OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2011 The Native Client Authors. All rights reserved. |
| 3 * Use of this source code is governed by a BSD-style license that can be |
| 4 * found in the LICENSE file. |
| 5 */ |
| 6 |
| 7 // Unit tests for code in nc_inst_state.cc (and nc_inst_state_statics.c). |
| 8 |
| 9 // To turn on debugging of instruction decoding, change value of |
| 10 // DEBUGGING to 1. |
| 11 #define DEBUGGING 0 |
| 12 |
| 13 #include "native_client/src/trusted/validator_x86/nc_inst_state.h" |
| 14 #include "native_client/src/include/nacl_macros.h" |
| 15 #include "gtest/gtest.h" |
| 16 |
| 17 // Include static functions, so that we can test. |
| 18 extern "C" { |
| 19 #include "native_client/src/trusted/validator_x86/nc_inst_state_statics.c" |
| 20 #include "native_client/src/trusted/validator_x86/RexPrefixes.h" |
| 21 }; |
| 22 |
| 23 namespace { |
| 24 |
| 25 // Size of buffer to use to contain bytes of an instruction. |
| 26 static const size_t kBufferSize = 24; |
| 27 |
| 28 // Test harness for routines in nc_inst_state.c and nc_inst_state_statics.c. |
| 29 class NcInstStateTests : public ::testing::Test { |
| 30 protected: |
| 31 NcInstStateTests(); |
| 32 void SetUp(); |
| 33 void TearDown(); |
| 34 |
| 35 // Plant the given byte as the next input byte in the input buffer. |
| 36 // Uses plant_index to determine the current end of the input buffer. |
| 37 void Plant(uint8_t byte); |
| 38 |
| 39 // Reset test state to a cleared input buffer, and (re)initialize |
| 40 // the instruction state. |
| 41 void Reset(); |
| 42 |
| 43 // Routine to add dummy calls so that compilation errors are not defined |
| 44 // for static routines we have not tested. |
| 45 void dummy(); |
| 46 |
| 47 // Reinitializes instruction state. |
| 48 void ResetState(); |
| 49 |
| 50 // Resets the instruction pattern, and its flags to a default initial |
| 51 // state. |
| 52 void ResetInstPattern(); |
| 53 |
| 54 // Fills the input buffer with unlikely bytes, and initializes |
| 55 // the reader to the beginning of the input buffer. |
| 56 void ResetInput(); |
| 57 |
| 58 // Fills the input buffer with unlikely bytes, and set the plant |
| 59 // index to the beginning of the input buffer. |
| 60 void ResetInputBuffer(); |
| 61 |
| 62 // Verify that we have consumed the given number of prefix bytes, with |
| 63 // the given number of rex prefixes, and that the prefix mask is set |
| 64 // to the given mask. |
| 65 // |
| 66 // Parameters are: |
| 67 // num_bytes - Number of prefix bytes read. |
| 68 // num_rex - Number of prefix bytes that were rex prefixes. |
| 69 // mask - prefix mask that should have been generated. |
| 70 void VerifyConsumedPrefixBytes(uint8_t num_bytes, uint8_t num_rex, |
| 71 uint32_t mask); |
| 72 |
| 73 // Run tests that verify that the call to NaClConsume0F38XXNaClInstBytes |
| 74 // behaved as expected. Assumes the call was made through a call |
| 75 // to NaClConsumeInstBytes. |
| 76 void VerifyConsume0F38XXInstructions(); |
| 77 |
| 78 // Run tests that verify that the call to NaClConsume0F3AXXNaClInstBytes |
| 79 // behaved as expected. Assumes the call was made through a call |
| 80 // to NaClConsumeInstBytes. |
| 81 void VerifyConsume0F3AXXInstructions(); |
| 82 |
| 83 // Run tests that verify that the call to NaClConsume0FXXNaClInstBytes |
| 84 // behaved as expected. Assumes the call was made through a call |
| 85 // to NaClConsumeInstBytes. |
| 86 void VerifyConsume0FXXInstructions(); |
| 87 |
| 88 // Run tests that verify that the call to NaClConsumeX87NaClInstBytes |
| 89 // behaved as expected. Assumes the call was made through a call |
| 90 // to NaClConsumeInstBytes. |
| 91 void VerifyConsumeX87Instructions(); |
| 92 |
| 93 // Run tests that verify that the call to NaClConsumeInstBytes consumed |
| 94 // a single byte. |
| 95 void VerifyConsumeOneByteInstructions(); |
| 96 |
| 97 // The instruction state to test. |
| 98 NaClInstState* _state; |
| 99 // The instruction iterator to use. |
| 100 NaClInstIter* _iter; |
| 101 // The memory segment to test. |
| 102 NaClSegment _segment; |
| 103 // The memory buffer in the memory segment. |
| 104 uint8_t _buffer[kBufferSize]; |
| 105 // The instruction pattern to match against. |
| 106 NaClInst _inst_pattern; |
| 107 // The index of where the next planted byte should |
| 108 // be added to the input buffer. |
| 109 size_t _plant_index; |
| 110 }; |
| 111 |
| 112 // Helper function to convert Bool to bool. This function is defined |
| 113 // to get around a visual studio warning for 64-bits, which causes |
| 114 // our trybots to fail (in our build system, compiler warnings are converted |
| 115 // to compiler errors). |
| 116 static inline bool Bool2bool(Bool b) { |
| 117 return b ? true : false; |
| 118 } |
| 119 |
| 120 NcInstStateTests::NcInstStateTests() { |
| 121 ResetInputBuffer(); |
| 122 NaClSegmentInitialize(_buffer, 0, kBufferSize, &_segment); |
| 123 } |
| 124 |
| 125 void NcInstStateTests::SetUp() { |
| 126 _iter = NaClInstIterCreate(&_segment); |
| 127 _state = NaClInstIterGetUndecodedState(_iter); |
| 128 ResetInput(); |
| 129 ResetState(); |
| 130 } |
| 131 |
| 132 void NcInstStateTests::TearDown() { |
| 133 NaClInstIterDestroy(_iter); |
| 134 } |
| 135 |
| 136 void NcInstStateTests::Reset() { |
| 137 ResetInput(); |
| 138 ResetState(); |
| 139 } |
| 140 |
| 141 void NcInstStateTests::ResetState() { |
| 142 NaClInstStateInit(_iter, _state); |
| 143 ResetInstPattern(); |
| 144 } |
| 145 |
| 146 void NcInstStateTests::ResetInstPattern() { |
| 147 _inst_pattern.flags = NACL_EMPTY_IFLAGS; |
| 148 _state->inst = &_inst_pattern; |
| 149 } |
| 150 |
| 151 void NcInstStateTests::ResetInputBuffer() { |
| 152 // Fill input buffer with unlikely byte codes. |
| 153 for (size_t i = 0; i < kBufferSize; ++i) { |
| 154 _buffer[i] = 'X'; |
| 155 } |
| 156 // Mark start point for planting data into |
| 157 // the input buffer. |
| 158 _plant_index = 0; |
| 159 } |
| 160 |
| 161 void NcInstStateTests::ResetInput() { |
| 162 ResetInputBuffer(); |
| 163 NCInstBytesReset(&_state->bytes); |
| 164 } |
| 165 |
| 166 void NcInstStateTests::Plant(uint8_t byte) { |
| 167 // TODO(Karl): Why do we get a compile time error if we use ASSERT. |
| 168 ASSERT_LT(_plant_index, kBufferSize) << |
| 169 "Planted too many bytes, buffer overflow!"; |
| 170 _buffer[_plant_index++] = byte; |
| 171 // Need to reset memory so that peek byte is set. |
| 172 NCRemainingMemoryReset(_state->bytes.memory); |
| 173 } |
| 174 |
| 175 void NcInstStateTests::VerifyConsumedPrefixBytes( |
| 176 uint8_t num_bytes, uint8_t num_rex, uint32_t mask) { |
| 177 EXPECT_EQ(num_bytes, _state->bytes.length); |
| 178 EXPECT_EQ(num_bytes, _state->num_prefix_bytes); |
| 179 EXPECT_EQ(mask, _state->prefix_mask); |
| 180 EXPECT_EQ(num_rex, _state->num_rex_prefixes); |
| 181 } |
| 182 |
| 183 void NcInstStateTests::VerifyConsume0F38XXInstructions() { |
| 184 NaClInstPrefixDescriptor desc; |
| 185 uint32_t prefix_mask = _state->prefix_mask; |
| 186 // Note: This code assumes that the prefix mask may have |
| 187 // other flags set before this routine is called. Hence, |
| 188 // we must be careful when updating and checking the |
| 189 // mask. |
| 190 |
| 191 // Test for all possible XX. |
| 192 for (int i = 0; i < NCDTABLESIZE; ++i) { |
| 193 // Test successfully matching 0f38XX |
| 194 _state->prefix_mask = prefix_mask; |
| 195 Plant(0x0f); |
| 196 Plant(0x38); |
| 197 Plant(i); |
| 198 NaClConsumeInstBytes(_state, &desc); |
| 199 if (NaClHasBit(_state->prefix_mask, kPrefixREP)) { |
| 200 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 201 } else if (NaClHasBit(_state->prefix_mask, kPrefixREPNE)) { |
| 202 EXPECT_EQ(PrefixF20F38, desc.matched_prefix); |
| 203 } else if (NaClHasBit(_state->prefix_mask, kPrefixDATA16)) { |
| 204 EXPECT_EQ(Prefix660F38, desc.matched_prefix); |
| 205 } else { |
| 206 EXPECT_EQ(Prefix0F38, desc.matched_prefix); |
| 207 } |
| 208 EXPECT_EQ((uint8_t) i, desc.opcode_byte); |
| 209 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 210 ResetInput(); |
| 211 ResetState(); |
| 212 } |
| 213 |
| 214 // Now verify if that there isn't an XX byte, things short curcuit correctly. |
| 215 _state->prefix_mask = prefix_mask; |
| 216 Plant(0x0f); |
| 217 Plant(0x38); |
| 218 _state->length_limit = 2; |
| 219 NaClConsumeInstBytes(_state, &desc); |
| 220 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 221 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 222 ResetInput(); |
| 223 ResetState(); |
| 224 } |
| 225 |
| 226 void NcInstStateTests::VerifyConsume0F3AXXInstructions() { |
| 227 NaClInstPrefixDescriptor desc; |
| 228 uint32_t prefix_mask = _state->prefix_mask; |
| 229 // Note: This code assumes that the prefix mask may have |
| 230 // other flags set before this routine is called. Hence, |
| 231 // we must be careful when updating and checking the |
| 232 // mask. |
| 233 |
| 234 // Test for all possible XX. |
| 235 for (int i = 0; i < NCDTABLESIZE; ++i) { |
| 236 // Test successfully matching 0F3AXX |
| 237 _state->prefix_mask = prefix_mask; |
| 238 Plant(0x0f); |
| 239 Plant(0x3a); |
| 240 Plant(i); |
| 241 NaClConsumeInstBytes(_state, &desc); |
| 242 if (NaClHasBit(_state->prefix_mask, kPrefixREP) || |
| 243 NaClHasBit(_state->prefix_mask, kPrefixREPNE)) { |
| 244 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 245 } else if (NaClHasBit(_state->prefix_mask, kPrefixDATA16)) { |
| 246 EXPECT_EQ(Prefix660F3A, desc.matched_prefix); |
| 247 } else { |
| 248 EXPECT_EQ(Prefix0F3A, desc.matched_prefix); |
| 249 } |
| 250 EXPECT_EQ((uint8_t) i, desc.opcode_byte); |
| 251 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 252 ResetInput(); |
| 253 ResetState(); |
| 254 } |
| 255 |
| 256 // Now verify if that there isn't an XX byte, things short curcuit correctly. |
| 257 _state->prefix_mask = prefix_mask; |
| 258 Plant(0x0f); |
| 259 Plant(0x3a); |
| 260 _state->length_limit = 2; |
| 261 NaClConsumeInstBytes(_state, &desc); |
| 262 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 263 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 264 ResetInput(); |
| 265 ResetState(); |
| 266 } |
| 267 |
| 268 void NcInstStateTests::VerifyConsume0FXXInstructions() { |
| 269 NaClInstPrefixDescriptor desc; |
| 270 uint32_t prefix_mask = _state->prefix_mask; |
| 271 // Note: This code assumes that the prefix mask may have |
| 272 // other flags set before this routine is called. Hence, |
| 273 // we must be careful when updating and checking the |
| 274 // mask. |
| 275 |
| 276 // Test for all possible XX. |
| 277 for (int i = 0; i < NCDTABLESIZE; ++i) { |
| 278 if (i == 0x38 || i == 0x3a) continue; // exclude special lookup cases. |
| 279 // Test successfully matching 0fXX |
| 280 _state->prefix_mask = prefix_mask; |
| 281 Plant(0x0f); |
| 282 Plant(i); |
| 283 NaClConsumeInstBytes(_state, &desc); |
| 284 if (NaClHasBit(_state->prefix_mask, kPrefixREP)) { |
| 285 if (NaClHasBit(_state->prefix_mask, kPrefixREPNE)) { |
| 286 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 287 } else { |
| 288 EXPECT_EQ(PrefixF30F, desc.matched_prefix); |
| 289 } |
| 290 } else if (NaClHasBit(_state->prefix_mask, kPrefixREPNE)) { |
| 291 EXPECT_EQ(PrefixF20F, desc.matched_prefix); |
| 292 } else if (NaClHasBit(_state->prefix_mask, kPrefixDATA16)) { |
| 293 EXPECT_EQ(Prefix660F, desc.matched_prefix); |
| 294 } else { |
| 295 EXPECT_EQ(Prefix0F, desc.matched_prefix); |
| 296 } |
| 297 EXPECT_EQ((uint8_t) i, desc.opcode_byte); |
| 298 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 299 ResetInput(); |
| 300 ResetState(); |
| 301 } |
| 302 |
| 303 // Now verify if that there isn't an XX byte, things short curcuit correctly. |
| 304 _state->prefix_mask = prefix_mask; |
| 305 Plant(0x0f); |
| 306 _state->length_limit = 1; |
| 307 NaClConsumeInstBytes(_state, &desc); |
| 308 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 309 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 310 ResetInput(); |
| 311 ResetState(); |
| 312 } |
| 313 |
| 314 void NcInstStateTests::VerifyConsumeX87Instructions() { |
| 315 NaClInstPrefixDescriptor desc; |
| 316 uint32_t prefix_mask = _state->prefix_mask; |
| 317 // Note: This code assumes that the prefix mask may have |
| 318 // other flags set before this routine is called. Hence, |
| 319 // we must be careful when updating and checking the |
| 320 // mask. |
| 321 |
| 322 // Try for all possible x87 initial bytes. |
| 323 for (uint8_t byte1 = 0xD8; byte1 <= 0xDF; ++byte1) { |
| 324 // Test for all possible XX. |
| 325 for (int i = 0; i < NCDTABLESIZE; ++i) { |
| 326 // Test successfully matching byte1 XX |
| 327 _state->prefix_mask = prefix_mask; |
| 328 Plant(byte1); |
| 329 Plant(i); |
| 330 NaClConsumeInstBytes(_state, &desc); |
| 331 NaClInstPrefix prefix = (NaClInstPrefix) (PrefixD8 + (byte1 - 0xD8)); |
| 332 EXPECT_EQ(prefix, desc.matched_prefix); |
| 333 EXPECT_EQ((uint8_t) i, desc.opcode_byte); |
| 334 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 335 ResetInput(); |
| 336 ResetState(); |
| 337 } |
| 338 |
| 339 // Now verify if that there isn't an XX byte, things short curcuit |
| 340 // correctly. For this context, it should return matching a single |
| 341 // byte instruction with no prefix. |
| 342 _state->prefix_mask = prefix_mask; |
| 343 Plant(byte1); |
| 344 _state->length_limit = 1; |
| 345 NaClConsumeInstBytes(_state, &desc); |
| 346 EXPECT_EQ(NoPrefix, desc.matched_prefix); |
| 347 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 348 ResetInput(); |
| 349 ResetState(); |
| 350 } |
| 351 } |
| 352 |
| 353 void NcInstStateTests::VerifyConsumeOneByteInstructions() { |
| 354 NaClInstPrefixDescriptor desc; |
| 355 uint32_t prefix_mask = _state->prefix_mask; |
| 356 // Note: This code assumes that the prefix mask may have |
| 357 // other flags set before this routine is called. Hence, |
| 358 // we must be careful when updating and checking the |
| 359 // mask. |
| 360 |
| 361 // Test for all possible XX. |
| 362 for (int i = 0; i < NCDTABLESIZE; ++i) { |
| 363 // exclude special lookup cases. |
| 364 if (i == 0x0f || (i >= 0xD8 && i <= 0xDF)) continue; |
| 365 // Test successfully XX |
| 366 _state->prefix_mask = prefix_mask; |
| 367 Plant(i); |
| 368 NaClConsumeInstBytes(_state, &desc); |
| 369 EXPECT_EQ(NoPrefix, desc.matched_prefix); |
| 370 EXPECT_EQ((uint8_t) i, desc.opcode_byte); |
| 371 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 372 ResetInput(); |
| 373 ResetState(); |
| 374 } |
| 375 |
| 376 // Now verify if that there isn't an XX byte, things short curcuit correctly. |
| 377 _state->prefix_mask = prefix_mask; |
| 378 _state->length_limit = 0; |
| 379 NaClConsumeInstBytes(_state, &desc); |
| 380 EXPECT_EQ(NaClInstPrefixEnumSize, desc.matched_prefix); |
| 381 EXPECT_EQ((uint8_t) 0, desc.next_length_adjustment); |
| 382 ResetInput(); |
| 383 ResetState(); |
| 384 } |
| 385 |
| 386 void NcInstStateTests::dummy() { |
| 387 NaClInstPrefixDescriptor prefix_desc; |
| 388 NaClConsumeAndCheckOperandSize(_state); |
| 389 NaClConsumeAndCheckAddressSize(_state); |
| 390 NaClConsumeModRm(_state); |
| 391 NaClConsumeSib(_state); |
| 392 NaClConsumeDispBytes(_state); |
| 393 NaClConsumeImmediateBytes(_state); |
| 394 NaClValidatePrefixFlags(_state); |
| 395 NaClClearInstState(_state, 0); |
| 396 NaClGetNextInstCandidates(_state, &prefix_desc, NULL); |
| 397 NaClConsumeOpcodeSequence(_state); |
| 398 } |
| 399 |
| 400 // Test function NaClExtactOpSize, which returns the expected |
| 401 // number of bytes to represent operands. |
| 402 TEST_F(NcInstStateTests, TestExtractOpSize) { |
| 403 // Test 32 amd 64 bit assumptions. |
| 404 |
| 405 // Test explicit size restrictors. Note: Only b should make a difference |
| 406 // in matching the pattern, since v, w, and o are used as excluders rather |
| 407 // than for matching (i.e. don't match unless operand size should be |
| 408 // 1). |
| 409 _inst_pattern.flags = NACL_IFLAG(OperandSize_b); |
| 410 EXPECT_EQ(1, NaClExtractOpSize(_state)) << "bytes are of size 1\n"; |
| 411 _inst_pattern.flags = NACL_IFLAG(OperandSize_w); |
| 412 EXPECT_EQ(4, NaClExtractOpSize(_state)); |
| 413 _inst_pattern.flags = NACL_IFLAG(OperandSize_v); |
| 414 EXPECT_EQ(4, NaClExtractOpSize(_state)); |
| 415 _inst_pattern.flags = NACL_IFLAG(OperandSize_o); |
| 416 EXPECT_EQ(4, NaClExtractOpSize(_state)); |
| 417 ResetState(); |
| 418 |
| 419 // See if we interpret the Data16 prefix correctly. |
| 420 _state->prefix_mask = kPrefixDATA16; |
| 421 EXPECT_EQ(2, NaClExtractOpSize(_state)); |
| 422 _inst_pattern.flags = NACL_IFLAG(SizeIgnoresData16); |
| 423 EXPECT_EQ(4, NaClExtractOpSize(_state)); |
| 424 ResetState(); |
| 425 |
| 426 // Test strictly 64-bit assumptions. |
| 427 if (NACL_TARGET_SUBARCH == 64) { |
| 428 // Check that we return a size 64 if the REX.W bit is set. |
| 429 for (uint8_t rex = NaClRexMin; rex <= NaClRexMax; ++rex) { |
| 430 _state->rexprefix = rex; |
| 431 if (NaClRexW(rex)) { |
| 432 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 433 } else { |
| 434 EXPECT_EQ(4, NaClExtractOpSize(_state)); |
| 435 } |
| 436 } |
| 437 ResetState(); |
| 438 |
| 439 // If we force the size to 64, it returns size 64. |
| 440 _inst_pattern.flags = NACL_IFLAG(OperandSizeForce64); |
| 441 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 442 ResetState(); |
| 443 |
| 444 // Now repeat the tests, but with the default size set to 64 bits, |
| 445 // which replaces the default size of 4 with 8. |
| 446 |
| 447 // Test explicit size restrictors. Note: Only b should make a difference |
| 448 // in matching the pattern, since v, w, and o are used as excluders rather |
| 449 // than for matching (i.e. don't match unless operand size matches). |
| 450 _inst_pattern.flags = |
| 451 NACL_IFLAG(OperandSize_b) | NACL_IFLAG(OperandSizeDefaultIs64); |
| 452 EXPECT_EQ(1, NaClExtractOpSize(_state)) << "bytes are of size 1\n"; |
| 453 _inst_pattern.flags = |
| 454 NACL_IFLAG(OperandSize_w) | NACL_IFLAG(OperandSizeDefaultIs64); |
| 455 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 456 _inst_pattern.flags = |
| 457 NACL_IFLAG(OperandSize_v) | NACL_IFLAG(OperandSizeDefaultIs64); |
| 458 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 459 _inst_pattern.flags = |
| 460 NACL_IFLAG(OperandSize_o) | NACL_IFLAG(OperandSizeDefaultIs64); |
| 461 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 462 ResetState(); |
| 463 |
| 464 // See if we interpret the Data16 prefix correctly. |
| 465 _state->prefix_mask = kPrefixDATA16; |
| 466 _inst_pattern.flags = NACL_IFLAG(OperandSizeDefaultIs64); |
| 467 EXPECT_EQ(2, NaClExtractOpSize(_state)); |
| 468 _inst_pattern.flags = |
| 469 NACL_IFLAG(SizeIgnoresData16) | NACL_IFLAG(OperandSizeDefaultIs64); |
| 470 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 471 ResetState(); |
| 472 |
| 473 // Check that we return a size 64 independent of the REX.W bit. |
| 474 _inst_pattern.flags = NACL_IFLAG(OperandSizeDefaultIs64); |
| 475 for (uint8_t rex = NaClRexMin; rex <= NaClRexMax; ++rex) { |
| 476 _state->rexprefix = rex; |
| 477 EXPECT_EQ(8, NaClExtractOpSize(_state)); |
| 478 } |
| 479 } |
| 480 } |
| 481 |
| 482 // Test function NaClExtractAddressSize, which returns the expected |
| 483 // number of bits in operands corresponding to addresses. |
| 484 TEST_F(NcInstStateTests, TestExtractAddressSize) { |
| 485 // Depending on whether we are in 32/64 bit mode, there are two |
| 486 // different address sizes. |
| 487 int small_address; |
| 488 int large_address; |
| 489 if (NACL_TARGET_SUBARCH == 64) { |
| 490 small_address = 32; |
| 491 large_address = 64; |
| 492 } else { |
| 493 small_address = 16; |
| 494 large_address = 32; |
| 495 } |
| 496 EXPECT_EQ(large_address, NaClExtractAddressSize(_state)); |
| 497 _state->prefix_mask = kPrefixADDR16; |
| 498 EXPECT_EQ(small_address, NaClExtractAddressSize(_state)); |
| 499 } |
| 500 |
| 501 extern "C" { |
| 502 // Define acceptable prefixes, and the corresponding flag that |
| 503 // should be set (except for rex prefixes). |
| 504 static const struct prefix_pairs { |
| 505 uint8_t byte; |
| 506 uint32_t mask; |
| 507 } prefix_values[] = { |
| 508 {kValueSEGCS, kPrefixSEGCS}, |
| 509 {kValueSEGSS, kPrefixSEGSS}, |
| 510 {kValueSEGFS, kPrefixSEGFS}, |
| 511 {kValueSEGGS, kPrefixSEGGS}, |
| 512 {kValueDATA16, kPrefixDATA16}, |
| 513 {kValueADDR16, kPrefixADDR16}, |
| 514 {kValueREPNE, kPrefixREPNE}, |
| 515 {kValueREP, kPrefixREP}, |
| 516 {kValueLOCK, kPrefixLOCK}, |
| 517 {kValueSEGES, kPrefixSEGES}, |
| 518 {kValueSEGDS, kPrefixSEGDS} |
| 519 }; |
| 520 }; |
| 521 |
| 522 // Test function NaClConsumePrefixBytes to verify it only recognizes |
| 523 // valid prefix values. |
| 524 TEST_F(NcInstStateTests, ConsumesKnownPrefixBytes) { |
| 525 for (int byte = 0; byte < NCDTABLESIZE; ++byte) { |
| 526 bool byte_categorized = false; |
| 527 Plant(byte); |
| 528 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 529 if (NACL_TARGET_SUBARCH == 64 && |
| 530 byte >= NaClRexMin && byte <= NaClRexMax) { |
| 531 VerifyConsumedPrefixBytes(1, 1, kPrefixREX); |
| 532 byte_categorized = true; |
| 533 } else { |
| 534 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 535 if (byte == prefix_values[j].byte) { |
| 536 VerifyConsumedPrefixBytes(1, 0, prefix_values[j].mask); |
| 537 byte_categorized = true; |
| 538 } |
| 539 } |
| 540 } |
| 541 if (!byte_categorized) { |
| 542 VerifyConsumedPrefixBytes(0, 0, 0); |
| 543 } |
| 544 ResetInput(); |
| 545 ResetState(); |
| 546 } |
| 547 } |
| 548 |
| 549 // Test function NaClConsumePrefixBytes to verify it can recognize |
| 550 // pairs of non-rex prefix bytes. |
| 551 TEST_F(NcInstStateTests, ConsumeNonRexPrefixBytePairs) { |
| 552 // First try some pairs within non-rex prefix bytes. |
| 553 for (size_t i = 0; i < NACL_ARRAY_SIZE(prefix_values) - 1; ++i) { |
| 554 Plant(prefix_values[i].byte); |
| 555 Plant(prefix_values[i+1].byte); |
| 556 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 557 VerifyConsumedPrefixBytes(2, 0, |
| 558 prefix_values[i].mask | prefix_values[i+1].mask); |
| 559 ResetInput(); |
| 560 ResetState(); |
| 561 } |
| 562 } |
| 563 |
| 564 // Test Function NaClConsumePrefixBytes to verify it can recognize |
| 565 // a Rex prefix followed by a non-rex prefix. |
| 566 TEST_F(NcInstStateTests, ConsumeRexThenNonRexPrefixPairs) { |
| 567 if (NACL_TARGET_SUBARCH == 64) { |
| 568 // Try some pairs where one is rex. |
| 569 for (size_t i = 0; i < NACL_ARRAY_SIZE(prefix_values); ++i) { |
| 570 for (uint8_t rex = NaClRexMin; rex <= NaClRexMax; ++rex) { |
| 571 Plant(rex); |
| 572 Plant(prefix_values[i].byte); |
| 573 EXPECT_FALSE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 574 VerifyConsumedPrefixBytes(2, 1, prefix_values[i].mask | kPrefixREX); |
| 575 ResetInput(); |
| 576 ResetState(); |
| 577 } |
| 578 } |
| 579 } |
| 580 } |
| 581 |
| 582 // Test Function NaClConsumePrefixBytes to verify it can recognize |
| 583 // a non-rex prefix, followed by a rex prefix. |
| 584 TEST_F(NcInstStateTests, ConsumeNonRexThenRexPrefixPairs) { |
| 585 if (NACL_TARGET_SUBARCH == 64) { |
| 586 // Try some pairs where one is rex. |
| 587 for (size_t i = 0; i < NACL_ARRAY_SIZE(prefix_values); ++i) { |
| 588 for (uint8_t rex = NaClRexMin; rex <= NaClRexMax; ++rex) { |
| 589 Plant(prefix_values[i].byte); |
| 590 Plant(rex); |
| 591 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 592 VerifyConsumedPrefixBytes(2, 1, prefix_values[i].mask | kPrefixREX); |
| 593 ResetInput(); |
| 594 ResetState(); |
| 595 } |
| 596 } |
| 597 } |
| 598 } |
| 599 |
| 600 // Test function NaClConsumePrefixBytes on multiple rex prefixes. |
| 601 TEST_F(NcInstStateTests, ConsumeMultipleRexPrefixes) { |
| 602 if (NACL_TARGET_SUBARCH == 64) { |
| 603 for (uint8_t rex1 = NaClRexMin; rex1 <= NaClRexMax; ++rex1) { |
| 604 for (uint8_t rex2 = NaClRexMin; rex2 <= NaClRexMax; ++rex2) { |
| 605 Plant(rex1); |
| 606 Plant(rex2); |
| 607 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 608 VerifyConsumedPrefixBytes(2, 2, kPrefixREX); |
| 609 ResetInput(); |
| 610 ResetState(); |
| 611 } |
| 612 } |
| 613 } |
| 614 } |
| 615 |
| 616 // Test function NaClConsumePrefixBytes to see if we allow multiple |
| 617 // copies of the same (non-rex) prefix. |
| 618 TEST_F(NcInstStateTests, ConsumeDuplicatePrefixes) { |
| 619 // Try with non rex prefixes. |
| 620 for (size_t i = 0; i < NACL_ARRAY_SIZE(prefix_values); ++i) { |
| 621 Plant(prefix_values[i].byte); |
| 622 Plant(prefix_values[i].byte); |
| 623 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 624 VerifyConsumedPrefixBytes(2, 0, prefix_values[i].mask); |
| 625 ResetInput(); |
| 626 ResetState(); |
| 627 } |
| 628 } |
| 629 |
| 630 // Test if we can recognize 14 prefix bytes. |
| 631 TEST_F(NcInstStateTests, Consume14PrefixBytes) { |
| 632 for (int i = 0; i < 14; ++i) { |
| 633 Plant(kValueDATA16); |
| 634 } |
| 635 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 636 VerifyConsumedPrefixBytes(14, 0, kPrefixDATA16); |
| 637 } |
| 638 |
| 639 // Test that we can't accept 15 prefix bytes. |
| 640 TEST_F(NcInstStateTests, Consume15PrefixBytes) { |
| 641 for (int i = 0; i < 15; ++i) { |
| 642 Plant(kValueDATA16); |
| 643 } |
| 644 EXPECT_TRUE(Bool2bool(NaClConsumePrefixBytes(_state))); |
| 645 EXPECT_EQ((uint8_t) 14, _state->bytes.length); |
| 646 } |
| 647 |
| 648 // Defines the set of prefix bytes that effect multibyte instructions |
| 649 // (i.e. REP, REPNE, and DATA16), and all possible combinations of |
| 650 // these prefixes. |
| 651 static const uint32_t kMultibytePrefixes[] = { |
| 652 0, |
| 653 kPrefixREP, |
| 654 kPrefixREP | kPrefixREPNE, |
| 655 kPrefixREP | kPrefixREPNE | kPrefixDATA16, |
| 656 kPrefixREPNE, |
| 657 kPrefixREPNE | kPrefixDATA16, |
| 658 kPrefixDATA16 |
| 659 }; |
| 660 |
| 661 // Test function NaClConsume0F38XXNaClInstBytes, as called through |
| 662 // function NaClConsumeInstBytes. |
| 663 TEST_F(NcInstStateTests, ConsumeOF38XXInstructions) { |
| 664 // First try effects of just multibyte prefixes. |
| 665 for (size_t i = 0; i < NACL_ARRAY_SIZE(kMultibytePrefixes); ++i) { |
| 666 _state->prefix_mask = kMultibytePrefixes[i]; |
| 667 VerifyConsume0F38XXInstructions(); |
| 668 |
| 669 // Verify that adding a rex prefix don't effect anything. |
| 670 _state->prefix_mask = kMultibytePrefixes[i] | kPrefixREX; |
| 671 VerifyConsume0F38XXInstructions(); |
| 672 |
| 673 // Now try adding other possible prefixes to see if they break anything. |
| 674 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 675 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask; |
| 676 VerifyConsume0F38XXInstructions(); |
| 677 |
| 678 // Verify that adding a rex prefix don't effect anything. |
| 679 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask |
| 680 | kPrefixREX; |
| 681 VerifyConsume0F38XXInstructions(); |
| 682 } |
| 683 } |
| 684 } |
| 685 |
| 686 // Test function NaClConsume0F3AXXNaClInstBytes, as called through |
| 687 // function NaClConsumeInstBytes. |
| 688 TEST_F(NcInstStateTests, ConsumeOF3AXXInstructions) { |
| 689 // First try effects of just multibyte prefixes. |
| 690 for (size_t i = 0; i < NACL_ARRAY_SIZE(kMultibytePrefixes); ++i) { |
| 691 _state->prefix_mask = kMultibytePrefixes[i]; |
| 692 VerifyConsume0F3AXXInstructions(); |
| 693 |
| 694 // Verify that adding a rex prefix don't effect anything. |
| 695 _state->prefix_mask = kMultibytePrefixes[i] | kPrefixREX; |
| 696 VerifyConsume0F3AXXInstructions(); |
| 697 |
| 698 // Now try adding other possible prefixes to see if they break anything. |
| 699 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 700 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask; |
| 701 VerifyConsume0F3AXXInstructions(); |
| 702 |
| 703 // Verify that adding a rex prefix don't effect anything. |
| 704 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask |
| 705 | kPrefixREX; |
| 706 VerifyConsume0F3AXXInstructions(); |
| 707 } |
| 708 } |
| 709 } |
| 710 |
| 711 // Test function NaClConsume0FXXNaClInstBytes, as called through |
| 712 // function NaClConsumeInstBytes. |
| 713 TEST_F(NcInstStateTests, ConsumeOFXXInstructions) { |
| 714 // First try effects of just multibyte prefixes. |
| 715 for (size_t i = 0; i < NACL_ARRAY_SIZE(kMultibytePrefixes); ++i) { |
| 716 _state->prefix_mask = kMultibytePrefixes[i]; |
| 717 VerifyConsume0FXXInstructions(); |
| 718 |
| 719 // Verify that adding a rex prefix don't effect anything. |
| 720 _state->prefix_mask = kMultibytePrefixes[i] | kPrefixREX; |
| 721 VerifyConsume0FXXInstructions(); |
| 722 |
| 723 // Now try adding other possible prefixes to see if they break anything. |
| 724 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 725 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask; |
| 726 VerifyConsume0FXXInstructions(); |
| 727 |
| 728 // Verify that adding a rex prefix don't effect anything. |
| 729 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask |
| 730 | kPrefixREX; |
| 731 VerifyConsume0FXXInstructions(); |
| 732 } |
| 733 } |
| 734 } |
| 735 |
| 736 // Test function NaClConsumeX87NaClInstBytes, as called through |
| 737 // function NaClConsumeInstBytes. |
| 738 TEST_F(NcInstStateTests, ConsumeX87Instructions) { |
| 739 // First try effects of just multibyte prefixes. |
| 740 for (size_t i = 0; i < NACL_ARRAY_SIZE(kMultibytePrefixes); ++i) { |
| 741 _state->prefix_mask = kMultibytePrefixes[i]; |
| 742 VerifyConsumeX87Instructions(); |
| 743 |
| 744 // Verify that adding a rex prefix don't effect anything. |
| 745 _state->prefix_mask = kMultibytePrefixes[i] | kPrefixREX; |
| 746 VerifyConsumeX87Instructions(); |
| 747 |
| 748 // Now try adding other possible prefixes to see if they break anything. |
| 749 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 750 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask; |
| 751 VerifyConsumeX87Instructions(); |
| 752 |
| 753 // Verify that adding a rex prefix don't effect anything. |
| 754 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask |
| 755 | kPrefixREX; |
| 756 VerifyConsumeX87Instructions(); |
| 757 } |
| 758 } |
| 759 } |
| 760 |
| 761 // Test function NaClConsumeInstBytes for one byte instruction values. |
| 762 TEST_F(NcInstStateTests, ConsumeOneByteInstructions) { |
| 763 // First try effects of just multibyte prefixes. |
| 764 for (size_t i = 0; i < NACL_ARRAY_SIZE(kMultibytePrefixes); ++i) { |
| 765 _state->prefix_mask = kMultibytePrefixes[i]; |
| 766 VerifyConsumeOneByteInstructions(); |
| 767 |
| 768 // Verify that adding a rex prefix don't effect anything. |
| 769 _state->prefix_mask = kMultibytePrefixes[i] | kPrefixREX; |
| 770 VerifyConsumeOneByteInstructions(); |
| 771 |
| 772 // Now try adding other possible prefixes to see if they break anything. |
| 773 for (size_t j = 0; j < NACL_ARRAY_SIZE(prefix_values); ++j) { |
| 774 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask; |
| 775 VerifyConsumeOneByteInstructions(); |
| 776 |
| 777 // Verify that adding a rex prefix don't effect anything. |
| 778 _state->prefix_mask = kMultibytePrefixes[i] | prefix_values[i].mask |
| 779 | kPrefixREX; |
| 780 VerifyConsumeOneByteInstructions(); |
| 781 } |
| 782 } |
| 783 } |
| 784 |
| 785 }; // anonymous namespace |
| 786 |
| 787 int main(int argc, char *argv[]) { |
| 788 NaClLogModuleInit(); |
| 789 testing::InitGoogleTest(&argc, argv); |
| 790 return RUN_ALL_TESTS(); |
| 791 } |
OLD | NEW |