
| 702 // we can analyze compile-time constants. | |
| 703 visitor.visit(tree.body); | |
| 704 } | |
| 705 | |
| 706 // Get the resolution tree and check that the resolved | |
| 707 // function doesn't use 'super' if it is mixed into another | |
| 708 // class. This is the part of the 'super' mixin check that | |
| 709 // happens when a function is resolved after the mixin | |
| 710 // application has been performed. | |
| 711 TreeElements resolutionTree = registry.mapping; | |
| 712 ClassElement enclosingClass = element.enclosingClass; | |
| 713 if (enclosingClass != null) { | |
| 714 // TODO(johnniwinther): Find another way to obtain mixin uses. | |
| 715 Iterable<MixinApplicationElement> mixinUses = | |
| 716 compiler.world.allMixinUsesOf(enclosingClass); | |
| 717 ClassElement mixin = enclosingClass; | |
| 718 for (MixinApplicationElement mixinApplication in mixinUses) { | |
| 719 checkMixinSuperUses(resolutionTree, mixinApplication, mixin); | |
| 720 } | |
| 721 } | |
| 722 return resolutionTree; | |
| 723 }); | |
| 724 }); | |
| 725 } | |
| 726 | |
| 727 /// Creates a [ResolverVisitor] for resolving an AST in context of [element]. | |
| 728 /// If [useEnclosingScope] is `true` then the initial scope of the visitor | |
| 729 /// does not include inner scope of [element]. | |
| 730 /// | |
| 731 /// This method should only be used by this library (or tests of | |
| 732 /// this library). | |
| 733 ResolverVisitor visitorFor(Element element, {bool useEnclosingScope: false}) { | |
| 734 return new ResolverVisitor(compiler, element, | |
| 735 new ResolutionRegistry(compiler, element), | |
| 736 useEnclosingScope: useEnclosingScope); | |
| 737 } | |
| 738 | |
| 739 TreeElements resolveField(FieldElementX element) { | |
| 740 VariableDefinitions tree = element.parseNode(compiler); | |
| 741 if(element.modifiers.isStatic && element.isTopLevel) { | |
| 742 error(element.modifiers.getStatic(), | |
| 743 MessageKind.TOP_LEVEL_VARIABLE_DECLARED_STATIC); | |
| 744 } | |
| 745 ResolverVisitor visitor = visitorFor(element); | |
| 746 ResolutionRegistry registry = visitor.registry; | |
| 747 // TODO(johnniwinther): Maybe remove this when placeholderCollector migrates | |
| 748 // to the backend ast. | |
| 749 registry.defineElement(tree.definitions.nodes.head, element); | |
| 750 // TODO(johnniwinther): Share the resolved type between all variables | |
| 751 // declared in the same declaration. | |
| 752 if (tree.type != null) { | |
| 753 element.variables.type = visitor.resolveTypeAnnotation(tree.type); | |
| 754 } else { | |
| 755 element.variables.type = const DynamicType(); | |
| 756 } | |
| 757 | |
| 758 Expression initializer = element.initializer; | |
| 759 Modifiers modifiers = element.modifiers; | |
| 760 if (initializer != null) { | |
| 761 // TODO(johnniwinther): Avoid analyzing initializers if | |
| 762 // [Compiler.analyzeSignaturesOnly] is set. | |
| 763 visitor.visit(initializer); | |
| 764 } else if (modifiers.isConst) { | |
| 765 compiler.reportError(element, MessageKind.CONST_WITHOUT_INITIALIZER); | |
| 766 } else if (modifiers.isFinal && !element.isInstanceMember) { | |
| 767 compiler.reportError(element, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
| 768 } else { | |
| 769 registry.registerInstantiatedClass(compiler.nullClass); | |
| 770 } | |
| 771 | |
| 772 if (Elements.isStaticOrTopLevelField(element)) { | |
| 773 visitor.addDeferredAction(element, () { | |
| 774 if (element.modifiers.isConst) { | |
| 775 constantCompiler.compileConstant(element); | |
| 776 } else { | |
| 777 constantCompiler.compileVariable(element); | |
| 778 } | |
| 779 }); | |
| 780 if (initializer != null) { | |
| 781 if (!element.modifiers.isConst) { | |
| 782 // TODO(johnniwinther): Determine the const-ness eagerly to avoid | |
| 783 // unnecessary registrations. | |
| 784 registry.registerLazyField(); | |
| 785 } | |
| 786 } | |
| 787 } | |
| 788 | |
| 789 // Perform various checks as side effect of "computing" the type. | |
| 790 element.computeType(compiler); | |
| 791 | |
| 792 return registry.mapping; | |
| 793 } | |
| 794 | |
| 795 DartType resolveTypeAnnotation(Element element, TypeAnnotation annotation) { | |
| 796 DartType type = resolveReturnType(element, annotation); | |
| 797 if (type.isVoid) { | |
| 798 error(annotation, MessageKind.VOID_NOT_ALLOWED); | |
| 799 } | |
| 800 return type; | |
| 801 } | |
| 802 | |
| 803 DartType resolveReturnType(Element element, TypeAnnotation annotation) { | |
| 804 if (annotation == null) return const DynamicType(); | |
| 805 DartType result = visitorFor(element).resolveTypeAnnotation(annotation); | |
| 806 if (result == null) { | |
| 807 // TODO(karklose): warning. | |
| 808 return const DynamicType(); | |
| 809 } | |
| 810 return result; | |
| 811 } | |
| 812 | |
| 813 void resolveRedirectionChain(ConstructorElementX constructor, | |
| 814 Spannable node) { | |
| 815 ConstructorElementX target = constructor; | |
| 816 InterfaceType targetType; | |
| 817 List<Element> seen = new List<Element>(); | |
| 818 // Follow the chain of redirections and check for cycles. | |
| 819 while (target.isRedirectingFactory) { | |
| 820 if (target.internalEffectiveTarget != null) { | |
| 821 // We found a constructor that already has been processed. | |
| 822 targetType = target.effectiveTargetType; | |
| 823 assert(invariant(target, targetType != null, | |
| 824 message: 'Redirection target type has not been computed for ' | |
| 825 '$target')); | |
| 826 target = target.internalEffectiveTarget; | |
| 827 break; | |
| 828 } | |
| 829 | |
| 830 Element nextTarget = target.immediateRedirectionTarget; | |
| 831 if (seen.contains(nextTarget)) { | |
| 832 error(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
| 833 break; | |
| 834 } | |
| 835 seen.add(target); | |
| 836 target = nextTarget; | |
| 837 } | |
| 838 | |
| 839 if (targetType == null) { | |
| 840 assert(!target.isRedirectingFactory); | |
| 841 targetType = target.enclosingClass.thisType; | |
| 842 } | |
| 843 | |
| 844 // [target] is now the actual target of the redirections. Run through | |
| 845 // the constructors again and set their [redirectionTarget], so that we | |
| 846 // do not have to run the loop for these constructors again. Furthermore, | |
| 847 // compute [redirectionTargetType] for each factory by computing the | |
| 848 // substitution of the target type with respect to the factory type. | |
| 849 while (!seen.isEmpty) { | |
| 850 ConstructorElementX factory = seen.removeLast(); | |
| 851 | |
| 852 // [factory] must already be analyzed but the [TreeElements] might not | |
| 853 // have been stored in the enqueuer cache yet. | |
| 854 // TODO(johnniwinther): Store [TreeElements] in the cache before | |
| 855 // resolution of the element. | |
| 856 TreeElements treeElements = factory.treeElements; | |
| 857 assert(invariant(node, treeElements != null, | |
| 858 message: 'No TreeElements cached for $factory.')); | |
| 859 FunctionExpression functionNode = factory.parseNode(compiler); | |
| 860 RedirectingFactoryBody redirectionNode = functionNode.body; | |
| 861 InterfaceType factoryType = treeElements.getType(redirectionNode); | |
| 862 | |
| 863 targetType = targetType.substByContext(factoryType); | |
| 864 factory.effectiveTarget = target; | |
| 865 factory.effectiveTargetType = targetType; | |
| 866 } | |
| 867 } | |
| 868 | |
| 869 /** | |
| 870 * Load and resolve the supertypes of [cls]. | |
| 871 * | |
| 872 * Warning: do not call this method directly. It should only be | |
| 873 * called by [resolveClass] and [ClassSupertypeResolver]. | |
| 874 */ | |
| 875 void loadSupertypes(BaseClassElementX cls, Spannable from) { | |
| 876 compiler.withCurrentElement(cls, () => measure(() { | |
| 877 if (cls.supertypeLoadState == STATE_DONE) return; | |
| 878 if (cls.supertypeLoadState == STATE_STARTED) { | |
| 879 compiler.reportError(from, MessageKind.CYCLIC_CLASS_HIERARCHY, | |
| 880 {'className': cls.name}); | |
| 881 cls.supertypeLoadState = STATE_DONE; | |
| 882 cls.hasIncompleteHierarchy = true; | |
| 883 cls.allSupertypesAndSelf = | |
| 884 compiler.objectClass.allSupertypesAndSelf.extendClass( | |
| 885 cls.computeType(compiler)); | |
| 886 cls.supertype = cls.allSupertypes.head; | |
| 887 assert(invariant(from, cls.supertype != null, | |
| 888 message: 'Missing supertype on cyclic class $cls.')); | |
| 889 cls.interfaces = const Link<DartType>(); | |
| 890 return; | |
| 891 } | |
| 892 cls.supertypeLoadState = STATE_STARTED; | |
| 893 compiler.withCurrentElement(cls, () { | |
| 894 // TODO(ahe): Cache the node in cls. | |
| 895 cls.parseNode(compiler).accept( | |
| 896 new ClassSupertypeResolver(compiler, cls)); | |
| 897 if (cls.supertypeLoadState != STATE_DONE) { | |
| 898 cls.supertypeLoadState = STATE_DONE; | |
| 899 } | |
| 900 }); | |
| 901 })); | |
| 902 } | |
| 903 | |
| 904 // TODO(johnniwinther): Remove this queue when resolution has been split into | |
| 905 // syntax and semantic resolution. | |
| 906 TypeDeclarationElement currentlyResolvedTypeDeclaration; | |
| 907 Queue<ClassElement> pendingClassesToBeResolved = new Queue<ClassElement>(); | |
| 908 Queue<ClassElement> pendingClassesToBePostProcessed = | |
| 909 new Queue<ClassElement>(); | |
| 910 | |
| 911 /// Resolve [element] using [resolveTypeDeclaration]. | |
| 912 /// | |
| 913 /// This methods ensure that class declarations encountered through type | |
| 914 /// annotations during the resolution of [element] are resolved after | |
| 915 /// [element] has been resolved. | |
| 916 // TODO(johnniwinther): Encapsulate this functionality in a | |
| 917 // 'TypeDeclarationResolver'. | |
| 918 _resolveTypeDeclaration(TypeDeclarationElement element, | |
| 919 resolveTypeDeclaration()) { | |
| 920 return compiler.withCurrentElement(element, () { | |
| 921 return measure(() { | |
| 922 TypeDeclarationElement previousResolvedTypeDeclaration = | |
| 923 currentlyResolvedTypeDeclaration; | |
| 924 currentlyResolvedTypeDeclaration = element; | |
| 925 var result = resolveTypeDeclaration(); | |
| 926 if (previousResolvedTypeDeclaration == null) { | |
| 927 do { | |
| 928 while (!pendingClassesToBeResolved.isEmpty) { | |
| 929 pendingClassesToBeResolved.removeFirst().ensureResolved(compiler); | |
| 930 } | |
| 931 while (!pendingClassesToBePostProcessed.isEmpty) { | |
| 932 _postProcessClassElement( | |
| 933 pendingClassesToBePostProcessed.removeFirst()); | |
| 934 } | |
| 935 } while (!pendingClassesToBeResolved.isEmpty); | |
| 936 assert(pendingClassesToBeResolved.isEmpty); | |
| 937 assert(pendingClassesToBePostProcessed.isEmpty); | |
| 938 } | |
| 939 currentlyResolvedTypeDeclaration = previousResolvedTypeDeclaration; | |
| 940 return result; | |
| 941 }); | |
| 942 }); | |
| 943 } | |
| 944 | |
| 945 /** | |
| 946 * Resolve the class [element]. | |
| 947 * | |
| 948 * Before calling this method, [element] was constructed by the | |
| 949 * scanner and most fields are null or empty. This method fills in | |
| 950 * these fields and also ensure that the supertypes of [element] are | |
| 951 * resolved. | |
| 952 * | |
| 953 * Warning: Do not call this method directly. Instead use | |
| 954 * [:element.ensureResolved(compiler):]. | |
| 955 */ | |
| 956 TreeElements resolveClass(BaseClassElementX element) { | |
| 957 return _resolveTypeDeclaration(element, () { | |
| 958 // TODO(johnniwinther): Store the mapping in the resolution enqueuer. | |
| 959 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
| 960 resolveClassInternal(element, registry); | |
| 961 return element.treeElements; | |
| 962 }); | |
| 963 } | |
| 964 | |
| 965 void _ensureClassWillBeResolved(ClassElement element) { | |
| 966 if (currentlyResolvedTypeDeclaration == null) { | |
| 967 element.ensureResolved(compiler); | |
| 968 } else { | |
| 969 pendingClassesToBeResolved.add(element); | |
| 970 } | |
| 971 } | |
| 972 | |
| 973 void resolveClassInternal(BaseClassElementX element, | |
| 974 ResolutionRegistry registry) { | |
| 975 if (!element.isPatch) { | |
| 976 compiler.withCurrentElement(element, () => measure(() { | |
| 977 assert(element.resolutionState == STATE_NOT_STARTED); | |
| 978 element.resolutionState = STATE_STARTED; | |
| 979 Node tree = element.parseNode(compiler); | |
| 980 loadSupertypes(element, tree); | |
| 981 | |
| 982 ClassResolverVisitor visitor = | |
| 983 new ClassResolverVisitor(compiler, element, registry); | |
| 984 visitor.visit(tree); | |
| 985 element.resolutionState = STATE_DONE; | |
| 986 compiler.onClassResolved(element); | |
| 987 pendingClassesToBePostProcessed.add(element); | |
| 988 })); | |
| 989 if (element.isPatched) { | |
| 990 // Ensure handling patch after origin. | |
| 991 element.patch.ensureResolved(compiler); | |
| 992 } | |
| 993 } else { // Handle patch classes: | |
| 994 element.resolutionState = STATE_STARTED; | |
| 995 // Ensure handling origin before patch. | |
| 996 element.origin.ensureResolved(compiler); | |
| 997 // Ensure that the type is computed. | |
| 998 element.computeType(compiler); | |
| 999 // Copy class hierarchy from origin. | |
| 1000 element.supertype = element.origin.supertype; | |
| 1001 element.interfaces = element.origin.interfaces; | |
| 1002 element.allSupertypesAndSelf = element.origin.allSupertypesAndSelf; | |
| 1003 // Stepwise assignment to ensure invariant. | |
| 1004 element.supertypeLoadState = STATE_STARTED; | |
| 1005 element.supertypeLoadState = STATE_DONE; | |
| 1006 element.resolutionState = STATE_DONE; | |
| 1007 // TODO(johnniwinther): Check matching type variables and | |
| 1008 // empty extends/implements clauses. | |
| 1009 } | |
| 1010 } | |
| 1011 | |
| 1012 void _postProcessClassElement(BaseClassElementX element) { | |
| 1013 for (MetadataAnnotation metadata in element.metadata) { | |
| 1014 metadata.ensureResolved(compiler); | |
| 1015 if (!element.isProxy && | |
| 1016 metadata.constant.value == compiler.proxyConstant) { | |
| 1017 element.isProxy = true; | |
| 1018 } | |
| 1019 } | |
| 1020 | |
| 1021 // Force resolution of metadata on non-instance members since they may be | |
| 1022 // inspected by the backend while emitting. Metadata on instance members is | |
| 1023 // handled as a result of processing instantiated class members in the | |
| 1024 // enqueuer. | |
| 1025 // TODO(ahe): Avoid this eager resolution. | |
| 1026 element.forEachMember((_, Element member) { | |
| 1027 if (!member.isInstanceMember) { | |
| 1028 compiler.withCurrentElement(member, () { | |
| 1029 for (MetadataAnnotation metadata in member.metadata) { | |
| 1030 metadata.ensureResolved(compiler); | |
| 1031 } | |
| 1032 }); | |
| 1033 } | |
| 1034 }); | |
| 1035 | |
| 1036 computeClassMember(element, Compiler.CALL_OPERATOR_NAME); | |
| 1037 } | |
| 1038 | |
| 1039 void computeClassMembers(ClassElement element) { | |
| 1040 MembersCreator.computeAllClassMembers(compiler, element); | |
| 1041 } | |
| 1042 | |
| 1043 void computeClassMember(ClassElement element, String name) { | |
| 1044 MembersCreator.computeClassMembersByName(compiler, element, name); | |
| 1045 } | |
| 1046 | |
| 1047 void checkClass(ClassElement element) { | |
| 1048 computeClassMembers(element); | |
| 1049 if (element.isMixinApplication) { | |
| 1050 checkMixinApplication(element); | |
| 1051 } else { | |
| 1052 checkClassMembers(element); | |
| 1053 } | |
| 1054 } | |
| 1055 | |
| 1056 void checkMixinApplication(MixinApplicationElementX mixinApplication) { | |
| 1057 Modifiers modifiers = mixinApplication.modifiers; | |
| 1058 int illegalFlags = modifiers.flags & ~Modifiers.FLAG_ABSTRACT; | |
| 1059 if (illegalFlags != 0) { | |
| 1060 Modifiers illegalModifiers = new Modifiers.withFlags(null, illegalFlags); | |
| 1061 compiler.reportError( | |
| 1062 modifiers, | |
| 1063 MessageKind.ILLEGAL_MIXIN_APPLICATION_MODIFIERS, | |
| 1064 {'modifiers': illegalModifiers}); | |
| 1065 } | |
| 1066 | |
| 1067 // In case of cyclic mixin applications, the mixin chain will have | |
| 1068 // been cut. If so, we have already reported the error to the | |
| 1069 // user so we just return from here. | |
| 1070 ClassElement mixin = mixinApplication.mixin; | |
| 1071 if (mixin == null) return; | |
| 1072 | |
| 1073 // Check that we're not trying to use Object as a mixin. | |
| 1074 if (mixin.superclass == null) { | |
| 1075 compiler.reportError(mixinApplication, | |
| 1076 MessageKind.ILLEGAL_MIXIN_OBJECT); | |
| 1077 // Avoid reporting additional errors for the Object class. | |
| 1078 return; | |
| 1079 } | |
| 1080 | |
| 1081 // Check that the mixed in class has Object as its superclass. | |
| 1082 if (!mixin.superclass.isObject) { | |
| 1083 compiler.reportError(mixin, MessageKind.ILLEGAL_MIXIN_SUPERCLASS); | |
| 1084 } | |
| 1085 | |
| 1086 // Check that the mixed in class doesn't have any constructors and | |
| 1087 // make sure we aren't mixing in methods that use 'super'. | |
| 1088 mixin.forEachLocalMember((AstElement member) { | |
| 1089 if (member.isGenerativeConstructor && !member.isSynthesized) { | |
| 1090 compiler.reportError(member, MessageKind.ILLEGAL_MIXIN_CONSTRUCTOR); | |
| 1091 } else { | |
| 1092 // Get the resolution tree and check that the resolved member | |
| 1093 // doesn't use 'super'. This is the part of the 'super' mixin | |
| 1094 // check that happens when a function is resolved before the | |
| 1095 // mixin application has been performed. | |
| 1096 // TODO(johnniwinther): Obtain the [TreeElements] for [member] | |
| 1097 // differently. | |
| 1098 if (compiler.enqueuer.resolution.hasBeenResolved(member)) { | |
| 1099 checkMixinSuperUses( | |
| 1100 member.resolvedAst.elements, | |
| 1101 mixinApplication, | |
| 1102 mixin); | |
| 1103 } | |
| 1104 } | |
| 1105 }); | |
| 1106 } | |
| 1107 | |
| 1108 void checkMixinSuperUses(TreeElements resolutionTree, | |
| 1109 MixinApplicationElement mixinApplication, | |
| 1110 ClassElement mixin) { | |
| 1111 // TODO(johnniwinther): Avoid the use of [TreeElements] here. | |
| 1112 if (resolutionTree == null) return; | |
| 1113 Iterable<Node> superUses = resolutionTree.superUses; | |
| 1114 if (superUses.isEmpty) return; | |
| 1115 compiler.reportError(mixinApplication, | |
| 1116 MessageKind.ILLEGAL_MIXIN_WITH_SUPER, | |
| 1117 {'className': mixin.name}); | |
| 1118 // Show the user the problematic uses of 'super' in the mixin. | |
| 1119 for (Node use in superUses) { | |
| 1120 compiler.reportInfo( | |
| 1121 use, | |
| 1122 MessageKind.ILLEGAL_MIXIN_SUPER_USE); | |
| 1123 } | |
| 1124 } | |
| 1125 | |
| 1126 void checkClassMembers(ClassElement cls) { | |
| 1127 assert(invariant(cls, cls.isDeclaration)); | |
| 1128 if (cls.isObject) return; | |
| 1129 // TODO(johnniwinther): Should this be done on the implementation element as | |
| 1130 // well? | |
| 1131 List<Element> constConstructors = <Element>[]; | |
| 1132 List<Element> nonFinalInstanceFields = <Element>[]; | |
| 1133 cls.forEachMember((holder, member) { | |
| 1134 compiler.withCurrentElement(member, () { | |
| 1135 // Perform various checks as side effect of "computing" the type. | |
| 1136 member.computeType(compiler); | |
| 1137 | |
| 1138 // Check modifiers. | |
| 1139 if (member.isFunction && member.modifiers.isFinal) { | |
| 1140 compiler.reportError( | |
| 1141 member, MessageKind.ILLEGAL_FINAL_METHOD_MODIFIER); | |
| 1142 } | |
| 1143 if (member.isConstructor) { | |
| 1144 final mismatchedFlagsBits = | |
| 1145 member.modifiers.flags & | |
| 1146 (Modifiers.FLAG_STATIC | Modifiers.FLAG_ABSTRACT); | |
| 1147 if (mismatchedFlagsBits != 0) { | |
| 1148 final mismatchedFlags = | |
| 1149 new Modifiers.withFlags(null, mismatchedFlagsBits); | |
| 1150 compiler.reportError( | |
| 1151 member, | |
| 1152 MessageKind.ILLEGAL_CONSTRUCTOR_MODIFIERS, | |
| 1153 {'modifiers': mismatchedFlags}); | |
| 1154 } | |
| 1155 if (member.modifiers.isConst) { | |
| 1156 constConstructors.add(member); | |
| 1157 } | |
| 1158 } | |
| 1159 if (member.isField) { | |
| 1160 if (member.modifiers.isConst && !member.modifiers.isStatic) { | |
| 1161 compiler.reportError( | |
| 1162 member, MessageKind.ILLEGAL_CONST_FIELD_MODIFIER); | |
| 1163 } | |
| 1164 if (!member.modifiers.isStatic && !member.modifiers.isFinal) { | |
| 1165 nonFinalInstanceFields.add(member); | |
| 1166 } | |
| 1167 } | |
| 1168 checkAbstractField(member); | |
| 1169 checkUserDefinableOperator(member); | |
| 1170 }); | |
| 1171 }); | |
| 1172 if (!constConstructors.isEmpty && !nonFinalInstanceFields.isEmpty) { | |
| 1173 Spannable span = constConstructors.length > 1 | |
| 1174 ? cls : constConstructors[0]; | |
| 1175 compiler.reportError(span, | |
| 1176 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS, | |
| 1177 {'className': cls.name}); | |
| 1178 if (constConstructors.length > 1) { | |
| 1179 for (Element constructor in constConstructors) { | |
| 1180 compiler.reportInfo(constructor, | |
| 1181 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_CONSTRUCTOR); | |
| 1182 } | |
| 1183 } | |
| 1184 for (Element field in nonFinalInstanceFields) { | |
| 1185 compiler.reportInfo(field, | |
| 1186 MessageKind.CONST_CONSTRUCTOR_WITH_NONFINAL_FIELDS_FIELD); | |
| 1187 } | |
| 1188 } | |
| 1189 } | |
| 1190 | |
| 1191 void checkAbstractField(Element member) { | |
| 1192 // Only check for getters. The test can only fail if there is both a setter | |
| 1193 // and a getter with the same name, and we only need to check each abstract | |
| 1194 // field once, so we just ignore setters. | |
| 1195 if (!member.isGetter) return; | |
| 1196 | |
| 1197 // Find the associated abstract field. | |
| 1198 ClassElement classElement = member.enclosingClass; | |
| 1199 Element lookupElement = classElement.lookupLocalMember(member.name); | |
| 1200 if (lookupElement == null) { | |
| 1201 compiler.internalError(member, | |
| 1202 "No abstract field for accessor"); | |
| 1203 } else if (!identical(lookupElement.kind, ElementKind.ABSTRACT_FIELD)) { | |
| 1204 compiler.internalError(member, | |
| 1205 "Inaccessible abstract field for accessor"); | |
| 1206 } | |
| 1207 AbstractFieldElement field = lookupElement; | |
| 1208 | |
| 1209 FunctionElementX getter = field.getter; | |
| 1210 if (getter == null) return; | |
| 1211 FunctionElementX setter = field.setter; | |
| 1212 if (setter == null) return; | |
| 1213 int getterFlags = getter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
| 1214 int setterFlags = setter.modifiers.flags | Modifiers.FLAG_ABSTRACT; | |
| 1215 if (!identical(getterFlags, setterFlags)) { | |
| 1216 final mismatchedFlags = | |
| 1217 new Modifiers.withFlags(null, getterFlags ^ setterFlags); | |
| 1218 compiler.reportError( | |
| 1219 field.getter, | |
| 1220 MessageKind.GETTER_MISMATCH, | |
| 1221 {'modifiers': mismatchedFlags}); | |
| 1222 compiler.reportError( | |
| 1223 field.setter, | |
| 1224 MessageKind.SETTER_MISMATCH, | |
| 1225 {'modifiers': mismatchedFlags}); | |
| 1226 } | |
| 1227 } | |
| 1228 | |
| 1229 void checkUserDefinableOperator(Element member) { | |
| 1230 FunctionElement function = member.asFunctionElement(); | |
| 1231 if (function == null) return; | |
| 1232 String value = member.name; | |
| 1233 if (value == null) return; | |
| 1234 if (!(isUserDefinableOperator(value) || identical(value, 'unary-'))) return; | |
| 1235 | |
| 1236 bool isMinus = false; | |
| 1237 int requiredParameterCount; | |
| 1238 MessageKind messageKind; | |
| 1239 if (identical(value, 'unary-')) { | |
| 1240 isMinus = true; | |
| 1241 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
| 1242 requiredParameterCount = 0; | |
| 1243 } else if (isMinusOperator(value)) { | |
| 1244 isMinus = true; | |
| 1245 messageKind = MessageKind.MINUS_OPERATOR_BAD_ARITY; | |
| 1246 requiredParameterCount = 1; | |
| 1247 } else if (isUnaryOperator(value)) { | |
| 1248 messageKind = MessageKind.UNARY_OPERATOR_BAD_ARITY; | |
| 1249 requiredParameterCount = 0; | |
| 1250 } else if (isBinaryOperator(value)) { | |
| 1251 messageKind = MessageKind.BINARY_OPERATOR_BAD_ARITY; | |
| 1252 requiredParameterCount = 1; | |
| 1253 if (identical(value, '==')) checkOverrideHashCode(member); | |
| 1254 } else if (isTernaryOperator(value)) { | |
| 1255 messageKind = MessageKind.TERNARY_OPERATOR_BAD_ARITY; | |
| 1256 requiredParameterCount = 2; | |
| 1257 } else { | |
| 1258 compiler.internalError(function, | |
| 1259 'Unexpected user defined operator $value'); | |
| 1260 } | |
| 1261 checkArity(function, requiredParameterCount, messageKind, isMinus); | |
| 1262 } | |
| 1263 | |
| 1264 void checkOverrideHashCode(FunctionElement operatorEquals) { | |
| 1265 if (operatorEquals.isAbstract) return; | |
| 1266 ClassElement cls = operatorEquals.enclosingClass; | |
| 1267 Element hashCodeImplementation = | |
| 1268 cls.lookupLocalMember('hashCode'); | |
| 1269 if (hashCodeImplementation != null) return; | |
| 1270 compiler.reportHint( | |
| 1271 operatorEquals, MessageKind.OVERRIDE_EQUALS_NOT_HASH_CODE, | |
| 1272 {'class': cls.name}); | |
| 1273 } | |
| 1274 | |
| 1275 void checkArity(FunctionElement function, | |
| 1276 int requiredParameterCount, MessageKind messageKind, | |
| 1277 bool isMinus) { | |
| 1278 FunctionExpression node = function.node; | |
| 1279 FunctionSignature signature = function.functionSignature; | |
| 1280 if (signature.requiredParameterCount != requiredParameterCount) { | |
| 1281 Node errorNode = node; | |
| 1282 if (node.parameters != null) { | |
| 1283 if (isMinus || | |
| 1284 signature.requiredParameterCount < requiredParameterCount) { | |
| 1285 // If there are too few parameters, point to the whole parameter list. | |
| 1286 // For instance | |
| 1287 // | |
| 1288 // int operator +() {} | |
| 1289 // ^^ | |
| 1290 // | |
| 1291 // int operator []=(value) {} | |
| 1292 // ^^^^^^^ | |
| 1293 // | |
| 1294 // For operator -, always point the whole parameter list, like | |
| 1295 // | |
| 1296 // int operator -(a, b) {} | |
| 1297 // ^^^^^^ | |
| 1298 // | |
| 1299 // instead of | |
| 1300 // | |
| 1301 // int operator -(a, b) {} | |
| 1302 // ^ | |
| 1303 // | |
| 1304 // since the correction might not be to remove 'b' but instead to | |
| 1305 // remove 'a, b'. | |
| 1306 errorNode = node.parameters; | |
| 1307 } else { | |
| 1308 errorNode = node.parameters.nodes.skip(requiredParameterCount).head; | |
| 1309 } | |
| 1310 } | |
| 1311 compiler.reportError( | |
| 1312 errorNode, messageKind, {'operatorName': function.name}); | |
| 1313 } | |
| 1314 if (signature.optionalParameterCount != 0) { | |
| 1315 Node errorNode = | |
| 1316 node.parameters.nodes.skip(signature.requiredParameterCount).head; | |
| 1317 if (signature.optionalParametersAreNamed) { | |
| 1318 compiler.reportError( | |
| 1319 errorNode, | |
| 1320 MessageKind.OPERATOR_NAMED_PARAMETERS, | |
| 1321 {'operatorName': function.name}); | |
| 1322 } else { | |
| 1323 compiler.reportError( | |
| 1324 errorNode, | |
| 1325 MessageKind.OPERATOR_OPTIONAL_PARAMETERS, | |
| 1326 {'operatorName': function.name}); | |
| 1327 } | |
| 1328 } | |
| 1329 } | |
| 1330 | |
| 1331 reportErrorWithContext(Element errorneousElement, | |
| 1332 MessageKind errorMessage, | |
| 1333 Element contextElement, | |
| 1334 MessageKind contextMessage) { | |
| 1335 compiler.reportError( | |
| 1336 errorneousElement, | |
| 1337 errorMessage, | |
| 1338 {'memberName': contextElement.name, | |
| 1339 'className': contextElement.enclosingClass.name}); | |
| 1340 compiler.reportInfo(contextElement, contextMessage); | |
| 1341 } | |
| 1342 | |
| 1343 | |
| 1344 FunctionSignature resolveSignature(FunctionElementX element) { | |
| 1345 MessageKind defaultValuesError = null; | |
| 1346 if (element.isFactoryConstructor) { | |
| 1347 FunctionExpression body = element.parseNode(compiler); | |
| 1348 if (body.isRedirectingFactory) { | |
| 1349 defaultValuesError = MessageKind.REDIRECTING_FACTORY_WITH_DEFAULT; | |
| 1350 } | |
| 1351 } | |
| 1352 return compiler.withCurrentElement(element, () { | |
| 1353 FunctionExpression node = | |
| 1354 compiler.parser.measure(() => element.parseNode(compiler)); | |
| 1355 return measure(() => SignatureResolver.analyze( | |
| 1356 compiler, node.parameters, node.returnType, element, | |
| 1357 new ResolutionRegistry(compiler, element), | |
| 1358 defaultValuesError: defaultValuesError, | |
| 1359 createRealParameters: true)); | |
| 1360 }); | |
| 1361 } | |
| 1362 | |
| 1363 TreeElements resolveTypedef(TypedefElementX element) { | |
| 1364 if (element.isResolved) return element.treeElements; | |
| 1365 compiler.world.allTypedefs.add(element); | |
| 1366 return _resolveTypeDeclaration(element, () { | |
| 1367 ResolutionRegistry registry = new ResolutionRegistry(compiler, element); | |
| 1368 return compiler.withCurrentElement(element, () { | |
| 1369 return measure(() { | |
| 1370 assert(element.resolutionState == STATE_NOT_STARTED); | |
| 1371 element.resolutionState = STATE_STARTED; | |
| 1372 Typedef node = | |
| 1373 compiler.parser.measure(() => element.parseNode(compiler)); | |
| 1374 TypedefResolverVisitor visitor = | |
| 1375 new TypedefResolverVisitor(compiler, element, registry); | |
| 1376 visitor.visit(node); | |
| 1377 element.resolutionState = STATE_DONE; | |
| 1378 return registry.mapping; | |
| 1379 }); | |
| 1380 }); | |
| 1381 }); | |
| 1382 } | |
| 1383 | |
| 1384 void resolveMetadataAnnotation(MetadataAnnotationX annotation) { | |
| 1385 compiler.withCurrentElement(annotation.annotatedElement, () => measure(() { | |
| 1386 assert(annotation.resolutionState == STATE_NOT_STARTED); | |
| 1387 annotation.resolutionState = STATE_STARTED; | |
| 1388 | |
| 1389 Node node = annotation.parseNode(compiler); | |
| 1390 Element annotatedElement = annotation.annotatedElement; | |
| 1391 AnalyzableElement context = annotatedElement.analyzableElement; | |
| 1392 ClassElement classElement = annotatedElement.enclosingClass; | |
| 1393 if (classElement != null) { | |
| 1394 // The annotation is resolved in the scope of [classElement]. | |
| 1395 classElement.ensureResolved(compiler); | |
| 1396 } | |
| 1397 assert(invariant(node, context != null, | |
| 1398 message: "No context found for metadata annotation " | |
| 1399 "on $annotatedElement.")); | |
| 1400 ResolverVisitor visitor = visitorFor(context, useEnclosingScope: true); | |
| 1401 ResolutionRegistry registry = visitor.registry; | |
| 1402 node.accept(visitor); | |
| 1403 // TODO(johnniwinther): Avoid passing the [TreeElements] to | |
| 1404 // [compileMetadata]. | |
| 1405 annotation.constant = | |
| 1406 constantCompiler.compileMetadata(annotation, node, registry.mapping); | |
| 1407 // TODO(johnniwinther): Register the relation between the annotation | |
| 1408 // and the annotated element instead. This will allow the backend to | |
| 1409 // retrieve the backend constant and only register metadata on the | |
| 1410 // elements for which it is needed. (Issue 17732). | |
| 1411 registry.registerMetadataConstant(annotation, annotatedElement); | |
| 1412 annotation.resolutionState = STATE_DONE; | |
| 1413 })); | |
| 1414 } | |
| 1415 | |
| 1416 error(Spannable node, MessageKind kind, [arguments = const {}]) { | |
| 1417 // TODO(ahe): Make non-fatal. | |
| 1418 compiler.reportFatalError(node, kind, arguments); | |
| 1419 } | |
| 1420 | |
| 1421 Link<MetadataAnnotation> resolveMetadata(Element element, | |
| 1422 VariableDefinitions node) { | |
| 1423 LinkBuilder<MetadataAnnotation> metadata = | |
| 1424 new LinkBuilder<MetadataAnnotation>(); | |
| 1425 for (Metadata annotation in node.metadata.nodes) { | |
| 1426 ParameterMetadataAnnotation metadataAnnotation = | |
| 1427 new ParameterMetadataAnnotation(annotation); | |
| 1428 metadataAnnotation.annotatedElement = element; | |
| 1429 metadata.addLast(metadataAnnotation.ensureResolved(compiler)); | |
| 1430 } | |
| 1431 return metadata.toLink(); | |
| 1432 } | |
| 1433 } | |
| 1434 | |
| 1435 class InitializerResolver { | |
| 1436 final ResolverVisitor visitor; | |
| 1437 final Map<Element, Node> initialized; | |
| 1438 Link<Node> initializers; | |
| 1439 bool hasSuper; | |
| 1440 | |
| 1441 InitializerResolver(this.visitor) | |
| 1442 : initialized = new Map<Element, Node>(), hasSuper = false; | |
| 1443 | |
| 1444 ResolutionRegistry get registry => visitor.registry; | |
| 1445 | |
| 1446 error(Node node, MessageKind kind, [arguments = const {}]) { | |
| 1447 visitor.error(node, kind, arguments); | |
| 1448 } | |
| 1449 | |
| 1450 warning(Node node, MessageKind kind, [arguments = const {}]) { | |
| 1451 visitor.warning(node, kind, arguments); | |
| 1452 } | |
| 1453 | |
| 1454 bool isFieldInitializer(SendSet node) { | |
| 1455 if (node.selector.asIdentifier() == null) return false; | |
| 1456 if (node.receiver == null) return true; | |
| 1457 if (node.receiver.asIdentifier() == null) return false; | |
| 1458 return node.receiver.asIdentifier().isThis(); | |
| 1459 } | |
| 1460 | |
| 1461 reportDuplicateInitializerError(Element field, Node init, Node existing) { | |
| 1462 visitor.compiler.reportError( | |
| 1463 init, | |
| 1464 MessageKind.DUPLICATE_INITIALIZER, {'fieldName': field.name}); | |
| 1465 visitor.compiler.reportInfo( | |
| 1466 existing, | |
| 1467 MessageKind.ALREADY_INITIALIZED, {'fieldName': field.name}); | |
| 1468 } | |
| 1469 | |
| 1470 void checkForDuplicateInitializers(FieldElementX field, Node init) { | |
| 1471 // [field] can be null if it could not be resolved. | |
| 1472 if (field == null) return; | |
| 1473 String name = field.name; | |
| 1474 if (initialized.containsKey(field)) { | |
| 1475 reportDuplicateInitializerError(field, init, initialized[field]); | |
| 1476 } else if (field.isFinal) { | |
| 1477 field.parseNode(visitor.compiler); | |
| 1478 Expression initializer = field.initializer; | |
| 1479 if (initializer != null) { | |
| 1480 reportDuplicateInitializerError(field, init, initializer); | |
| 1481 } | |
| 1482 } | |
| 1483 initialized[field] = init; | |
| 1484 } | |
| 1485 | |
| 1486 void resolveFieldInitializer(FunctionElement constructor, SendSet init) { | |
| 1487 // init is of the form [this.]field = value. | |
| 1488 final Node selector = init.selector; | |
| 1489 final String name = selector.asIdentifier().source; | |
| 1490 // Lookup target field. | |
| 1491 Element target; | |
| 1492 if (isFieldInitializer(init)) { | |
| 1493 target = constructor.enclosingClass.lookupLocalMember(name); | |
| 1494 if (target == null) { | |
| 1495 error(selector, MessageKind.CANNOT_RESOLVE, {'name': name}); | |
| 1496 } else if (target.kind != ElementKind.FIELD) { | |
| 1497 error(selector, MessageKind.NOT_A_FIELD, {'fieldName': name}); | |
| 1498 } else if (!target.isInstanceMember) { | |
| 1499 error(selector, MessageKind.INIT_STATIC_FIELD, {'fieldName': name}); | |
| 1500 } | |
| 1501 } else { | |
| 1502 error(init, MessageKind.INVALID_RECEIVER_IN_INITIALIZER); | |
| 1503 } | |
| 1504 registry.useElement(init, target); | |
| 1505 registry.registerStaticUse(target); | |
| 1506 checkForDuplicateInitializers(target, init); | |
| 1507 // Resolve initializing value. | |
| 1508 visitor.visitInStaticContext(init.arguments.head); | |
| 1509 } | |
| 1510 | |
| 1511 ClassElement getSuperOrThisLookupTarget(FunctionElement constructor, | |
| 1512 bool isSuperCall, | |
| 1513 Node diagnosticNode) { | |
| 1514 ClassElement lookupTarget = constructor.enclosingClass; | |
| 1515 if (isSuperCall) { | |
| 1516 // Calculate correct lookup target and constructor name. | |
| 1517 if (identical(lookupTarget, visitor.compiler.objectClass)) { | |
| 1518 error(diagnosticNode, MessageKind.SUPER_INITIALIZER_IN_OBJECT); | |
| 1519 } else { | |
| 1520 return lookupTarget.supertype.element; | |
| 1521 } | |
| 1522 } | |
| 1523 return lookupTarget; | |
| 1524 } | |
| 1525 | |
| 1526 Element resolveSuperOrThisForSend(FunctionElement constructor, | |
| 1527 FunctionExpression functionNode, | |
| 1528 Send call) { | |
| 1529 // Resolve the selector and the arguments. | |
| 1530 ResolverTask resolver = visitor.compiler.resolver; | |
| 1531 visitor.inStaticContext(() { | |
| 1532 visitor.resolveSelector(call, null); | |
| 1533 visitor.resolveArguments(call.argumentsNode); | |
| 1534 }); | |
| 1535 Selector selector = registry.getSelector(call); | |
| 1536 bool isSuperCall = Initializers.isSuperConstructorCall(call); | |
| 1537 | |
| 1538 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
| 1539 isSuperCall, | |
| 1540 call); | |
| 1541 Selector constructorSelector = | |
| 1542 visitor.getRedirectingThisOrSuperConstructorSelector(call); | |
| 1543 FunctionElement calledConstructor = | |
| 1544 lookupTarget.lookupConstructor(constructorSelector); | |
| 1545 | |
| 1546 final bool isImplicitSuperCall = false; | |
| 1547 final String className = lookupTarget.name; | |
| 1548 verifyThatConstructorMatchesCall(constructor, | |
| 1549 calledConstructor, | |
| 1550 selector, | |
| 1551 isImplicitSuperCall, | |
| 1552 call, | |
| 1553 className, | |
| 1554 constructorSelector); | |
| 1555 | |
| 1556 registry.useElement(call, calledConstructor); | |
| 1557 registry.registerStaticUse(calledConstructor); | |
| 1558 return calledConstructor; | |
| 1559 } | |
| 1560 | |
| 1561 void resolveImplicitSuperConstructorSend(FunctionElement constructor, | |
| 1562 FunctionExpression functionNode) { | |
| 1563 // If the class has a super resolve the implicit super call. | |
| 1564 ClassElement classElement = constructor.enclosingClass; | |
| 1565 ClassElement superClass = classElement.superclass; | |
| 1566 if (classElement != visitor.compiler.objectClass) { | |
| 1567 assert(superClass != null); | |
| 1568 assert(superClass.resolutionState == STATE_DONE); | |
| 1569 String constructorName = ''; | |
| 1570 Selector callToMatch = new Selector.call( | |
| 1571 constructorName, | |
| 1572 classElement.library, | |
| 1573 0); | |
| 1574 | |
| 1575 final bool isSuperCall = true; | |
| 1576 ClassElement lookupTarget = getSuperOrThisLookupTarget(constructor, | |
| 1577 isSuperCall, | |
| 1578 functionNode); | |
| 1579 Selector constructorSelector = new Selector.callDefaultConstructor( | |
| 1580 visitor.enclosingElement.library); | |
| 1581 Element calledConstructor = lookupTarget.lookupConstructor( | |
| 1582 constructorSelector); | |
| 1583 | |
| 1584 final String className = lookupTarget.name; | |
| 1585 final bool isImplicitSuperCall = true; | |
| 1586 verifyThatConstructorMatchesCall(constructor, | |
| 1587 calledConstructor, | |
| 1588 callToMatch, | |
| 1589 isImplicitSuperCall, | |
| 1590 functionNode, | |
| 1591 className, | |
| 1592 constructorSelector); | |
| 1593 registry.registerImplicitSuperCall(calledConstructor); | |
| 1594 registry.registerStaticUse(calledConstructor); | |
| 1595 } | |
| 1596 } | |
| 1597 | |
| 1598 void verifyThatConstructorMatchesCall( | |
| 1599 FunctionElement caller, | |
| 1600 FunctionElement lookedupConstructor, | |
| 1601 Selector call, | |
| 1602 bool isImplicitSuperCall, | |
| 1603 Node diagnosticNode, | |
| 1604 String className, | |
| 1605 Selector constructorSelector) { | |
| 1606 if (lookedupConstructor == null | |
| 1607 || !lookedupConstructor.isGenerativeConstructor) { | |
| 1608 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
| 1609 className, | |
| 1610 constructorSelector.name); | |
| 1611 MessageKind kind = isImplicitSuperCall | |
| 1612 ? MessageKind.CANNOT_RESOLVE_CONSTRUCTOR_FOR_IMPLICIT | |
| 1613 : MessageKind.CANNOT_RESOLVE_CONSTRUCTOR; | |
| 1614 visitor.compiler.reportError( | |
| 1615 diagnosticNode, kind, {'constructorName': fullConstructorName}); | |
| 1616 } else { | |
| 1617 lookedupConstructor.computeSignature(visitor.compiler); | |
| 1618 if (!call.applies(lookedupConstructor, visitor.compiler.world)) { | |
| 1619 MessageKind kind = isImplicitSuperCall | |
| 1620 ? MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT | |
| 1621 : MessageKind.NO_MATCHING_CONSTRUCTOR; | |
| 1622 visitor.compiler.reportError(diagnosticNode, kind); | |
| 1623 } else if (caller.isConst | |
| 1624 && !lookedupConstructor.isConst) { | |
| 1625 visitor.compiler.reportError( | |
| 1626 diagnosticNode, MessageKind.CONST_CALLS_NON_CONST); | |
| 1627 } | |
| 1628 } | |
| 1629 } | |
| 1630 | |
| 1631 /** | |
| 1632 * Resolve all initializers of this constructor. In the case of a redirecting | |
| 1633 * constructor, the resolved constructor's function element is returned. | |
| 1634 */ | |
| 1635 FunctionElement resolveInitializers(FunctionElement constructor, | |
| 1636 FunctionExpression functionNode) { | |
| 1637 // Keep track of all "this.param" parameters specified for constructor so | |
| 1638 // that we can ensure that fields are initialized only once. | |
| 1639 FunctionSignature functionParameters = constructor.functionSignature; | |
| 1640 functionParameters.forEachParameter((ParameterElement element) { | |
| 1641 if (element.isInitializingFormal) { | |
| 1642 InitializingFormalElement initializingFormal = element; | |
| 1643 checkForDuplicateInitializers(initializingFormal.fieldElement, | |
| 1644 element.initializer); | |
| 1645 } | |
| 1646 }); | |
| 1647 | |
| 1648 if (functionNode.initializers == null) { | |
| 1649 initializers = const Link<Node>(); | |
| 1650 } else { | |
| 1651 initializers = functionNode.initializers.nodes; | |
| 1652 } | |
| 1653 FunctionElement result; | |
| 1654 bool resolvedSuper = false; | |
| 1655 for (Link<Node> link = initializers; !link.isEmpty; link = link.tail) { | |
| 1656 if (link.head.asSendSet() != null) { | |
| 1657 final SendSet init = link.head.asSendSet(); | |
| 1658 resolveFieldInitializer(constructor, init); | |
| 1659 } else if (link.head.asSend() != null) { | |
| 1660 final Send call = link.head.asSend(); | |
| 1661 if (call.argumentsNode == null) { | |
| 1662 error(link.head, MessageKind.INVALID_INITIALIZER); | |
| 1663 continue; | |
| 1664 } | |
| 1665 if (Initializers.isSuperConstructorCall(call)) { | |
| 1666 if (resolvedSuper) { | |
| 1667 error(call, MessageKind.DUPLICATE_SUPER_INITIALIZER); | |
| 1668 } | |
| 1669 resolveSuperOrThisForSend(constructor, functionNode, call); | |
| 1670 resolvedSuper = true; | |
| 1671 } else if (Initializers.isConstructorRedirect(call)) { | |
| 1672 // Check that there is no body (Language specification 7.5.1). If the | |
| 1673 // constructor is also const, we already reported an error in | |
| 1674 // [resolveMethodElement]. | |
| 1675 if (functionNode.hasBody() && !constructor.isConst) { | |
| 1676 error(functionNode, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_BODY); | |
| 1677 } | |
| 1678 // Check that there are no other initializers. | |
| 1679 if (!initializers.tail.isEmpty) { | |
| 1680 error(call, MessageKind.REDIRECTING_CONSTRUCTOR_HAS_INITIALIZER); | |
| 1681 } | |
| 1682 // Check that there are no field initializing parameters. | |
| 1683 Compiler compiler = visitor.compiler; | |
| 1684 FunctionSignature signature = constructor.functionSignature; | |
| 1685 signature.forEachParameter((ParameterElement parameter) { | |
| 1686 if (parameter.isInitializingFormal) { | |
| 1687 Node node = parameter.node; | |
| 1688 error(node, MessageKind.INITIALIZING_FORMAL_NOT_ALLOWED); | |
| 1689 } | |
| 1690 }); | |
| 1691 return resolveSuperOrThisForSend(constructor, functionNode, call); | |
| 1692 } else { | |
| 1693 visitor.error(call, MessageKind.CONSTRUCTOR_CALL_EXPECTED); | |
| 1694 return null; | |
| 1695 } | |
| 1696 } else { | |
| 1697 error(link.head, MessageKind.INVALID_INITIALIZER); | |
| 1698 } | |
| 1699 } | |
| 1700 if (!resolvedSuper) { | |
| 1701 resolveImplicitSuperConstructorSend(constructor, functionNode); | |
| 1702 } | |
| 1703 return null; // If there was no redirection always return null. | |
| 1704 } | |
| 1705 } | |
| 1706 | |
| 1707 class CommonResolverVisitor<R> extends Visitor<R> { | |
| 1708 final Compiler compiler; | |
| 1709 | |
| 1710 CommonResolverVisitor(Compiler this.compiler); | |
| 1711 | |
| 1712 R visitNode(Node node) { | |
| 1713 internalError(node, | |
| 1714 'internal error: Unhandled node: ${node.getObjectDescription()}'); | |
| 1715 return null; | |
| 1716 } | |
| 1717 | |
| 1718 R visitEmptyStatement(Node node) => null; | |
| 1719 | |
| 1720 /** Convenience method for visiting nodes that may be null. */ | |
| 1721 R visit(Node node) => (node == null) ? null : node.accept(this); | |
| 1722 | |
| 1723 void error(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
| 1724 compiler.reportFatalError(node, kind, arguments); | |
| 1725 } | |
| 1726 | |
| 1727 void warning(Spannable node, MessageKind kind, [Map arguments = const {}]) { | |
| 1728 compiler.reportWarning(node, kind, arguments); | |
| 1729 } | |
| 1730 | |
| 1731 void internalError(Spannable node, message) { | |
| 1732 compiler.internalError(node, message); | |
| 1733 } | |
| 1734 | |
| 1735 void addDeferredAction(Element element, DeferredAction action) { | |
| 1736 compiler.enqueuer.resolution.addDeferredAction(element, action); | |
| 1737 } | |
| 1738 } | |
| 1739 | |
| 1740 abstract class LabelScope { | |
| 1741 LabelScope get outer; | |
| 1742 LabelDefinition lookup(String label); | |
| 1743 } | |
| 1744 | |
| 1745 class LabeledStatementLabelScope implements LabelScope { | |
| 1746 final LabelScope outer; | |
| 1747 final Map<String, LabelDefinition> labels; | |
| 1748 LabeledStatementLabelScope(this.outer, this.labels); | |
| 1749 LabelDefinition lookup(String labelName) { | |
| 1750 LabelDefinition label = labels[labelName]; | |
| 1751 if (label != null) return label; | |
| 1752 return outer.lookup(labelName); | |
| 1753 } | |
| 1754 } | |
| 1755 | |
| 1756 class SwitchLabelScope implements LabelScope { | |
| 1757 final LabelScope outer; | |
| 1758 final Map<String, LabelDefinition> caseLabels; | |
| 1759 | |
| 1760 SwitchLabelScope(this.outer, this.caseLabels); | |
| 1761 | |
| 1762 LabelDefinition lookup(String labelName) { | |
| 1763 LabelDefinition result = caseLabels[labelName]; | |
| 1764 if (result != null) return result; | |
| 1765 return outer.lookup(labelName); | |
| 1766 } | |
| 1767 } | |
| 1768 | |
| 1769 class EmptyLabelScope implements LabelScope { | |
| 1770 const EmptyLabelScope(); | |
| 1771 LabelDefinition lookup(String label) => null; | |
| 1772 LabelScope get outer { | |
| 1773 throw 'internal error: empty label scope has no outer'; | |
| 1774 } | |
| 1775 } | |
| 1776 | |
| 1777 class StatementScope { | |
| 1778 LabelScope labels; | |
| 1779 Link<JumpTarget> breakTargetStack; | |
| 1780 Link<JumpTarget> continueTargetStack; | |
| 1781 // Used to provide different numbers to statements if one is inside the other. | |
| 1782 // Can be used to make otherwise duplicate labels unique. | |
| 1783 int nestingLevel = 0; | |
| 1784 | |
| 1785 StatementScope() | |
| 1786 : labels = const EmptyLabelScope(), | |
| 1787 breakTargetStack = const Link<JumpTarget>(), | |
| 1788 continueTargetStack = const Link<JumpTarget>(); | |
| 1789 | |
| 1790 LabelDefinition lookupLabel(String label) { | |
| 1791 return labels.lookup(label); | |
| 1792 } | |
| 1793 | |
| 1794 JumpTarget currentBreakTarget() => | |
| 1795 breakTargetStack.isEmpty ? null : breakTargetStack.head; | |
| 1796 | |
| 1797 JumpTarget currentContinueTarget() => | |
| 1798 continueTargetStack.isEmpty ? null : continueTargetStack.head; | |
| 1799 | |
| 1800 void enterLabelScope(Map<String, LabelDefinition> elements) { | |
| 1801 labels = new LabeledStatementLabelScope(labels, elements); | |
| 1802 nestingLevel++; | |
| 1803 } | |
| 1804 | |
| 1805 void exitLabelScope() { | |
| 1806 nestingLevel--; | |
| 1807 labels = labels.outer; | |
| 1808 } | |
| 1809 | |
| 1810 void enterLoop(JumpTarget element) { | |
| 1811 breakTargetStack = breakTargetStack.prepend(element); | |
| 1812 continueTargetStack = continueTargetStack.prepend(element); | |
| 1813 nestingLevel++; | |
| 1814 } | |
| 1815 | |
| 1816 void exitLoop() { | |
| 1817 nestingLevel--; | |
| 1818 breakTargetStack = breakTargetStack.tail; | |
| 1819 continueTargetStack = continueTargetStack.tail; | |
| 1820 } | |
| 1821 | |
| 1822 void enterSwitch(JumpTarget breakElement, | |
| 1823 Map<String, LabelDefinition> continueElements) { | |
| 1824 breakTargetStack = breakTargetStack.prepend(breakElement); | |
| 1825 labels = new SwitchLabelScope(labels, continueElements); | |
| 1826 nestingLevel++; | |
| 1827 } | |
| 1828 | |
| 1829 void exitSwitch() { | |
| 1830 nestingLevel--; | |
| 1831 breakTargetStack = breakTargetStack.tail; | |
| 1832 labels = labels.outer; | |
| 1833 } | |
| 1834 } | |
| 1835 | |
| 1836 class TypeResolver { | |
| 1837 final Compiler compiler; | |
| 1838 | |
| 1839 TypeResolver(this.compiler); | |
| 1840 | |
| 1841 /// Tries to resolve the type name as an element. | |
| 1842 Element resolveTypeName(Identifier prefixName, | |
| 1843 Identifier typeName, | |
| 1844 Scope scope, | |
| 1845 {bool deferredIsMalformed: true}) { | |
| 1846 Element element; | |
| 1847 bool deferredTypeAnnotation = false; | |
| 1848 if (prefixName != null) { | |
| 1849 Element prefixElement = | |
| 1850 lookupInScope(compiler, prefixName, scope, prefixName.source); | |
| 1851 if (prefixElement != null && prefixElement.isPrefix) { | |
| 1852 // The receiver is a prefix. Lookup in the imported members. | |
| 1853 PrefixElement prefix = prefixElement; | |
| 1854 element = prefix.lookupLocalMember(typeName.source); | |
| 1855 // TODO(17260, sigurdm): The test for DartBackend is there because | |
| 1856 // dart2dart outputs malformed types with prefix. | |
| 1857 if (element != null && | |
| 1858 prefix.isDeferred && | |
| 1859 deferredIsMalformed && | |
| 1860 compiler.backend is! DartBackend) { | |
| 1861 element = new ErroneousElementX(MessageKind.DEFERRED_TYPE_ANNOTATION, | |
| 1862 {'node': typeName}, | |
| 1863 element.name, | |
| 1864 element); | |
| 1865 } | |
| 1866 } else { | |
| 1867 // The caller of this method will create the ErroneousElement for | |
| 1868 // the MalformedType. | |
| 1869 element = null; | |
| 1870 } | |
| 1871 } else { | |
| 1872 String stringValue = typeName.source; | |
| 1873 element = lookupInScope(compiler, typeName, scope, typeName.source); | |
| 1874 } | |
| 1875 return element; | |
| 1876 } | |
| 1877 | |
| 1878 DartType resolveTypeAnnotation(MappingVisitor visitor, TypeAnnotation node, | |
| 1879 {bool malformedIsError: false, | |
| 1880 bool deferredIsMalformed: true}) { | |
| 1881 ResolutionRegistry registry = visitor.registry; | |
| 1882 | |
| 1883 Identifier typeName; | |
| 1884 DartType type; | |
| 1885 | |
| 1886 DartType checkNoTypeArguments(DartType type) { | |
| 1887 List<DartType> arguments = new List<DartType>(); | |
| 1888 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 1889 visitor, node, const <DartType>[], arguments); | |
| 1890 if (hasTypeArgumentMismatch) { | |
| 1891 return new MalformedType( | |
| 1892 new ErroneousElementX(MessageKind.TYPE_ARGUMENT_COUNT_MISMATCH, | |
| 1893 {'type': node}, typeName.source, visitor.enclosingElement), | |
| 1894 type, arguments); | |
| 1895 } | |
| 1896 return type; | |
| 1897 } | |
| 1898 | |
| 1899 Identifier prefixName; | |
| 1900 Send send = node.typeName.asSend(); | |
| 1901 if (send != null) { | |
| 1902 // The type name is of the form [: prefix . identifier :]. | |
| 1903 prefixName = send.receiver.asIdentifier(); | |
| 1904 typeName = send.selector.asIdentifier(); | |
| 1905 } else { | |
| 1906 typeName = node.typeName.asIdentifier(); | |
| 1907 if (identical(typeName.source, 'void')) { | |
| 1908 type = const VoidType(); | |
| 1909 checkNoTypeArguments(type); | |
| 1910 registry.useType(node, type); | |
| 1911 return type; | |
| 1912 } else if (identical(typeName.source, 'dynamic')) { | |
| 1913 type = const DynamicType(); | |
| 1914 checkNoTypeArguments(type); | |
| 1915 registry.useType(node, type); | |
| 1916 return type; | |
| 1917 } | |
| 1918 } | |
| 1919 | |
| 1920 Element element = resolveTypeName(prefixName, typeName, visitor.scope, | |
| 1921 deferredIsMalformed: deferredIsMalformed); | |
| 1922 | |
| 1923 DartType reportFailureAndCreateType(MessageKind messageKind, | |
| 1924 Map messageArguments, | |
| 1925 {DartType userProvidedBadType, | |
| 1926 Element erroneousElement}) { | |
| 1927 if (malformedIsError) { | |
| 1928 visitor.error(node, messageKind, messageArguments); | |
| 1929 } else { | |
| 1930 registry.registerThrowRuntimeError(); | |
| 1931 visitor.warning(node, messageKind, messageArguments); | |
| 1932 } | |
| 1933 if (erroneousElement == null) { | |
| 1934 erroneousElement = new ErroneousElementX( | |
| 1935 messageKind, messageArguments, typeName.source, | |
| 1936 visitor.enclosingElement); | |
| 1937 } | |
| 1938 List<DartType> arguments = <DartType>[]; | |
| 1939 resolveTypeArguments(visitor, node, const <DartType>[], arguments); | |
| 1940 return new MalformedType(erroneousElement, | |
| 1941 userProvidedBadType, arguments); | |
| 1942 } | |
| 1943 | |
| 1944 // Try to construct the type from the element. | |
| 1945 if (element == null) { | |
| 1946 type = reportFailureAndCreateType( | |
| 1947 MessageKind.CANNOT_RESOLVE_TYPE, {'typeName': node.typeName}); | |
| 1948 } else if (element.isAmbiguous) { | |
| 1949 AmbiguousElement ambiguous = element; | |
| 1950 type = reportFailureAndCreateType( | |
| 1951 ambiguous.messageKind, ambiguous.messageArguments); | |
| 1952 ambiguous.diagnose(registry.mapping.analyzedElement, compiler); | |
| 1953 } else if (element.isErroneous) { | |
| 1954 ErroneousElement erroneousElement = element; | |
| 1955 type = reportFailureAndCreateType( | |
| 1956 erroneousElement.messageKind, erroneousElement.messageArguments, | |
| 1957 erroneousElement: erroneousElement); | |
| 1958 } else if (!element.impliesType) { | |
| 1959 type = reportFailureAndCreateType( | |
| 1960 MessageKind.NOT_A_TYPE, {'node': node.typeName}); | |
| 1961 } else { | |
| 1962 bool addTypeVariableBoundsCheck = false; | |
| 1963 if (element.isClass) { | |
| 1964 ClassElement cls = element; | |
| 1965 // TODO(johnniwinther): [_ensureClassWillBeResolved] should imply | |
| 1966 // [computeType]. | |
| 1967 compiler.resolver._ensureClassWillBeResolved(cls); | |
| 1968 element.computeType(compiler); | |
| 1969 List<DartType> arguments = <DartType>[]; | |
| 1970 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 1971 visitor, node, cls.typeVariables, arguments); | |
| 1972 if (hasTypeArgumentMismatch) { | |
| 1973 type = new BadInterfaceType(cls.declaration, | |
| 1974 new InterfaceType.forUserProvidedBadType(cls.declaration, | |
| 1975 arguments)); | |
| 1976 } else { | |
| 1977 if (arguments.isEmpty) { | |
| 1978 type = cls.rawType; | |
| 1979 } else { | |
| 1980 type = new InterfaceType(cls.declaration, arguments.toList(growable:
false)); | |
| 1981 addTypeVariableBoundsCheck = true; | |
| 1982 } | |
| 1983 } | |
| 1984 } else if (element.isTypedef) { | |
| 1985 TypedefElement typdef = element; | |
| 1986 // TODO(johnniwinther): [ensureResolved] should imply [computeType]. | |
| 1987 typdef.ensureResolved(compiler); | |
| 1988 element.computeType(compiler); | |
| 1989 List<DartType> arguments = <DartType>[]; | |
| 1990 bool hasTypeArgumentMismatch = resolveTypeArguments( | |
| 1991 visitor, node, typdef.typeVariables, arguments); | |
| 1992 if (hasTypeArgumentMismatch) { | |
| 1993 type = new BadTypedefType(typdef, | |
| 1994 new TypedefType.forUserProvidedBadType(typdef, arguments)); | |
| 1995 } else { | |
| 1996 if (arguments.isEmpty) { | |
| 1997 type = typdef.rawType; | |
| 1998 } else { | |
| 1999 type = new TypedefType(typdef, arguments.toList(growable: false)); | |
| 2000 addTypeVariableBoundsCheck = true; | |
| 2001 } | |
| 2002 } | |
| 2003 } else if (element.isTypeVariable) { | |
| 2004 Element outer = | |
| 2005 visitor.enclosingElement.outermostEnclosingMemberOrTopLevel; | |
| 2006 bool isInFactoryConstructor = | |
| 2007 outer != null && outer.isFactoryConstructor; | |
| 2008 if (!outer.isClass && | |
| 2009 !outer.isTypedef && | |
| 2010 !isInFactoryConstructor && | |
| 2011 Elements.isInStaticContext(visitor.enclosingElement)) { | |
| 2012 registry.registerThrowRuntimeError(); | |
| 2013 type = reportFailureAndCreateType( | |
| 2014 MessageKind.TYPE_VARIABLE_WITHIN_STATIC_MEMBER, | |
| 2015 {'typeVariableName': node}, | |
| 2016 userProvidedBadType: element.computeType(compiler)); | |
| 2017 } else { | |
| 2018 type = element.computeType(compiler); | |
| 2019 } | |
| 2020 type = checkNoTypeArguments(type); | |
| 2021 } else { | |
| 2022 compiler.internalError(node, | |
| 2023 "Unexpected element kind ${element.kind}."); | |
| 2024 } | |
| 2025 if (addTypeVariableBoundsCheck) { | |
| 2026 registry.registerTypeVariableBoundCheck(); | |
| 2027 visitor.addDeferredAction( | |
| 2028 visitor.enclosingElement, | |
| 2029 () => checkTypeVariableBounds(node, type)); | |
| 2030 } | |
| 2031 } | |
| 2032 registry.useType(node, type); | |
| 2033 return type; | |
| 2034 } | |
| 2035 | |
| 2036 /// Checks the type arguments of [type] against the type variable bounds. | |
| 2037 void checkTypeVariableBounds(TypeAnnotation node, GenericType type) { | |
| 2038 void checkTypeVariableBound(_, DartType typeArgument, | |
| 2039 TypeVariableType typeVariable, | |
| 2040 DartType bound) { | |
| 2041 if (!compiler.types.isSubtype(typeArgument, bound)) { | |
| 2042 compiler.reportWarning(node, | |
| 2043 MessageKind.INVALID_TYPE_VARIABLE_BOUND, | |
| 2044 {'typeVariable': typeVariable, | |
| 2045 'bound': bound, | |
| 2046 'typeArgument': typeArgument, | |
| 2047 'thisType': type.element.thisType}); | |
| 2048 } | |
| 2049 }; | |
| 2050 | |
| 2051 compiler.types.checkTypeVariableBounds(type, checkTypeVariableBound); | |
| 2052 } | |
| 2053 | |
| 2054 /** | |
| 2055 * Resolves the type arguments of [node] and adds these to [arguments]. | |
| 2056 * | |
| 2057 * Returns [: true :] if the number of type arguments did not match the | |
| 2058 * number of type variables. | |
| 2059 */ | |
| 2060 bool resolveTypeArguments(MappingVisitor visitor, | |
| 2061 TypeAnnotation node, | |
| 2062 List<DartType> typeVariables, | |
| 2063 List<DartType> arguments) { | |
| 2064 if (node.typeArguments == null) { | |
| 2065 return false; | |
| 2066 } | |
| 2067 int expectedVariables = typeVariables.length; | |
| 2068 int index = 0; | |
| 2069 bool typeArgumentCountMismatch = false; | |
| 2070 for (Link<Node> typeArguments = node.typeArguments.nodes; | |
| 2071 !typeArguments.isEmpty; | |
| 2072 typeArguments = typeArguments.tail, index++) { | |
| 2073 if (index > expectedVariables - 1) { | |
| 2074 visitor.warning( | |
| 2075 typeArguments.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 2076 typeArgumentCountMismatch = true; | |
| 2077 } | |
| 2078 DartType argType = resolveTypeAnnotation(visitor, typeArguments.head); | |
| 2079 // TODO(karlklose): rewrite to not modify [arguments]. | |
| 2080 arguments.add(argType); | |
| 2081 } | |
| 2082 if (index < expectedVariables) { | |
| 2083 visitor.warning(node.typeArguments, | |
| 2084 MessageKind.MISSING_TYPE_ARGUMENT); | |
| 2085 typeArgumentCountMismatch = true; | |
| 2086 } | |
| 2087 return typeArgumentCountMismatch; | |
| 2088 } | |
| 2089 } | |
| 2090 | |
| 2091 /** | |
| 2092 * Common supertype for resolver visitors that record resolutions in a | |
| 2093 * [ResolutionRegistry]. | |
| 2094 */ | |
| 2095 abstract class MappingVisitor<T> extends CommonResolverVisitor<T> { | |
| 2096 final ResolutionRegistry registry; | |
| 2097 final TypeResolver typeResolver; | |
| 2098 /// The current enclosing element for the visited AST nodes. | |
| 2099 Element get enclosingElement; | |
| 2100 /// The current scope of the visitor. | |
| 2101 Scope get scope; | |
| 2102 | |
| 2103 MappingVisitor(Compiler compiler, ResolutionRegistry this.registry) | |
| 2104 : typeResolver = new TypeResolver(compiler), | |
| 2105 super(compiler); | |
| 2106 | |
| 2107 /// Add [element] to the current scope and check for duplicate definitions. | |
| 2108 void addToScope(Element element) { | |
| 2109 Element existing = scope.add(element); | |
| 2110 if (existing != element) { | |
| 2111 reportDuplicateDefinition(element.name, element, existing); | |
| 2112 } | |
| 2113 } | |
| 2114 | |
| 2115 /// Register [node] as the definition of [element]. | |
| 2116 void defineLocalVariable(Node node, LocalVariableElement element) { | |
| 2117 invariant(node, element != null); | |
| 2118 registry.defineElement(node, element); | |
| 2119 } | |
| 2120 | |
| 2121 void reportDuplicateDefinition(String name, | |
| 2122 Spannable definition, | |
| 2123 Spannable existing) { | |
| 2124 compiler.reportError(definition, | |
| 2125 MessageKind.DUPLICATE_DEFINITION, {'name': name}); | |
| 2126 compiler.reportInfo(existing, | |
| 2127 MessageKind.EXISTING_DEFINITION, {'name': name}); | |
| 2128 } | |
| 2129 } | |
| 2130 | |
| 2131 /** | |
| 2132 * Core implementation of resolution. | |
| 2133 * | |
| 2134 * Do not subclass or instantiate this class outside this library | |
| 2135 * except for testing. | |
| 2136 */ | |
| 2137 class ResolverVisitor extends MappingVisitor<ResolutionResult> { | |
| 2138 /** | |
| 2139 * The current enclosing element for the visited AST nodes. | |
| 2140 * | |
| 2141 * This field is updated when nested closures are visited. | |
| 2142 */ | |
| 2143 Element enclosingElement; | |
| 2144 bool inInstanceContext; | |
| 2145 bool inCheckContext; | |
| 2146 bool inCatchBlock; | |
| 2147 | |
| 2148 Scope scope; | |
| 2149 ClassElement currentClass; | |
| 2150 ExpressionStatement currentExpressionStatement; | |
| 2151 bool sendIsMemberAccess = false; | |
| 2152 StatementScope statementScope; | |
| 2153 int allowedCategory = ElementCategory.VARIABLE | ElementCategory.FUNCTION | |
| 2154 | ElementCategory.IMPLIES_TYPE; | |
| 2155 | |
| 2156 /** | |
| 2157 * Record of argument nodes to JS_INTERCEPTOR_CONSTANT for deferred | |
| 2158 * processing. | |
| 2159 */ | |
| 2160 Set<Node> argumentsToJsInterceptorConstant = null; | |
| 2161 | |
| 2162 /// When visiting the type declaration of the variable in a [ForIn] loop, | |
| 2163 /// the initializer of the variable is implicit and we should not emit an | |
| 2164 /// error when verifying that all final variables are initialized. | |
| 2165 bool allowFinalWithoutInitializer = false; | |
| 2166 | |
| 2167 /// The nodes for which variable access and mutation must be registered in | |
| 2168 /// order to determine when the static type of variables types is promoted. | |
| 2169 Link<Node> promotionScope = const Link<Node>(); | |
| 2170 | |
| 2171 bool isPotentiallyMutableTarget(Element target) { | |
| 2172 if (target == null) return false; | |
| 2173 return (target.isVariable || target.isParameter) && | |
| 2174 !(target.isFinal || target.isConst); | |
| 2175 } | |
| 2176 | |
| 2177 // TODO(ahe): Find a way to share this with runtime implementation. | |
| 2178 static final RegExp symbolValidationPattern = | |
| 2179 new RegExp(r'^(?:[a-zA-Z$][a-zA-Z$0-9_]*\.)*(?:[a-zA-Z$][a-zA-Z$0-9_]*=?|' | |
| 2180 r'-|' | |
| 2181 r'unary-|' | |
| 2182 r'\[\]=|' | |
| 2183 r'~|' | |
| 2184 r'==|' | |
| 2185 r'\[\]|' | |
| 2186 r'\*|' | |
| 2187 r'/|' | |
| 2188 r'%|' | |
| 2189 r'~/|' | |
| 2190 r'\+|' | |
| 2191 r'<<|' | |
| 2192 r'>>|' | |
| 2193 r'>=|' | |
| 2194 r'>|' | |
| 2195 r'<=|' | |
| 2196 r'<|' | |
| 2197 r'&|' | |
| 2198 r'\^|' | |
| 2199 r'\|' | |
| 2200 r')$'); | |
| 2201 | |
| 2202 ResolverVisitor(Compiler compiler, | |
| 2203 Element element, | |
| 2204 ResolutionRegistry registry, | |
| 2205 {bool useEnclosingScope: false}) | |
| 2206 : this.enclosingElement = element, | |
| 2207 // When the element is a field, we are actually resolving its | |
| 2208 // initial value, which should not have access to instance | |
| 2209 // fields. | |
| 2210 inInstanceContext = (element.isInstanceMember && !element.isField) | |
| 2211 || element.isGenerativeConstructor, | |
| 2212 this.currentClass = element.isClassMember ? element.enclosingClass | |
| 2213 : null, | |
| 2214 this.statementScope = new StatementScope(), | |
| 2215 scope = useEnclosingScope | |
| 2216 ? Scope.buildEnclosingScope(element) : element.buildScope(), | |
| 2217 // The type annotations on a typedef do not imply type checks. | |
| 2218 // TODO(karlklose): clean this up (dartbug.com/8870). | |
| 2219 inCheckContext = compiler.enableTypeAssertions && | |
| 2220 !element.isLibrary && | |
| 2221 !element.isTypedef && | |
| 2222 !element.enclosingElement.isTypedef, | |
| 2223 inCatchBlock = false, | |
| 2224 super(compiler, registry); | |
| 2225 | |
| 2226 Element reportLookupErrorIfAny(Element result, Node node, String name) { | |
| 2227 if (!Elements.isUnresolved(result)) { | |
| 2228 if (!inInstanceContext && result.isInstanceMember) { | |
| 2229 compiler.reportError( | |
| 2230 node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
| 2231 return new ErroneousElementX(MessageKind.NO_INSTANCE_AVAILABLE, | |
| 2232 {'name': name}, | |
| 2233 name, enclosingElement); | |
| 2234 } else if (result.isAmbiguous) { | |
| 2235 AmbiguousElement ambiguous = result; | |
| 2236 compiler.reportError( | |
| 2237 node, ambiguous.messageKind, ambiguous.messageArguments); | |
| 2238 ambiguous.diagnose(enclosingElement, compiler); | |
| 2239 return new ErroneousElementX(ambiguous.messageKind, | |
| 2240 ambiguous.messageArguments, | |
| 2241 name, enclosingElement); | |
| 2242 } | |
| 2243 } | |
| 2244 return result; | |
| 2245 } | |
| 2246 | |
| 2247 // Create, or reuse an already created, target element for a statement. | |
| 2248 JumpTarget getOrDefineTarget(Node statement) { | |
| 2249 JumpTarget element = registry.getTargetDefinition(statement); | |
| 2250 if (element == null) { | |
| 2251 element = new JumpTargetX(statement, | |
| 2252 statementScope.nestingLevel, | |
| 2253 enclosingElement); | |
| 2254 registry.defineTarget(statement, element); | |
| 2255 } | |
| 2256 return element; | |
| 2257 } | |
| 2258 | |
| 2259 doInCheckContext(action()) { | |
| 2260 bool wasInCheckContext = inCheckContext; | |
| 2261 inCheckContext = true; | |
| 2262 var result = action(); | |
| 2263 inCheckContext = wasInCheckContext; | |
| 2264 return result; | |
| 2265 } | |
| 2266 | |
| 2267 inStaticContext(action()) { | |
| 2268 bool wasInstanceContext = inInstanceContext; | |
| 2269 inInstanceContext = false; | |
| 2270 var result = action(); | |
| 2271 inInstanceContext = wasInstanceContext; | |
| 2272 return result; | |
| 2273 } | |
| 2274 | |
| 2275 doInPromotionScope(Node node, action()) { | |
| 2276 promotionScope = promotionScope.prepend(node); | |
| 2277 var result = action(); | |
| 2278 promotionScope = promotionScope.tail; | |
| 2279 return result; | |
| 2280 } | |
| 2281 | |
| 2282 visitInStaticContext(Node node) { | |
| 2283 inStaticContext(() => visit(node)); | |
| 2284 } | |
| 2285 | |
| 2286 ErroneousElement warnAndCreateErroneousElement(Node node, | |
| 2287 String name, | |
| 2288 MessageKind kind, | |
| 2289 [Map arguments = const {}]) { | |
| 2290 compiler.reportWarning(node, kind, arguments); | |
| 2291 return new ErroneousElementX(kind, arguments, name, enclosingElement); | |
| 2292 } | |
| 2293 | |
| 2294 ResolutionResult visitIdentifier(Identifier node) { | |
| 2295 if (node.isThis()) { | |
| 2296 if (!inInstanceContext) { | |
| 2297 error(node, MessageKind.NO_INSTANCE_AVAILABLE, {'name': node}); | |
| 2298 } | |
| 2299 return null; | |
| 2300 } else if (node.isSuper()) { | |
| 2301 if (!inInstanceContext) error(node, MessageKind.NO_SUPER_IN_STATIC); | |
| 2302 if ((ElementCategory.SUPER & allowedCategory) == 0) { | |
| 2303 error(node, MessageKind.INVALID_USE_OF_SUPER); | |
| 2304 } | |
| 2305 return null; | |
| 2306 } else { | |
| 2307 String name = node.source; | |
| 2308 Element element = lookupInScope(compiler, node, scope, name); | |
| 2309 if (Elements.isUnresolved(element) && name == 'dynamic') { | |
| 2310 // TODO(johnniwinther): Remove this hack when we can return more complex | |
| 2311 // objects than [Element] from this method. | |
| 2312 element = compiler.typeClass; | |
| 2313 // Set the type to be `dynamic` to mark that this is a type literal. | |
| 2314 registry.setType(node, const DynamicType()); | |
| 2315 } | |
| 2316 element = reportLookupErrorIfAny(element, node, node.source); | |
| 2317 if (element == null) { | |
| 2318 if (!inInstanceContext) { | |
| 2319 element = warnAndCreateErroneousElement( | |
| 2320 node, node.source, MessageKind.CANNOT_RESOLVE, | |
| 2321 {'name': node}); | |
| 2322 registry.registerThrowNoSuchMethod(); | |
| 2323 } | |
| 2324 } else if (element.isErroneous) { | |
| 2325 // Use the erroneous element. | |
| 2326 } else { | |
| 2327 if ((element.kind.category & allowedCategory) == 0) { | |
| 2328 // TODO(ahe): Improve error message. Need UX input. | |
| 2329 error(node, MessageKind.GENERIC, | |
| 2330 {'text': "is not an expression $element"}); | |
| 2331 } | |
| 2332 } | |
| 2333 if (!Elements.isUnresolved(element) && element.isClass) { | |
| 2334 ClassElement classElement = element; | |
| 2335 classElement.ensureResolved(compiler); | |
| 2336 } | |
| 2337 return new ElementResult(registry.useElement(node, element)); | |
| 2338 } | |
| 2339 } | |
| 2340 | |
| 2341 ResolutionResult visitTypeAnnotation(TypeAnnotation node) { | |
| 2342 DartType type = resolveTypeAnnotation(node); | |
| 2343 if (inCheckContext) { | |
| 2344 registry.registerIsCheck(type); | |
| 2345 } | |
| 2346 return new TypeResult(type); | |
| 2347 } | |
| 2348 | |
| 2349 bool isNamedConstructor(Send node) => node.receiver != null; | |
| 2350 | |
| 2351 Selector getRedirectingThisOrSuperConstructorSelector(Send node) { | |
| 2352 if (isNamedConstructor(node)) { | |
| 2353 String constructorName = node.selector.asIdentifier().source; | |
| 2354 return new Selector.callConstructor( | |
| 2355 constructorName, | |
| 2356 enclosingElement.library); | |
| 2357 } else { | |
| 2358 return new Selector.callDefaultConstructor( | |
| 2359 enclosingElement.library); | |
| 2360 } | |
| 2361 } | |
| 2362 | |
| 2363 FunctionElement resolveConstructorRedirection(FunctionElementX constructor) { | |
| 2364 FunctionExpression node = constructor.parseNode(compiler); | |
| 2365 | |
| 2366 // A synthetic constructor does not have a node. | |
| 2367 if (node == null) return null; | |
| 2368 if (node.initializers == null) return null; | |
| 2369 Link<Node> initializers = node.initializers.nodes; | |
| 2370 if (!initializers.isEmpty && | |
| 2371 Initializers.isConstructorRedirect(initializers.head)) { | |
| 2372 Selector selector = | |
| 2373 getRedirectingThisOrSuperConstructorSelector(initializers.head); | |
| 2374 final ClassElement classElement = constructor.enclosingClass; | |
| 2375 return classElement.lookupConstructor(selector); | |
| 2376 } | |
| 2377 return null; | |
| 2378 } | |
| 2379 | |
| 2380 void setupFunction(FunctionExpression node, FunctionElement function) { | |
| 2381 Element enclosingElement = function.enclosingElement; | |
| 2382 if (node.modifiers.isStatic && | |
| 2383 enclosingElement.kind != ElementKind.CLASS) { | |
| 2384 compiler.reportError(node, MessageKind.ILLEGAL_STATIC); | |
| 2385 } | |
| 2386 | |
| 2387 scope = new MethodScope(scope, function); | |
| 2388 // Put the parameters in scope. | |
| 2389 FunctionSignature functionParameters = function.functionSignature; | |
| 2390 Link<Node> parameterNodes = (node.parameters == null) | |
| 2391 ? const Link<Node>() : node.parameters.nodes; | |
| 2392 functionParameters.forEachParameter((ParameterElement element) { | |
| 2393 // TODO(karlklose): should be a list of [FormalElement]s, but the actual | |
| 2394 // implementation uses [Element]. | |
| 2395 Link<Element> optionals = functionParameters.optionalParameters; | |
| 2396 if (!optionals.isEmpty && element == optionals.head) { | |
| 2397 NodeList nodes = parameterNodes.head; | |
| 2398 parameterNodes = nodes.nodes; | |
| 2399 } | |
| 2400 visit(element.initializer); | |
| 2401 VariableDefinitions variableDefinitions = parameterNodes.head; | |
| 2402 Node parameterNode = variableDefinitions.definitions.nodes.head; | |
| 2403 // Field parameters (this.x) are not visible inside the constructor. The | |
| 2404 // fields they reference are visible, but must be resolved independently. | |
| 2405 if (element.isInitializingFormal) { | |
| 2406 registry.useElement(parameterNode, element); | |
| 2407 } else { | |
| 2408 LocalParameterElement parameterElement = element; | |
| 2409 defineLocalVariable(parameterNode, parameterElement); | |
| 2410 addToScope(parameterElement); | |
| 2411 } | |
| 2412 parameterNodes = parameterNodes.tail; | |
| 2413 }); | |
| 2414 addDeferredAction(enclosingElement, () { | |
| 2415 functionParameters.forEachOptionalParameter((Element parameter) { | |
| 2416 compiler.resolver.constantCompiler.compileConstant(parameter); | |
| 2417 }); | |
| 2418 }); | |
| 2419 if (inCheckContext) { | |
| 2420 functionParameters.forEachParameter((ParameterElement element) { | |
| 2421 registry.registerIsCheck(element.type); | |
| 2422 }); | |
| 2423 } | |
| 2424 } | |
| 2425 | |
| 2426 visitCascade(Cascade node) { | |
| 2427 visit(node.expression); | |
| 2428 } | |
| 2429 | |
| 2430 visitCascadeReceiver(CascadeReceiver node) { | |
| 2431 visit(node.expression); | |
| 2432 } | |
| 2433 | |
| 2434 visitClassNode(ClassNode node) { | |
| 2435 internalError(node, "shouldn't be called"); | |
| 2436 } | |
| 2437 | |
| 2438 visitIn(Node node, Scope nestedScope) { | |
| 2439 Scope oldScope = scope; | |
| 2440 scope = nestedScope; | |
| 2441 ResolutionResult result = visit(node); | |
| 2442 scope = oldScope; | |
| 2443 return result; | |
| 2444 } | |
| 2445 | |
| 2446 /** | |
| 2447 * Introduces new default targets for break and continue | |
| 2448 * before visiting the body of the loop | |
| 2449 */ | |
| 2450 visitLoopBodyIn(Loop loop, Node body, Scope bodyScope) { | |
| 2451 JumpTarget element = getOrDefineTarget(loop); | |
| 2452 statementScope.enterLoop(element); | |
| 2453 visitIn(body, bodyScope); | |
| 2454 statementScope.exitLoop(); | |
| 2455 if (!element.isTarget) { | |
| 2456 registry.undefineTarget(loop); | |
| 2457 } | |
| 2458 } | |
| 2459 | |
| 2460 visitBlock(Block node) { | |
| 2461 visitIn(node.statements, new BlockScope(scope)); | |
| 2462 } | |
| 2463 | |
| 2464 visitDoWhile(DoWhile node) { | |
| 2465 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
| 2466 visit(node.condition); | |
| 2467 } | |
| 2468 | |
| 2469 visitEmptyStatement(EmptyStatement node) { } | |
| 2470 | |
| 2471 visitExpressionStatement(ExpressionStatement node) { | |
| 2472 ExpressionStatement oldExpressionStatement = currentExpressionStatement; | |
| 2473 currentExpressionStatement = node; | |
| 2474 visit(node.expression); | |
| 2475 currentExpressionStatement = oldExpressionStatement; | |
| 2476 } | |
| 2477 | |
| 2478 visitFor(For node) { | |
| 2479 Scope blockScope = new BlockScope(scope); | |
| 2480 visitIn(node.initializer, blockScope); | |
| 2481 visitIn(node.condition, blockScope); | |
| 2482 visitIn(node.update, blockScope); | |
| 2483 visitLoopBodyIn(node, node.body, blockScope); | |
| 2484 } | |
| 2485 | |
| 2486 visitFunctionDeclaration(FunctionDeclaration node) { | |
| 2487 assert(node.function.name != null); | |
| 2488 visitFunctionExpression(node.function, inFunctionDeclaration: true); | |
| 2489 } | |
| 2490 | |
| 2491 | |
| 2492 /// Process a local function declaration or an anonymous function expression. | |
| 2493 /// | |
| 2494 /// [inFunctionDeclaration] is `true` when the current node is the immediate | |
| 2495 /// child of a function declaration. | |
| 2496 /// | |
| 2497 /// This is used to distinguish local function declarations from anonymous | |
| 2498 /// function expressions. | |
| 2499 visitFunctionExpression(FunctionExpression node, | |
| 2500 {bool inFunctionDeclaration: false}) { | |
| 2501 bool doAddToScope = inFunctionDeclaration; | |
| 2502 if (!inFunctionDeclaration && node.name != null) { | |
| 2503 compiler.reportError( | |
| 2504 node.name, | |
| 2505 MessageKind.NAMED_FUNCTION_EXPRESSION, | |
| 2506 {'name': node.name}); | |
| 2507 } | |
| 2508 visit(node.returnType); | |
| 2509 String name; | |
| 2510 if (node.name == null) { | |
| 2511 name = ""; | |
| 2512 } else { | |
| 2513 name = node.name.asIdentifier().source; | |
| 2514 } | |
| 2515 LocalFunctionElementX function = new LocalFunctionElementX( | |
| 2516 name, node, ElementKind.FUNCTION, Modifiers.EMPTY, | |
| 2517 enclosingElement); | |
| 2518 function.functionSignatureCache = | |
| 2519 SignatureResolver.analyze(compiler, node.parameters, node.returnType, | |
| 2520 function, registry, createRealParameters: true); | |
| 2521 registry.defineFunction(node, function); | |
| 2522 if (doAddToScope) { | |
| 2523 addToScope(function); | |
| 2524 } | |
| 2525 Scope oldScope = scope; // The scope is modified by [setupFunction]. | |
| 2526 setupFunction(node, function); | |
| 2527 | |
| 2528 Element previousEnclosingElement = enclosingElement; | |
| 2529 enclosingElement = function; | |
| 2530 // Run the body in a fresh statement scope. | |
| 2531 StatementScope oldStatementScope = statementScope; | |
| 2532 statementScope = new StatementScope(); | |
| 2533 visit(node.body); | |
| 2534 statementScope = oldStatementScope; | |
| 2535 | |
| 2536 scope = oldScope; | |
| 2537 enclosingElement = previousEnclosingElement; | |
| 2538 | |
| 2539 registry.registerClosure(function); | |
| 2540 registry.registerInstantiatedClass(compiler.functionClass); | |
| 2541 } | |
| 2542 | |
| 2543 visitIf(If node) { | |
| 2544 doInPromotionScope(node.condition.expression, () => visit(node.condition)); | |
| 2545 doInPromotionScope(node.thenPart, | |
| 2546 () => visitIn(node.thenPart, new BlockScope(scope))); | |
| 2547 visitIn(node.elsePart, new BlockScope(scope)); | |
| 2548 } | |
| 2549 | |
| 2550 ResolutionResult resolveSend(Send node) { | |
| 2551 Selector selector = resolveSelector(node, null); | |
| 2552 if (node.isSuperCall) registry.registerSuperUse(node); | |
| 2553 | |
| 2554 if (node.receiver == null) { | |
| 2555 // If this send is of the form "assert(expr);", then | |
| 2556 // this is an assertion. | |
| 2557 if (selector.isAssert) { | |
| 2558 if (selector.argumentCount != 1) { | |
| 2559 error(node.selector, | |
| 2560 MessageKind.WRONG_NUMBER_OF_ARGUMENTS_FOR_ASSERT, | |
| 2561 {'argumentCount': selector.argumentCount}); | |
| 2562 } else if (selector.namedArgumentCount != 0) { | |
| 2563 error(node.selector, | |
| 2564 MessageKind.ASSERT_IS_GIVEN_NAMED_ARGUMENTS, | |
| 2565 {'argumentCount': selector.namedArgumentCount}); | |
| 2566 } | |
| 2567 registry.registerAssert(node); | |
| 2568 return const AssertResult(); | |
| 2569 } | |
| 2570 | |
| 2571 return node.selector.accept(this); | |
| 2572 } | |
| 2573 | |
| 2574 var oldCategory = allowedCategory; | |
| 2575 allowedCategory |= ElementCategory.PREFIX | ElementCategory.SUPER; | |
| 2576 ResolutionResult resolvedReceiver = visit(node.receiver); | |
| 2577 allowedCategory = oldCategory; | |
| 2578 | |
| 2579 Element target; | |
| 2580 String name = node.selector.asIdentifier().source; | |
| 2581 if (identical(name, 'this')) { | |
| 2582 // TODO(ahe): Why is this using GENERIC? | |
| 2583 error(node.selector, MessageKind.GENERIC, | |
| 2584 {'text': "expected an identifier"}); | |
| 2585 } else if (node.isSuperCall) { | |
| 2586 if (node.isOperator) { | |
| 2587 if (isUserDefinableOperator(name)) { | |
| 2588 name = selector.name; | |
| 2589 } else { | |
| 2590 error(node.selector, MessageKind.ILLEGAL_SUPER_SEND, {'name': name}); | |
| 2591 } | |
| 2592 } | |
| 2593 if (!inInstanceContext) { | |
| 2594 error(node.receiver, MessageKind.NO_INSTANCE_AVAILABLE, {'name': name}); | |
| 2595 return null; | |
| 2596 } | |
| 2597 if (currentClass.supertype == null) { | |
| 2598 // This is just to guard against internal errors, so no need | |
| 2599 // for a real error message. | |
| 2600 error(node.receiver, MessageKind.GENERIC, | |
| 2601 {'text': "Object has no superclass"}); | |
| 2602 } | |
| 2603 // TODO(johnniwinther): Ensure correct behavior if currentClass is a | |
| 2604 // patch. | |
| 2605 target = currentClass.lookupSuperSelector(selector); | |
| 2606 // [target] may be null which means invoking noSuchMethod on | |
| 2607 // super. | |
| 2608 if (target == null) { | |
| 2609 target = warnAndCreateErroneousElement( | |
| 2610 node, name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
| 2611 {'className': currentClass, 'memberName': name}); | |
| 2612 // We still need to register the invocation, because we might | |
| 2613 // call [:super.noSuchMethod:] which calls | |
| 2614 // [JSInvocationMirror._invokeOn]. | |
| 2615 registry.registerDynamicInvocation(selector); | |
| 2616 registry.registerSuperNoSuchMethod(); | |
| 2617 } | |
| 2618 } else if (resolvedReceiver == null || | |
| 2619 Elements.isUnresolved(resolvedReceiver.element)) { | |
| 2620 return null; | |
| 2621 } else if (resolvedReceiver.element.isClass) { | |
| 2622 ClassElement receiverClass = resolvedReceiver.element; | |
| 2623 receiverClass.ensureResolved(compiler); | |
| 2624 if (node.isOperator) { | |
| 2625 // When the resolved receiver is a class, we can have two cases: | |
| 2626 // 1) a static send: C.foo, or | |
| 2627 // 2) an operator send, where the receiver is a class literal: 'C + 1'. | |
| 2628 // The following code that looks up the selector on the resolved | |
| 2629 // receiver will treat the second as the invocation of a static operator | |
| 2630 // if the resolved receiver is not null. | |
| 2631 return null; | |
| 2632 } | |
| 2633 MembersCreator.computeClassMembersByName( | |
| 2634 compiler, receiverClass.declaration, name); | |
| 2635 target = receiverClass.lookupLocalMember(name); | |
| 2636 if (target == null || target.isInstanceMember) { | |
| 2637 registry.registerThrowNoSuchMethod(); | |
| 2638 // TODO(johnniwinther): With the simplified [TreeElements] invariant, | |
| 2639 // try to resolve injected elements if [currentClass] is in the patch | |
| 2640 // library of [receiverClass]. | |
| 2641 | |
| 2642 // TODO(karlklose): this should be reported by the caller of | |
| 2643 // [resolveSend] to select better warning messages for getters and | |
| 2644 // setters. | |
| 2645 MessageKind kind = (target == null) | |
| 2646 ? MessageKind.MEMBER_NOT_FOUND | |
| 2647 : MessageKind.MEMBER_NOT_STATIC; | |
| 2648 return new ElementResult(warnAndCreateErroneousElement( | |
| 2649 node, name, kind, | |
| 2650 {'className': receiverClass.name, 'memberName': name})); | |
| 2651 } else if (isPrivateName(name) && | |
| 2652 target.library != enclosingElement.library) { | |
| 2653 registry.registerThrowNoSuchMethod(); | |
| 2654 return new ElementResult(warnAndCreateErroneousElement( | |
| 2655 node, name, MessageKind.PRIVATE_ACCESS, | |
| 2656 {'libraryName': target.library.getLibraryOrScriptName(), | |
| 2657 'name': name})); | |
| 2658 } | |
| 2659 } else if (resolvedReceiver.element.isPrefix) { | |
| 2660 PrefixElement prefix = resolvedReceiver.element; | |
| 2661 target = prefix.lookupLocalMember(name); | |
| 2662 if (Elements.isUnresolved(target)) { | |
| 2663 registry.registerThrowNoSuchMethod(); | |
| 2664 return new ElementResult(warnAndCreateErroneousElement( | |
| 2665 node, name, MessageKind.NO_SUCH_LIBRARY_MEMBER, | |
| 2666 {'libraryName': prefix.name, 'memberName': name})); | |
| 2667 } else if (target.isAmbiguous) { | |
| 2668 registry.registerThrowNoSuchMethod(); | |
| 2669 AmbiguousElement ambiguous = target; | |
| 2670 target = warnAndCreateErroneousElement(node, name, | |
| 2671 ambiguous.messageKind, | |
| 2672 ambiguous.messageArguments); | |
| 2673 ambiguous.diagnose(enclosingElement, compiler); | |
| 2674 return new ElementResult(target); | |
| 2675 } else if (target.kind == ElementKind.CLASS) { | |
| 2676 ClassElement classElement = target; | |
| 2677 classElement.ensureResolved(compiler); | |
| 2678 } | |
| 2679 } | |
| 2680 return new ElementResult(target); | |
| 2681 } | |
| 2682 | |
| 2683 static Selector computeSendSelector(Send node, | |
| 2684 LibraryElement library, | |
| 2685 Element element) { | |
| 2686 // First determine if this is part of an assignment. | |
| 2687 bool isSet = node.asSendSet() != null; | |
| 2688 | |
| 2689 if (node.isIndex) { | |
| 2690 return isSet ? new Selector.indexSet() : new Selector.index(); | |
| 2691 } | |
| 2692 | |
| 2693 if (node.isOperator) { | |
| 2694 String source = node.selector.asOperator().source; | |
| 2695 String string = source; | |
| 2696 if (identical(string, '!') || | |
| 2697 identical(string, '&&') || identical(string, '||') || | |
| 2698 identical(string, 'is') || identical(string, 'as') || | |
| 2699 identical(string, '?') || | |
| 2700 identical(string, '>>>')) { | |
| 2701 return null; | |
| 2702 } | |
| 2703 String op = source; | |
| 2704 if (!isUserDefinableOperator(source)) { | |
| 2705 op = Elements.mapToUserOperatorOrNull(source); | |
| 2706 } | |
| 2707 if (op == null) { | |
| 2708 // Unsupported operator. An error has been reported during parsing. | |
| 2709 return new Selector.call( | |
| 2710 source, library, node.argumentsNode.slowLength(), []); | |
| 2711 } | |
| 2712 return node.arguments.isEmpty | |
| 2713 ? new Selector.unaryOperator(op) | |
| 2714 : new Selector.binaryOperator(op); | |
| 2715 } | |
| 2716 | |
| 2717 Identifier identifier = node.selector.asIdentifier(); | |
| 2718 if (node.isPropertyAccess) { | |
| 2719 assert(!isSet); | |
| 2720 return new Selector.getter(identifier.source, library); | |
| 2721 } else if (isSet) { | |
| 2722 return new Selector.setter(identifier.source, library); | |
| 2723 } | |
| 2724 | |
| 2725 // Compute the arity and the list of named arguments. | |
| 2726 int arity = 0; | |
| 2727 List<String> named = <String>[]; | |
| 2728 for (Link<Node> link = node.argumentsNode.nodes; | |
| 2729 !link.isEmpty; | |
| 2730 link = link.tail) { | |
| 2731 Expression argument = link.head; | |
| 2732 NamedArgument namedArgument = argument.asNamedArgument(); | |
| 2733 if (namedArgument != null) { | |
| 2734 named.add(namedArgument.name.source); | |
| 2735 } | |
| 2736 arity++; | |
| 2737 } | |
| 2738 | |
| 2739 if (element != null && element.isConstructor) { | |
| 2740 return new Selector.callConstructor( | |
| 2741 element.name, library, arity, named); | |
| 2742 } | |
| 2743 | |
| 2744 // If we're invoking a closure, we do not have an identifier. | |
| 2745 return (identifier == null) | |
| 2746 ? new Selector.callClosure(arity, named) | |
| 2747 : new Selector.call(identifier.source, library, arity, named); | |
| 2748 } | |
| 2749 | |
| 2750 Selector resolveSelector(Send node, Element element) { | |
| 2751 LibraryElement library = enclosingElement.library; | |
| 2752 Selector selector = computeSendSelector(node, library, element); | |
| 2753 if (selector != null) registry.setSelector(node, selector); | |
| 2754 return selector; | |
| 2755 } | |
| 2756 | |
| 2757 void resolveArguments(NodeList list) { | |
| 2758 if (list == null) return; | |
| 2759 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 2760 sendIsMemberAccess = false; | |
| 2761 Map<String, Node> seenNamedArguments = new Map<String, Node>(); | |
| 2762 for (Link<Node> link = list.nodes; !link.isEmpty; link = link.tail) { | |
| 2763 Expression argument = link.head; | |
| 2764 visit(argument); | |
| 2765 NamedArgument namedArgument = argument.asNamedArgument(); | |
| 2766 if (namedArgument != null) { | |
| 2767 String source = namedArgument.name.source; | |
| 2768 if (seenNamedArguments.containsKey(source)) { | |
| 2769 reportDuplicateDefinition( | |
| 2770 source, | |
| 2771 argument, | |
| 2772 seenNamedArguments[source]); | |
| 2773 } else { | |
| 2774 seenNamedArguments[source] = namedArgument; | |
| 2775 } | |
| 2776 } else if (!seenNamedArguments.isEmpty) { | |
| 2777 error(argument, MessageKind.INVALID_ARGUMENT_AFTER_NAMED); | |
| 2778 } | |
| 2779 } | |
| 2780 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 2781 } | |
| 2782 | |
| 2783 ResolutionResult visitSend(Send node) { | |
| 2784 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 2785 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
| 2786 ResolutionResult result; | |
| 2787 if (node.isLogicalAnd) { | |
| 2788 result = doInPromotionScope(node.receiver, () => resolveSend(node)); | |
| 2789 } else { | |
| 2790 result = resolveSend(node); | |
| 2791 } | |
| 2792 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 2793 | |
| 2794 Element target = result != null ? result.element : null; | |
| 2795 | |
| 2796 if (target != null | |
| 2797 && target == compiler.mirrorSystemGetNameFunction | |
| 2798 && !compiler.mirrorUsageAnalyzerTask.hasMirrorUsage(enclosingElement)) { | |
| 2799 compiler.reportHint( | |
| 2800 node.selector, MessageKind.STATIC_FUNCTION_BLOAT, | |
| 2801 {'class': compiler.mirrorSystemClass.name, | |
| 2802 'name': compiler.mirrorSystemGetNameFunction.name}); | |
| 2803 } | |
| 2804 | |
| 2805 if (!Elements.isUnresolved(target)) { | |
| 2806 if (target.isAbstractField) { | |
| 2807 AbstractFieldElement field = target; | |
| 2808 target = field.getter; | |
| 2809 if (target == null && !inInstanceContext) { | |
| 2810 registry.registerThrowNoSuchMethod(); | |
| 2811 target = | |
| 2812 warnAndCreateErroneousElement(node.selector, field.name, | |
| 2813 MessageKind.CANNOT_RESOLVE_GETTER); | |
| 2814 } | |
| 2815 } else if (target.isTypeVariable) { | |
| 2816 ClassElement cls = target.enclosingClass; | |
| 2817 assert(enclosingElement.enclosingClass == cls); | |
| 2818 registry.registerClassUsingVariableExpression(cls); | |
| 2819 registry.registerTypeVariableExpression(); | |
| 2820 // Set the type of the node to [Type] to mark this send as a | |
| 2821 // type variable expression. | |
| 2822 registry.registerTypeLiteral(node, target.computeType(compiler)); | |
| 2823 } else if (target.impliesType && (!sendIsMemberAccess || node.isCall)) { | |
| 2824 // Set the type of the node to [Type] to mark this send as a | |
| 2825 // type literal. | |
| 2826 DartType type; | |
| 2827 | |
| 2828 // TODO(johnniwinther): Remove this hack when we can pass more complex | |
| 2829 // information between methods than resolved elements. | |
| 2830 if (target == compiler.typeClass && node.receiver == null) { | |
| 2831 // Potentially a 'dynamic' type literal. | |
| 2832 type = registry.getType(node.selector); | |
| 2833 } | |
| 2834 if (type == null) { | |
| 2835 type = target.computeType(compiler); | |
| 2836 } | |
| 2837 registry.registerTypeLiteral(node, type); | |
| 2838 | |
| 2839 // Don't try to make constants of calls to type literals. | |
| 2840 if (!node.isCall) { | |
| 2841 analyzeConstant(node); | |
| 2842 } else { | |
| 2843 // The node itself is not a constant but we register the selector (the | |
| 2844 // identifier that refers to the class/typedef) as a constant. | |
| 2845 analyzeConstant(node.selector); | |
| 2846 } | |
| 2847 } | |
| 2848 if (isPotentiallyMutableTarget(target)) { | |
| 2849 if (enclosingElement != target.enclosingElement) { | |
| 2850 for (Node scope in promotionScope) { | |
| 2851 registry.setAccessedByClosureIn(scope, target, node); | |
| 2852 } | |
| 2853 } | |
| 2854 } | |
| 2855 } | |
| 2856 | |
| 2857 bool resolvedArguments = false; | |
| 2858 if (node.isOperator) { | |
| 2859 String operatorString = node.selector.asOperator().source; | |
| 2860 if (identical(operatorString, 'is')) { | |
| 2861 // TODO(johnniwinther): Use seen type tests to avoid registration of | |
| 2862 // mutation/access to unpromoted variables. | |
| 2863 DartType type = | |
| 2864 resolveTypeAnnotation(node.typeAnnotationFromIsCheckOrCast); | |
| 2865 if (type != null) { | |
| 2866 registry.registerIsCheck(type); | |
| 2867 } | |
| 2868 resolvedArguments = true; | |
| 2869 } else if (identical(operatorString, 'as')) { | |
| 2870 DartType type = resolveTypeAnnotation(node.arguments.head); | |
| 2871 if (type != null) { | |
| 2872 registry.registerAsCheck(type); | |
| 2873 } | |
| 2874 resolvedArguments = true; | |
| 2875 } else if (identical(operatorString, '&&')) { | |
| 2876 doInPromotionScope(node.arguments.head, | |
| 2877 () => resolveArguments(node.argumentsNode)); | |
| 2878 resolvedArguments = true; | |
| 2879 } | |
| 2880 } | |
| 2881 | |
| 2882 if (!resolvedArguments) { | |
| 2883 resolveArguments(node.argumentsNode); | |
| 2884 } | |
| 2885 | |
| 2886 // If the selector is null, it means that we will not be generating | |
| 2887 // code for this as a send. | |
| 2888 Selector selector = registry.getSelector(node); | |
| 2889 if (selector == null) return null; | |
| 2890 | |
| 2891 if (node.isCall) { | |
| 2892 if (Elements.isUnresolved(target) || | |
| 2893 target.isGetter || | |
| 2894 target.isField || | |
| 2895 Elements.isClosureSend(node, target)) { | |
| 2896 // If we don't know what we're calling or if we are calling a getter, | |
| 2897 // we need to register that fact that we may be calling a closure | |
| 2898 // with the same arguments. | |
| 2899 Selector call = new Selector.callClosureFrom(selector); | |
| 2900 registry.registerDynamicInvocation(call); | |
| 2901 } else if (target.impliesType) { | |
| 2902 // We call 'call()' on a Type instance returned from the reference to a | |
| 2903 // class or typedef literal. We do not need to register this call as a | |
| 2904 // dynamic invocation, because we statically know what the target is. | |
| 2905 } else { | |
| 2906 if (target is FunctionElement) { | |
| 2907 FunctionElement function = target; | |
| 2908 function.computeSignature(compiler); | |
| 2909 } | |
| 2910 if (!selector.applies(target, compiler.world)) { | |
| 2911 registry.registerThrowNoSuchMethod(); | |
| 2912 if (node.isSuperCall) { | |
| 2913 // Similar to what we do when we can't find super via selector | |
| 2914 // in [resolveSend] above, we still need to register the invocation, | |
| 2915 // because we might call [:super.noSuchMethod:] which calls | |
| 2916 // [JSInvocationMirror._invokeOn]. | |
| 2917 registry.registerDynamicInvocation(selector); | |
| 2918 registry.registerSuperNoSuchMethod(); | |
| 2919 } | |
| 2920 } | |
| 2921 } | |
| 2922 | |
| 2923 if (target != null && target.isForeign(compiler.backend)) { | |
| 2924 if (selector.name == 'JS') { | |
| 2925 registry.registerJsCall(node, this); | |
| 2926 } else if (selector.name == 'JS_EMBEDDED_GLOBAL') { | |
| 2927 registry.registerJsEmbeddedGlobalCall(node, this); | |
| 2928 } else if (selector.name == 'JS_INTERCEPTOR_CONSTANT') { | |
| 2929 if (!node.argumentsNode.isEmpty) { | |
| 2930 Node argument = node.argumentsNode.nodes.head; | |
| 2931 if (argumentsToJsInterceptorConstant == null) { | |
| 2932 argumentsToJsInterceptorConstant = new Set<Node>(); | |
| 2933 } | |
| 2934 argumentsToJsInterceptorConstant.add(argument); | |
| 2935 } | |
| 2936 } | |
| 2937 } | |
| 2938 } | |
| 2939 | |
| 2940 registry.useElement(node, target); | |
| 2941 registerSend(selector, target); | |
| 2942 if (node.isPropertyAccess && Elements.isStaticOrTopLevelFunction(target)) { | |
| 2943 registry.registerGetOfStaticFunction(target.declaration); | |
| 2944 } | |
| 2945 return node.isPropertyAccess ? new ElementResult(target) : null; | |
| 2946 } | |
| 2947 | |
| 2948 /// Callback for native enqueuer to parse a type. Returns [:null:] on error. | |
| 2949 DartType resolveTypeFromString(Node node, String typeName) { | |
| 2950 Element element = lookupInScope(compiler, node, | |
| 2951 scope, typeName); | |
| 2952 if (element == null) return null; | |
| 2953 if (element is! ClassElement) return null; | |
| 2954 ClassElement cls = element; | |
| 2955 cls.ensureResolved(compiler); | |
| 2956 return cls.computeType(compiler); | |
| 2957 } | |
| 2958 | |
| 2959 ResolutionResult visitSendSet(SendSet node) { | |
| 2960 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 2961 sendIsMemberAccess = node.isPropertyAccess || node.isCall; | |
| 2962 ResolutionResult result = resolveSend(node); | |
| 2963 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 2964 Element target = result != null ? result.element : null; | |
| 2965 Element setter = target; | |
| 2966 Element getter = target; | |
| 2967 String operatorName = node.assignmentOperator.source; | |
| 2968 String source = operatorName; | |
| 2969 bool isComplex = !identical(source, '='); | |
| 2970 if (!(result is AssertResult || Elements.isUnresolved(target))) { | |
| 2971 if (target.isAbstractField) { | |
| 2972 AbstractFieldElement field = target; | |
| 2973 setter = field.setter; | |
| 2974 getter = field.getter; | |
| 2975 if (setter == null && !inInstanceContext) { | |
| 2976 setter = warnAndCreateErroneousElement( | |
| 2977 node.selector, field.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
| 2978 registry.registerThrowNoSuchMethod(); | |
| 2979 } | |
| 2980 if (isComplex && getter == null && !inInstanceContext) { | |
| 2981 getter = warnAndCreateErroneousElement( | |
| 2982 node.selector, field.name, MessageKind.CANNOT_RESOLVE_GETTER); | |
| 2983 registry.registerThrowNoSuchMethod(); | |
| 2984 } | |
| 2985 } else if (target.impliesType) { | |
| 2986 setter = warnAndCreateErroneousElement( | |
| 2987 node.selector, target.name, MessageKind.ASSIGNING_TYPE); | |
| 2988 registry.registerThrowNoSuchMethod(); | |
| 2989 } else if (target.isFinal || | |
| 2990 target.isConst || | |
| 2991 (target.isFunction && | |
| 2992 Elements.isStaticOrTopLevelFunction(target) && | |
| 2993 !target.isSetter)) { | |
| 2994 if (target.isFunction) { | |
| 2995 setter = warnAndCreateErroneousElement( | |
| 2996 node.selector, target.name, MessageKind.ASSIGNING_METHOD); | |
| 2997 } else { | |
| 2998 setter = warnAndCreateErroneousElement( | |
| 2999 node.selector, target.name, MessageKind.CANNOT_RESOLVE_SETTER); | |
| 3000 } | |
| 3001 registry.registerThrowNoSuchMethod(); | |
| 3002 } | |
| 3003 if (isPotentiallyMutableTarget(target)) { | |
| 3004 registry.registerPotentialMutation(target, node); | |
| 3005 if (enclosingElement != target.enclosingElement) { | |
| 3006 registry.registerPotentialMutationInClosure(target, node); | |
| 3007 } | |
| 3008 for (Node scope in promotionScope) { | |
| 3009 registry.registerPotentialMutationIn(scope, target, node); | |
| 3010 } | |
| 3011 } | |
| 3012 } | |
| 3013 | |
| 3014 resolveArguments(node.argumentsNode); | |
| 3015 | |
| 3016 Selector selector = registry.getSelector(node); | |
| 3017 if (isComplex) { | |
| 3018 Selector getterSelector; | |
| 3019 if (selector.isSetter) { | |
| 3020 getterSelector = new Selector.getterFrom(selector); | |
| 3021 } else { | |
| 3022 assert(selector.isIndexSet); | |
| 3023 getterSelector = new Selector.index(); | |
| 3024 } | |
| 3025 registerSend(getterSelector, getter); | |
| 3026 registry.setGetterSelectorInComplexSendSet(node, getterSelector); | |
| 3027 if (node.isSuperCall) { | |
| 3028 getter = currentClass.lookupSuperSelector(getterSelector); | |
| 3029 if (getter == null) { | |
| 3030 target = warnAndCreateErroneousElement( | |
| 3031 node, selector.name, MessageKind.NO_SUCH_SUPER_MEMBER, | |
| 3032 {'className': currentClass, 'memberName': selector.name}); | |
| 3033 registry.registerSuperNoSuchMethod(); | |
| 3034 } | |
| 3035 } | |
| 3036 registry.useElement(node.selector, getter); | |
| 3037 | |
| 3038 // Make sure we include the + and - operators if we are using | |
| 3039 // the ++ and -- ones. Also, if op= form is used, include op itself. | |
| 3040 void registerBinaryOperator(String name) { | |
| 3041 Selector binop = new Selector.binaryOperator(name); | |
| 3042 registry.registerDynamicInvocation(binop); | |
| 3043 registry.setOperatorSelectorInComplexSendSet(node, binop); | |
| 3044 } | |
| 3045 if (identical(source, '++')) { | |
| 3046 registerBinaryOperator('+'); | |
| 3047 registry.registerInstantiatedClass(compiler.intClass); | |
| 3048 } else if (identical(source, '--')) { | |
| 3049 registerBinaryOperator('-'); | |
| 3050 registry.registerInstantiatedClass(compiler.intClass); | |
| 3051 } else if (source.endsWith('=')) { | |
| 3052 registerBinaryOperator(Elements.mapToUserOperator(operatorName)); | |
| 3053 } | |
| 3054 } | |
| 3055 | |
| 3056 registerSend(selector, setter); | |
| 3057 return new ElementResult(registry.useElement(node, setter)); | |
| 3058 } | |
| 3059 | |
| 3060 void registerSend(Selector selector, Element target) { | |
| 3061 if (target == null || target.isInstanceMember) { | |
| 3062 if (selector.isGetter) { | |
| 3063 registry.registerDynamicGetter(selector); | |
| 3064 } else if (selector.isSetter) { | |
| 3065 registry.registerDynamicSetter(selector); | |
| 3066 } else { | |
| 3067 registry.registerDynamicInvocation(selector); | |
| 3068 } | |
| 3069 } else if (Elements.isStaticOrTopLevel(target)) { | |
| 3070 // Avoid registration of type variables since they are not analyzable but | |
| 3071 // instead resolved through their enclosing type declaration. | |
| 3072 if (!target.isTypeVariable) { | |
| 3073 // [target] might be the implementation element and only declaration | |
| 3074 // elements may be registered. | |
| 3075 registry.registerStaticUse(target.declaration); | |
| 3076 } | |
| 3077 } | |
| 3078 } | |
| 3079 | |
| 3080 visitLiteralInt(LiteralInt node) { | |
| 3081 registry.registerInstantiatedClass(compiler.intClass); | |
| 3082 } | |
| 3083 | |
| 3084 visitLiteralDouble(LiteralDouble node) { | |
| 3085 registry.registerInstantiatedClass(compiler.doubleClass); | |
| 3086 } | |
| 3087 | |
| 3088 visitLiteralBool(LiteralBool node) { | |
| 3089 registry.registerInstantiatedClass(compiler.boolClass); | |
| 3090 } | |
| 3091 | |
| 3092 visitLiteralString(LiteralString node) { | |
| 3093 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3094 } | |
| 3095 | |
| 3096 visitLiteralNull(LiteralNull node) { | |
| 3097 registry.registerInstantiatedClass(compiler.nullClass); | |
| 3098 } | |
| 3099 | |
| 3100 visitLiteralSymbol(LiteralSymbol node) { | |
| 3101 registry.registerInstantiatedClass(compiler.symbolClass); | |
| 3102 registry.registerStaticUse(compiler.symbolConstructor.declaration); | |
| 3103 registry.registerConstSymbol(node.slowNameString); | |
| 3104 if (!validateSymbol(node, node.slowNameString, reportError: false)) { | |
| 3105 compiler.reportError(node, | |
| 3106 MessageKind.UNSUPPORTED_LITERAL_SYMBOL, | |
| 3107 {'value': node.slowNameString}); | |
| 3108 } | |
| 3109 analyzeConstant(node); | |
| 3110 } | |
| 3111 | |
| 3112 visitStringJuxtaposition(StringJuxtaposition node) { | |
| 3113 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3114 node.visitChildren(this); | |
| 3115 } | |
| 3116 | |
| 3117 visitNodeList(NodeList node) { | |
| 3118 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 3119 visit(link.head); | |
| 3120 } | |
| 3121 } | |
| 3122 | |
| 3123 visitOperator(Operator node) { | |
| 3124 internalError(node, 'operator'); | |
| 3125 } | |
| 3126 | |
| 3127 visitRethrow(Rethrow node) { | |
| 3128 if (!inCatchBlock) { | |
| 3129 error(node, MessageKind.THROW_WITHOUT_EXPRESSION); | |
| 3130 } | |
| 3131 } | |
| 3132 | |
| 3133 visitReturn(Return node) { | |
| 3134 Node expression = node.expression; | |
| 3135 if (expression != null && | |
| 3136 enclosingElement.isGenerativeConstructor) { | |
| 3137 // It is a compile-time error if a return statement of the form | |
| 3138 // `return e;` appears in a generative constructor. (Dart Language | |
| 3139 // Specification 13.12.) | |
| 3140 compiler.reportError(expression, | |
| 3141 MessageKind.CANNOT_RETURN_FROM_CONSTRUCTOR); | |
| 3142 } | |
| 3143 visit(node.expression); | |
| 3144 } | |
| 3145 | |
| 3146 visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
| 3147 final isSymbolConstructor = enclosingElement == compiler.symbolConstructor; | |
| 3148 if (!enclosingElement.isFactoryConstructor) { | |
| 3149 compiler.reportError( | |
| 3150 node, MessageKind.FACTORY_REDIRECTION_IN_NON_FACTORY); | |
| 3151 compiler.reportHint( | |
| 3152 enclosingElement, MessageKind.MISSING_FACTORY_KEYWORD); | |
| 3153 } | |
| 3154 ConstructorElementX constructor = enclosingElement; | |
| 3155 bool isConstConstructor = constructor.isConst; | |
| 3156 ConstructorElement redirectionTarget = resolveRedirectingFactory( | |
| 3157 node, inConstContext: isConstConstructor); | |
| 3158 constructor.immediateRedirectionTarget = redirectionTarget; | |
| 3159 registry.setRedirectingTargetConstructor(node, redirectionTarget); | |
| 3160 if (Elements.isUnresolved(redirectionTarget)) { | |
| 3161 registry.registerThrowNoSuchMethod(); | |
| 3162 return; | |
| 3163 } else { | |
| 3164 if (isConstConstructor && | |
| 3165 !redirectionTarget.isConst) { | |
| 3166 compiler.reportError(node, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
| 3167 } | |
| 3168 if (redirectionTarget == constructor) { | |
| 3169 compiler.reportError(node, MessageKind.CYCLIC_REDIRECTING_FACTORY); | |
| 3170 return; | |
| 3171 } | |
| 3172 } | |
| 3173 | |
| 3174 // Check that the target constructor is type compatible with the | |
| 3175 // redirecting constructor. | |
| 3176 ClassElement targetClass = redirectionTarget.enclosingClass; | |
| 3177 InterfaceType type = registry.getType(node); | |
| 3178 FunctionType targetType = redirectionTarget.computeType(compiler) | |
| 3179 .subst(type.typeArguments, targetClass.typeVariables); | |
| 3180 FunctionType constructorType = constructor.computeType(compiler); | |
| 3181 bool isSubtype = compiler.types.isSubtype(targetType, constructorType); | |
| 3182 if (!isSubtype) { | |
| 3183 warning(node, MessageKind.NOT_ASSIGNABLE, | |
| 3184 {'fromType': targetType, 'toType': constructorType}); | |
| 3185 } | |
| 3186 | |
| 3187 FunctionSignature targetSignature = | |
| 3188 redirectionTarget.computeSignature(compiler); | |
| 3189 FunctionSignature constructorSignature = | |
| 3190 constructor.computeSignature(compiler); | |
| 3191 if (!targetSignature.isCompatibleWith(constructorSignature)) { | |
| 3192 assert(!isSubtype); | |
| 3193 registry.registerThrowNoSuchMethod(); | |
| 3194 } | |
| 3195 | |
| 3196 // Register a post process to check for cycles in the redirection chain and | |
| 3197 // set the actual generative constructor at the end of the chain. | |
| 3198 addDeferredAction(constructor, () { | |
| 3199 compiler.resolver.resolveRedirectionChain(constructor, node); | |
| 3200 }); | |
| 3201 | |
| 3202 registry.registerStaticUse(redirectionTarget); | |
| 3203 // TODO(johnniwinther): Register the effective target type instead. | |
| 3204 registry.registerInstantiatedClass( | |
| 3205 redirectionTarget.enclosingClass.declaration); | |
| 3206 if (isSymbolConstructor) { | |
| 3207 registry.registerSymbolConstructor(); | |
| 3208 } | |
| 3209 } | |
| 3210 | |
| 3211 visitThrow(Throw node) { | |
| 3212 registry.registerThrowExpression(); | |
| 3213 visit(node.expression); | |
| 3214 } | |
| 3215 | |
| 3216 visitVariableDefinitions(VariableDefinitions node) { | |
| 3217 DartType type; | |
| 3218 if (node.type != null) { | |
| 3219 type = resolveTypeAnnotation(node.type); | |
| 3220 } else { | |
| 3221 type = const DynamicType(); | |
| 3222 } | |
| 3223 VariableList variables = new VariableList.node(node, type); | |
| 3224 VariableDefinitionsVisitor visitor = | |
| 3225 new VariableDefinitionsVisitor(compiler, node, this, variables); | |
| 3226 | |
| 3227 Modifiers modifiers = node.modifiers; | |
| 3228 void reportExtraModifier(String modifier) { | |
| 3229 Node modifierNode; | |
| 3230 for (Link<Node> nodes = modifiers.nodes.nodes; | |
| 3231 !nodes.isEmpty; | |
| 3232 nodes = nodes.tail) { | |
| 3233 if (modifier == nodes.head.asIdentifier().source) { | |
| 3234 modifierNode = nodes.head; | |
| 3235 break; | |
| 3236 } | |
| 3237 } | |
| 3238 assert(modifierNode != null); | |
| 3239 compiler.reportError(modifierNode, MessageKind.EXTRANEOUS_MODIFIER, | |
| 3240 {'modifier': modifier}); | |
| 3241 } | |
| 3242 if (modifiers.isFinal && (modifiers.isConst || modifiers.isVar)) { | |
| 3243 reportExtraModifier('final'); | |
| 3244 } | |
| 3245 if (modifiers.isVar && (modifiers.isConst || node.type != null)) { | |
| 3246 reportExtraModifier('var'); | |
| 3247 } | |
| 3248 if (enclosingElement.isFunction) { | |
| 3249 if (modifiers.isAbstract) { | |
| 3250 reportExtraModifier('abstract'); | |
| 3251 } | |
| 3252 if (modifiers.isStatic) { | |
| 3253 reportExtraModifier('static'); | |
| 3254 } | |
| 3255 } | |
| 3256 if (node.metadata != null) { | |
| 3257 variables.metadata = | |
| 3258 compiler.resolver.resolveMetadata(enclosingElement, node); | |
| 3259 } | |
| 3260 visitor.visit(node.definitions); | |
| 3261 } | |
| 3262 | |
| 3263 visitWhile(While node) { | |
| 3264 visit(node.condition); | |
| 3265 visitLoopBodyIn(node, node.body, new BlockScope(scope)); | |
| 3266 } | |
| 3267 | |
| 3268 visitParenthesizedExpression(ParenthesizedExpression node) { | |
| 3269 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3270 sendIsMemberAccess = false; | |
| 3271 visit(node.expression); | |
| 3272 sendIsMemberAccess = oldSendIsMemberAccess; | |
| 3273 } | |
| 3274 | |
| 3275 ResolutionResult visitNewExpression(NewExpression node) { | |
| 3276 Node selector = node.send.selector; | |
| 3277 FunctionElement constructor = resolveConstructor(node); | |
| 3278 final bool isSymbolConstructor = constructor == compiler.symbolConstructor; | |
| 3279 final bool isMirrorsUsedConstant = | |
| 3280 node.isConst && (constructor == compiler.mirrorsUsedConstructor); | |
| 3281 Selector callSelector = resolveSelector(node.send, constructor); | |
| 3282 resolveArguments(node.send.argumentsNode); | |
| 3283 registry.useElement(node.send, constructor); | |
| 3284 if (Elements.isUnresolved(constructor)) { | |
| 3285 return new ElementResult(constructor); | |
| 3286 } | |
| 3287 constructor.computeSignature(compiler); | |
| 3288 if (!callSelector.applies(constructor, compiler.world)) { | |
| 3289 registry.registerThrowNoSuchMethod(); | |
| 3290 } | |
| 3291 | |
| 3292 // [constructor] might be the implementation element | |
| 3293 // and only declaration elements may be registered. | |
| 3294 registry.registerStaticUse(constructor.declaration); | |
| 3295 ClassElement cls = constructor.enclosingClass; | |
| 3296 InterfaceType type = registry.getType(node); | |
| 3297 if (node.isConst && type.containsTypeVariables) { | |
| 3298 compiler.reportError(node.send.selector, | |
| 3299 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3300 } | |
| 3301 // TODO(johniwinther): Avoid registration of `type` in face of redirecting | |
| 3302 // factory constructors. | |
| 3303 registry.registerInstantiatedType(type); | |
| 3304 if (constructor.isFactoryConstructor && !type.typeArguments.isEmpty) { | |
| 3305 registry.registerFactoryWithTypeArguments(); | |
| 3306 } | |
| 3307 if (constructor.isGenerativeConstructor && cls.isAbstract) { | |
| 3308 warning(node, MessageKind.ABSTRACT_CLASS_INSTANTIATION); | |
| 3309 registry.registerAbstractClassInstantiation(); | |
| 3310 } | |
| 3311 | |
| 3312 if (isSymbolConstructor) { | |
| 3313 if (node.isConst) { | |
| 3314 Node argumentNode = node.send.arguments.head; | |
| 3315 ConstantExpression constant = | |
| 3316 compiler.resolver.constantCompiler.compileNode( | |
| 3317 argumentNode, registry.mapping); | |
| 3318 ConstantValue name = constant.value; | |
| 3319 if (!name.isString) { | |
| 3320 DartType type = name.computeType(compiler); | |
| 3321 compiler.reportError(argumentNode, MessageKind.STRING_EXPECTED, | |
| 3322 {'type': type}); | |
| 3323 } else { | |
| 3324 StringConstantValue stringConstant = name; | |
| 3325 String nameString = stringConstant.toDartString().slowToString(); | |
| 3326 if (validateSymbol(argumentNode, nameString)) { | |
| 3327 registry.registerConstSymbol(nameString); | |
| 3328 } | |
| 3329 } | |
| 3330 } else { | |
| 3331 if (!compiler.mirrorUsageAnalyzerTask.hasMirrorUsage( | |
| 3332 enclosingElement)) { | |
| 3333 compiler.reportHint( | |
| 3334 node.newToken, MessageKind.NON_CONST_BLOAT, | |
| 3335 {'name': compiler.symbolClass.name}); | |
| 3336 } | |
| 3337 registry.registerNewSymbol(); | |
| 3338 } | |
| 3339 } else if (isMirrorsUsedConstant) { | |
| 3340 compiler.mirrorUsageAnalyzerTask.validate(node, registry.mapping); | |
| 3341 } | |
| 3342 if (node.isConst) { | |
| 3343 analyzeConstant(node); | |
| 3344 } | |
| 3345 | |
| 3346 return null; | |
| 3347 } | |
| 3348 | |
| 3349 void checkConstMapKeysDontOverrideEquals(Spannable spannable, | |
| 3350 MapConstantValue map) { | |
| 3351 for (ConstantValue key in map.keys) { | |
| 3352 if (!key.isObject) continue; | |
| 3353 ObjectConstantValue objectConstant = key; | |
| 3354 DartType keyType = objectConstant.type; | |
| 3355 ClassElement cls = keyType.element; | |
| 3356 if (cls == compiler.stringClass) continue; | |
| 3357 Element equals = cls.lookupMember('=='); | |
| 3358 if (equals.enclosingClass != compiler.objectClass) { | |
| 3359 compiler.reportError(spannable, | |
| 3360 MessageKind.CONST_MAP_KEY_OVERRIDES_EQUALS, | |
| 3361 {'type': keyType}); | |
| 3362 } | |
| 3363 } | |
| 3364 } | |
| 3365 | |
| 3366 void analyzeConstant(Node node) { | |
| 3367 addDeferredAction(enclosingElement, () { | |
| 3368 ConstantExpression constant = | |
| 3369 compiler.resolver.constantCompiler.compileNode( | |
| 3370 node, registry.mapping); | |
| 3371 | |
| 3372 ConstantValue value = constant.value; | |
| 3373 if (value.isMap) { | |
| 3374 checkConstMapKeysDontOverrideEquals(node, value); | |
| 3375 } | |
| 3376 | |
| 3377 // The type constant that is an argument to JS_INTERCEPTOR_CONSTANT names | |
| 3378 // a class that will be instantiated outside the program by attaching a | |
| 3379 // native class dispatch record referencing the interceptor. | |
| 3380 if (argumentsToJsInterceptorConstant != null && | |
| 3381 argumentsToJsInterceptorConstant.contains(node)) { | |
| 3382 if (value.isType) { | |
| 3383 TypeConstantValue typeConstant = value; | |
| 3384 if (typeConstant.representedType is InterfaceType) { | |
| 3385 registry.registerInstantiatedType(typeConstant.representedType); | |
| 3386 } else { | |
| 3387 compiler.reportError(node, | |
| 3388 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
| 3389 } | |
| 3390 } else { | |
| 3391 compiler.reportError(node, | |
| 3392 MessageKind.WRONG_ARGUMENT_FOR_JS_INTERCEPTOR_CONSTANT); | |
| 3393 } | |
| 3394 } | |
| 3395 }); | |
| 3396 } | |
| 3397 | |
| 3398 bool validateSymbol(Node node, String name, {bool reportError: true}) { | |
| 3399 if (name.isEmpty) return true; | |
| 3400 if (name.startsWith('_')) { | |
| 3401 if (reportError) { | |
| 3402 compiler.reportError(node, MessageKind.PRIVATE_IDENTIFIER, | |
| 3403 {'value': name}); | |
| 3404 } | |
| 3405 return false; | |
| 3406 } | |
| 3407 if (!symbolValidationPattern.hasMatch(name)) { | |
| 3408 if (reportError) { | |
| 3409 compiler.reportError(node, MessageKind.INVALID_SYMBOL, | |
| 3410 {'value': name}); | |
| 3411 } | |
| 3412 return false; | |
| 3413 } | |
| 3414 return true; | |
| 3415 } | |
| 3416 | |
| 3417 /** | |
| 3418 * Try to resolve the constructor that is referred to by [node]. | |
| 3419 * Note: this function may return an ErroneousFunctionElement instead of | |
| 3420 * [:null:], if there is no corresponding constructor, class or library. | |
| 3421 */ | |
| 3422 ConstructorElement resolveConstructor(NewExpression node) { | |
| 3423 return node.accept(new ConstructorResolver(compiler, this)); | |
| 3424 } | |
| 3425 | |
| 3426 ConstructorElement resolveRedirectingFactory(RedirectingFactoryBody node, | |
| 3427 {bool inConstContext: false}) { | |
| 3428 return node.accept(new ConstructorResolver(compiler, this, | |
| 3429 inConstContext: inConstContext)); | |
| 3430 } | |
| 3431 | |
| 3432 DartType resolveTypeAnnotation(TypeAnnotation node, | |
| 3433 {bool malformedIsError: false, | |
| 3434 bool deferredIsMalformed: true}) { | |
| 3435 DartType type = typeResolver.resolveTypeAnnotation( | |
| 3436 this, node, malformedIsError: malformedIsError, | |
| 3437 deferredIsMalformed: deferredIsMalformed); | |
| 3438 if (inCheckContext) { | |
| 3439 registry.registerIsCheck(type); | |
| 3440 registry.registerRequiredType(type, enclosingElement); | |
| 3441 } | |
| 3442 return type; | |
| 3443 } | |
| 3444 | |
| 3445 visitModifiers(Modifiers node) { | |
| 3446 internalError(node, 'modifiers'); | |
| 3447 } | |
| 3448 | |
| 3449 visitLiteralList(LiteralList node) { | |
| 3450 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3451 sendIsMemberAccess = false; | |
| 3452 | |
| 3453 NodeList arguments = node.typeArguments; | |
| 3454 DartType typeArgument; | |
| 3455 if (arguments != null) { | |
| 3456 Link<Node> nodes = arguments.nodes; | |
| 3457 if (nodes.isEmpty) { | |
| 3458 // The syntax [: <>[] :] is not allowed. | |
| 3459 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3460 } else { | |
| 3461 typeArgument = resolveTypeAnnotation(nodes.head); | |
| 3462 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
| 3463 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 3464 resolveTypeAnnotation(nodes.head); | |
| 3465 } | |
| 3466 } | |
| 3467 } | |
| 3468 DartType listType; | |
| 3469 if (typeArgument != null) { | |
| 3470 if (node.isConst && typeArgument.containsTypeVariables) { | |
| 3471 compiler.reportError(arguments.nodes.head, | |
| 3472 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3473 } | |
| 3474 listType = new InterfaceType(compiler.listClass, [typeArgument]); | |
| 3475 } else { | |
| 3476 compiler.listClass.computeType(compiler); | |
| 3477 listType = compiler.listClass.rawType; | |
| 3478 } | |
| 3479 registry.setType(node, listType); | |
| 3480 registry.registerInstantiatedType(listType); | |
| 3481 registry.registerRequiredType(listType, enclosingElement); | |
| 3482 visit(node.elements); | |
| 3483 if (node.isConst) { | |
| 3484 analyzeConstant(node); | |
| 3485 } | |
| 3486 | |
| 3487 sendIsMemberAccess = false; | |
| 3488 } | |
| 3489 | |
| 3490 visitConditional(Conditional node) { | |
| 3491 doInPromotionScope(node.condition, () => visit(node.condition)); | |
| 3492 doInPromotionScope(node.thenExpression, () => visit(node.thenExpression)); | |
| 3493 visit(node.elseExpression); | |
| 3494 } | |
| 3495 | |
| 3496 visitStringInterpolation(StringInterpolation node) { | |
| 3497 registry.registerInstantiatedClass(compiler.stringClass); | |
| 3498 registry.registerStringInterpolation(); | |
| 3499 node.visitChildren(this); | |
| 3500 } | |
| 3501 | |
| 3502 visitStringInterpolationPart(StringInterpolationPart node) { | |
| 3503 registerImplicitInvocation('toString', 0); | |
| 3504 node.visitChildren(this); | |
| 3505 } | |
| 3506 | |
| 3507 visitBreakStatement(BreakStatement node) { | |
| 3508 JumpTarget target; | |
| 3509 if (node.target == null) { | |
| 3510 target = statementScope.currentBreakTarget(); | |
| 3511 if (target == null) { | |
| 3512 error(node, MessageKind.NO_BREAK_TARGET); | |
| 3513 return; | |
| 3514 } | |
| 3515 target.isBreakTarget = true; | |
| 3516 } else { | |
| 3517 String labelName = node.target.source; | |
| 3518 LabelDefinition label = statementScope.lookupLabel(labelName); | |
| 3519 if (label == null) { | |
| 3520 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
| 3521 return; | |
| 3522 } | |
| 3523 target = label.target; | |
| 3524 if (!target.statement.isValidBreakTarget()) { | |
| 3525 error(node.target, MessageKind.INVALID_BREAK); | |
| 3526 return; | |
| 3527 } | |
| 3528 label.setBreakTarget(); | |
| 3529 registry.useLabel(node, label); | |
| 3530 } | |
| 3531 registry.registerTargetOf(node, target); | |
| 3532 } | |
| 3533 | |
| 3534 visitContinueStatement(ContinueStatement node) { | |
| 3535 JumpTarget target; | |
| 3536 if (node.target == null) { | |
| 3537 target = statementScope.currentContinueTarget(); | |
| 3538 if (target == null) { | |
| 3539 error(node, MessageKind.NO_CONTINUE_TARGET); | |
| 3540 return; | |
| 3541 } | |
| 3542 target.isContinueTarget = true; | |
| 3543 } else { | |
| 3544 String labelName = node.target.source; | |
| 3545 LabelDefinition label = statementScope.lookupLabel(labelName); | |
| 3546 if (label == null) { | |
| 3547 error(node.target, MessageKind.UNBOUND_LABEL, {'labelName': labelName}); | |
| 3548 return; | |
| 3549 } | |
| 3550 target = label.target; | |
| 3551 if (!target.statement.isValidContinueTarget()) { | |
| 3552 error(node.target, MessageKind.INVALID_CONTINUE); | |
| 3553 } | |
| 3554 label.setContinueTarget(); | |
| 3555 registry.useLabel(node, label); | |
| 3556 } | |
| 3557 registry.registerTargetOf(node, target); | |
| 3558 } | |
| 3559 | |
| 3560 registerImplicitInvocation(String name, int arity) { | |
| 3561 Selector selector = new Selector.call(name, null, arity); | |
| 3562 registry.registerDynamicInvocation(selector); | |
| 3563 } | |
| 3564 | |
| 3565 visitForIn(ForIn node) { | |
| 3566 LibraryElement library = enclosingElement.library; | |
| 3567 registry.setIteratorSelector(node, compiler.iteratorSelector); | |
| 3568 registry.registerDynamicGetter(compiler.iteratorSelector); | |
| 3569 registry.setCurrentSelector(node, compiler.currentSelector); | |
| 3570 registry.registerDynamicGetter(compiler.currentSelector); | |
| 3571 registry.setMoveNextSelector(node, compiler.moveNextSelector); | |
| 3572 registry.registerDynamicInvocation(compiler.moveNextSelector); | |
| 3573 | |
| 3574 visit(node.expression); | |
| 3575 Scope blockScope = new BlockScope(scope); | |
| 3576 Node declaration = node.declaredIdentifier; | |
| 3577 | |
| 3578 bool oldAllowFinalWithoutInitializer = allowFinalWithoutInitializer; | |
| 3579 allowFinalWithoutInitializer = true; | |
| 3580 visitIn(declaration, blockScope); | |
| 3581 allowFinalWithoutInitializer = oldAllowFinalWithoutInitializer; | |
| 3582 | |
| 3583 Send send = declaration.asSend(); | |
| 3584 VariableDefinitions variableDefinitions = | |
| 3585 declaration.asVariableDefinitions(); | |
| 3586 Element loopVariable; | |
| 3587 Selector loopVariableSelector; | |
| 3588 if (send != null) { | |
| 3589 loopVariable = registry.getDefinition(send); | |
| 3590 Identifier identifier = send.selector.asIdentifier(); | |
| 3591 if (identifier == null) { | |
| 3592 compiler.reportError(send.selector, MessageKind.INVALID_FOR_IN); | |
| 3593 } else { | |
| 3594 loopVariableSelector = new Selector.setter(identifier.source, library); | |
| 3595 } | |
| 3596 if (send.receiver != null) { | |
| 3597 compiler.reportError(send.receiver, MessageKind.INVALID_FOR_IN); | |
| 3598 } | |
| 3599 } else if (variableDefinitions != null) { | |
| 3600 Link<Node> nodes = variableDefinitions.definitions.nodes; | |
| 3601 if (!nodes.tail.isEmpty) { | |
| 3602 compiler.reportError(nodes.tail.head, MessageKind.INVALID_FOR_IN); | |
| 3603 } | |
| 3604 Node first = nodes.head; | |
| 3605 Identifier identifier = first.asIdentifier(); | |
| 3606 if (identifier == null) { | |
| 3607 compiler.reportError(first, MessageKind.INVALID_FOR_IN); | |
| 3608 } else { | |
| 3609 loopVariableSelector = new Selector.setter(identifier.source, library); | |
| 3610 loopVariable = registry.getDefinition(identifier); | |
| 3611 } | |
| 3612 } else { | |
| 3613 compiler.reportError(declaration, MessageKind.INVALID_FOR_IN); | |
| 3614 } | |
| 3615 if (loopVariableSelector != null) { | |
| 3616 registry.setSelector(declaration, loopVariableSelector); | |
| 3617 registerSend(loopVariableSelector, loopVariable); | |
| 3618 } else { | |
| 3619 // The selector may only be null if we reported an error. | |
| 3620 assert(invariant(declaration, compiler.compilationFailed)); | |
| 3621 } | |
| 3622 if (loopVariable != null) { | |
| 3623 // loopVariable may be null if it could not be resolved. | |
| 3624 registry.setForInVariable(node, loopVariable); | |
| 3625 } | |
| 3626 visitLoopBodyIn(node, node.body, blockScope); | |
| 3627 } | |
| 3628 | |
| 3629 visitLabel(Label node) { | |
| 3630 // Labels are handled by their containing statements/cases. | |
| 3631 } | |
| 3632 | |
| 3633 visitLabeledStatement(LabeledStatement node) { | |
| 3634 Statement body = node.statement; | |
| 3635 JumpTarget targetElement = getOrDefineTarget(body); | |
| 3636 Map<String, LabelDefinition> labelElements = <String, LabelDefinition>{}; | |
| 3637 for (Label label in node.labels) { | |
| 3638 String labelName = label.labelName; | |
| 3639 if (labelElements.containsKey(labelName)) continue; | |
| 3640 LabelDefinition element = targetElement.addLabel(label, labelName); | |
| 3641 labelElements[labelName] = element; | |
| 3642 } | |
| 3643 statementScope.enterLabelScope(labelElements); | |
| 3644 visit(node.statement); | |
| 3645 statementScope.exitLabelScope(); | |
| 3646 labelElements.forEach((String labelName, LabelDefinition element) { | |
| 3647 if (element.isTarget) { | |
| 3648 registry.defineLabel(element.label, element); | |
| 3649 } else { | |
| 3650 warning(element.label, MessageKind.UNUSED_LABEL, | |
| 3651 {'labelName': labelName}); | |
| 3652 } | |
| 3653 }); | |
| 3654 if (!targetElement.isTarget) { | |
| 3655 registry.undefineTarget(body); | |
| 3656 } | |
| 3657 } | |
| 3658 | |
| 3659 visitLiteralMap(LiteralMap node) { | |
| 3660 bool oldSendIsMemberAccess = sendIsMemberAccess; | |
| 3661 sendIsMemberAccess = false; | |
| 3662 | |
| 3663 NodeList arguments = node.typeArguments; | |
| 3664 DartType keyTypeArgument; | |
| 3665 DartType valueTypeArgument; | |
| 3666 if (arguments != null) { | |
| 3667 Link<Node> nodes = arguments.nodes; | |
| 3668 if (nodes.isEmpty) { | |
| 3669 // The syntax [: <>{} :] is not allowed. | |
| 3670 error(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3671 } else { | |
| 3672 keyTypeArgument = resolveTypeAnnotation(nodes.head); | |
| 3673 nodes = nodes.tail; | |
| 3674 if (nodes.isEmpty) { | |
| 3675 warning(arguments, MessageKind.MISSING_TYPE_ARGUMENT); | |
| 3676 } else { | |
| 3677 valueTypeArgument = resolveTypeAnnotation(nodes.head); | |
| 3678 for (nodes = nodes.tail; !nodes.isEmpty; nodes = nodes.tail) { | |
| 3679 warning(nodes.head, MessageKind.ADDITIONAL_TYPE_ARGUMENT); | |
| 3680 resolveTypeAnnotation(nodes.head); | |
| 3681 } | |
| 3682 } | |
| 3683 } | |
| 3684 } | |
| 3685 DartType mapType; | |
| 3686 if (valueTypeArgument != null) { | |
| 3687 mapType = new InterfaceType(compiler.mapClass, | |
| 3688 [keyTypeArgument, valueTypeArgument]); | |
| 3689 } else { | |
| 3690 compiler.mapClass.computeType(compiler); | |
| 3691 mapType = compiler.mapClass.rawType; | |
| 3692 } | |
| 3693 if (node.isConst && mapType.containsTypeVariables) { | |
| 3694 compiler.reportError(arguments, | |
| 3695 MessageKind.TYPE_VARIABLE_IN_CONSTANT); | |
| 3696 } | |
| 3697 registry.setType(node, mapType); | |
| 3698 registry.registerInstantiatedType(mapType); | |
| 3699 if (node.isConst) { | |
| 3700 registry.registerConstantMap(); | |
| 3701 } | |
| 3702 registry.registerRequiredType(mapType, enclosingElement); | |
| 3703 node.visitChildren(this); | |
| 3704 if (node.isConst) { | |
| 3705 analyzeConstant(node); | |
| 3706 } | |
| 3707 | |
| 3708 sendIsMemberAccess = false; | |
| 3709 } | |
| 3710 | |
| 3711 visitLiteralMapEntry(LiteralMapEntry node) { | |
| 3712 node.visitChildren(this); | |
| 3713 } | |
| 3714 | |
| 3715 visitNamedArgument(NamedArgument node) { | |
| 3716 visit(node.expression); | |
| 3717 } | |
| 3718 | |
| 3719 DartType typeOfConstant(ConstantValue constant) { | |
| 3720 if (constant.isInt) return compiler.intClass.rawType; | |
| 3721 if (constant.isBool) return compiler.boolClass.rawType; | |
| 3722 if (constant.isDouble) return compiler.doubleClass.rawType; | |
| 3723 if (constant.isString) return compiler.stringClass.rawType; | |
| 3724 if (constant.isNull) return compiler.nullClass.rawType; | |
| 3725 if (constant.isFunction) return compiler.functionClass.rawType; | |
| 3726 assert(constant.isObject); | |
| 3727 ObjectConstantValue objectConstant = constant; | |
| 3728 return objectConstant.type; | |
| 3729 } | |
| 3730 | |
| 3731 bool overridesEquals(DartType type) { | |
| 3732 ClassElement cls = type.element; | |
| 3733 Element equals = cls.lookupMember('=='); | |
| 3734 return equals.enclosingClass != compiler.objectClass; | |
| 3735 } | |
| 3736 | |
| 3737 void checkCaseExpressions(SwitchStatement node) { | |
| 3738 JumpTarget breakElement = getOrDefineTarget(node); | |
| 3739 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
| 3740 | |
| 3741 Link<Node> cases = node.cases.nodes; | |
| 3742 CaseMatch firstCase = null; | |
| 3743 DartType firstCaseType = null; | |
| 3744 bool hasReportedProblem = false; | |
| 3745 | |
| 3746 for (Link<Node> cases = node.cases.nodes; | |
| 3747 !cases.isEmpty; | |
| 3748 cases = cases.tail) { | |
| 3749 SwitchCase switchCase = cases.head; | |
| 3750 | |
| 3751 for (Node labelOrCase in switchCase.labelsAndCases) { | |
| 3752 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
| 3753 if (caseMatch == null) continue; | |
| 3754 | |
| 3755 // Analyze the constant. | |
| 3756 ConstantExpression constant = | |
| 3757 registry.getConstant(caseMatch.expression); | |
| 3758 assert(invariant(node, constant != null, | |
| 3759 message: 'No constant computed for $node')); | |
| 3760 | |
| 3761 DartType caseType = typeOfConstant(constant.value); | |
| 3762 | |
| 3763 if (firstCaseType == null) { | |
| 3764 firstCase = caseMatch; | |
| 3765 firstCaseType = caseType; | |
| 3766 | |
| 3767 // We only report the bad type on the first class element. All others | |
| 3768 // get a "type differs" error. | |
| 3769 if (caseType.element == compiler.doubleClass) { | |
| 3770 compiler.reportError(node, | |
| 3771 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
| 3772 {'type': "double"}); | |
| 3773 } else if (caseType.element == compiler.functionClass) { | |
| 3774 compiler.reportError(node, MessageKind.SWITCH_CASE_FORBIDDEN, | |
| 3775 {'type': "Function"}); | |
| 3776 } else if (constant.value.isObject && overridesEquals(caseType)) { | |
| 3777 compiler.reportError(firstCase.expression, | |
| 3778 MessageKind.SWITCH_CASE_VALUE_OVERRIDES_EQUALS, | |
| 3779 {'type': caseType}); | |
| 3780 } | |
| 3781 } else { | |
| 3782 if (caseType != firstCaseType) { | |
| 3783 if (!hasReportedProblem) { | |
| 3784 compiler.reportError( | |
| 3785 node, | |
| 3786 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL, | |
| 3787 {'type': firstCaseType}); | |
| 3788 compiler.reportInfo( | |
| 3789 firstCase.expression, | |
| 3790 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
| 3791 {'type': firstCaseType}); | |
| 3792 hasReportedProblem = true; | |
| 3793 } | |
| 3794 compiler.reportInfo( | |
| 3795 caseMatch.expression, | |
| 3796 MessageKind.SWITCH_CASE_TYPES_NOT_EQUAL_CASE, | |
| 3797 {'type': caseType}); | |
| 3798 } | |
| 3799 } | |
| 3800 } | |
| 3801 } | |
| 3802 } | |
| 3803 | |
| 3804 visitSwitchStatement(SwitchStatement node) { | |
| 3805 node.expression.accept(this); | |
| 3806 | |
| 3807 JumpTarget breakElement = getOrDefineTarget(node); | |
| 3808 Map<String, LabelDefinition> continueLabels = <String, LabelDefinition>{}; | |
| 3809 Link<Node> cases = node.cases.nodes; | |
| 3810 while (!cases.isEmpty) { | |
| 3811 SwitchCase switchCase = cases.head; | |
| 3812 for (Node labelOrCase in switchCase.labelsAndCases) { | |
| 3813 CaseMatch caseMatch = labelOrCase.asCaseMatch(); | |
| 3814 if (caseMatch != null) { | |
| 3815 analyzeConstant(caseMatch.expression); | |
| 3816 continue; | |
| 3817 } | |
| 3818 Label label = labelOrCase; | |
| 3819 String labelName = label.labelName; | |
| 3820 | |
| 3821 LabelDefinition existingElement = continueLabels[labelName]; | |
| 3822 if (existingElement != null) { | |
| 3823 // It's an error if the same label occurs twice in the same switch. | |
| 3824 compiler.reportError( | |
| 3825 label, | |
| 3826 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
| 3827 compiler.reportInfo( | |
| 3828 existingElement.label, | |
| 3829 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
| 3830 } else { | |
| 3831 // It's only a warning if it shadows another label. | |
| 3832 existingElement = statementScope.lookupLabel(labelName); | |
| 3833 if (existingElement != null) { | |
| 3834 compiler.reportWarning( | |
| 3835 label, | |
| 3836 MessageKind.DUPLICATE_LABEL, {'labelName': labelName}); | |
| 3837 compiler.reportInfo( | |
| 3838 existingElement.label, | |
| 3839 MessageKind.EXISTING_LABEL, {'labelName': labelName}); | |
| 3840 } | |
| 3841 } | |
| 3842 | |
| 3843 JumpTarget targetElement = getOrDefineTarget(switchCase); | |
| 3844 LabelDefinition labelElement = targetElement.addLabel(label, labelName); | |
| 3845 registry.defineLabel(label, labelElement); | |
| 3846 continueLabels[labelName] = labelElement; | |
| 3847 } | |
| 3848 cases = cases.tail; | |
| 3849 // Test that only the last case, if any, is a default case. | |
| 3850 if (switchCase.defaultKeyword != null && !cases.isEmpty) { | |
| 3851 error(switchCase, MessageKind.INVALID_CASE_DEFAULT); | |
| 3852 } | |
| 3853 } | |
| 3854 | |
| 3855 addDeferredAction(enclosingElement, () { | |
| 3856 checkCaseExpressions(node); | |
| 3857 }); | |
| 3858 | |
| 3859 statementScope.enterSwitch(breakElement, continueLabels); | |
| 3860 node.cases.accept(this); | |
| 3861 statementScope.exitSwitch(); | |
| 3862 | |
| 3863 // Clean-up unused labels. | |
| 3864 continueLabels.forEach((String key, LabelDefinition label) { | |
| 3865 if (!label.isContinueTarget) { | |
| 3866 JumpTarget targetElement = label.target; | |
| 3867 SwitchCase switchCase = targetElement.statement; | |
| 3868 registry.undefineTarget(switchCase); | |
| 3869 registry.undefineLabel(label.label); | |
| 3870 } | |
| 3871 }); | |
| 3872 // TODO(15575): We should warn if we can detect a fall through | |
| 3873 // error. | |
| 3874 registry.registerFallThroughError(); | |
| 3875 } | |
| 3876 | |
| 3877 visitSwitchCase(SwitchCase node) { | |
| 3878 node.labelsAndCases.accept(this); | |
| 3879 visitIn(node.statements, new BlockScope(scope)); | |
| 3880 } | |
| 3881 | |
| 3882 visitCaseMatch(CaseMatch node) { | |
| 3883 visit(node.expression); | |
| 3884 } | |
| 3885 | |
| 3886 visitTryStatement(TryStatement node) { | |
| 3887 visit(node.tryBlock); | |
| 3888 if (node.catchBlocks.isEmpty && node.finallyBlock == null) { | |
| 3889 error(node.getEndToken().next, MessageKind.NO_CATCH_NOR_FINALLY); | |
| 3890 } | |
| 3891 visit(node.catchBlocks); | |
| 3892 visit(node.finallyBlock); | |
| 3893 } | |
| 3894 | |
| 3895 visitCatchBlock(CatchBlock node) { | |
| 3896 registry.registerCatchStatement(); | |
| 3897 // Check that if catch part is present, then | |
| 3898 // it has one or two formal parameters. | |
| 3899 VariableDefinitions exceptionDefinition; | |
| 3900 VariableDefinitions stackTraceDefinition; | |
| 3901 if (node.formals != null) { | |
| 3902 Link<Node> formalsToProcess = node.formals.nodes; | |
| 3903 if (formalsToProcess.isEmpty) { | |
| 3904 error(node, MessageKind.EMPTY_CATCH_DECLARATION); | |
| 3905 } else { | |
| 3906 exceptionDefinition = formalsToProcess.head.asVariableDefinitions(); | |
| 3907 formalsToProcess = formalsToProcess.tail; | |
| 3908 if (!formalsToProcess.isEmpty) { | |
| 3909 stackTraceDefinition = formalsToProcess.head.asVariableDefinitions(); | |
| 3910 formalsToProcess = formalsToProcess.tail; | |
| 3911 if (!formalsToProcess.isEmpty) { | |
| 3912 for (Node extra in formalsToProcess) { | |
| 3913 error(extra, MessageKind.EXTRA_CATCH_DECLARATION); | |
| 3914 } | |
| 3915 } | |
| 3916 registry.registerStackTraceInCatch(); | |
| 3917 } | |
| 3918 } | |
| 3919 | |
| 3920 // Check that the formals aren't optional and that they have no | |
| 3921 // modifiers or type. | |
| 3922 for (Link<Node> link = node.formals.nodes; | |
| 3923 !link.isEmpty; | |
| 3924 link = link.tail) { | |
| 3925 // If the formal parameter is a node list, it means that it is a | |
| 3926 // sequence of optional parameters. | |
| 3927 NodeList nodeList = link.head.asNodeList(); | |
| 3928 if (nodeList != null) { | |
| 3929 error(nodeList, MessageKind.OPTIONAL_PARAMETER_IN_CATCH); | |
| 3930 } else { | |
| 3931 VariableDefinitions declaration = link.head; | |
| 3932 for (Node modifier in declaration.modifiers.nodes) { | |
| 3933 error(modifier, MessageKind.PARAMETER_WITH_MODIFIER_IN_CATCH); | |
| 3934 } | |
| 3935 TypeAnnotation type = declaration.type; | |
| 3936 if (type != null) { | |
| 3937 error(type, MessageKind.PARAMETER_WITH_TYPE_IN_CATCH); | |
| 3938 } | |
| 3939 } | |
| 3940 } | |
| 3941 } | |
| 3942 | |
| 3943 Scope blockScope = new BlockScope(scope); | |
| 3944 doInCheckContext(() => visitIn(node.type, blockScope)); | |
| 3945 visitIn(node.formals, blockScope); | |
| 3946 var oldInCatchBlock = inCatchBlock; | |
| 3947 inCatchBlock = true; | |
| 3948 visitIn(node.block, blockScope); | |
| 3949 inCatchBlock = oldInCatchBlock; | |
| 3950 | |
| 3951 if (node.type != null && exceptionDefinition != null) { | |
| 3952 DartType exceptionType = registry.getType(node.type); | |
| 3953 Node exceptionVariable = exceptionDefinition.definitions.nodes.head; | |
| 3954 VariableElementX exceptionElement = | |
| 3955 registry.getDefinition(exceptionVariable); | |
| 3956 exceptionElement.variables.type = exceptionType; | |
| 3957 } | |
| 3958 if (stackTraceDefinition != null) { | |
| 3959 Node stackTraceVariable = stackTraceDefinition.definitions.nodes.head; | |
| 3960 VariableElementX stackTraceElement = | |
| 3961 registry.getDefinition(stackTraceVariable); | |
| 3962 registry.registerInstantiatedClass(compiler.stackTraceClass); | |
| 3963 stackTraceElement.variables.type = compiler.stackTraceClass.rawType; | |
| 3964 } | |
| 3965 } | |
| 3966 | |
| 3967 visitTypedef(Typedef node) { | |
| 3968 internalError(node, 'typedef'); | |
| 3969 } | |
| 3970 } | |
| 3971 | |
| 3972 class TypeDefinitionVisitor extends MappingVisitor<DartType> { | |
| 3973 Scope scope; | |
| 3974 final TypeDeclarationElement enclosingElement; | |
| 3975 TypeDeclarationElement get element => enclosingElement; | |
| 3976 | |
| 3977 TypeDefinitionVisitor(Compiler compiler, | |
| 3978 TypeDeclarationElement element, | |
| 3979 ResolutionRegistry registry) | |
| 3980 : this.enclosingElement = element, | |
| 3981 scope = Scope.buildEnclosingScope(element), | |
| 3982 super(compiler, registry); | |
| 3983 | |
| 3984 DartType get objectType => compiler.objectClass.rawType; | |
| 3985 | |
| 3986 void resolveTypeVariableBounds(NodeList node) { | |
| 3987 if (node == null) return; | |
| 3988 | |
| 3989 Setlet<String> nameSet = new Setlet<String>(); | |
| 3990 // Resolve the bounds of type variables. | |
| 3991 Iterator<DartType> types = element.typeVariables.iterator; | |
| 3992 Link<Node> nodeLink = node.nodes; | |
| 3993 while (!nodeLink.isEmpty) { | |
| 3994 types.moveNext(); | |
| 3995 TypeVariableType typeVariable = types.current; | |
| 3996 String typeName = typeVariable.name; | |
| 3997 TypeVariable typeNode = nodeLink.head; | |
| 3998 registry.useType(typeNode, typeVariable); | |
| 3999 if (nameSet.contains(typeName)) { | |
| 4000 error(typeNode, MessageKind.DUPLICATE_TYPE_VARIABLE_NAME, | |
| 4001 {'typeVariableName': typeName}); | |
| 4002 } | |
| 4003 nameSet.add(typeName); | |
| 4004 | |
| 4005 TypeVariableElementX variableElement = typeVariable.element; | |
| 4006 if (typeNode.bound != null) { | |
| 4007 DartType boundType = typeResolver.resolveTypeAnnotation( | |
| 4008 this, typeNode.bound); | |
| 4009 variableElement.boundCache = boundType; | |
| 4010 | |
| 4011 void checkTypeVariableBound() { | |
| 4012 Link<TypeVariableElement> seenTypeVariables = | |
| 4013 const Link<TypeVariableElement>(); | |
| 4014 seenTypeVariables = seenTypeVariables.prepend(variableElement); | |
| 4015 DartType bound = boundType; | |
| 4016 while (bound.isTypeVariable) { | |
| 4017 TypeVariableElement element = bound.element; | |
| 4018 if (seenTypeVariables.contains(element)) { | |
| 4019 if (identical(element, variableElement)) { | |
| 4020 // Only report an error on the checked type variable to avoid | |
| 4021 // generating multiple errors for the same cyclicity. | |
| 4022 warning(typeNode.name, MessageKind.CYCLIC_TYPE_VARIABLE, | |
| 4023 {'typeVariableName': variableElement.name}); | |
| 4024 } | |
| 4025 break; | |
| 4026 } | |
| 4027 seenTypeVariables = seenTypeVariables.prepend(element); | |
| 4028 bound = element.bound; | |
| 4029 } | |
| 4030 } | |
| 4031 addDeferredAction(element, checkTypeVariableBound); | |
| 4032 } else { | |
| 4033 variableElement.boundCache = objectType; | |
| 4034 } | |
| 4035 nodeLink = nodeLink.tail; | |
| 4036 } | |
| 4037 assert(!types.moveNext()); | |
| 4038 } | |
| 4039 } | |
| 4040 | |
| 4041 class TypedefResolverVisitor extends TypeDefinitionVisitor { | |
| 4042 TypedefElementX get element => enclosingElement; | |
| 4043 | |
| 4044 TypedefResolverVisitor(Compiler compiler, | |
| 4045 TypedefElement typedefElement, | |
| 4046 ResolutionRegistry registry) | |
| 4047 : super(compiler, typedefElement, registry); | |
| 4048 | |
| 4049 visitTypedef(Typedef node) { | |
| 4050 TypedefType type = element.computeType(compiler); | |
| 4051 scope = new TypeDeclarationScope(scope, element); | |
| 4052 resolveTypeVariableBounds(node.typeParameters); | |
| 4053 | |
| 4054 FunctionSignature signature = SignatureResolver.analyze( | |
| 4055 compiler, node.formals, node.returnType, element, registry, | |
| 4056 defaultValuesError: MessageKind.TYPEDEF_FORMAL_WITH_DEFAULT); | |
| 4057 element.functionSignature = signature; | |
| 4058 | |
| 4059 scope = new MethodScope(scope, element); | |
| 4060 signature.forEachParameter(addToScope); | |
| 4061 | |
| 4062 element.alias = signature.type; | |
| 4063 | |
| 4064 void checkCyclicReference() { | |
| 4065 element.checkCyclicReference(compiler); | |
| 4066 } | |
| 4067 addDeferredAction(element, checkCyclicReference); | |
| 4068 } | |
| 4069 } | |
| 4070 | |
| 4071 // TODO(johnniwinther): Replace with a traversal on the AST when the type | |
| 4072 // annotations in typedef alias are stored in a [TreeElements] mapping. | |
| 4073 class TypedefCyclicVisitor extends DartTypeVisitor { | |
| 4074 final Compiler compiler; | |
| 4075 final TypedefElementX element; | |
| 4076 bool hasCyclicReference = false; | |
| 4077 | |
| 4078 Link<TypedefElement> seenTypedefs = const Link<TypedefElement>(); | |
| 4079 | |
| 4080 int seenTypedefsCount = 0; | |
| 4081 | |
| 4082 Link<TypeVariableElement> seenTypeVariables = | |
| 4083 const Link<TypeVariableElement>(); | |
| 4084 | |
| 4085 TypedefCyclicVisitor(Compiler this.compiler, TypedefElement this.element); | |
| 4086 | |
| 4087 visitType(DartType type, _) { | |
| 4088 // Do nothing. | |
| 4089 } | |
| 4090 | |
| 4091 visitTypedefType(TypedefType type, _) { | |
| 4092 TypedefElementX typedefElement = type.element; | |
| 4093 if (seenTypedefs.contains(typedefElement)) { | |
| 4094 if (!hasCyclicReference && identical(element, typedefElement)) { | |
| 4095 // Only report an error on the checked typedef to avoid generating | |
| 4096 // multiple errors for the same cyclicity. | |
| 4097 hasCyclicReference = true; | |
| 4098 if (seenTypedefsCount == 1) { | |
| 4099 // Direct cyclicity. | |
| 4100 compiler.reportError(element, | |
| 4101 MessageKind.CYCLIC_TYPEDEF, | |
| 4102 {'typedefName': element.name}); | |
| 4103 } else if (seenTypedefsCount == 2) { | |
| 4104 // Cyclicity through one other typedef. | |
| 4105 compiler.reportError(element, | |
| 4106 MessageKind.CYCLIC_TYPEDEF_ONE, | |
| 4107 {'typedefName': element.name, | |
| 4108 'otherTypedefName': seenTypedefs.head.name}); | |
| 4109 } else { | |
| 4110 // Cyclicity through more than one other typedef. | |
| 4111 for (TypedefElement cycle in seenTypedefs) { | |
| 4112 if (!identical(typedefElement, cycle)) { | |
| 4113 compiler.reportError(element, | |
| 4114 MessageKind.CYCLIC_TYPEDEF_ONE, | |
| 4115 {'typedefName': element.name, | |
| 4116 'otherTypedefName': cycle.name}); | |
| 4117 } | |
| 4118 } | |
| 4119 } | |
| 4120 ErroneousElementX erroneousElement = new ErroneousElementX( | |
| 4121 MessageKind.CYCLIC_TYPEDEF, | |
| 4122 {'typedefName': element.name}, | |
| 4123 element.name, element); | |
| 4124 element.alias = | |
| 4125 new MalformedType(erroneousElement, typedefElement.alias); | |
| 4126 element.hasBeenCheckedForCycles = true; | |
| 4127 } | |
| 4128 } else { | |
| 4129 seenTypedefs = seenTypedefs.prepend(typedefElement); | |
| 4130 seenTypedefsCount++; | |
| 4131 type.visitChildren(this, null); | |
| 4132 typedefElement.alias.accept(this, null); | |
| 4133 seenTypedefs = seenTypedefs.tail; | |
| 4134 seenTypedefsCount--; | |
| 4135 } | |
| 4136 } | |
| 4137 | |
| 4138 visitFunctionType(FunctionType type, _) { | |
| 4139 type.visitChildren(this, null); | |
| 4140 } | |
| 4141 | |
| 4142 visitInterfaceType(InterfaceType type, _) { | |
| 4143 type.visitChildren(this, null); | |
| 4144 } | |
| 4145 | |
| 4146 visitTypeVariableType(TypeVariableType type, _) { | |
| 4147 TypeVariableElement typeVariableElement = type.element; | |
| 4148 if (seenTypeVariables.contains(typeVariableElement)) { | |
| 4149 // Avoid running in cycles on cyclic type variable bounds. | |
| 4150 // Cyclicity is reported elsewhere. | |
| 4151 return; | |
| 4152 } | |
| 4153 seenTypeVariables = seenTypeVariables.prepend(typeVariableElement); | |
| 4154 typeVariableElement.bound.accept(this, null); | |
| 4155 seenTypeVariables = seenTypeVariables.tail; | |
| 4156 } | |
| 4157 } | |
| 4158 | |
| 4159 /** | |
| 4160 * The implementation of [ResolverTask.resolveClass]. | |
| 4161 * | |
| 4162 * This visitor has to be extra careful as it is building the basic | |
| 4163 * element information, and cannot safely look at other elements as | |
| 4164 * this may lead to cycles. | |
| 4165 * | |
| 4166 * This visitor can assume that the supertypes have already been | |
| 4167 * resolved, but it cannot call [ResolverTask.resolveClass] directly | |
| 4168 * or indirectly (through [ClassElement.ensureResolved]) for any other | |
| 4169 * types. | |
| 4170 */ | |
| 4171 class ClassResolverVisitor extends TypeDefinitionVisitor { | |
| 4172 BaseClassElementX get element => enclosingElement; | |
| 4173 | |
| 4174 ClassResolverVisitor(Compiler compiler, | |
| 4175 ClassElement classElement, | |
| 4176 ResolutionRegistry registry) | |
| 4177 : super(compiler, classElement, registry); | |
| 4178 | |
| 4179 DartType visitClassNode(ClassNode node) { | |
| 4180 invariant(node, element != null); | |
| 4181 invariant(element, element.resolutionState == STATE_STARTED, | |
| 4182 message: () => 'cyclic resolution of class $element'); | |
| 4183 | |
| 4184 InterfaceType type = element.computeType(compiler); | |
| 4185 scope = new TypeDeclarationScope(scope, element); | |
| 4186 // TODO(ahe): It is not safe to call resolveTypeVariableBounds yet. | |
| 4187 // As a side-effect, this may get us back here trying to | |
| 4188 // resolve this class again. | |
| 4189 resolveTypeVariableBounds(node.typeParameters); | |
| 4190 | |
| 4191 // Setup the supertype for the element (if there is a cycle in the | |
| 4192 // class hierarchy, it has already been set to Object). | |
| 4193 if (element.supertype == null && node.superclass != null) { | |
| 4194 MixinApplication superMixin = node.superclass.asMixinApplication(); | |
| 4195 if (superMixin != null) { | |
| 4196 DartType supertype = resolveSupertype(element, superMixin.superclass); | |
| 4197 Link<Node> link = superMixin.mixins.nodes; | |
| 4198 while (!link.isEmpty) { | |
| 4199 supertype = applyMixin(supertype, | |
| 4200 checkMixinType(link.head), link.head); | |
| 4201 link = link.tail; | |
| 4202 } | |
| 4203 element.supertype = supertype; | |
| 4204 } else { | |
| 4205 element.supertype = resolveSupertype(element, node.superclass); | |
| 4206 } | |
| 4207 } | |
| 4208 // If the super type isn't specified, we provide a default. The language | |
| 4209 // specifies [Object] but the backend can pick a specific 'implementation' | |
| 4210 // of Object - the JavaScript backend chooses between Object and | |
| 4211 // Interceptor. | |
| 4212 if (element.supertype == null) { | |
| 4213 ClassElement superElement = registry.defaultSuperclass(element); | |
| 4214 // Avoid making the superclass (usually Object) extend itself. | |
| 4215 if (element != superElement) { | |
| 4216 if (superElement == null) { | |
| 4217 compiler.internalError(node, | |
| 4218 "Cannot resolve default superclass for $element."); | |
| 4219 } else { | |
| 4220 superElement.ensureResolved(compiler); | |
| 4221 } | |
| 4222 element.supertype = superElement.computeType(compiler); | |
| 4223 } | |
| 4224 } | |
| 4225 | |
| 4226 if (element.interfaces == null) { | |
| 4227 element.interfaces = resolveInterfaces(node.interfaces, node.superclass); | |
| 4228 } else { | |
| 4229 assert(invariant(element, element.hasIncompleteHierarchy)); | |
| 4230 } | |
| 4231 calculateAllSupertypes(element); | |
| 4232 | |
| 4233 if (!element.hasConstructor) { | |
| 4234 Element superMember = element.superclass.localLookup(''); | |
| 4235 if (superMember == null || !superMember.isGenerativeConstructor) { | |
| 4236 MessageKind kind = MessageKind.CANNOT_FIND_CONSTRUCTOR; | |
| 4237 Map arguments = {'constructorName': ''}; | |
| 4238 // TODO(ahe): Why is this a compile-time error? Or if it is an error, | |
| 4239 // why do we bother to registerThrowNoSuchMethod below? | |
| 4240 compiler.reportError(node, kind, arguments); | |
| 4241 superMember = new ErroneousElementX( | |
| 4242 kind, arguments, '', element); | |
| 4243 registry.registerThrowNoSuchMethod(); | |
| 4244 } else { | |
| 4245 ConstructorElement superConstructor = superMember; | |
| 4246 Selector callToMatch = new Selector.call("", element.library, 0); | |
| 4247 superConstructor.computeSignature(compiler); | |
| 4248 if (!callToMatch.applies(superConstructor, compiler.world)) { | |
| 4249 MessageKind kind = MessageKind.NO_MATCHING_CONSTRUCTOR_FOR_IMPLICIT; | |
| 4250 compiler.reportError(node, kind); | |
| 4251 superMember = new ErroneousElementX(kind, {}, '', element); | |
| 4252 } | |
| 4253 } | |
| 4254 FunctionElement constructor = | |
| 4255 new SynthesizedConstructorElementX.forDefault(superMember, element); | |
| 4256 element.setDefaultConstructor(constructor, compiler); | |
| 4257 } | |
| 4258 return element.computeType(compiler); | |
| 4259 } | |
| 4260 | |
| 4261 /// Resolves the mixed type for [mixinNode] and checks that the the mixin type | |
| 4262 /// is a valid, non-blacklisted interface type. The mixin type is returned. | |
| 4263 DartType checkMixinType(TypeAnnotation mixinNode) { | |
| 4264 DartType mixinType = resolveType(mixinNode); | |
| 4265 if (isBlackListed(mixinType)) { | |
| 4266 compiler.reportError(mixinNode, | |
| 4267 MessageKind.CANNOT_MIXIN, {'type': mixinType}); | |
| 4268 } else if (mixinType.isTypeVariable) { | |
| 4269 compiler.reportError(mixinNode, MessageKind.CLASS_NAME_EXPECTED); | |
| 4270 } else if (mixinType.isMalformed) { | |
| 4271 compiler.reportError(mixinNode, MessageKind.CANNOT_MIXIN_MALFORMED, | |
| 4272 {'className': element.name, 'malformedType': mixinType}); | |
| 4273 } | |
| 4274 return mixinType; | |
| 4275 } | |
| 4276 | |
| 4277 DartType visitNamedMixinApplication(NamedMixinApplication node) { | |
| 4278 invariant(node, element != null); | |
| 4279 invariant(element, element.resolutionState == STATE_STARTED, | |
| 4280 message: () => 'cyclic resolution of class $element'); | |
| 4281 | |
| 4282 if (identical(node.classKeyword.stringValue, 'typedef')) { | |
| 4283 // TODO(aprelev@gmail.com): Remove this deprecation diagnostic | |
| 4284 // together with corresponding TODO in parser.dart. | |
| 4285 compiler.reportWarning(node.classKeyword, | |
| 4286 MessageKind.DEPRECATED_TYPEDEF_MIXIN_SYNTAX); | |
| 4287 } | |
| 4288 | |
| 4289 InterfaceType type = element.computeType(compiler); | |
| 4290 scope = new TypeDeclarationScope(scope, element); | |
| 4291 resolveTypeVariableBounds(node.typeParameters); | |
| 4292 | |
| 4293 // Generate anonymous mixin application elements for the | |
| 4294 // intermediate mixin applications (excluding the last). | |
| 4295 DartType supertype = resolveSupertype(element, node.superclass); | |
| 4296 Link<Node> link = node.mixins.nodes; | |
| 4297 while (!link.tail.isEmpty) { | |
| 4298 supertype = applyMixin(supertype, checkMixinType(link.head), link.head); | |
| 4299 link = link.tail; | |
| 4300 } | |
| 4301 doApplyMixinTo(element, supertype, checkMixinType(link.head)); | |
| 4302 return element.computeType(compiler); | |
| 4303 } | |
| 4304 | |
| 4305 DartType applyMixin(DartType supertype, DartType mixinType, Node node) { | |
| 4306 String superName = supertype.name; | |
| 4307 String mixinName = mixinType.name; | |
| 4308 MixinApplicationElementX mixinApplication = new MixinApplicationElementX( | |
| 4309 "${superName}+${mixinName}", | |
| 4310 element.compilationUnit, | |
| 4311 compiler.getNextFreeClassId(), | |
| 4312 node, | |
| 4313 new Modifiers.withFlags(new NodeList.empty(), Modifiers.FLAG_ABSTRACT)); | |
| 4314 // Create synthetic type variables for the mixin application. | |
| 4315 List<DartType> typeVariables = <DartType>[]; | |
| 4316 element.typeVariables.forEach((TypeVariableType type) { | |
| 4317 TypeVariableElementX typeVariableElement = new TypeVariableElementX( | |
| 4318 type.name, mixinApplication, type.element.node); | |
| 4319 TypeVariableType typeVariable = new TypeVariableType(typeVariableElement); | |
| 4320 typeVariables.add(typeVariable); | |
| 4321 }); | |
| 4322 // Setup bounds on the synthetic type variables. | |
| 4323 List<DartType> link = typeVariables; | |
| 4324 int index = 0; | |
| 4325 element.typeVariables.forEach((TypeVariableType type) { | |
| 4326 TypeVariableType typeVariable = typeVariables[index++]; | |
| 4327 TypeVariableElementX typeVariableElement = typeVariable.element; | |
| 4328 typeVariableElement.typeCache = typeVariable; | |
| 4329 typeVariableElement.boundCache = | |
| 4330 type.element.bound.subst(typeVariables, element.typeVariables); | |
| 4331 }); | |
| 4332 // Setup this and raw type for the mixin application. | |
| 4333 mixinApplication.computeThisAndRawType(compiler, typeVariables); | |
| 4334 // Substitute in synthetic type variables in super and mixin types. | |
| 4335 supertype = supertype.subst(typeVariables, element.typeVariables); | |
| 4336 mixinType = mixinType.subst(typeVariables, element.typeVariables); | |
| 4337 | |
| 4338 doApplyMixinTo(mixinApplication, supertype, mixinType); | |
| 4339 mixinApplication.resolutionState = STATE_DONE; | |
| 4340 mixinApplication.supertypeLoadState = STATE_DONE; | |
| 4341 // Replace the synthetic type variables by the original type variables in | |
| 4342 // the returned type (which should be the type actually extended). | |
| 4343 InterfaceType mixinThisType = mixinApplication.computeType(compiler); | |
| 4344 return mixinThisType.subst(element.typeVariables, | |
| 4345 mixinThisType.typeArguments); | |
| 4346 } | |
| 4347 | |
| 4348 bool isDefaultConstructor(FunctionElement constructor) { | |
| 4349 return constructor.name == '' && | |
| 4350 constructor.computeSignature(compiler).parameterCount == 0; | |
| 4351 } | |
| 4352 | |
| 4353 FunctionElement createForwardingConstructor(ConstructorElement target, | |
| 4354 ClassElement enclosing) { | |
| 4355 return new SynthesizedConstructorElementX( | |
| 4356 target.name, target, enclosing, false); | |
| 4357 } | |
| 4358 | |
| 4359 void doApplyMixinTo(MixinApplicationElementX mixinApplication, | |
| 4360 DartType supertype, | |
| 4361 DartType mixinType) { | |
| 4362 Node node = mixinApplication.parseNode(compiler); | |
| 4363 | |
| 4364 if (mixinApplication.supertype != null) { | |
| 4365 // [supertype] is not null if there was a cycle. | |
| 4366 assert(invariant(node, compiler.compilationFailed)); | |
| 4367 supertype = mixinApplication.supertype; | |
| 4368 assert(invariant(node, supertype.element == compiler.objectClass)); | |
| 4369 } else { | |
| 4370 mixinApplication.supertype = supertype; | |
| 4371 } | |
| 4372 | |
| 4373 // Named mixin application may have an 'implements' clause. | |
| 4374 NamedMixinApplication namedMixinApplication = | |
| 4375 node.asNamedMixinApplication(); | |
| 4376 Link<DartType> interfaces = (namedMixinApplication != null) | |
| 4377 ? resolveInterfaces(namedMixinApplication.interfaces, | |
| 4378 namedMixinApplication.superclass) | |
| 4379 : const Link<DartType>(); | |
| 4380 | |
| 4381 // The class that is the result of a mixin application implements | |
| 4382 // the interface of the class that was mixed in so always prepend | |
| 4383 // that to the interface list. | |
| 4384 if (mixinApplication.interfaces == null) { | |
| 4385 if (mixinType.isInterfaceType) { | |
| 4386 // Avoid malformed types in the interfaces. | |
| 4387 interfaces = interfaces.prepend(mixinType); | |
| 4388 } | |
| 4389 mixinApplication.interfaces = interfaces; | |
| 4390 } else { | |
| 4391 assert(invariant(mixinApplication, | |
| 4392 mixinApplication.hasIncompleteHierarchy)); | |
| 4393 } | |
| 4394 | |
| 4395 ClassElement superclass = supertype.element; | |
| 4396 if (mixinType.kind != TypeKind.INTERFACE) { | |
| 4397 mixinApplication.hasIncompleteHierarchy = true; | |
| 4398 mixinApplication.allSupertypesAndSelf = superclass.allSupertypesAndSelf; | |
| 4399 return; | |
| 4400 } | |
| 4401 | |
| 4402 assert(mixinApplication.mixinType == null); | |
| 4403 mixinApplication.mixinType = resolveMixinFor(mixinApplication, mixinType); | |
| 4404 | |
| 4405 // Create forwarding constructors for constructor defined in the superclass | |
| 4406 // because they are now hidden by the mixin application. | |
| 4407 superclass.forEachLocalMember((Element member) { | |
| 4408 if (!member.isGenerativeConstructor) return; | |
| 4409 FunctionElement forwarder = | |
| 4410 createForwardingConstructor(member, mixinApplication); | |
| 4411 if (isPrivateName(member.name) && | |
| 4412 mixinApplication.library != superclass.library) { | |
| 4413 // Do not create a forwarder to the super constructor, because the mixin | |
| 4414 // application is in a different library than the constructor in the | |
| 4415 // super class and it is not possible to call that constructor from the | |
| 4416 // library using the mixin application. | |
| 4417 return; | |
| 4418 } | |
| 4419 mixinApplication.addConstructor(forwarder); | |
| 4420 }); | |
| 4421 calculateAllSupertypes(mixinApplication); | |
| 4422 } | |
| 4423 | |
| 4424 InterfaceType resolveMixinFor(MixinApplicationElement mixinApplication, | |
| 4425 DartType mixinType) { | |
| 4426 ClassElement mixin = mixinType.element; | |
| 4427 mixin.ensureResolved(compiler); | |
| 4428 | |
| 4429 // Check for cycles in the mixin chain. | |
| 4430 ClassElement previous = mixinApplication; // For better error messages. | |
| 4431 ClassElement current = mixin; | |
| 4432 while (current != null && current.isMixinApplication) { | |
| 4433 MixinApplicationElement currentMixinApplication = current; | |
| 4434 if (currentMixinApplication == mixinApplication) { | |
| 4435 compiler.reportError( | |
| 4436 mixinApplication, MessageKind.ILLEGAL_MIXIN_CYCLE, | |
| 4437 {'mixinName1': current.name, 'mixinName2': previous.name}); | |
| 4438 // We have found a cycle in the mixin chain. Return null as | |
| 4439 // the mixin for this application to avoid getting into | |
| 4440 // infinite recursion when traversing members. | |
| 4441 return null; | |
| 4442 } | |
| 4443 previous = current; | |
| 4444 current = currentMixinApplication.mixin; | |
| 4445 } | |
| 4446 registry.registerMixinUse(mixinApplication, mixin); | |
| 4447 return mixinType; | |
| 4448 } | |
| 4449 | |
| 4450 DartType resolveType(TypeAnnotation node) { | |
| 4451 return typeResolver.resolveTypeAnnotation(this, node); | |
| 4452 } | |
| 4453 | |
| 4454 DartType resolveSupertype(ClassElement cls, TypeAnnotation superclass) { | |
| 4455 DartType supertype = resolveType(superclass); | |
| 4456 if (supertype != null) { | |
| 4457 if (identical(supertype.kind, TypeKind.MALFORMED_TYPE)) { | |
| 4458 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND_MALFORMED, | |
| 4459 {'className': element.name, 'malformedType': supertype}); | |
| 4460 return objectType; | |
| 4461 } else if (!identical(supertype.kind, TypeKind.INTERFACE)) { | |
| 4462 compiler.reportError(superclass.typeName, | |
| 4463 MessageKind.CLASS_NAME_EXPECTED); | |
| 4464 return objectType; | |
| 4465 } else if (isBlackListed(supertype)) { | |
| 4466 compiler.reportError(superclass, MessageKind.CANNOT_EXTEND, | |
| 4467 {'type': supertype}); | |
| 4468 return objectType; | |
| 4469 } | |
| 4470 } | |
| 4471 return supertype; | |
| 4472 } | |
| 4473 | |
| 4474 Link<DartType> resolveInterfaces(NodeList interfaces, Node superclass) { | |
| 4475 Link<DartType> result = const Link<DartType>(); | |
| 4476 if (interfaces == null) return result; | |
| 4477 for (Link<Node> link = interfaces.nodes; !link.isEmpty; link = link.tail) { | |
| 4478 DartType interfaceType = resolveType(link.head); | |
| 4479 if (interfaceType != null) { | |
| 4480 if (identical(interfaceType.kind, TypeKind.MALFORMED_TYPE)) { | |
| 4481 compiler.reportError(superclass, | |
| 4482 MessageKind.CANNOT_IMPLEMENT_MALFORMED, | |
| 4483 {'className': element.name, 'malformedType': interfaceType}); | |
| 4484 } else if (!identical(interfaceType.kind, TypeKind.INTERFACE)) { | |
| 4485 // TODO(johnniwinther): Handle dynamic. | |
| 4486 TypeAnnotation typeAnnotation = link.head; | |
| 4487 error(typeAnnotation.typeName, MessageKind.CLASS_NAME_EXPECTED); | |
| 4488 } else { | |
| 4489 if (interfaceType == element.supertype) { | |
| 4490 compiler.reportError( | |
| 4491 superclass, | |
| 4492 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
| 4493 {'type': interfaceType}); | |
| 4494 compiler.reportError( | |
| 4495 link.head, | |
| 4496 MessageKind.DUPLICATE_EXTENDS_IMPLEMENTS, | |
| 4497 {'type': interfaceType}); | |
| 4498 } | |
| 4499 if (result.contains(interfaceType)) { | |
| 4500 compiler.reportError( | |
| 4501 link.head, | |
| 4502 MessageKind.DUPLICATE_IMPLEMENTS, | |
| 4503 {'type': interfaceType}); | |
| 4504 } | |
| 4505 result = result.prepend(interfaceType); | |
| 4506 if (isBlackListed(interfaceType)) { | |
| 4507 error(link.head, MessageKind.CANNOT_IMPLEMENT, | |
| 4508 {'type': interfaceType}); | |
| 4509 } | |
| 4510 } | |
| 4511 } | |
| 4512 } | |
| 4513 return result; | |
| 4514 } | |
| 4515 | |
| 4516 /** | |
| 4517 * Compute the list of all supertypes. | |
| 4518 * | |
| 4519 * The elements of this list are ordered as follows: first the supertype that | |
| 4520 * the class extends, then the implemented interfaces, and then the supertypes | |
| 4521 * of these. The class [Object] appears only once, at the end of the list. | |
| 4522 * | |
| 4523 * For example, for a class `class C extends S implements I1, I2`, we compute | |
| 4524 * supertypes(C) = [S, I1, I2] ++ supertypes(S) ++ supertypes(I1) | |
| 4525 * ++ supertypes(I2), | |
| 4526 * where ++ stands for list concatenation. | |
| 4527 * | |
| 4528 * This order makes sure that if a class implements an interface twice with | |
| 4529 * different type arguments, the type used in the most specific class comes | |
| 4530 * first. | |
| 4531 */ | |
| 4532 void calculateAllSupertypes(BaseClassElementX cls) { | |
| 4533 if (cls.allSupertypesAndSelf != null) return; | |
| 4534 final DartType supertype = cls.supertype; | |
| 4535 if (supertype != null) { | |
| 4536 OrderedTypeSetBuilder allSupertypes = new OrderedTypeSetBuilder(cls); | |
| 4537 // TODO(15296): Collapse these iterations to one when the order is not | |
| 4538 // needed. | |
| 4539 allSupertypes.add(compiler, supertype); | |
| 4540 for (Link<DartType> interfaces = cls.interfaces; | |
| 4541 !interfaces.isEmpty; | |
| 4542 interfaces = interfaces.tail) { | |
| 4543 allSupertypes.add(compiler, interfaces.head); | |
| 4544 } | |
| 4545 | |
| 4546 addAllSupertypes(allSupertypes, supertype); | |
| 4547 for (Link<DartType> interfaces = cls.interfaces; | |
| 4548 !interfaces.isEmpty; | |
| 4549 interfaces = interfaces.tail) { | |
| 4550 addAllSupertypes(allSupertypes, interfaces.head); | |
| 4551 } | |
| 4552 allSupertypes.add(compiler, cls.computeType(compiler)); | |
| 4553 cls.allSupertypesAndSelf = allSupertypes.toTypeSet(); | |
| 4554 } else { | |
| 4555 assert(identical(cls, compiler.objectClass)); | |
| 4556 cls.allSupertypesAndSelf = | |
| 4557 new OrderedTypeSet.singleton(cls.computeType(compiler)); | |
| 4558 } | |
| 4559 } | |
| 4560 | |
| 4561 /** | |
| 4562 * Adds [type] and all supertypes of [type] to [allSupertypes] while | |
| 4563 * substituting type variables. | |
| 4564 */ | |
| 4565 void addAllSupertypes(OrderedTypeSetBuilder allSupertypes, | |
| 4566 InterfaceType type) { | |
| 4567 ClassElement classElement = type.element; | |
| 4568 Link<DartType> supertypes = classElement.allSupertypes; | |
| 4569 assert(invariant(element, supertypes != null, | |
| 4570 message: "Supertypes not computed on $classElement " | |
| 4571 "during resolution of $element")); | |
| 4572 while (!supertypes.isEmpty) { | |
| 4573 DartType supertype = supertypes.head; | |
| 4574 allSupertypes.add(compiler, supertype.substByContext(type)); | |
| 4575 supertypes = supertypes.tail; | |
| 4576 } | |
| 4577 } | |
| 4578 | |
| 4579 isBlackListed(DartType type) { | |
| 4580 LibraryElement lib = element.library; | |
| 4581 return | |
| 4582 !identical(lib, compiler.coreLibrary) && | |
| 4583 !compiler.backend.isBackendLibrary(lib) && | |
| 4584 (type.isDynamic || | |
| 4585 identical(type.element, compiler.boolClass) || | |
| 4586 identical(type.element, compiler.numClass) || | |
| 4587 identical(type.element, compiler.intClass) || | |
| 4588 identical(type.element, compiler.doubleClass) || | |
| 4589 identical(type.element, compiler.stringClass) || | |
| 4590 identical(type.element, compiler.nullClass)); | |
| 4591 } | |
| 4592 } | |
| 4593 | |
| 4594 class ClassSupertypeResolver extends CommonResolverVisitor { | |
| 4595 Scope context; | |
| 4596 ClassElement classElement; | |
| 4597 | |
| 4598 ClassSupertypeResolver(Compiler compiler, ClassElement cls) | |
| 4599 : context = Scope.buildEnclosingScope(cls), | |
| 4600 this.classElement = cls, | |
| 4601 super(compiler); | |
| 4602 | |
| 4603 void loadSupertype(ClassElement element, Node from) { | |
| 4604 compiler.resolver.loadSupertypes(element, from); | |
| 4605 element.ensureResolved(compiler); | |
| 4606 } | |
| 4607 | |
| 4608 void visitNodeList(NodeList node) { | |
| 4609 if (node != null) { | |
| 4610 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 4611 link.head.accept(this); | |
| 4612 } | |
| 4613 } | |
| 4614 } | |
| 4615 | |
| 4616 void visitClassNode(ClassNode node) { | |
| 4617 if (node.superclass == null) { | |
| 4618 if (!identical(classElement, compiler.objectClass)) { | |
| 4619 loadSupertype(compiler.objectClass, node); | |
| 4620 } | |
| 4621 } else { | |
| 4622 node.superclass.accept(this); | |
| 4623 } | |
| 4624 visitNodeList(node.interfaces); | |
| 4625 } | |
| 4626 | |
| 4627 void visitMixinApplication(MixinApplication node) { | |
| 4628 node.superclass.accept(this); | |
| 4629 visitNodeList(node.mixins); | |
| 4630 } | |
| 4631 | |
| 4632 void visitNamedMixinApplication(NamedMixinApplication node) { | |
| 4633 node.superclass.accept(this); | |
| 4634 visitNodeList(node.mixins); | |
| 4635 visitNodeList(node.interfaces); | |
| 4636 } | |
| 4637 | |
| 4638 void visitTypeAnnotation(TypeAnnotation node) { | |
| 4639 node.typeName.accept(this); | |
| 4640 } | |
| 4641 | |
| 4642 void visitIdentifier(Identifier node) { | |
| 4643 Element element = lookupInScope(compiler, node, context, node.source); | |
| 4644 if (element != null && element.isClass) { | |
| 4645 loadSupertype(element, node); | |
| 4646 } | |
| 4647 } | |
| 4648 | |
| 4649 void visitSend(Send node) { | |
| 4650 Identifier prefix = node.receiver.asIdentifier(); | |
| 4651 if (prefix == null) { | |
| 4652 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
| 4653 return; | |
| 4654 } | |
| 4655 Element element = lookupInScope(compiler, prefix, context, prefix.source); | |
| 4656 if (element == null || !identical(element.kind, ElementKind.PREFIX)) { | |
| 4657 error(node.receiver, MessageKind.NOT_A_PREFIX, {'node': node.receiver}); | |
| 4658 return; | |
| 4659 } | |
| 4660 PrefixElement prefixElement = element; | |
| 4661 Identifier selector = node.selector.asIdentifier(); | |
| 4662 var e = prefixElement.lookupLocalMember(selector.source); | |
| 4663 if (e == null || !e.impliesType) { | |
| 4664 error(node.selector, MessageKind.CANNOT_RESOLVE_TYPE, | |
| 4665 {'typeName': node.selector}); | |
| 4666 return; | |
| 4667 } | |
| 4668 loadSupertype(e, node); | |
| 4669 } | |
| 4670 } | |
| 4671 | |
| 4672 class VariableDefinitionsVisitor extends CommonResolverVisitor<Identifier> { | |
| 4673 VariableDefinitions definitions; | |
| 4674 ResolverVisitor resolver; | |
| 4675 VariableList variables; | |
| 4676 | |
| 4677 VariableDefinitionsVisitor(Compiler compiler, | |
| 4678 this.definitions, | |
| 4679 this.resolver, | |
| 4680 this.variables) | |
| 4681 : super(compiler) { | |
| 4682 } | |
| 4683 | |
| 4684 ResolutionRegistry get registry => resolver.registry; | |
| 4685 | |
| 4686 Identifier visitSendSet(SendSet node) { | |
| 4687 assert(node.arguments.tail.isEmpty); // Sanity check | |
| 4688 Identifier identifier = node.selector; | |
| 4689 String name = identifier.source; | |
| 4690 VariableDefinitionScope scope = | |
| 4691 new VariableDefinitionScope(resolver.scope, name); | |
| 4692 resolver.visitIn(node.arguments.head, scope); | |
| 4693 if (scope.variableReferencedInInitializer) { | |
| 4694 compiler.reportError( | |
| 4695 identifier, MessageKind.REFERENCE_IN_INITIALIZATION, | |
| 4696 {'variableName': name}); | |
| 4697 } | |
| 4698 return identifier; | |
| 4699 } | |
| 4700 | |
| 4701 Identifier visitIdentifier(Identifier node) { | |
| 4702 // The variable is initialized to null. | |
| 4703 registry.registerInstantiatedClass(compiler.nullClass); | |
| 4704 if (definitions.modifiers.isConst) { | |
| 4705 compiler.reportError(node, MessageKind.CONST_WITHOUT_INITIALIZER); | |
| 4706 } | |
| 4707 if (definitions.modifiers.isFinal && | |
| 4708 !resolver.allowFinalWithoutInitializer) { | |
| 4709 compiler.reportError(node, MessageKind.FINAL_WITHOUT_INITIALIZER); | |
| 4710 } | |
| 4711 return node; | |
| 4712 } | |
| 4713 | |
| 4714 visitNodeList(NodeList node) { | |
| 4715 for (Link<Node> link = node.nodes; !link.isEmpty; link = link.tail) { | |
| 4716 Identifier name = visit(link.head); | |
| 4717 LocalVariableElement element = new LocalVariableElementX( | |
| 4718 name.source, resolver.enclosingElement, | |
| 4719 variables, name.token); | |
| 4720 resolver.defineLocalVariable(link.head, element); | |
| 4721 resolver.addToScope(element); | |
| 4722 if (definitions.modifiers.isConst) { | |
| 4723 compiler.enqueuer.resolution.addDeferredAction(element, () { | |
| 4724 compiler.resolver.constantCompiler.compileConstant(element); | |
| 4725 }); | |
| 4726 } | |
| 4727 } | |
| 4728 } | |
| 4729 } | |
| 4730 | |
| 4731 class ConstructorResolver extends CommonResolverVisitor<Element> { | |
| 4732 final ResolverVisitor resolver; | |
| 4733 bool inConstContext; | |
| 4734 DartType type; | |
| 4735 | |
| 4736 ConstructorResolver(Compiler compiler, this.resolver, | |
| 4737 {bool this.inConstContext: false}) | |
| 4738 : super(compiler); | |
| 4739 | |
| 4740 ResolutionRegistry get registry => resolver.registry; | |
| 4741 | |
| 4742 visitNode(Node node) { | |
| 4743 throw 'not supported'; | |
| 4744 } | |
| 4745 | |
| 4746 failOrReturnErroneousElement(Element enclosing, Node diagnosticNode, | |
| 4747 String targetName, MessageKind kind, | |
| 4748 Map arguments) { | |
| 4749 if (kind == MessageKind.CANNOT_FIND_CONSTRUCTOR) { | |
| 4750 registry.registerThrowNoSuchMethod(); | |
| 4751 } else { | |
| 4752 registry.registerThrowRuntimeError(); | |
| 4753 } | |
| 4754 if (inConstContext) { | |
| 4755 compiler.reportError(diagnosticNode, kind, arguments); | |
| 4756 } else { | |
| 4757 compiler.reportWarning(diagnosticNode, kind, arguments); | |
| 4758 } | |
| 4759 return new ErroneousElementX(kind, arguments, targetName, enclosing); | |
| 4760 } | |
| 4761 | |
| 4762 Selector createConstructorSelector(String constructorName) { | |
| 4763 return constructorName == '' | |
| 4764 ? new Selector.callDefaultConstructor( | |
| 4765 resolver.enclosingElement.library) | |
| 4766 : new Selector.callConstructor( | |
| 4767 constructorName, | |
| 4768 resolver.enclosingElement.library); | |
| 4769 } | |
| 4770 | |
| 4771 FunctionElement resolveConstructor(ClassElement cls, | |
| 4772 Node diagnosticNode, | |
| 4773 String constructorName) { | |
| 4774 cls.ensureResolved(compiler); | |
| 4775 Selector selector = createConstructorSelector(constructorName); | |
| 4776 Element result = cls.lookupConstructor(selector); | |
| 4777 if (result == null) { | |
| 4778 String fullConstructorName = Elements.constructorNameForDiagnostics( | |
| 4779 cls.name, | |
| 4780 constructorName); | |
| 4781 return failOrReturnErroneousElement( | |
| 4782 cls, | |
| 4783 diagnosticNode, | |
| 4784 fullConstructorName, | |
| 4785 MessageKind.CANNOT_FIND_CONSTRUCTOR, | |
| 4786 {'constructorName': fullConstructorName}); | |
| 4787 } else if (inConstContext && !result.isConst) { | |
| 4788 error(diagnosticNode, MessageKind.CONSTRUCTOR_IS_NOT_CONST); | |
| 4789 } | |
| 4790 return result; | |
| 4791 } | |
| 4792 | |
| 4793 Element visitNewExpression(NewExpression node) { | |
| 4794 inConstContext = node.isConst; | |
| 4795 Node selector = node.send.selector; | |
| 4796 Element element = visit(selector); | |
| 4797 assert(invariant(selector, element != null, | |
| 4798 message: 'No element return for $selector.')); | |
| 4799 return finishConstructorReference(element, node.send.selector, node); | |
| 4800 } | |
| 4801 | |
| 4802 /// Finishes resolution of a constructor reference and records the | |
| 4803 /// type of the constructed instance on [expression]. | |
| 4804 FunctionElement finishConstructorReference(Element element, | |
| 4805 Node diagnosticNode, | |
| 4806 Node expression) { | |
| 4807 assert(invariant(diagnosticNode, element != null, | |
| 4808 message: 'No element return for $diagnosticNode.')); | |
| 4809 // Find the unnamed constructor if the reference resolved to a | |
| 4810 // class. | |
| 4811 if (!Elements.isUnresolved(element) && !element.isConstructor) { | |
| 4812 if (element.isClass) { | |
| 4813 ClassElement cls = element; | |
| 4814 cls.ensureResolved(compiler); | |
| 4815 // The unnamed constructor may not exist, so [e] may become unresolved. | |
| 4816 element = resolveConstructor(cls, diagnosticNode, ''); | |
| 4817 } else { | |
| 4818 element = failOrReturnErroneousElement( | |
| 4819 element, diagnosticNode, element.name, MessageKind.NOT_A_TYPE, | |
| 4820 {'node': diagnosticNode}); | |
| 4821 } | |
| 4822 } | |
| 4823 if (type == null) { | |
| 4824 if (Elements.isUnresolved(element)) { | |
| 4825 type = const DynamicType(); | |
| 4826 } else { | |
| 4827 type = element.enclosingClass.rawType; | |
| 4828 } | |
| 4829 } | |
| 4830 resolver.registry.setType(expression, type); | |
| 4831 return element; | |
| 4832 } | |
| 4833 | |
| 4834 Element visitTypeAnnotation(TypeAnnotation node) { | |
| 4835 assert(invariant(node, type == null)); | |
| 4836 // This is not really resolving a type-annotation, but the name of the | |
| 4837 // constructor. Therefore we allow deferred types. | |
| 4838 type = resolver.resolveTypeAnnotation(node, | |
| 4839 malformedIsError: inConstContext, | |
| 4840 deferredIsMalformed: false); | |
| 4841 registry.registerRequiredType(type, resolver.enclosingElement); | |
| 4842 return type.element; | |
| 4843 } | |
| 4844 | |
| 4845 Element visitSend(Send node) { | |
| 4846 Element element = visit(node.receiver); | |
| 4847 assert(invariant(node.receiver, element != null, | |
| 4848 message: 'No element return for $node.receiver.')); | |
| 4849 if (Elements.isUnresolved(element)) return element; | |
| 4850 Identifier name = node.selector.asIdentifier(); | |
| 4851 if (name == null) internalError(node.selector, 'unexpected node'); | |
| 4852 | |
| 4853 if (element.isClass) { | |
| 4854 ClassElement cls = element; | |
| 4855 cls.ensureResolved(compiler); | |
| 4856 return resolveConstructor(cls, name, name.source); | |
| 4857 } else if (element.isPrefix) { | |
| 4858 PrefixElement prefix = element; | |
| 4859 element = prefix.lookupLocalMember(name.source); | |
| 4860 element = Elements.unwrap(element, compiler, node); | |
| 4861 if (element == null) { | |
| 4862 return failOrReturnErroneousElement( | |
| 4863 resolver.enclosingElement, name, | |
| 4864 name.source, | |
| 4865 MessageKind.CANNOT_RESOLVE, | |
| 4866 {'name': name}); | |
| 4867 } else if (!element.isClass) { | |
| 4868 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
| 4869 } | |
| 4870 } else { | |
| 4871 internalError(node.receiver, 'unexpected element $element'); | |
| 4872 } | |
| 4873 return element; | |
| 4874 } | |
| 4875 | |
| 4876 Element visitIdentifier(Identifier node) { | |
| 4877 String name = node.source; | |
| 4878 Element element = resolver.reportLookupErrorIfAny( | |
| 4879 lookupInScope(compiler, node, resolver.scope, name), node, name); | |
| 4880 registry.useElement(node, element); | |
| 4881 // TODO(johnniwinther): Change errors to warnings, cf. 11.11.1. | |
| 4882 if (element == null) { | |
| 4883 return failOrReturnErroneousElement(resolver.enclosingElement, node, name, | |
| 4884 MessageKind.CANNOT_RESOLVE, | |
| 4885 {'name': name}); | |
| 4886 } else if (element.isErroneous) { | |
| 4887 return element; | |
| 4888 } else if (element.isTypedef) { | |
| 4889 error(node, MessageKind.CANNOT_INSTANTIATE_TYPEDEF, | |
| 4890 {'typedefName': name}); | |
| 4891 } else if (element.isTypeVariable) { | |
| 4892 error(node, MessageKind.CANNOT_INSTANTIATE_TYPE_VARIABLE, | |
| 4893 {'typeVariableName': name}); | |
| 4894 } else if (!element.isClass && !element.isPrefix) { | |
| 4895 error(node, MessageKind.NOT_A_TYPE, {'node': name}); | |
| 4896 } | |
| 4897 return element; | |
| 4898 } | |
| 4899 | |
| 4900 /// Assumed to be called by [resolveRedirectingFactory]. | |
| 4901 Element visitRedirectingFactoryBody(RedirectingFactoryBody node) { | |
| 4902 Node constructorReference = node.constructorReference; | |
| 4903 return finishConstructorReference(visit(constructorReference), | |
| 4904 constructorReference, node); | |
| 4905 } | |
| 4906 } | |
| 4907 | |
| 4908 /// Looks up [name] in [scope] and unwraps the result. | |
| 4909 Element lookupInScope(Compiler compiler, Node node, | |
| 4910 Scope scope, String name) { | |
| 4911 return Elements.unwrap(scope.lookup(name), compiler, node); | |
| 4912 } | |
| 4913 | |
| 4914 TreeElements _ensureTreeElements(AnalyzableElementX element) { | |
| 4915 if (element._treeElements == null) { | |
| 4916 element._treeElements = new TreeElementMapping(element); | |
| 4917 } | |
| 4918 return element._treeElements; | |
| 4919 } | |
| 4920 | |
| 4921 abstract class AnalyzableElementX implements AnalyzableElement { | |
| 4922 TreeElements _treeElements; | |
| 4923 | |
| 4924 bool get hasTreeElements => _treeElements != null; | |
| 4925 | |
| 4926 TreeElements get treeElements { | |
| 4927 assert(invariant(this, _treeElements !=null, | |
| 4928 message: "TreeElements have not been computed for $this.")); | |
| 4929 return _treeElements; | |
| 4930 } | |
| 4931 | |
| 4932 void reuseElement() { | |
| 4933 _treeElements = null; | |
| 4934 } | |
| 4935 } | |
| 4936 | |
| 4937 /// The result of resolving a node. | |
| 4938 abstract class ResolutionResult { | |
| 4939 Element get element; | |
| 4940 } | |
| 4941 | |
| 4942 /// The result for the resolution of a node that points to an [Element]. | |
| 4943 class ElementResult implements ResolutionResult { | |
| 4944 final Element element; | |
| 4945 | |
| 4946 // TODO(johnniwinther): Remove this factory constructor when `null` is never | |
| 4947 // passed as an element result. | |
| 4948 factory ElementResult(Element element) { | |
| 4949 return element != null ? new ElementResult.internal(element) : null; | |
| 4950 } | |
| 4951 | |
| 4952 ElementResult.internal(this.element); | |
| 4953 | |
| 4954 String toString() => 'ElementResult($element)'; | |
| 4955 } | |
| 4956 | |
| 4957 /// The result for the resolution of a node that points to an [DartType]. | |
| 4958 class TypeResult implements ResolutionResult { | |
| 4959 final DartType type; | |
| 4960 | |
| 4961 TypeResult(this.type) { | |
| 4962 assert(type != null); | |
| 4963 } | |
| 4964 | |
| 4965 Element get element => type.element; | |
| 4966 | |
| 4967 String toString() => 'TypeResult($type)'; | |
| 4968 } | |
| 4969 | |
| 4970 /// The result for the resolution of the `assert` method. | |
| 4971 class AssertResult implements ResolutionResult { | |
| 4972 const AssertResult(); | |
| 4973 | |
| 4974 Element get element => null; | |
| 4975 | |
| 4976 String toString() => 'AssertResult()'; | |
| 4977 } | |
| OLD | NEW |