OLD | NEW |
| (Empty) |
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 library elements.modelx; | |
6 | |
7 import 'elements.dart'; | |
8 import '../constants/expressions.dart'; | |
9 import '../helpers/helpers.dart'; // Included for debug helpers. | |
10 import '../tree/tree.dart'; | |
11 import '../util/util.dart'; | |
12 import '../resolution/resolution.dart'; | |
13 import '../resolution/class_members.dart' show ClassMemberMixin; | |
14 | |
15 import '../dart2jslib.dart' show invariant, | |
16 InterfaceType, | |
17 DartType, | |
18 TypeVariableType, | |
19 TypedefType, | |
20 DualKind, | |
21 MessageKind, | |
22 DiagnosticListener, | |
23 Script, | |
24 FunctionType, | |
25 Selector, | |
26 Constant, | |
27 Compiler, | |
28 Backend, | |
29 isPrivateName; | |
30 | |
31 import '../dart_types.dart'; | |
32 | |
33 import '../scanner/scannerlib.dart' show | |
34 EOF_TOKEN, | |
35 ErrorToken, | |
36 Token; | |
37 | |
38 import '../ordered_typeset.dart' show OrderedTypeSet; | |
39 | |
40 import 'visitor.dart' show ElementVisitor; | |
41 | |
42 abstract class DeclarationSite { | |
43 } | |
44 | |
45 abstract class ElementX extends Element { | |
46 static int elementHashCode = 0; | |
47 | |
48 final String name; | |
49 final ElementKind kind; | |
50 final Element enclosingElement; | |
51 final int hashCode = ++elementHashCode; | |
52 Link<MetadataAnnotation> metadata = const Link<MetadataAnnotation>(); | |
53 | |
54 ElementX(this.name, this.kind, this.enclosingElement) { | |
55 assert(isErroneous || implementationLibrary != null); | |
56 } | |
57 | |
58 Modifiers get modifiers => Modifiers.EMPTY; | |
59 | |
60 Node parseNode(DiagnosticListener listener) { | |
61 listener.internalError(this, | |
62 'parseNode not implemented on $this.'); | |
63 return null; | |
64 } | |
65 | |
66 DartType computeType(Compiler compiler) { | |
67 compiler.internalError(this, | |
68 "computeType not implemented on $this."); | |
69 return null; | |
70 } | |
71 | |
72 void addMetadata(MetadataAnnotationX annotation) { | |
73 assert(annotation.annotatedElement == null); | |
74 annotation.annotatedElement = this; | |
75 addMetadataInternal(annotation); | |
76 } | |
77 | |
78 void addMetadataInternal(MetadataAnnotation annotation) { | |
79 metadata = metadata.prepend(annotation); | |
80 } | |
81 | |
82 bool get isClosure => false; | |
83 bool get isClassMember { | |
84 // Check that this element is defined in the scope of a Class. | |
85 return enclosingElement != null && enclosingElement.isClass; | |
86 } | |
87 bool get isInstanceMember => false; | |
88 bool get isDeferredLoaderGetter => false; | |
89 | |
90 bool get isFactoryConstructor => modifiers.isFactory; | |
91 bool get isConst => modifiers.isConst; | |
92 bool get isFinal => modifiers.isFinal; | |
93 bool get isStatic => modifiers.isStatic; | |
94 bool get isOperator => Elements.isOperatorName(name); | |
95 bool get impliesType => (kind.category & ElementCategory.IMPLIES_TYPE) != 0; | |
96 | |
97 bool get isPatched => false; | |
98 | |
99 bool get isPatch => false; | |
100 | |
101 bool get isImplementation => true; | |
102 | |
103 bool get isDeclaration => true; | |
104 | |
105 bool get isInjected => !isPatch && implementationLibrary.isPatch; | |
106 | |
107 Element get implementation => this; | |
108 | |
109 Element get declaration => this; | |
110 | |
111 Element get patch { | |
112 throw new UnsupportedError('patch is not supported on $this'); | |
113 } | |
114 | |
115 Element get origin { | |
116 throw new UnsupportedError('origin is not supported on $this'); | |
117 } | |
118 | |
119 bool get isSynthesized => false; | |
120 | |
121 bool get isForwardingConstructor => false; | |
122 | |
123 bool get isMixinApplication => false; | |
124 | |
125 bool get isLocal => false; | |
126 | |
127 // TODO(johnniwinther): This breaks for libraries (for which enclosing | |
128 // elements are null) and is invalid for top level variable declarations for | |
129 // which the enclosing element is a VariableDeclarations and not a compilation | |
130 // unit. | |
131 bool get isTopLevel { | |
132 return enclosingElement != null && enclosingElement.isCompilationUnit; | |
133 } | |
134 | |
135 bool get isAssignable { | |
136 if (isFinal || isConst) return false; | |
137 if (isFunction || isGenerativeConstructor) return false; | |
138 return true; | |
139 } | |
140 | |
141 Token get position => null; | |
142 | |
143 Token findMyName(Token token) { | |
144 return findNameToken(token, isConstructor, name, enclosingElement.name); | |
145 } | |
146 | |
147 static Token findNameToken(Token token, bool isConstructor, String name, | |
148 String enclosingClassName) { | |
149 // We search for the token that has the name of this element. | |
150 // For constructors, that doesn't work because they may have | |
151 // named formed out of multiple tokens (named constructors) so | |
152 // for those we search for the class name instead. | |
153 String needle = isConstructor ? enclosingClassName : name; | |
154 // The unary '-' operator has a special element name (specified). | |
155 if (needle == 'unary-') needle = '-'; | |
156 for (Token t = token; EOF_TOKEN != t.kind; t = t.next) { | |
157 if (t is !ErrorToken && needle == t.value) return t; | |
158 } | |
159 return token; | |
160 } | |
161 | |
162 CompilationUnitElement get compilationUnit { | |
163 Element element = this; | |
164 while (!element.isCompilationUnit) { | |
165 element = element.enclosingElement; | |
166 } | |
167 return element; | |
168 } | |
169 | |
170 LibraryElement get library => enclosingElement.library; | |
171 | |
172 LibraryElement get implementationLibrary { | |
173 Element element = this; | |
174 while (!identical(element.kind, ElementKind.LIBRARY)) { | |
175 element = element.enclosingElement; | |
176 } | |
177 return element; | |
178 } | |
179 | |
180 ClassElement get enclosingClass { | |
181 for (Element e = this; e != null; e = e.enclosingElement) { | |
182 if (e.isClass) return e; | |
183 } | |
184 return null; | |
185 } | |
186 | |
187 Element get enclosingClassOrCompilationUnit { | |
188 for (Element e = this; e != null; e = e.enclosingElement) { | |
189 if (e.isClass || e.isCompilationUnit) return e; | |
190 } | |
191 return null; | |
192 } | |
193 | |
194 Element get outermostEnclosingMemberOrTopLevel { | |
195 // TODO(lrn): Why is this called "Outermost"? | |
196 // TODO(johnniwinther): Clean up this method: This method does not return | |
197 // the outermost for elements in closure classses, but some call-sites rely | |
198 // on that behavior. | |
199 for (Element e = this; e != null; e = e.enclosingElement) { | |
200 if (e.isClassMember || e.isTopLevel) { | |
201 return e; | |
202 } | |
203 } | |
204 return null; | |
205 } | |
206 | |
207 ClassElement get contextClass { | |
208 ClassElement cls; | |
209 for (Element e = this; e != null; e = e.enclosingElement) { | |
210 if (e.isClass) { | |
211 // Record [e] instead of returning it directly. We need the last class | |
212 // in the chain since the first classes might be closure classes. | |
213 cls = e.declaration; | |
214 } | |
215 } | |
216 return cls; | |
217 } | |
218 | |
219 /** | |
220 * Creates the scope for this element. | |
221 */ | |
222 Scope buildScope() => enclosingElement.buildScope(); | |
223 | |
224 String toString() { | |
225 // TODO(johnniwinther): Test for nullness of name, or make non-nullness an | |
226 // invariant for all element types? | |
227 var nameText = name != null ? name : '?'; | |
228 if (enclosingElement != null && !isTopLevel) { | |
229 String holderName = enclosingElement.name != null | |
230 ? enclosingElement.name | |
231 : '${enclosingElement.kind}?'; | |
232 return '$kind($holderName#${nameText})'; | |
233 } else { | |
234 return '$kind(${nameText})'; | |
235 } | |
236 } | |
237 | |
238 String _fixedBackendName = null; | |
239 bool _isNative = false; | |
240 bool get isNative => _isNative; | |
241 bool get hasFixedBackendName => _fixedBackendName != null; | |
242 String get fixedBackendName => _fixedBackendName; | |
243 // Marks this element as a native element. | |
244 void setNative(String name) { | |
245 _isNative = true; | |
246 _fixedBackendName = name; | |
247 } | |
248 void setFixedBackendName(String name) { | |
249 _fixedBackendName = name; | |
250 } | |
251 | |
252 FunctionElement asFunctionElement() => null; | |
253 | |
254 bool get isAbstract => modifiers.isAbstract; | |
255 bool isForeign(Backend backend) => backend.isForeign(this); | |
256 | |
257 void diagnose(Element context, DiagnosticListener listener) {} | |
258 | |
259 bool get hasTreeElements => analyzableElement.hasTreeElements; | |
260 | |
261 TreeElements get treeElements => analyzableElement.treeElements; | |
262 | |
263 AnalyzableElement get analyzableElement { | |
264 Element element = outermostEnclosingMemberOrTopLevel; | |
265 if (element.isAbstractField || element.isPrefix) return element.library; | |
266 return element; | |
267 } | |
268 | |
269 DeclarationSite get declarationSite => null; | |
270 } | |
271 | |
272 class ErroneousElementX extends ElementX implements ErroneousElement { | |
273 final MessageKind messageKind; | |
274 final Map messageArguments; | |
275 | |
276 ErroneousElementX(this.messageKind, this.messageArguments, | |
277 String name, Element enclosing) | |
278 : super(name, ElementKind.ERROR, enclosing); | |
279 | |
280 bool get isTopLevel => false; | |
281 | |
282 bool get isSynthesized => true; | |
283 | |
284 AbstractFieldElement abstractField; | |
285 | |
286 unsupported() { | |
287 throw 'unsupported operation on erroneous element'; | |
288 } | |
289 | |
290 Link<MetadataAnnotation> get metadata => unsupported(); | |
291 bool get hasNode => false; | |
292 get node => unsupported(); | |
293 get hasResolvedAst => false; | |
294 get resolvedAst => unsupported(); | |
295 get type => unsupported(); | |
296 get cachedNode => unsupported(); | |
297 get functionSignature => unsupported(); | |
298 get patch => null; | |
299 get origin => this; | |
300 get immediateRedirectionTarget => unsupported(); | |
301 get nestedClosures => unsupported(); | |
302 get memberContext => unsupported(); | |
303 get executableContext => unsupported(); | |
304 | |
305 bool get isRedirectingFactory => unsupported(); | |
306 | |
307 computeSignature(compiler) => unsupported(); | |
308 | |
309 bool get hasFunctionSignature => false; | |
310 | |
311 get effectiveTarget => this; | |
312 | |
313 computeEffectiveTargetType(InterfaceType newType) => unsupported(); | |
314 | |
315 get definingConstructor => null; | |
316 | |
317 FunctionElement asFunctionElement() => this; | |
318 | |
319 String get message => '${messageKind.message(messageArguments)}'; | |
320 | |
321 String toString() => '<$name: $message>'; | |
322 | |
323 accept(ElementVisitor visitor) => visitor.visitErroneousElement(this); | |
324 } | |
325 | |
326 /// A message attached to a [WarnOnUseElementX]. | |
327 class WrappedMessage { | |
328 /// The message position. If [:null:] the position of the reference to the | |
329 /// [WarnOnUseElementX] is used. | |
330 final Spannable spannable; | |
331 | |
332 /** | |
333 * The message to report on resolving a wrapped element. | |
334 */ | |
335 final MessageKind messageKind; | |
336 | |
337 /** | |
338 * The message arguments to report on resolving a wrapped element. | |
339 */ | |
340 final Map messageArguments; | |
341 | |
342 WrappedMessage(this.spannable, this.messageKind, this.messageArguments); | |
343 } | |
344 | |
345 class WarnOnUseElementX extends ElementX implements WarnOnUseElement { | |
346 /// Warning to report on resolving this element. | |
347 final WrappedMessage warning; | |
348 | |
349 /// Info to report on resolving this element. | |
350 final WrappedMessage info; | |
351 | |
352 /// The element whose usage cause a warning. | |
353 final Element wrappedElement; | |
354 | |
355 WarnOnUseElementX(WrappedMessage this.warning, WrappedMessage this.info, | |
356 Element enclosingElement, Element wrappedElement) | |
357 : this.wrappedElement = wrappedElement, | |
358 super(wrappedElement.name, ElementKind.WARN_ON_USE, enclosingElement); | |
359 | |
360 Element unwrap(DiagnosticListener listener, Spannable usageSpannable) { | |
361 var unwrapped = wrappedElement; | |
362 if (warning != null) { | |
363 Spannable spannable = warning.spannable; | |
364 if (spannable == null) spannable = usageSpannable; | |
365 listener.reportWarning( | |
366 spannable, warning.messageKind, warning.messageArguments); | |
367 } | |
368 if (info != null) { | |
369 Spannable spannable = info.spannable; | |
370 if (spannable == null) spannable = usageSpannable; | |
371 listener.reportInfo( | |
372 spannable, info.messageKind, info.messageArguments); | |
373 } | |
374 if (unwrapped.isWarnOnUse) { | |
375 unwrapped = unwrapped.unwrap(listener, usageSpannable); | |
376 } | |
377 return unwrapped; | |
378 } | |
379 | |
380 accept(ElementVisitor visitor) => visitor.visitWarnOnUseElement(this); | |
381 } | |
382 | |
383 class AmbiguousElementX extends ElementX implements AmbiguousElement { | |
384 /** | |
385 * The message to report on resolving this element. | |
386 */ | |
387 final MessageKind messageKind; | |
388 | |
389 /** | |
390 * The message arguments to report on resolving this element. | |
391 */ | |
392 final Map messageArguments; | |
393 | |
394 /** | |
395 * The first element that this ambiguous element might refer to. | |
396 */ | |
397 final Element existingElement; | |
398 | |
399 /** | |
400 * The second element that this ambiguous element might refer to. | |
401 */ | |
402 final Element newElement; | |
403 | |
404 AmbiguousElementX(this.messageKind, this.messageArguments, | |
405 Element enclosingElement, Element existingElement, Element newElement) | |
406 : this.existingElement = existingElement, | |
407 this.newElement = newElement, | |
408 super(existingElement.name, ElementKind.AMBIGUOUS, enclosingElement); | |
409 | |
410 Setlet flatten() { | |
411 Element element = this; | |
412 var set = new Setlet(); | |
413 while (element.isAmbiguous) { | |
414 AmbiguousElement ambiguous = element; | |
415 set.add(ambiguous.newElement); | |
416 element = ambiguous.existingElement; | |
417 } | |
418 set.add(element); | |
419 return set; | |
420 } | |
421 | |
422 void diagnose(Element context, DiagnosticListener listener) { | |
423 Setlet ambiguousElements = flatten(); | |
424 MessageKind code = (ambiguousElements.length == 1) | |
425 ? MessageKind.AMBIGUOUS_REEXPORT : MessageKind.AMBIGUOUS_LOCATION; | |
426 LibraryElementX importer = context.library; | |
427 for (Element element in ambiguousElements) { | |
428 var arguments = {'name': element.name}; | |
429 listener.reportInfo(element, code, arguments); | |
430 Link<Import> importers = importer.importers.getImports(element); | |
431 listener.withCurrentElement(importer, () { | |
432 for (; !importers.isEmpty; importers = importers.tail) { | |
433 listener.reportInfo( | |
434 importers.head, MessageKind.IMPORTED_HERE, arguments); | |
435 } | |
436 }); | |
437 } | |
438 } | |
439 | |
440 accept(ElementVisitor visitor) => visitor.visitAmbiguousElement(this); | |
441 | |
442 bool get isTopLevel => false; | |
443 } | |
444 | |
445 class ScopeX { | |
446 final Map<String, Element> contents = new Map<String, Element>(); | |
447 | |
448 bool get isEmpty => contents.isEmpty; | |
449 Iterable<Element> get values => contents.values; | |
450 | |
451 Element lookup(String name) { | |
452 return contents[name]; | |
453 } | |
454 | |
455 void add(Element element, DiagnosticListener listener) { | |
456 String name = element.name; | |
457 if (element.isAccessor) { | |
458 addAccessor(element, contents[name], listener); | |
459 } else { | |
460 Element existing = contents.putIfAbsent(name, () => element); | |
461 if (!identical(existing, element)) { | |
462 listener.reportError( | |
463 element, MessageKind.DUPLICATE_DEFINITION, {'name': name}); | |
464 listener.reportInfo(existing, | |
465 MessageKind.EXISTING_DEFINITION, {'name': name}); | |
466 } | |
467 } | |
468 } | |
469 | |
470 /** | |
471 * Adds a definition for an [accessor] (getter or setter) to a scope. | |
472 * The definition binds to an abstract field that can hold both a getter | |
473 * and a setter. | |
474 * | |
475 * The abstract field is added once, for the first getter or setter, and | |
476 * reused if the other one is also added. | |
477 * The abstract field should not be treated as a proper member of the | |
478 * container, it's simply a way to return two results for one lookup. | |
479 * That is, the getter or setter does not have the abstract field as enclosing | |
480 * element, they are enclosed by the class or compilation unit, as is the | |
481 * abstract field. | |
482 */ | |
483 void addAccessor(FunctionElementX accessor, | |
484 Element existing, | |
485 DiagnosticListener listener) { | |
486 void reportError(Element other) { | |
487 listener.reportError(accessor, | |
488 MessageKind.DUPLICATE_DEFINITION, | |
489 {'name': accessor.name}); | |
490 // TODO(johnniwinther): Make this an info instead of a fatal error. | |
491 listener.reportFatalError(other, | |
492 MessageKind.EXISTING_DEFINITION, | |
493 {'name': accessor.name}); | |
494 } | |
495 | |
496 if (existing != null) { | |
497 if (!identical(existing.kind, ElementKind.ABSTRACT_FIELD)) { | |
498 reportError(existing); | |
499 } else { | |
500 AbstractFieldElementX field = existing; | |
501 accessor.abstractField = field; | |
502 if (accessor.isGetter) { | |
503 if (field.getter != null && field.getter != accessor) { | |
504 reportError(field.getter); | |
505 } | |
506 field.getter = accessor; | |
507 } else { | |
508 assert(accessor.isSetter); | |
509 if (field.setter != null && field.setter != accessor) { | |
510 reportError(field.setter); | |
511 } | |
512 field.setter = accessor; | |
513 } | |
514 } | |
515 } else { | |
516 Element container = accessor.enclosingClassOrCompilationUnit; | |
517 AbstractFieldElementX field = | |
518 new AbstractFieldElementX(accessor.name, container); | |
519 accessor.abstractField = field; | |
520 if (accessor.isGetter) { | |
521 field.getter = accessor; | |
522 } else { | |
523 field.setter = accessor; | |
524 } | |
525 add(field, listener); | |
526 } | |
527 } | |
528 } | |
529 | |
530 class CompilationUnitElementX extends ElementX | |
531 implements CompilationUnitElement { | |
532 final Script script; | |
533 PartOf partTag; | |
534 Link<Element> localMembers = const Link<Element>(); | |
535 | |
536 CompilationUnitElementX(Script script, LibraryElement library) | |
537 : this.script = script, | |
538 super(script.name, | |
539 ElementKind.COMPILATION_UNIT, | |
540 library) { | |
541 library.addCompilationUnit(this); | |
542 } | |
543 | |
544 void forEachLocalMember(f(Element element)) { | |
545 localMembers.forEach(f); | |
546 } | |
547 | |
548 void addMember(Element element, DiagnosticListener listener) { | |
549 // Keep a list of top level members. | |
550 localMembers = localMembers.prepend(element); | |
551 // Provide the member to the library to build scope. | |
552 if (enclosingElement.isPatch) { | |
553 implementationLibrary.addMember(element, listener); | |
554 } else { | |
555 library.addMember(element, listener); | |
556 } | |
557 } | |
558 | |
559 void setPartOf(PartOf tag, DiagnosticListener listener) { | |
560 LibraryElementX library = enclosingElement; | |
561 if (library.entryCompilationUnit == this) { | |
562 listener.reportError(tag, MessageKind.ILLEGAL_DIRECTIVE); | |
563 return; | |
564 } | |
565 if (!localMembers.isEmpty) { | |
566 listener.reportError(tag, MessageKind.BEFORE_TOP_LEVEL); | |
567 return; | |
568 } | |
569 if (partTag != null) { | |
570 listener.reportWarning(tag, MessageKind.DUPLICATED_PART_OF); | |
571 return; | |
572 } | |
573 partTag = tag; | |
574 LibraryName libraryTag = library.libraryTag; | |
575 String actualName = tag.name.toString(); | |
576 if (libraryTag != null) { | |
577 String expectedName = libraryTag.name.toString(); | |
578 if (expectedName != actualName) { | |
579 listener.reportWarning(tag.name, | |
580 MessageKind.LIBRARY_NAME_MISMATCH, | |
581 {'libraryName': expectedName}); | |
582 } | |
583 } else { | |
584 listener.reportWarning(library, | |
585 MessageKind.MISSING_LIBRARY_NAME, | |
586 {'libraryName': actualName}); | |
587 listener.reportInfo(tag.name, | |
588 MessageKind.THIS_IS_THE_PART_OF_TAG); | |
589 } | |
590 } | |
591 | |
592 bool get hasMembers => !localMembers.isEmpty; | |
593 | |
594 int compareTo(CompilationUnitElement other) { | |
595 if (this == other) return 0; | |
596 return '${script.readableUri}'.compareTo('${other.script.readableUri}'); | |
597 } | |
598 | |
599 Element get analyzableElement => library; | |
600 | |
601 accept(ElementVisitor visitor) => visitor.visitCompilationUnitElement(this); | |
602 } | |
603 | |
604 class Importers { | |
605 Map<Element, Link<Import>> importers = new Map<Element, Link<Import>>(); | |
606 | |
607 Link<Import> getImports(Element element) { | |
608 Link<Import> imports = importers[element]; | |
609 return imports != null ? imports : const Link<Import>(); | |
610 } | |
611 | |
612 Import getImport(Element element) => getImports(element).head; | |
613 | |
614 void registerImport(Element element, Import import) { | |
615 if (import == null) return; | |
616 | |
617 importers[element] = | |
618 importers.putIfAbsent(element, () => const Link<Import>()) | |
619 .prepend(import); | |
620 } | |
621 } | |
622 | |
623 class ImportScope { | |
624 /** | |
625 * Map for elements imported through import declarations. | |
626 * | |
627 * Addition to the map is performed by [addImport]. Lookup is done trough | |
628 * [find]. | |
629 */ | |
630 final Map<String, Element> importScope = | |
631 new Map<String, Element>(); | |
632 | |
633 /** | |
634 * Adds [element] to the import scope of this library. | |
635 * | |
636 * If an element by the same name is already in the imported scope, an | |
637 * [ErroneousElement] will be put in the imported scope, allowing for | |
638 * detection of ambiguous uses of imported names. | |
639 */ | |
640 void addImport(Element enclosingElement, | |
641 Element element, | |
642 Import import, | |
643 DiagnosticListener listener) { | |
644 LibraryElementX library = enclosingElement.library; | |
645 Importers importers = library.importers; | |
646 | |
647 String name = element.name; | |
648 | |
649 // The loadLibrary function always shadows existing bindings to that name. | |
650 if (element.isDeferredLoaderGetter) { | |
651 importScope.remove(name); | |
652 // TODO(sigurdm): Print a hint. | |
653 } | |
654 Element existing = importScope.putIfAbsent(name, () => element); | |
655 importers.registerImport(element, import); | |
656 | |
657 void registerWarnOnUseElement(Import import, | |
658 MessageKind messageKind, | |
659 Element hidingElement, | |
660 Element hiddenElement) { | |
661 Uri hiddenUri = hiddenElement.library.canonicalUri; | |
662 Uri hidingUri = hidingElement.library.canonicalUri; | |
663 Element element = new WarnOnUseElementX( | |
664 new WrappedMessage( | |
665 null, // Report on reference to [hidingElement]. | |
666 messageKind, | |
667 {'name': name, 'hiddenUri': hiddenUri, 'hidingUri': hidingUri}), | |
668 new WrappedMessage( | |
669 listener.spanFromSpannable(import), | |
670 MessageKind.IMPORTED_HERE, | |
671 {'name': name}), | |
672 enclosingElement, hidingElement); | |
673 importScope[name] = element; | |
674 importers.registerImport(element, import); | |
675 } | |
676 | |
677 if (existing != element) { | |
678 Import existingImport = importers.getImport(existing); | |
679 Element newElement; | |
680 if (existing.library.isPlatformLibrary && | |
681 !element.library.isPlatformLibrary) { | |
682 // [existing] is implicitly hidden. | |
683 registerWarnOnUseElement( | |
684 import, MessageKind.HIDDEN_IMPORT, element, existing); | |
685 } else if (!existing.library.isPlatformLibrary && | |
686 element.library.isPlatformLibrary) { | |
687 // [element] is implicitly hidden. | |
688 if (import == null) { | |
689 // [element] is imported implicitly (probably through dart:core). | |
690 registerWarnOnUseElement( | |
691 existingImport, MessageKind.HIDDEN_IMPLICIT_IMPORT, | |
692 existing, element); | |
693 } else { | |
694 registerWarnOnUseElement( | |
695 import, MessageKind.HIDDEN_IMPORT, existing, element); | |
696 } | |
697 } else { | |
698 Element ambiguousElement = new AmbiguousElementX( | |
699 MessageKind.DUPLICATE_IMPORT, {'name': name}, | |
700 enclosingElement, existing, element); | |
701 importScope[name] = ambiguousElement; | |
702 importers.registerImport(ambiguousElement, import); | |
703 importers.registerImport(ambiguousElement, existingImport); | |
704 } | |
705 } | |
706 } | |
707 | |
708 Element operator [](String name) => importScope[name]; | |
709 } | |
710 | |
711 class LibraryElementX | |
712 extends ElementX with AnalyzableElementX, PatchMixin<LibraryElementX> | |
713 implements LibraryElement { | |
714 final Uri canonicalUri; | |
715 CompilationUnitElement entryCompilationUnit; | |
716 Link<CompilationUnitElement> compilationUnits = | |
717 const Link<CompilationUnitElement>(); | |
718 LinkBuilder<LibraryTag> tagsBuilder = new LinkBuilder<LibraryTag>(); | |
719 List<LibraryTag> tagsCache; | |
720 LibraryName libraryTag; | |
721 bool canUseNative = false; | |
722 Link<Element> localMembers = const Link<Element>(); | |
723 final ScopeX localScope = new ScopeX(); | |
724 final ImportScope importScope = new ImportScope(); | |
725 | |
726 /// A mapping from an imported element to the "import" tag. | |
727 final Importers importers = new Importers(); | |
728 | |
729 /** | |
730 * Link for elements exported either through export declarations or through | |
731 * declaration. This field should not be accessed directly but instead through | |
732 * the [exports] getter. | |
733 * | |
734 * [LibraryDependencyHandler] sets this field through [setExports] when the | |
735 * library is loaded. | |
736 */ | |
737 Link<Element> slotForExports; | |
738 | |
739 final Map<LibraryDependency, LibraryElement> tagMapping = | |
740 new Map<LibraryDependency, LibraryElement>(); | |
741 | |
742 LibraryElementX(Script script, | |
743 [Uri canonicalUri, LibraryElementX origin]) | |
744 : this.canonicalUri = | |
745 ((canonicalUri == null) ? script.readableUri : canonicalUri), | |
746 super(script.name, ElementKind.LIBRARY, null) { | |
747 entryCompilationUnit = new CompilationUnitElementX(script, this); | |
748 if (origin != null) { | |
749 origin.applyPatch(this); | |
750 } | |
751 } | |
752 | |
753 bool get isDartCore => canonicalUri == Compiler.DART_CORE; | |
754 | |
755 Link<MetadataAnnotation> get metadata { | |
756 return (libraryTag == null) ? super.metadata : libraryTag.metadata; | |
757 } | |
758 | |
759 set metadata(value) { | |
760 // The metadata is stored on [libraryTag]. | |
761 throw new SpannableAssertionFailure(this, 'Cannot set metadata on Library'); | |
762 } | |
763 | |
764 CompilationUnitElement get compilationUnit => entryCompilationUnit; | |
765 | |
766 Element get analyzableElement => this; | |
767 | |
768 void addCompilationUnit(CompilationUnitElement element) { | |
769 compilationUnits = compilationUnits.prepend(element); | |
770 } | |
771 | |
772 void addTag(LibraryTag tag, DiagnosticListener listener) { | |
773 if (tagsCache != null) { | |
774 listener.internalError(tag, | |
775 "Library tags for $this have already been computed."); | |
776 } | |
777 tagsBuilder.addLast(tag); | |
778 } | |
779 | |
780 Iterable<LibraryTag> get tags { | |
781 if (tagsCache == null) { | |
782 tagsCache = tagsBuilder.toList(); | |
783 tagsBuilder = null; | |
784 } | |
785 return tagsCache; | |
786 } | |
787 | |
788 void recordResolvedTag(LibraryDependency tag, LibraryElement library) { | |
789 assert(tagMapping[tag] == null); | |
790 tagMapping[tag] = library; | |
791 } | |
792 | |
793 LibraryElement getLibraryFromTag(LibraryDependency tag) => tagMapping[tag]; | |
794 | |
795 /** | |
796 * Adds [element] to the import scope of this library. | |
797 * | |
798 * If an element by the same name is already in the imported scope, an | |
799 * [ErroneousElement] will be put in the imported scope, allowing for | |
800 * detection of ambiguous uses of imported names. | |
801 */ | |
802 void addImport(Element element, Import import, DiagnosticListener listener) { | |
803 importScope.addImport(this, element, import, listener); | |
804 } | |
805 | |
806 void addMember(Element element, DiagnosticListener listener) { | |
807 localMembers = localMembers.prepend(element); | |
808 addToScope(element, listener); | |
809 } | |
810 | |
811 void addToScope(Element element, DiagnosticListener listener) { | |
812 localScope.add(element, listener); | |
813 } | |
814 | |
815 Element localLookup(String elementName) { | |
816 Element result = localScope.lookup(elementName); | |
817 if (result == null && isPatch) { | |
818 result = origin.localLookup(elementName); | |
819 } | |
820 return result; | |
821 } | |
822 | |
823 /** | |
824 * Returns [:true:] if the export scope has already been computed for this | |
825 * library. | |
826 */ | |
827 bool get exportsHandled => slotForExports != null; | |
828 | |
829 Link<Element> get exports { | |
830 assert(invariant(this, exportsHandled, | |
831 message: 'Exports not handled on $this')); | |
832 return slotForExports; | |
833 } | |
834 | |
835 /** | |
836 * Sets the export scope of this library. This method can only be called once. | |
837 */ | |
838 void setExports(Iterable<Element> exportedElements) { | |
839 assert(invariant(this, !exportsHandled, | |
840 message: 'Exports already set to $slotForExports on $this')); | |
841 assert(invariant(this, exportedElements != null)); | |
842 var builder = new LinkBuilder<Element>(); | |
843 for (Element export in exportedElements) { | |
844 builder.addLast(export); | |
845 } | |
846 slotForExports = builder.toLink(); | |
847 } | |
848 | |
849 LibraryElement get library => isPatch ? origin : this; | |
850 | |
851 /** | |
852 * Look up a top-level element in this library. The element could | |
853 * potentially have been imported from another library. Returns | |
854 * null if no such element exist and an [ErroneousElement] if multiple | |
855 * elements have been imported. | |
856 */ | |
857 Element find(String elementName) { | |
858 Element result = localScope.lookup(elementName); | |
859 if (result != null) return result; | |
860 if (origin != null) { | |
861 result = origin.localScope.lookup(elementName); | |
862 if (result != null) return result; | |
863 } | |
864 result = importScope[elementName]; | |
865 if (result != null) return result; | |
866 if (origin != null) { | |
867 result = origin.importScope[elementName]; | |
868 if (result != null) return result; | |
869 } | |
870 return null; | |
871 } | |
872 | |
873 /** Look up a top-level element in this library, but only look for | |
874 * non-imported elements. Returns null if no such element exist. */ | |
875 Element findLocal(String elementName) { | |
876 // TODO(johnniwinther): How to handle injected elements in the patch | |
877 // library? | |
878 Element result = localScope.lookup(elementName); | |
879 if (result == null || result.library != this) return null; | |
880 return result; | |
881 } | |
882 | |
883 Element findExported(String elementName) { | |
884 for (Link link = exports; !link.isEmpty; link = link.tail) { | |
885 Element element = link.head; | |
886 if (element.name == elementName) return element; | |
887 } | |
888 return null; | |
889 } | |
890 | |
891 void forEachExport(f(Element element)) { | |
892 exports.forEach((Element e) => f(e)); | |
893 } | |
894 | |
895 Link<Import> getImportsFor(Element element) => importers.getImports(element); | |
896 | |
897 void forEachLocalMember(f(Element element)) { | |
898 if (isPatch) { | |
899 // Patch libraries traverse both origin and injected members. | |
900 origin.localMembers.forEach(f); | |
901 | |
902 void filterPatch(Element element) { | |
903 if (!element.isPatch) { | |
904 // Do not traverse the patch members. | |
905 f(element); | |
906 } | |
907 } | |
908 localMembers.forEach(filterPatch); | |
909 } else { | |
910 localMembers.forEach(f); | |
911 } | |
912 } | |
913 | |
914 Iterable<Element> getNonPrivateElementsInScope() { | |
915 return localScope.values.where((Element element) { | |
916 // At this point [localScope] only contains members so we don't need | |
917 // to check for foreign or prefix elements. | |
918 return !isPrivateName(element.name); | |
919 }); | |
920 } | |
921 | |
922 bool hasLibraryName() => libraryTag != null; | |
923 | |
924 /** | |
925 * Returns the library name, which is either the name given in the library tag | |
926 * or the empty string if there is no library tag. | |
927 */ | |
928 String getLibraryName() { | |
929 if (libraryTag == null) return ''; | |
930 return libraryTag.name.toString(); | |
931 } | |
932 | |
933 /** | |
934 * Returns the library name (as defined by the library tag) or for script | |
935 * (which have no library tag) the script file name. The latter case is used | |
936 * to private 'library name' for scripts to use for instance in dartdoc. | |
937 * | |
938 * Note: the returned filename will still be escaped ("a%20b.dart" instead of | |
939 * "a b.dart"). | |
940 */ | |
941 String getLibraryOrScriptName() { | |
942 if (libraryTag != null) { | |
943 return libraryTag.name.toString(); | |
944 } else { | |
945 // Use the file name as script name. | |
946 String path = canonicalUri.path; | |
947 return path.substring(path.lastIndexOf('/') + 1); | |
948 } | |
949 } | |
950 | |
951 Scope buildScope() => new LibraryScope(this); | |
952 | |
953 bool get isPlatformLibrary => canonicalUri.scheme == 'dart'; | |
954 | |
955 bool get isPackageLibrary => canonicalUri.scheme == 'package'; | |
956 | |
957 bool get isInternalLibrary => | |
958 isPlatformLibrary && canonicalUri.path.startsWith('_'); | |
959 | |
960 String toString() { | |
961 if (origin != null) { | |
962 return 'patch library(${canonicalUri})'; | |
963 } else if (patch != null) { | |
964 return 'origin library(${canonicalUri})'; | |
965 } else { | |
966 return 'library(${canonicalUri})'; | |
967 } | |
968 } | |
969 | |
970 int compareTo(LibraryElement other) { | |
971 if (this == other) return 0; | |
972 return getLibraryOrScriptName().compareTo(other.getLibraryOrScriptName()); | |
973 } | |
974 | |
975 accept(ElementVisitor visitor) => visitor.visitLibraryElement(this); | |
976 | |
977 // TODO(johnniwinther): Remove these when issue 18630 is fixed. | |
978 LibraryElementX get patch => super.patch; | |
979 LibraryElementX get origin => super.origin; | |
980 } | |
981 | |
982 class PrefixElementX extends ElementX implements PrefixElement { | |
983 Token firstPosition; | |
984 | |
985 final ImportScope importScope = new ImportScope(); | |
986 | |
987 bool get isDeferred => _deferredImport != null; | |
988 | |
989 // Only needed for deferred imports. | |
990 Import _deferredImport; | |
991 Import get deferredImport => _deferredImport; | |
992 | |
993 PrefixElementX(String prefix, Element enclosing, this.firstPosition) | |
994 : super(prefix, ElementKind.PREFIX, enclosing); | |
995 | |
996 bool get isTopLevel => false; | |
997 | |
998 Element lookupLocalMember(String memberName) => importScope[memberName]; | |
999 | |
1000 DartType computeType(Compiler compiler) => const DynamicType(); | |
1001 | |
1002 Token get position => firstPosition; | |
1003 | |
1004 void addImport(Element element, Import import, DiagnosticListener listener) { | |
1005 importScope.addImport(this, element, import, listener); | |
1006 } | |
1007 | |
1008 accept(ElementVisitor visitor) => visitor.visitPrefixElement(this); | |
1009 | |
1010 void markAsDeferred(Import deferredImport) { | |
1011 _deferredImport = deferredImport; | |
1012 } | |
1013 } | |
1014 | |
1015 class TypedefElementX extends ElementX | |
1016 with AstElementMixin, | |
1017 AnalyzableElementX, | |
1018 TypeDeclarationElementX<TypedefType> | |
1019 implements TypedefElement { | |
1020 Typedef cachedNode; | |
1021 | |
1022 /** | |
1023 * The type annotation which defines this typedef. | |
1024 */ | |
1025 DartType alias; | |
1026 | |
1027 /// [:true:] if the typedef has been checked for cyclic reference. | |
1028 bool hasBeenCheckedForCycles = false; | |
1029 | |
1030 int resolutionState = STATE_NOT_STARTED; | |
1031 | |
1032 TypedefElementX(String name, Element enclosing) | |
1033 : super(name, ElementKind.TYPEDEF, enclosing); | |
1034 | |
1035 bool get hasNode => cachedNode != null; | |
1036 | |
1037 Typedef get node { | |
1038 assert(invariant(this, cachedNode != null, | |
1039 message: "Node has not been computed for $this.")); | |
1040 return cachedNode; | |
1041 } | |
1042 | |
1043 /** | |
1044 * Function signature for a typedef of a function type. The signature is | |
1045 * kept to provide full information about parameter names through the mirror | |
1046 * system. | |
1047 * | |
1048 * The [functionSignature] is not available until the typedef element has been | |
1049 * resolved. | |
1050 */ | |
1051 FunctionSignature functionSignature; | |
1052 | |
1053 TypedefType computeType(Compiler compiler) { | |
1054 if (thisTypeCache != null) return thisTypeCache; | |
1055 Typedef node = parseNode(compiler); | |
1056 setThisAndRawTypes(compiler, createTypeVariables(node.typeParameters)); | |
1057 ensureResolved(compiler); | |
1058 return thisTypeCache; | |
1059 } | |
1060 | |
1061 void ensureResolved(Compiler compiler) { | |
1062 if (resolutionState == STATE_NOT_STARTED) { | |
1063 compiler.resolver.resolve(this); | |
1064 } | |
1065 } | |
1066 | |
1067 TypedefType createType(List<DartType> typeArguments) { | |
1068 return new TypedefType(this, typeArguments); | |
1069 } | |
1070 | |
1071 Scope buildScope() { | |
1072 return new TypeDeclarationScope(enclosingElement.buildScope(), this); | |
1073 } | |
1074 | |
1075 void checkCyclicReference(Compiler compiler) { | |
1076 if (hasBeenCheckedForCycles) return; | |
1077 var visitor = new TypedefCyclicVisitor(compiler, this); | |
1078 computeType(compiler).accept(visitor, null); | |
1079 hasBeenCheckedForCycles = true; | |
1080 } | |
1081 | |
1082 accept(ElementVisitor visitor) => visitor.visitTypedefElement(this); | |
1083 | |
1084 // A typedef cannot be patched therefore defines itself. | |
1085 AstElement get definingElement => this; | |
1086 } | |
1087 | |
1088 // This class holds common information for a list of variable or field | |
1089 // declarations. It contains the node, and the type. A [VariableElementX] | |
1090 // forwards its [computeType] and [parseNode] methods to this class. | |
1091 class VariableList implements DeclarationSite { | |
1092 VariableDefinitions definitions; | |
1093 DartType type; | |
1094 final Modifiers modifiers; | |
1095 Link<MetadataAnnotation> metadata = const Link<MetadataAnnotation>(); | |
1096 | |
1097 VariableList(Modifiers this.modifiers); | |
1098 | |
1099 VariableList.node(VariableDefinitions node, this.type) | |
1100 : this.definitions = node, | |
1101 this.modifiers = node.modifiers { | |
1102 assert(modifiers != null); | |
1103 } | |
1104 | |
1105 VariableDefinitions parseNode(Element element, DiagnosticListener listener) { | |
1106 return definitions; | |
1107 } | |
1108 | |
1109 DartType computeType(Element element, Compiler compiler) => type; | |
1110 } | |
1111 | |
1112 abstract class VariableElementX extends ElementX with AstElementMixin | |
1113 implements VariableElement { | |
1114 final Token token; | |
1115 final VariableList variables; | |
1116 VariableDefinitions definitionsCache; | |
1117 Expression initializerCache; | |
1118 | |
1119 Modifiers get modifiers => variables.modifiers; | |
1120 | |
1121 VariableElementX(String name, | |
1122 ElementKind kind, | |
1123 Element enclosingElement, | |
1124 VariableList variables, | |
1125 this.token) | |
1126 : this.variables = variables, | |
1127 super(name, kind, enclosingElement); | |
1128 | |
1129 // TODO(johnniwinther): Ensure that the [TreeElements] for this variable hold | |
1130 // the mappings for all its metadata. | |
1131 Link<MetadataAnnotation> get metadata => variables.metadata; | |
1132 | |
1133 void addMetadataInternal(MetadataAnnotation annotation) { | |
1134 variables.metadata = variables.metadata.prepend(annotation); | |
1135 } | |
1136 | |
1137 // A variable cannot be patched therefore defines itself. | |
1138 AstElement get definingElement => this; | |
1139 | |
1140 bool get hasNode => definitionsCache != null; | |
1141 | |
1142 VariableDefinitions get node { | |
1143 assert(invariant(this, definitionsCache != null, | |
1144 message: "Node has not been computed for $this.")); | |
1145 return definitionsCache; | |
1146 } | |
1147 | |
1148 Expression get initializer { | |
1149 assert(invariant(this, definitionsCache != null, | |
1150 message: "Initializer has not been computed for $this.")); | |
1151 return initializerCache; | |
1152 } | |
1153 | |
1154 Node parseNode(DiagnosticListener listener) { | |
1155 if (definitionsCache != null) return definitionsCache; | |
1156 | |
1157 VariableDefinitions definitions = variables.parseNode(this, listener); | |
1158 createDefinitions(definitions); | |
1159 return definitionsCache; | |
1160 } | |
1161 | |
1162 void createDefinitions(VariableDefinitions definitions) { | |
1163 assert(invariant(this, definitionsCache == null, | |
1164 message: "VariableDefinitions has already been computed for $this.")); | |
1165 Expression node; | |
1166 int count = 0; | |
1167 for (Link<Node> link = definitions.definitions.nodes; | |
1168 !link.isEmpty; link = link.tail) { | |
1169 Expression initializedIdentifier = link.head; | |
1170 Identifier identifier = initializedIdentifier.asIdentifier(); | |
1171 if (identifier == null) { | |
1172 SendSet sendSet = initializedIdentifier.asSendSet(); | |
1173 identifier = sendSet.selector.asIdentifier(); | |
1174 if (identical(name, identifier.source)) { | |
1175 node = initializedIdentifier; | |
1176 initializerCache = sendSet.arguments.first; | |
1177 } | |
1178 } else if (identical(name, identifier.source)) { | |
1179 node = initializedIdentifier; | |
1180 } | |
1181 count++; | |
1182 } | |
1183 invariant(definitions, node != null, message: "Could not find '$name'."); | |
1184 if (count == 1) { | |
1185 definitionsCache = definitions; | |
1186 } else { | |
1187 // Create a [VariableDefinitions] node for the single definition of | |
1188 // [node]. | |
1189 definitionsCache = new VariableDefinitions(definitions.type, | |
1190 definitions.modifiers, new NodeList( | |
1191 definitions.definitions.beginToken, | |
1192 const Link<Node>().prepend(node), | |
1193 definitions.definitions.endToken)); | |
1194 } | |
1195 } | |
1196 | |
1197 DartType computeType(Compiler compiler) { | |
1198 if (variables.type != null) return variables.type; | |
1199 // Call [parseNode] to ensure that [definitionsCache] and [initializerCache] | |
1200 // are set as a consequence of calling [computeType]. | |
1201 return compiler.withCurrentElement(this, () { | |
1202 parseNode(compiler); | |
1203 return variables.computeType(this, compiler); | |
1204 }); | |
1205 } | |
1206 | |
1207 DartType get type { | |
1208 assert(invariant(this, variables.type != null, | |
1209 message: "Type has not been computed for $this.")); | |
1210 return variables.type; | |
1211 } | |
1212 | |
1213 bool get isInstanceMember => isClassMember && !isStatic; | |
1214 | |
1215 // Note: cachedNode.beginToken will not be correct in all | |
1216 // cases, for example, for function typed parameters. | |
1217 Token get position => token; | |
1218 | |
1219 accept(ElementVisitor visitor) => visitor.visitVariableElement(this); | |
1220 | |
1221 DeclarationSite get declarationSite => variables; | |
1222 } | |
1223 | |
1224 class LocalVariableElementX extends VariableElementX | |
1225 implements LocalVariableElement { | |
1226 LocalVariableElementX(String name, | |
1227 ExecutableElement enclosingElement, | |
1228 VariableList variables, | |
1229 Token token) | |
1230 : super(name, ElementKind.VARIABLE, enclosingElement, variables, token) { | |
1231 createDefinitions(variables.definitions); | |
1232 } | |
1233 | |
1234 // TODO(johnniwinther): Remove this when the dart `backend_ast` does not need | |
1235 // [Element] for entities. | |
1236 LocalVariableElementX.synthetic(String name, | |
1237 ExecutableElement enclosingElement, | |
1238 VariableList variables) | |
1239 : super(name, ElementKind.VARIABLE, enclosingElement, variables, null); | |
1240 | |
1241 ExecutableElement get executableContext => enclosingElement; | |
1242 | |
1243 ExecutableElement get memberContext => executableContext.memberContext; | |
1244 | |
1245 bool get isLocal => true; | |
1246 } | |
1247 | |
1248 class FieldElementX extends VariableElementX | |
1249 with AnalyzableElementX implements FieldElement { | |
1250 List<FunctionElement> nestedClosures = new List<FunctionElement>(); | |
1251 | |
1252 FieldElementX(Identifier name, | |
1253 Element enclosingElement, | |
1254 VariableList variables) | |
1255 : super(name.source, ElementKind.FIELD, enclosingElement, | |
1256 variables, name.token); | |
1257 | |
1258 accept(ElementVisitor visitor) => visitor.visitFieldElement(this); | |
1259 | |
1260 MemberElement get memberContext => this; | |
1261 | |
1262 void reuseElement() { | |
1263 super.reuseElement(); | |
1264 nestedClosures.clear(); | |
1265 } | |
1266 } | |
1267 | |
1268 /// [Element] for a parameter-like element. | |
1269 class FormalElementX extends ElementX | |
1270 with AstElementMixin | |
1271 implements FormalElement { | |
1272 final VariableDefinitions definitions; | |
1273 final Identifier identifier; | |
1274 DartType typeCache; | |
1275 | |
1276 /** | |
1277 * Function signature for a variable with a function type. The signature is | |
1278 * kept to provide full information about parameter names through the mirror | |
1279 * system. | |
1280 */ | |
1281 FunctionSignature functionSignatureCache; | |
1282 | |
1283 FormalElementX(ElementKind elementKind, | |
1284 FunctionTypedElement enclosingElement, | |
1285 this.definitions, | |
1286 Identifier identifier) | |
1287 : this.identifier = identifier, | |
1288 super(identifier.source, elementKind, enclosingElement); | |
1289 | |
1290 FunctionTypedElement get functionDeclaration => enclosingElement; | |
1291 | |
1292 Modifiers get modifiers => definitions.modifiers; | |
1293 | |
1294 Token get position => identifier.getBeginToken(); | |
1295 | |
1296 Node parseNode(DiagnosticListener listener) => definitions; | |
1297 | |
1298 DartType computeType(Compiler compiler) { | |
1299 assert(invariant(this, type != null, | |
1300 message: "Parameter type has not been set for $this.")); | |
1301 return type; | |
1302 } | |
1303 | |
1304 DartType get type { | |
1305 assert(invariant(this, typeCache != null, | |
1306 message: "Parameter type has not been set for $this.")); | |
1307 return typeCache; | |
1308 } | |
1309 | |
1310 FunctionSignature get functionSignature { | |
1311 assert(invariant(this, typeCache != null, | |
1312 message: "Parameter signature has not been set for $this.")); | |
1313 return functionSignatureCache; | |
1314 } | |
1315 | |
1316 bool get hasNode => true; | |
1317 | |
1318 VariableDefinitions get node => definitions; | |
1319 | |
1320 FunctionType get functionType => type; | |
1321 | |
1322 accept(ElementVisitor visitor) => visitor.visitFormalElement(this); | |
1323 | |
1324 // A parameter is defined by the declaration element. | |
1325 AstElement get definingElement => declaration; | |
1326 } | |
1327 | |
1328 /// [Element] for a formal parameter. | |
1329 /// | |
1330 /// A [ParameterElementX] can be patched. A parameter of an external method is | |
1331 /// patched with the corresponding parameter of the patch method. This is done | |
1332 /// to ensure that default values on parameters are computed once (on the | |
1333 /// origin parameter) but can be found through both the origin and the patch. | |
1334 abstract class ParameterElementX extends FormalElementX | |
1335 with PatchMixin<ParameterElement> implements ParameterElement { | |
1336 final Expression initializer; | |
1337 | |
1338 ParameterElementX(ElementKind elementKind, | |
1339 FunctionElement functionDeclaration, | |
1340 VariableDefinitions definitions, | |
1341 Identifier identifier, | |
1342 this.initializer) | |
1343 : super(elementKind, functionDeclaration, definitions, identifier); | |
1344 | |
1345 FunctionElement get functionDeclaration => enclosingElement; | |
1346 | |
1347 ExecutableElement get executableContext => enclosingElement; | |
1348 | |
1349 MemberElement get memberContext => executableContext.memberContext; | |
1350 | |
1351 accept(ElementVisitor visitor) => visitor.visitParameterElement(this); | |
1352 | |
1353 bool get isLocal => true; | |
1354 } | |
1355 | |
1356 class LocalParameterElementX extends ParameterElementX | |
1357 implements LocalParameterElement { | |
1358 LocalParameterElementX(FunctionElement functionDeclaration, | |
1359 VariableDefinitions definitions, | |
1360 Identifier identifier, | |
1361 Expression initializer) | |
1362 : super(ElementKind.PARAMETER, functionDeclaration, | |
1363 definitions, identifier, initializer); | |
1364 } | |
1365 | |
1366 /// Parameters in constructors that directly initialize fields. For example: | |
1367 /// `A(this.field)`. | |
1368 class InitializingFormalElementX extends ParameterElementX | |
1369 implements InitializingFormalElement { | |
1370 FieldElement fieldElement; | |
1371 | |
1372 InitializingFormalElementX(ConstructorElement constructorDeclaration, | |
1373 VariableDefinitions variables, | |
1374 Identifier identifier, | |
1375 Expression initializer, | |
1376 this.fieldElement) | |
1377 : super(ElementKind.INITIALIZING_FORMAL, constructorDeclaration, | |
1378 variables, identifier, initializer); | |
1379 | |
1380 accept(ElementVisitor visitor) => visitor.visitFieldParameterElement(this); | |
1381 | |
1382 MemberElement get memberContext => enclosingElement; | |
1383 | |
1384 bool get isLocal => false; | |
1385 } | |
1386 | |
1387 | |
1388 class AbstractFieldElementX extends ElementX implements AbstractFieldElement { | |
1389 FunctionElementX getter; | |
1390 FunctionElementX setter; | |
1391 | |
1392 AbstractFieldElementX(String name, Element enclosing) | |
1393 : super(name, ElementKind.ABSTRACT_FIELD, enclosing); | |
1394 | |
1395 DartType computeType(Compiler compiler) { | |
1396 throw "internal error: AbstractFieldElement has no type"; | |
1397 } | |
1398 | |
1399 Node parseNode(DiagnosticListener listener) { | |
1400 throw "internal error: AbstractFieldElement has no node"; | |
1401 } | |
1402 | |
1403 Token get position { | |
1404 // The getter and setter may be defined in two different | |
1405 // compilation units. However, we know that one of them is | |
1406 // non-null and defined in the same compilation unit as the | |
1407 // abstract element. | |
1408 // TODO(lrn): No we don't know that if the element from the same | |
1409 // compilation unit is patched. | |
1410 // | |
1411 // We need to make sure that the position returned is relative to | |
1412 // the compilation unit of the abstract element. | |
1413 if (getter != null | |
1414 && identical(getter.compilationUnit, compilationUnit)) { | |
1415 return getter.position; | |
1416 } else { | |
1417 return setter.position; | |
1418 } | |
1419 } | |
1420 | |
1421 Modifiers get modifiers { | |
1422 // The resolver ensures that the flags match (ignoring abstract). | |
1423 if (getter != null) { | |
1424 return new Modifiers.withFlags( | |
1425 getter.modifiers.nodes, | |
1426 getter.modifiers.flags | Modifiers.FLAG_ABSTRACT); | |
1427 } else { | |
1428 return new Modifiers.withFlags( | |
1429 setter.modifiers.nodes, | |
1430 setter.modifiers.flags | Modifiers.FLAG_ABSTRACT); | |
1431 } | |
1432 } | |
1433 | |
1434 bool get isInstanceMember { | |
1435 return isClassMember && !isStatic; | |
1436 } | |
1437 | |
1438 accept(ElementVisitor visitor) => visitor.visitAbstractFieldElement(this); | |
1439 | |
1440 bool get isAbstract { | |
1441 return getter != null && getter.isAbstract | |
1442 || setter != null && setter.isAbstract; | |
1443 } | |
1444 } | |
1445 | |
1446 // TODO(johnniwinther): [FunctionSignature] should be merged with | |
1447 // [FunctionType]. | |
1448 // TODO(karlklose): all these lists should have element type [FormalElement]. | |
1449 class FunctionSignatureX implements FunctionSignature { | |
1450 final Link<Element> requiredParameters; | |
1451 final Link<Element> optionalParameters; | |
1452 final int requiredParameterCount; | |
1453 final int optionalParameterCount; | |
1454 final bool optionalParametersAreNamed; | |
1455 final List<Element> orderedOptionalParameters; | |
1456 final FunctionType type; | |
1457 final bool hasOptionalParameters; | |
1458 | |
1459 FunctionSignatureX(this.requiredParameters, | |
1460 Link<Element> optionalParameters, | |
1461 this.requiredParameterCount, | |
1462 this.optionalParameterCount, | |
1463 this.optionalParametersAreNamed, | |
1464 this.orderedOptionalParameters, | |
1465 this.type) | |
1466 : optionalParameters = optionalParameters, | |
1467 hasOptionalParameters = !optionalParameters.isEmpty; | |
1468 | |
1469 void forEachRequiredParameter(void function(Element parameter)) { | |
1470 for (Link<Element> link = requiredParameters; | |
1471 !link.isEmpty; | |
1472 link = link.tail) { | |
1473 function(link.head); | |
1474 } | |
1475 } | |
1476 | |
1477 void forEachOptionalParameter(void function(Element parameter)) { | |
1478 for (Link<Element> link = optionalParameters; | |
1479 !link.isEmpty; | |
1480 link = link.tail) { | |
1481 function(link.head); | |
1482 } | |
1483 } | |
1484 | |
1485 Element get firstOptionalParameter => optionalParameters.head; | |
1486 | |
1487 void forEachParameter(void function(Element parameter)) { | |
1488 forEachRequiredParameter(function); | |
1489 forEachOptionalParameter(function); | |
1490 } | |
1491 | |
1492 void orderedForEachParameter(void function(Element parameter)) { | |
1493 forEachRequiredParameter(function); | |
1494 orderedOptionalParameters.forEach(function); | |
1495 } | |
1496 | |
1497 int get parameterCount => requiredParameterCount + optionalParameterCount; | |
1498 | |
1499 /** | |
1500 * Check whether a function with this signature can be used instead of a | |
1501 * function with signature [signature] without causing a `noSuchMethod` | |
1502 * exception/call. | |
1503 */ | |
1504 bool isCompatibleWith(FunctionSignature signature) { | |
1505 if (optionalParametersAreNamed) { | |
1506 if (!signature.optionalParametersAreNamed) { | |
1507 return requiredParameterCount == signature.parameterCount; | |
1508 } | |
1509 // If both signatures have named parameters, then they must have | |
1510 // the same number of required parameters, and the names in | |
1511 // [signature] must all be in [:this:]. | |
1512 if (requiredParameterCount != signature.requiredParameterCount) { | |
1513 return false; | |
1514 } | |
1515 Set<String> names = optionalParameters.mapToSet( | |
1516 (Element element) => element.name); | |
1517 for (Element namedParameter in signature.optionalParameters) { | |
1518 if (!names.contains(namedParameter.name)) { | |
1519 return false; | |
1520 } | |
1521 } | |
1522 } else { | |
1523 if (signature.optionalParametersAreNamed) return false; | |
1524 // There must be at least as many arguments as in the other signature, but | |
1525 // this signature must not have more required parameters. Having more | |
1526 // optional parameters is not a problem, they simply are never provided | |
1527 // by call sites of a call to a method with the other signature. | |
1528 int otherTotalCount = signature.parameterCount; | |
1529 return requiredParameterCount <= otherTotalCount | |
1530 && parameterCount >= otherTotalCount; | |
1531 } | |
1532 return true; | |
1533 } | |
1534 } | |
1535 | |
1536 abstract class BaseFunctionElementX | |
1537 extends ElementX with PatchMixin<FunctionElement>, AstElementMixin | |
1538 implements FunctionElement { | |
1539 DartType typeCache; | |
1540 final Modifiers modifiers; | |
1541 | |
1542 List<FunctionElement> nestedClosures = new List<FunctionElement>(); | |
1543 | |
1544 FunctionSignature functionSignatureCache; | |
1545 | |
1546 final bool _hasNoBody; | |
1547 | |
1548 AbstractFieldElement abstractField; | |
1549 | |
1550 BaseFunctionElementX(String name, | |
1551 ElementKind kind, | |
1552 Modifiers this.modifiers, | |
1553 Element enclosing, | |
1554 bool hasNoBody) | |
1555 : super(name, kind, enclosing), | |
1556 _hasNoBody = hasNoBody { | |
1557 assert(modifiers != null); | |
1558 } | |
1559 | |
1560 bool get isInstanceMember { | |
1561 return isClassMember | |
1562 && !isConstructor | |
1563 && !isStatic; | |
1564 } | |
1565 | |
1566 bool get hasFunctionSignature => functionSignatureCache != null; | |
1567 | |
1568 FunctionSignature computeSignature(Compiler compiler) { | |
1569 if (functionSignatureCache != null) return functionSignatureCache; | |
1570 compiler.withCurrentElement(this, () { | |
1571 functionSignatureCache = compiler.resolver.resolveSignature(this); | |
1572 }); | |
1573 return functionSignatureCache; | |
1574 } | |
1575 | |
1576 FunctionSignature get functionSignature { | |
1577 assert(invariant(this, functionSignatureCache != null, | |
1578 message: "Function signature has not been computed for $this.")); | |
1579 return functionSignatureCache; | |
1580 } | |
1581 | |
1582 FunctionType computeType(Compiler compiler) { | |
1583 if (typeCache != null) return typeCache; | |
1584 typeCache = computeSignature(compiler).type; | |
1585 return typeCache; | |
1586 } | |
1587 | |
1588 FunctionType get type { | |
1589 assert(invariant(this, typeCache != null, | |
1590 message: "Type has not been computed for $this.")); | |
1591 return typeCache; | |
1592 } | |
1593 | |
1594 FunctionElement asFunctionElement() => this; | |
1595 | |
1596 String toString() { | |
1597 if (isPatch) { | |
1598 return 'patch ${super.toString()}'; | |
1599 } else if (isPatched) { | |
1600 return 'origin ${super.toString()}'; | |
1601 } else { | |
1602 return super.toString(); | |
1603 } | |
1604 } | |
1605 | |
1606 bool get isAbstract { | |
1607 return !modifiers.isExternal && | |
1608 (isFunction || isAccessor) && | |
1609 _hasNoBody; | |
1610 } | |
1611 | |
1612 accept(ElementVisitor visitor) => visitor.visitFunctionElement(this); | |
1613 | |
1614 // A function is defined by the implementation element. | |
1615 AstElement get definingElement => implementation; | |
1616 } | |
1617 | |
1618 abstract class FunctionElementX extends BaseFunctionElementX | |
1619 with AnalyzableElementX implements MemberElement { | |
1620 FunctionElementX(String name, | |
1621 ElementKind kind, | |
1622 Modifiers modifiers, | |
1623 Element enclosing, | |
1624 bool hasNoBody) | |
1625 : super(name, kind, modifiers, enclosing, hasNoBody); | |
1626 | |
1627 MemberElement get memberContext => this; | |
1628 | |
1629 void reuseElement() { | |
1630 super.reuseElement(); | |
1631 nestedClosures.clear(); | |
1632 functionSignatureCache = null; | |
1633 typeCache = null; | |
1634 } | |
1635 } | |
1636 | |
1637 class LocalFunctionElementX extends BaseFunctionElementX | |
1638 implements LocalFunctionElement { | |
1639 final FunctionExpression node; | |
1640 | |
1641 LocalFunctionElementX(String name, | |
1642 FunctionExpression this.node, | |
1643 ElementKind kind, | |
1644 Modifiers modifiers, | |
1645 ExecutableElement enclosing) | |
1646 : super(name, kind, modifiers, enclosing, false); | |
1647 | |
1648 ExecutableElement get executableContext => enclosingElement; | |
1649 | |
1650 MemberElement get memberContext => executableContext.memberContext; | |
1651 | |
1652 bool get hasNode => true; | |
1653 | |
1654 FunctionExpression parseNode(DiagnosticListener listener) => node; | |
1655 | |
1656 Token get position { | |
1657 // Use the name as position if this is not an unnamed closure. | |
1658 if (node.name != null) { | |
1659 return node.name.getBeginToken(); | |
1660 } else { | |
1661 return node.getBeginToken(); | |
1662 } | |
1663 } | |
1664 | |
1665 bool get isLocal => true; | |
1666 } | |
1667 | |
1668 abstract class ConstructorElementX extends FunctionElementX | |
1669 implements ConstructorElement { | |
1670 | |
1671 ConstructorElementX(String name, | |
1672 ElementKind kind, | |
1673 Modifiers modifiers, | |
1674 Element enclosing) | |
1675 : super(name, kind, modifiers, enclosing, false); | |
1676 | |
1677 FunctionElement immediateRedirectionTarget; | |
1678 | |
1679 bool get isRedirectingFactory => immediateRedirectionTarget != null; | |
1680 | |
1681 /// This field is set by the post process queue when checking for cycles. | |
1682 ConstructorElement internalEffectiveTarget; | |
1683 DartType effectiveTargetType; | |
1684 | |
1685 void set effectiveTarget(ConstructorElement constructor) { | |
1686 assert(constructor != null && internalEffectiveTarget == null); | |
1687 internalEffectiveTarget = constructor; | |
1688 } | |
1689 | |
1690 ConstructorElement get effectiveTarget { | |
1691 if (Elements.isErroneousElement(immediateRedirectionTarget)) { | |
1692 return immediateRedirectionTarget; | |
1693 } | |
1694 assert(!isRedirectingFactory || internalEffectiveTarget != null); | |
1695 return isRedirectingFactory ? internalEffectiveTarget : this; | |
1696 } | |
1697 | |
1698 InterfaceType computeEffectiveTargetType(InterfaceType newType) { | |
1699 if (!isRedirectingFactory) return newType; | |
1700 assert(invariant(this, effectiveTargetType != null, | |
1701 message: 'Redirection target type has not yet been computed for ' | |
1702 '$this.')); | |
1703 return effectiveTargetType.substByContext(newType); | |
1704 } | |
1705 | |
1706 ConstructorElement get definingConstructor => null; | |
1707 | |
1708 ClassElement get enclosingClass => enclosingElement; | |
1709 } | |
1710 | |
1711 class DeferredLoaderGetterElementX extends FunctionElementX { | |
1712 final PrefixElement prefix; | |
1713 | |
1714 DeferredLoaderGetterElementX(PrefixElement prefix) | |
1715 : this.prefix = prefix, | |
1716 super("loadLibrary", | |
1717 ElementKind.FUNCTION, | |
1718 Modifiers.EMPTY, | |
1719 prefix, true); | |
1720 | |
1721 FunctionSignature computeSignature(Compiler compiler) { | |
1722 if (functionSignatureCache != null) return functionSignature; | |
1723 compiler.withCurrentElement(this, () { | |
1724 DartType inner = new FunctionType(this); | |
1725 functionSignatureCache = new FunctionSignatureX(const Link(), | |
1726 const Link(), 0, 0, false, [], inner); | |
1727 }); | |
1728 return functionSignatureCache; | |
1729 } | |
1730 | |
1731 bool get isClassMember => false; | |
1732 | |
1733 bool isForeign(Backend backend) => true; | |
1734 | |
1735 bool get isSynthesized => true; | |
1736 | |
1737 bool get isFunction => false; | |
1738 | |
1739 bool get isDeferredLoaderGetter => true; | |
1740 | |
1741 bool get isGetter => true; | |
1742 | |
1743 bool get isTopLevel => true; | |
1744 // By having position null, the enclosing elements location is printed in | |
1745 // error messages. | |
1746 Token get position => null; | |
1747 | |
1748 FunctionExpression parseNode(DiagnosticListener listener) => null; | |
1749 | |
1750 bool get hasNode => false; | |
1751 | |
1752 FunctionExpression get node => null; | |
1753 } | |
1754 | |
1755 class ConstructorBodyElementX extends BaseFunctionElementX | |
1756 implements ConstructorBodyElement { | |
1757 ConstructorElement constructor; | |
1758 | |
1759 ConstructorBodyElementX(FunctionElement constructor) | |
1760 : this.constructor = constructor, | |
1761 super(constructor.name, | |
1762 ElementKind.GENERATIVE_CONSTRUCTOR_BODY, | |
1763 Modifiers.EMPTY, | |
1764 constructor.enclosingElement, false) { | |
1765 functionSignatureCache = constructor.functionSignature; | |
1766 } | |
1767 | |
1768 bool get hasNode => constructor.hasNode; | |
1769 | |
1770 FunctionExpression get node => constructor.node; | |
1771 | |
1772 bool get isInstanceMember => true; | |
1773 | |
1774 FunctionType computeType(Compiler compiler) { | |
1775 compiler.internalError(this, '$this.computeType.'); | |
1776 return null; | |
1777 } | |
1778 | |
1779 Token get position => constructor.position; | |
1780 | |
1781 Element get outermostEnclosingMemberOrTopLevel => constructor; | |
1782 | |
1783 Element get analyzableElement => constructor.analyzableElement; | |
1784 | |
1785 accept(ElementVisitor visitor) => visitor.visitConstructorBodyElement(this); | |
1786 | |
1787 MemberElement get memberContext => constructor; | |
1788 } | |
1789 | |
1790 /** | |
1791 * A constructor that is not defined in the source code but rather implied by | |
1792 * the language semantics. | |
1793 * | |
1794 * This class is used to represent default constructors and forwarding | |
1795 * constructors for mixin applications. | |
1796 */ | |
1797 class SynthesizedConstructorElementX extends ConstructorElementX { | |
1798 final ConstructorElement definingConstructor; | |
1799 final bool isDefaultConstructor; | |
1800 | |
1801 SynthesizedConstructorElementX(String name, | |
1802 this.definingConstructor, | |
1803 Element enclosing, | |
1804 this.isDefaultConstructor) | |
1805 : super(name, | |
1806 ElementKind.GENERATIVE_CONSTRUCTOR, | |
1807 Modifiers.EMPTY, | |
1808 enclosing); | |
1809 | |
1810 SynthesizedConstructorElementX.forDefault(superMember, Element enclosing) | |
1811 : this('', superMember, enclosing, true); | |
1812 | |
1813 FunctionExpression parseNode(DiagnosticListener listener) => null; | |
1814 | |
1815 bool get hasNode => false; | |
1816 | |
1817 FunctionExpression get node => null; | |
1818 | |
1819 Token get position => enclosingElement.position; | |
1820 | |
1821 bool get isSynthesized => true; | |
1822 | |
1823 FunctionSignature computeSignature(compiler) { | |
1824 if (functionSignatureCache != null) return functionSignatureCache; | |
1825 if (isDefaultConstructor) { | |
1826 return functionSignatureCache = new FunctionSignatureX( | |
1827 const Link<Element>(), const Link<Element>(), 0, 0, false, | |
1828 const <Element>[], | |
1829 new FunctionType(this, enclosingClass.thisType)); | |
1830 } | |
1831 if (definingConstructor.isErroneous) { | |
1832 return functionSignatureCache = | |
1833 compiler.objectClass.localLookup('').computeSignature(compiler); | |
1834 } | |
1835 // TODO(johnniwinther): Ensure that the function signature (and with it the | |
1836 // function type) substitutes type variables correctly. | |
1837 return functionSignatureCache = | |
1838 definingConstructor.computeSignature(compiler); | |
1839 } | |
1840 | |
1841 accept(ElementVisitor visitor) { | |
1842 return visitor.visitFunctionElement(this); | |
1843 } | |
1844 } | |
1845 | |
1846 abstract class TypeDeclarationElementX<T extends GenericType> | |
1847 implements TypeDeclarationElement { | |
1848 /** | |
1849 * The `this type` for this type declaration. | |
1850 * | |
1851 * The type of [:this:] is the generic type based on this element in which | |
1852 * the type arguments are the declared type variables. For instance, | |
1853 * [:List<E>:] for [:List:] and [:Map<K,V>:] for [:Map:]. | |
1854 * | |
1855 * For a class declaration this is the type of [:this:]. | |
1856 * | |
1857 * This type is computed in [computeType]. | |
1858 */ | |
1859 T thisTypeCache; | |
1860 | |
1861 /** | |
1862 * The raw type for this type declaration. | |
1863 * | |
1864 * The raw type is the generic type base on this element in which the type | |
1865 * arguments are all [dynamic]. For instance [:List<dynamic>:] for [:List:] | |
1866 * and [:Map<dynamic,dynamic>:] for [:Map:]. For non-generic classes [rawType] | |
1867 * is the same as [thisType]. | |
1868 * | |
1869 * The [rawType] field is a canonicalization of the raw type and should be | |
1870 * used to distinguish explicit and implicit uses of the [dynamic] | |
1871 * type arguments. For instance should [:List:] be the [rawType] of the | |
1872 * [:List:] class element whereas [:List<dynamic>:] should be its own | |
1873 * instantiation of [InterfaceType] with [:dynamic:] as type argument. Using | |
1874 * this distinction, we can print the raw type with type arguments only when | |
1875 * the input source has used explicit type arguments. | |
1876 * | |
1877 * This type is computed together with [thisType] in [computeType]. | |
1878 */ | |
1879 T rawTypeCache; | |
1880 | |
1881 T get thisType { | |
1882 assert(invariant(this, thisTypeCache != null, | |
1883 message: 'This type has not been computed for $this')); | |
1884 return thisTypeCache; | |
1885 } | |
1886 | |
1887 T get rawType { | |
1888 assert(invariant(this, rawTypeCache != null, | |
1889 message: 'Raw type has not been computed for $this')); | |
1890 return rawTypeCache; | |
1891 } | |
1892 | |
1893 T createType(List<DartType> typeArguments); | |
1894 | |
1895 void setThisAndRawTypes(Compiler compiler, List<DartType> typeParameters) { | |
1896 assert(invariant(this, thisTypeCache == null, | |
1897 message: "This type has already been set on $this.")); | |
1898 assert(invariant(this, rawTypeCache == null, | |
1899 message: "Raw type has already been set on $this.")); | |
1900 thisTypeCache = createType(typeParameters); | |
1901 if (typeParameters.isEmpty) { | |
1902 rawTypeCache = thisTypeCache; | |
1903 } else { | |
1904 List<DartType> dynamicParameters = | |
1905 new List.filled(typeParameters.length, const DynamicType()); | |
1906 rawTypeCache = createType(dynamicParameters); | |
1907 } | |
1908 } | |
1909 | |
1910 List<DartType> get typeVariables => thisType.typeArguments; | |
1911 | |
1912 /** | |
1913 * Creates the type variables, their type and corresponding element, for the | |
1914 * type variables declared in [parameter] on [element]. The bounds of the type | |
1915 * variables are not set until [element] has been resolved. | |
1916 */ | |
1917 List<DartType> createTypeVariables(NodeList parameters) { | |
1918 if (parameters == null) return const <DartType>[]; | |
1919 | |
1920 // Create types and elements for type variable. | |
1921 Link<Node> nodes = parameters.nodes; | |
1922 List<DartType> arguments = | |
1923 new List.generate(nodes.slowLength(), (_) { | |
1924 TypeVariable node = nodes.head; | |
1925 String variableName = node.name.source; | |
1926 nodes = nodes.tail; | |
1927 TypeVariableElementX variableElement = | |
1928 new TypeVariableElementX(variableName, this, node); | |
1929 TypeVariableType variableType = new TypeVariableType(variableElement); | |
1930 variableElement.typeCache = variableType; | |
1931 return variableType; | |
1932 }, growable: false); | |
1933 return arguments; | |
1934 } | |
1935 | |
1936 bool get isResolved => resolutionState == STATE_DONE; | |
1937 } | |
1938 | |
1939 abstract class BaseClassElementX extends ElementX | |
1940 with AstElementMixin, | |
1941 AnalyzableElementX, | |
1942 TypeDeclarationElementX<InterfaceType>, | |
1943 PatchMixin<ClassElement>, | |
1944 ClassMemberMixin | |
1945 implements ClassElement { | |
1946 final int id; | |
1947 | |
1948 DartType supertype; | |
1949 Link<DartType> interfaces; | |
1950 String nativeTagInfo; | |
1951 int supertypeLoadState; | |
1952 int resolutionState; | |
1953 bool isProxy = false; | |
1954 bool hasIncompleteHierarchy = false; | |
1955 | |
1956 // backendMembers are members that have been added by the backend to simplify | |
1957 // compilation. They don't have any user-side counter-part. | |
1958 Link<Element> backendMembers = const Link<Element>(); | |
1959 | |
1960 OrderedTypeSet allSupertypesAndSelf; | |
1961 | |
1962 Link<DartType> get allSupertypes => allSupertypesAndSelf.supertypes; | |
1963 | |
1964 int get hierarchyDepth => allSupertypesAndSelf.maxDepth; | |
1965 | |
1966 BaseClassElementX(String name, | |
1967 Element enclosing, | |
1968 this.id, | |
1969 int initialState) | |
1970 : supertypeLoadState = initialState, | |
1971 resolutionState = initialState, | |
1972 super(name, ElementKind.CLASS, enclosing); | |
1973 | |
1974 int get hashCode => id; | |
1975 | |
1976 bool get hasBackendMembers => !backendMembers.isEmpty; | |
1977 | |
1978 bool get isUnnamedMixinApplication => false; | |
1979 | |
1980 InterfaceType computeType(Compiler compiler) { | |
1981 if (thisTypeCache == null) { | |
1982 computeThisAndRawType(compiler, computeTypeParameters(compiler)); | |
1983 } | |
1984 return thisTypeCache; | |
1985 } | |
1986 | |
1987 void computeThisAndRawType(Compiler compiler, List<DartType> typeVariables) { | |
1988 if (thisTypeCache == null) { | |
1989 if (origin == null) { | |
1990 setThisAndRawTypes(compiler, typeVariables); | |
1991 } else { | |
1992 thisTypeCache = origin.computeType(compiler); | |
1993 rawTypeCache = origin.rawType; | |
1994 } | |
1995 } | |
1996 } | |
1997 | |
1998 InterfaceType createType(List<DartType> typeArguments) { | |
1999 return new InterfaceType(this, typeArguments); | |
2000 } | |
2001 | |
2002 List<DartType> computeTypeParameters(Compiler compiler); | |
2003 | |
2004 InterfaceType asInstanceOf(ClassElement cls) { | |
2005 if (cls == this) return thisType; | |
2006 return allSupertypesAndSelf.asInstanceOf(cls); | |
2007 } | |
2008 | |
2009 bool get isObject { | |
2010 assert(invariant(this, isResolved, | |
2011 message: "isObject has not been computed for $this.")); | |
2012 return supertype == null; | |
2013 } | |
2014 | |
2015 void ensureResolved(Compiler compiler) { | |
2016 if (resolutionState == STATE_NOT_STARTED) { | |
2017 compiler.resolver.resolveClass(this); | |
2018 } | |
2019 } | |
2020 | |
2021 void setDefaultConstructor(FunctionElement constructor, Compiler compiler); | |
2022 | |
2023 void addBackendMember(Element member) { | |
2024 // TODO(ngeoffray): Deprecate this method. | |
2025 assert(member.isGenerativeConstructorBody); | |
2026 backendMembers = backendMembers.prepend(member); | |
2027 } | |
2028 | |
2029 void reverseBackendMembers() { | |
2030 backendMembers = backendMembers.reverse(); | |
2031 } | |
2032 | |
2033 /** | |
2034 * Lookup local members in the class. This will ignore constructors. | |
2035 */ | |
2036 Element lookupLocalMember(String memberName) { | |
2037 var result = localLookup(memberName); | |
2038 if (result != null && result.isConstructor) return null; | |
2039 return result; | |
2040 } | |
2041 | |
2042 /// Lookup a synthetic element created by the backend. | |
2043 Element lookupBackendMember(String memberName) { | |
2044 for (Element element in backendMembers) { | |
2045 if (element.name == memberName) { | |
2046 return element; | |
2047 } | |
2048 } | |
2049 return null; | |
2050 } | |
2051 /** | |
2052 * Lookup super members for the class. This will ignore constructors. | |
2053 */ | |
2054 Element lookupSuperMember(String memberName) { | |
2055 return lookupSuperMemberInLibrary(memberName, library); | |
2056 } | |
2057 | |
2058 /** | |
2059 * Lookup super members for the class that is accessible in [library]. | |
2060 * This will ignore constructors. | |
2061 */ | |
2062 Element lookupSuperMemberInLibrary(String memberName, | |
2063 LibraryElement library) { | |
2064 bool isPrivate = isPrivateName(memberName); | |
2065 for (ClassElement s = superclass; s != null; s = s.superclass) { | |
2066 // Private members from a different library are not visible. | |
2067 if (isPrivate && !identical(library, s.library)) continue; | |
2068 Element e = s.lookupLocalMember(memberName); | |
2069 if (e == null) continue; | |
2070 // Static members are not inherited. | |
2071 if (e.isStatic) continue; | |
2072 return e; | |
2073 } | |
2074 return null; | |
2075 } | |
2076 | |
2077 /** | |
2078 * Find the first member in the class chain with the given [selector]. | |
2079 * | |
2080 * This method is NOT to be used for resolving | |
2081 * unqualified sends because it does not implement the scoping | |
2082 * rules, where library scope comes before superclass scope. | |
2083 * | |
2084 * When called on the implementation element both members declared in the | |
2085 * origin and the patch class are returned. | |
2086 */ | |
2087 Element lookupSelector(Selector selector) { | |
2088 return internalLookupSelector(selector, false); | |
2089 } | |
2090 | |
2091 Element lookupSuperSelector(Selector selector) { | |
2092 return internalLookupSelector(selector, true); | |
2093 } | |
2094 | |
2095 Element internalLookupSelector(Selector selector, | |
2096 bool isSuperLookup) { | |
2097 String name = selector.name; | |
2098 bool isPrivate = isPrivateName(name); | |
2099 LibraryElement library = selector.library; | |
2100 for (ClassElement current = isSuperLookup ? superclass : this; | |
2101 current != null; | |
2102 current = current.superclass) { | |
2103 Element member = current.lookupLocalMember(name); | |
2104 if (member == null && current.isPatched) { | |
2105 // Doing lookups on selectors is done after resolution, so it | |
2106 // is safe to look in the patch class. | |
2107 member = current.patch.lookupLocalMember(name); | |
2108 } | |
2109 if (member == null) continue; | |
2110 // Private members from a different library are not visible. | |
2111 if (isPrivate && !identical(library, member.library)) continue; | |
2112 // Static members are not inherited. | |
2113 if (member.isStatic && !identical(this, current)) continue; | |
2114 // If we find an abstract field we have to make sure that it has | |
2115 // the getter or setter part we're actually looking | |
2116 // for. Otherwise, we continue up the superclass chain. | |
2117 if (member.isAbstractField) { | |
2118 AbstractFieldElement field = member; | |
2119 FunctionElement getter = field.getter; | |
2120 FunctionElement setter = field.setter; | |
2121 if (selector.isSetter) { | |
2122 // Abstract members can be defined in a super class. | |
2123 if (setter != null && !setter.isAbstract) return setter; | |
2124 } else { | |
2125 assert(selector.isGetter || selector.isCall); | |
2126 if (getter != null && !getter.isAbstract) return getter; | |
2127 } | |
2128 // Abstract members can be defined in a super class. | |
2129 } else if (!member.isAbstract) { | |
2130 return member; | |
2131 } | |
2132 } | |
2133 return null; | |
2134 } | |
2135 | |
2136 /** | |
2137 * Find the first member in the class chain with the given | |
2138 * [memberName]. This method is NOT to be used for resolving | |
2139 * unqualified sends because it does not implement the scoping | |
2140 * rules, where library scope comes before superclass scope. | |
2141 */ | |
2142 Element lookupMember(String memberName) { | |
2143 Element localMember = lookupLocalMember(memberName); | |
2144 return localMember == null ? lookupSuperMember(memberName) : localMember; | |
2145 } | |
2146 | |
2147 /** | |
2148 * Returns true if the [fieldMember] shadows another field. The given | |
2149 * [fieldMember] must be a member of this class, i.e. if there is a field of | |
2150 * the same name in the superclass chain. | |
2151 * | |
2152 * This method also works if the [fieldMember] is private. | |
2153 */ | |
2154 bool hasFieldShadowedBy(Element fieldMember) { | |
2155 assert(fieldMember.isField); | |
2156 String fieldName = fieldMember.name; | |
2157 bool isPrivate = isPrivateName(fieldName); | |
2158 LibraryElement memberLibrary = fieldMember.library; | |
2159 ClassElement lookupClass = this.superclass; | |
2160 while (lookupClass != null) { | |
2161 Element foundMember = lookupClass.lookupLocalMember(fieldName); | |
2162 if (foundMember != null) { | |
2163 if (foundMember.isField) { | |
2164 if (!isPrivate || memberLibrary == foundMember.library) { | |
2165 // Private fields can only be shadowed by a field declared in the | |
2166 // same library. | |
2167 return true; | |
2168 } | |
2169 } | |
2170 } | |
2171 lookupClass = lookupClass.superclass; | |
2172 } | |
2173 return false; | |
2174 } | |
2175 | |
2176 Element validateConstructorLookupResults(Selector selector, | |
2177 Element result, | |
2178 Element noMatch(Element)) { | |
2179 if (result == null | |
2180 || !result.isConstructor | |
2181 || (isPrivateName(selector.name) | |
2182 && result.library != selector.library)) { | |
2183 result = noMatch != null ? noMatch(result) : null; | |
2184 } | |
2185 return result; | |
2186 } | |
2187 | |
2188 // TODO(aprelev@gmail.com): Peter believes that it would be great to | |
2189 // make noMatch a required argument. Peter's suspicion is that most | |
2190 // callers of this method would benefit from using the noMatch method. | |
2191 Element lookupConstructor(Selector selector, [Element noMatch(Element)]) { | |
2192 Element result = localLookup(selector.name); | |
2193 return validateConstructorLookupResults(selector, result, noMatch); | |
2194 } | |
2195 | |
2196 Link<Element> get constructors { | |
2197 // TODO(ajohnsen): See if we can avoid this method at some point. | |
2198 Link<Element> result = const Link<Element>(); | |
2199 // TODO(johnniwinther): Should we include injected constructors? | |
2200 forEachMember((_, Element member) { | |
2201 if (member.isConstructor) result = result.prepend(member); | |
2202 }); | |
2203 return result; | |
2204 } | |
2205 | |
2206 /** | |
2207 * Returns the super class, if any. | |
2208 * | |
2209 * The returned element may not be resolved yet. | |
2210 */ | |
2211 ClassElement get superclass { | |
2212 assert(supertypeLoadState == STATE_DONE); | |
2213 return supertype == null ? null : supertype.element; | |
2214 } | |
2215 | |
2216 /** | |
2217 * Runs through all members of this class. | |
2218 * | |
2219 * The enclosing class is passed to the callback. This is useful when | |
2220 * [includeSuperAndInjectedMembers] is [:true:]. | |
2221 * | |
2222 * When called on an implementation element both the members in the origin | |
2223 * and patch class are included. | |
2224 */ | |
2225 // TODO(johnniwinther): Clean up lookup to get rid of the include predicates. | |
2226 void forEachMember(void f(ClassElement enclosingClass, Element member), | |
2227 {includeBackendMembers: false, | |
2228 includeSuperAndInjectedMembers: false}) { | |
2229 bool includeInjectedMembers = includeSuperAndInjectedMembers || isPatch; | |
2230 ClassElement classElement = declaration; | |
2231 do { | |
2232 // Iterate through the members in textual order, which requires | |
2233 // to reverse the data structure [localMembers] we created. | |
2234 // Textual order may be important for certain operations, for | |
2235 // example when emitting the initializers of fields. | |
2236 classElement.forEachLocalMember((e) => f(classElement, e)); | |
2237 if (includeBackendMembers) { | |
2238 classElement.forEachBackendMember((e) => f(classElement, e)); | |
2239 } | |
2240 if (includeInjectedMembers) { | |
2241 if (classElement.patch != null) { | |
2242 classElement.patch.forEachLocalMember((e) { | |
2243 if (!e.isPatch) f(classElement, e); | |
2244 }); | |
2245 } | |
2246 } | |
2247 classElement = includeSuperAndInjectedMembers | |
2248 ? classElement.superclass | |
2249 : null; | |
2250 } while (classElement != null); | |
2251 } | |
2252 | |
2253 /** | |
2254 * Runs through all instance-field members of this class. | |
2255 * | |
2256 * The enclosing class is passed to the callback. This is useful when | |
2257 * [includeSuperAndInjectedMembers] is [:true:]. | |
2258 * | |
2259 * When called on the implementation element both the fields declared in the | |
2260 * origin and in the patch are included. | |
2261 */ | |
2262 void forEachInstanceField(void f(ClassElement enclosingClass, | |
2263 FieldElement field), | |
2264 {bool includeSuperAndInjectedMembers: false}) { | |
2265 // Filters so that [f] is only invoked with instance fields. | |
2266 void fieldFilter(ClassElement enclosingClass, Element member) { | |
2267 if (member.isInstanceMember && member.kind == ElementKind.FIELD) { | |
2268 f(enclosingClass, member); | |
2269 } | |
2270 } | |
2271 | |
2272 forEachMember(fieldFilter, | |
2273 includeSuperAndInjectedMembers: includeSuperAndInjectedMembers); | |
2274 } | |
2275 | |
2276 /// Similar to [forEachInstanceField] but visits static fields. | |
2277 void forEachStaticField(void f(ClassElement enclosingClass, Element field)) { | |
2278 // Filters so that [f] is only invoked with static fields. | |
2279 void fieldFilter(ClassElement enclosingClass, Element member) { | |
2280 if (!member.isInstanceMember && member.kind == ElementKind.FIELD) { | |
2281 f(enclosingClass, member); | |
2282 } | |
2283 } | |
2284 | |
2285 forEachMember(fieldFilter); | |
2286 } | |
2287 | |
2288 void forEachBackendMember(void f(Element member)) { | |
2289 backendMembers.forEach(f); | |
2290 } | |
2291 | |
2292 bool implementsInterface(ClassElement intrface) { | |
2293 for (DartType implementedInterfaceType in allSupertypes) { | |
2294 ClassElement implementedInterface = implementedInterfaceType.element; | |
2295 if (identical(implementedInterface, intrface)) { | |
2296 return true; | |
2297 } | |
2298 } | |
2299 return false; | |
2300 } | |
2301 | |
2302 /** | |
2303 * Returns true if [this] is a subclass of [cls]. | |
2304 * | |
2305 * This method is not to be used for checking type hierarchy and | |
2306 * assignments, because it does not take parameterized types into | |
2307 * account. | |
2308 */ | |
2309 bool isSubclassOf(ClassElement cls) { | |
2310 // Use [declaration] for both [this] and [cls], because | |
2311 // declaration classes hold the superclass hierarchy. | |
2312 cls = cls.declaration; | |
2313 for (ClassElement s = declaration; s != null; s = s.superclass) { | |
2314 if (identical(s, cls)) return true; | |
2315 } | |
2316 return false; | |
2317 } | |
2318 | |
2319 bool get isNative => nativeTagInfo != null; | |
2320 | |
2321 void setNative(String name) { | |
2322 // TODO(johnniwinther): Assert that this is only called once. The memory | |
2323 // compiler copies pre-processed elements into a new compiler through | |
2324 // [Compiler.onLibraryScanned] and thereby causes multiple calls to this | |
2325 // method. | |
2326 assert(invariant(this, nativeTagInfo == null || nativeTagInfo == name, | |
2327 message: "Native tag info set inconsistently on $this: " | |
2328 "Existing name '$nativeTagInfo', new name '$name'.")); | |
2329 nativeTagInfo = name; | |
2330 } | |
2331 | |
2332 FunctionType get callType { | |
2333 MemberSignature member = | |
2334 lookupInterfaceMember(const PublicName(Compiler.CALL_OPERATOR_NAME)); | |
2335 return member != null && member.isMethod ? member.type : null; | |
2336 } | |
2337 | |
2338 // TODO(johnniwinther): Remove these when issue 18630 is fixed. | |
2339 ClassElement get patch => super.patch; | |
2340 ClassElement get origin => super.origin; | |
2341 | |
2342 // A class declaration is defined by the declaration element. | |
2343 AstElement get definingElement => declaration; | |
2344 } | |
2345 | |
2346 abstract class ClassElementX extends BaseClassElementX { | |
2347 Link<Element> localMembersReversed = const Link<Element>(); | |
2348 final ScopeX localScope = new ScopeX(); | |
2349 | |
2350 Link<Element> localMembersCache; | |
2351 | |
2352 Link<Element> get localMembers { | |
2353 if (localMembersCache == null) { | |
2354 localMembersCache = localMembersReversed.reverse(); | |
2355 } | |
2356 return localMembersCache; | |
2357 } | |
2358 | |
2359 ClassElementX(String name, Element enclosing, int id, int initialState) | |
2360 : super(name, enclosing, id, initialState); | |
2361 | |
2362 ClassNode parseNode(Compiler compiler); | |
2363 | |
2364 bool get isMixinApplication => false; | |
2365 bool get hasLocalScopeMembers => !localScope.isEmpty; | |
2366 | |
2367 void addMember(Element element, DiagnosticListener listener) { | |
2368 localMembersCache = null; | |
2369 localMembersReversed = localMembersReversed.prepend(element); | |
2370 addToScope(element, listener); | |
2371 } | |
2372 | |
2373 void addToScope(Element element, DiagnosticListener listener) { | |
2374 if (element.isField && element.name == name) { | |
2375 listener.reportError(element, MessageKind.MEMBER_USES_CLASS_NAME); | |
2376 } | |
2377 localScope.add(element, listener); | |
2378 } | |
2379 | |
2380 Element localLookup(String elementName) { | |
2381 Element result = localScope.lookup(elementName); | |
2382 if (result == null && isPatch) { | |
2383 result = origin.localLookup(elementName); | |
2384 } | |
2385 return result; | |
2386 } | |
2387 | |
2388 void forEachLocalMember(void f(Element member)) { | |
2389 localMembers.forEach(f); | |
2390 } | |
2391 | |
2392 bool get hasConstructor { | |
2393 // Search in scope to be sure we search patched constructors. | |
2394 for (var element in localScope.values) { | |
2395 if (element.isConstructor) return true; | |
2396 } | |
2397 return false; | |
2398 } | |
2399 | |
2400 void setDefaultConstructor(FunctionElement constructor, Compiler compiler) { | |
2401 // The default constructor, although synthetic, is part of a class' API. | |
2402 addMember(constructor, compiler); | |
2403 } | |
2404 | |
2405 List<DartType> computeTypeParameters(Compiler compiler) { | |
2406 ClassNode node = parseNode(compiler); | |
2407 return createTypeVariables(node.typeParameters); | |
2408 } | |
2409 | |
2410 Scope buildScope() => new ClassScope(enclosingElement.buildScope(), this); | |
2411 | |
2412 String toString() { | |
2413 if (origin != null) { | |
2414 return 'patch ${super.toString()}'; | |
2415 } else if (patch != null) { | |
2416 return 'origin ${super.toString()}'; | |
2417 } else { | |
2418 return super.toString(); | |
2419 } | |
2420 } | |
2421 } | |
2422 | |
2423 class MixinApplicationElementX extends BaseClassElementX | |
2424 implements MixinApplicationElement { | |
2425 final Node node; | |
2426 final Modifiers modifiers; | |
2427 | |
2428 Link<FunctionElement> constructors = new Link<FunctionElement>(); | |
2429 | |
2430 InterfaceType mixinType; | |
2431 | |
2432 MixinApplicationElementX(String name, Element enclosing, int id, | |
2433 this.node, this.modifiers) | |
2434 : super(name, enclosing, id, STATE_NOT_STARTED); | |
2435 | |
2436 ClassElement get mixin => mixinType != null ? mixinType.element : null; | |
2437 | |
2438 bool get isMixinApplication => true; | |
2439 bool get isUnnamedMixinApplication => node is! NamedMixinApplication; | |
2440 bool get hasConstructor => !constructors.isEmpty; | |
2441 bool get hasLocalScopeMembers => !constructors.isEmpty; | |
2442 | |
2443 get patch => null; | |
2444 get origin => null; | |
2445 | |
2446 bool get hasNode => true; | |
2447 | |
2448 Token get position => node.getBeginToken(); | |
2449 | |
2450 Node parseNode(DiagnosticListener listener) => node; | |
2451 | |
2452 FunctionElement lookupLocalConstructor(String name) { | |
2453 for (Link<Element> link = constructors; | |
2454 !link.isEmpty; | |
2455 link = link.tail) { | |
2456 if (link.head.name == name) return link.head; | |
2457 } | |
2458 return null; | |
2459 } | |
2460 | |
2461 Element localLookup(String name) { | |
2462 Element constructor = lookupLocalConstructor(name); | |
2463 if (constructor != null) return constructor; | |
2464 if (mixin == null) return null; | |
2465 Element mixedInElement = mixin.localLookup(name); | |
2466 if (mixedInElement == null) return null; | |
2467 return mixedInElement.isInstanceMember ? mixedInElement : null; | |
2468 } | |
2469 | |
2470 void forEachLocalMember(void f(Element member)) { | |
2471 constructors.forEach(f); | |
2472 if (mixin != null) mixin.forEachLocalMember((Element mixedInElement) { | |
2473 if (mixedInElement.isInstanceMember) f(mixedInElement); | |
2474 }); | |
2475 } | |
2476 | |
2477 void addMember(Element element, DiagnosticListener listener) { | |
2478 throw new UnsupportedError("Cannot add member to $this."); | |
2479 } | |
2480 | |
2481 void addToScope(Element element, DiagnosticListener listener) { | |
2482 listener.internalError(this, 'Cannot add to scope of $this.'); | |
2483 } | |
2484 | |
2485 void addConstructor(FunctionElement constructor) { | |
2486 constructors = constructors.prepend(constructor); | |
2487 } | |
2488 | |
2489 void setDefaultConstructor(FunctionElement constructor, Compiler compiler) { | |
2490 assert(!hasConstructor); | |
2491 addConstructor(constructor); | |
2492 } | |
2493 | |
2494 List<DartType> computeTypeParameters(Compiler compiler) { | |
2495 NamedMixinApplication named = node.asNamedMixinApplication(); | |
2496 if (named == null) { | |
2497 throw new SpannableAssertionFailure(node, | |
2498 "Type variables on unnamed mixin applications must be set on " | |
2499 "creation."); | |
2500 } | |
2501 return createTypeVariables(named.typeParameters); | |
2502 } | |
2503 | |
2504 accept(ElementVisitor visitor) => visitor.visitMixinApplicationElement(this); | |
2505 } | |
2506 | |
2507 class LabelDefinitionX implements LabelDefinition { | |
2508 final Label label; | |
2509 final String labelName; | |
2510 final JumpTarget target; | |
2511 bool isBreakTarget = false; | |
2512 bool isContinueTarget = false; | |
2513 | |
2514 LabelDefinitionX(Label label, String labelName, this.target) | |
2515 : this.label = label, | |
2516 this.labelName = labelName; | |
2517 | |
2518 // In case of a synthetic label, just use [labelName] for identifying the | |
2519 // label. | |
2520 String get name => label == null ? labelName : label.identifier.source; | |
2521 | |
2522 void setBreakTarget() { | |
2523 isBreakTarget = true; | |
2524 target.isBreakTarget = true; | |
2525 } | |
2526 | |
2527 void setContinueTarget() { | |
2528 isContinueTarget = true; | |
2529 target.isContinueTarget = true; | |
2530 } | |
2531 | |
2532 bool get isTarget => isBreakTarget || isContinueTarget; | |
2533 | |
2534 String toString() => 'Label:${name}'; | |
2535 } | |
2536 | |
2537 class JumpTargetX implements JumpTarget { | |
2538 final ExecutableElement executableContext; | |
2539 final Node statement; | |
2540 final int nestingLevel; | |
2541 Link<LabelDefinition> labels = const Link<LabelDefinition>(); | |
2542 bool isBreakTarget = false; | |
2543 bool isContinueTarget = false; | |
2544 | |
2545 JumpTargetX(this.statement, this.nestingLevel, this.executableContext); | |
2546 | |
2547 String get name => "target"; | |
2548 | |
2549 bool get isTarget => isBreakTarget || isContinueTarget; | |
2550 | |
2551 LabelDefinition addLabel(Label label, String labelName) { | |
2552 LabelDefinition result = new LabelDefinitionX(label, labelName, this); | |
2553 labels = labels.prepend(result); | |
2554 return result; | |
2555 } | |
2556 | |
2557 bool get isSwitch => statement is SwitchStatement; | |
2558 | |
2559 String toString() => 'Target:$statement'; | |
2560 } | |
2561 | |
2562 class TypeVariableElementX extends ElementX with AstElementMixin | |
2563 implements TypeVariableElement { | |
2564 final Node node; | |
2565 TypeVariableType typeCache; | |
2566 DartType boundCache; | |
2567 | |
2568 TypeVariableElementX(String name, TypeDeclarationElement enclosing, this.node) | |
2569 : super(name, ElementKind.TYPE_VARIABLE, enclosing); | |
2570 | |
2571 TypeDeclarationElement get typeDeclaration => enclosingElement; | |
2572 | |
2573 TypeVariableType computeType(compiler) => type; | |
2574 | |
2575 TypeVariableType get type { | |
2576 assert(invariant(this, typeCache != null, | |
2577 message: "Type has not been set on $this.")); | |
2578 return typeCache; | |
2579 } | |
2580 | |
2581 DartType get bound { | |
2582 assert(invariant(this, boundCache != null, | |
2583 message: "Bound has not been set on $this.")); | |
2584 return boundCache; | |
2585 } | |
2586 | |
2587 bool get hasNode => true; | |
2588 | |
2589 Node parseNode(compiler) => node; | |
2590 | |
2591 String toString() => "${enclosingElement.toString()}.${name}"; | |
2592 | |
2593 Token get position => node.getBeginToken(); | |
2594 | |
2595 accept(ElementVisitor visitor) => visitor.visitTypeVariableElement(this); | |
2596 | |
2597 // A type variable cannot be patched therefore defines itself. | |
2598 AstElement get definingElement => this; | |
2599 } | |
2600 | |
2601 /** | |
2602 * A single metadata annotation. | |
2603 * | |
2604 * For example, consider: | |
2605 * | |
2606 * class Data { | |
2607 * const Data(); | |
2608 * } | |
2609 * | |
2610 * const data = const Data(); | |
2611 * | |
2612 * @data | |
2613 * class Foo {} | |
2614 * | |
2615 * @data @data | |
2616 * class Bar {} | |
2617 * | |
2618 * In this example, there are three instances of [MetadataAnnotation] | |
2619 * and they correspond each to a location in the source code where | |
2620 * there is an at-sign, '@'. The [constant] of each of these instances | |
2621 * are the same compile-time constant, [: const Data() :]. | |
2622 * | |
2623 * The mirror system does not have a concept matching this class. | |
2624 */ | |
2625 abstract class MetadataAnnotationX implements MetadataAnnotation { | |
2626 /** | |
2627 * The compile-time constant which this annotation resolves to. | |
2628 * In the mirror system, this would be an object mirror. | |
2629 */ | |
2630 ConstantExpression constant; | |
2631 Element annotatedElement; | |
2632 int resolutionState; | |
2633 | |
2634 /** | |
2635 * The beginning token of this annotation, or [:null:] if it is synthetic. | |
2636 */ | |
2637 Token get beginToken; | |
2638 | |
2639 MetadataAnnotationX([this.resolutionState = STATE_NOT_STARTED]); | |
2640 | |
2641 MetadataAnnotation ensureResolved(Compiler compiler) { | |
2642 if (annotatedElement.isClass || annotatedElement.isTypedef) { | |
2643 TypeDeclarationElement typeDeclaration = annotatedElement; | |
2644 typeDeclaration.ensureResolved(compiler); | |
2645 } | |
2646 if (resolutionState == STATE_NOT_STARTED) { | |
2647 compiler.resolver.resolveMetadataAnnotation(this); | |
2648 } | |
2649 return this; | |
2650 } | |
2651 | |
2652 Node parseNode(DiagnosticListener listener); | |
2653 | |
2654 String toString() => 'MetadataAnnotation($constant, $resolutionState)'; | |
2655 } | |
2656 | |
2657 /// Metadata annotation on a parameter. | |
2658 class ParameterMetadataAnnotation extends MetadataAnnotationX { | |
2659 final Metadata metadata; | |
2660 | |
2661 ParameterMetadataAnnotation(Metadata this.metadata); | |
2662 | |
2663 Node parseNode(DiagnosticListener listener) => metadata.expression; | |
2664 | |
2665 Token get beginToken => metadata.getBeginToken(); | |
2666 | |
2667 Token get endToken => metadata.getEndToken(); | |
2668 | |
2669 bool get hasNode => true; | |
2670 | |
2671 Metadata get node => metadata; | |
2672 } | |
2673 | |
2674 /// Mixin for the implementation of patched elements. | |
2675 /// | |
2676 /// See [:patch_parser.dart:] for a description of the terminology. | |
2677 abstract class PatchMixin<E extends Element> implements Element { | |
2678 // TODO(johnniwinther): Use type variables when issue 18630 is fixed. | |
2679 Element/*E*/ patch = null; | |
2680 Element/*E*/ origin = null; | |
2681 | |
2682 bool get isPatch => origin != null; | |
2683 bool get isPatched => patch != null; | |
2684 | |
2685 bool get isImplementation => !isPatched; | |
2686 bool get isDeclaration => !isPatch; | |
2687 | |
2688 Element/*E*/ get implementation => isPatched ? patch : this; | |
2689 Element/*E*/ get declaration => isPatch ? origin : this; | |
2690 | |
2691 /// Applies a patch to this element. This method must be called at most once. | |
2692 void applyPatch(PatchMixin<E> patch) { | |
2693 assert(invariant(this, this.patch == null, | |
2694 message: "Element is patched twice.")); | |
2695 assert(invariant(this, this.origin == null, | |
2696 message: "Origin element is a patch.")); | |
2697 assert(invariant(patch, patch.origin == null, | |
2698 message: "Element is patched twice.")); | |
2699 assert(invariant(patch, patch.patch == null, | |
2700 message: "Patch element is patched.")); | |
2701 this.patch = patch; | |
2702 patch.origin = this; | |
2703 } | |
2704 } | |
2705 | |
2706 /// Abstract implementation of the [AstElement] interface. | |
2707 abstract class AstElementMixin implements AstElement { | |
2708 /// The element whose node defines this element. | |
2709 /// | |
2710 /// For patched functions the defining element is the patch element found | |
2711 /// through [implementation] since its node define the implementation of the | |
2712 /// function. For patched classes the defining element is the origin element | |
2713 /// found through [declaration] since its node define the inheritance relation | |
2714 /// for the class. For unpatched elements the defining element is the element | |
2715 /// itself. | |
2716 AstElement get definingElement; | |
2717 | |
2718 bool get hasResolvedAst => definingElement.hasTreeElements; | |
2719 | |
2720 ResolvedAst get resolvedAst { | |
2721 return new ResolvedAst(declaration, | |
2722 definingElement.node, definingElement.treeElements); | |
2723 } | |
2724 | |
2725 } | |
OLD | NEW |