| OLD | NEW |
| 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 90 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 101 #endif | 101 #endif |
| 102 | 102 |
| 103 | 103 |
| 104 #define DEF_ARG_TYPE(name, spec) \ | 104 #define DEF_ARG_TYPE(name, spec) \ |
| 105 typedef BuiltinArguments<spec> name##ArgumentsType; | 105 typedef BuiltinArguments<spec> name##ArgumentsType; |
| 106 BUILTIN_LIST_C(DEF_ARG_TYPE) | 106 BUILTIN_LIST_C(DEF_ARG_TYPE) |
| 107 #undef DEF_ARG_TYPE | 107 #undef DEF_ARG_TYPE |
| 108 | 108 |
| 109 } // namespace | 109 } // namespace |
| 110 | 110 |
| 111 | |
| 112 // ---------------------------------------------------------------------------- | 111 // ---------------------------------------------------------------------------- |
| 113 // Support macro for defining builtins in C++. | 112 // Support macro for defining builtins in C++. |
| 114 // ---------------------------------------------------------------------------- | 113 // ---------------------------------------------------------------------------- |
| 115 // | 114 // |
| 116 // A builtin function is defined by writing: | 115 // A builtin function is defined by writing: |
| 117 // | 116 // |
| 118 // BUILTIN(name) { | 117 // BUILTIN(name) { |
| 119 // ... | 118 // ... |
| 120 // } | 119 // } |
| 121 // | 120 // |
| 122 // In the body of the builtin function the arguments can be accessed | 121 // In the body of the builtin function the arguments can be accessed |
| 123 // through the BuiltinArguments object args. | 122 // through the BuiltinArguments object args. |
| 124 | 123 |
| 125 #ifdef DEBUG | 124 #ifdef DEBUG |
| 126 | 125 |
| 127 #define BUILTIN(name) \ | 126 #define BUILTIN(name) \ |
| 128 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ | 127 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
| 129 name##ArgumentsType args); \ | 128 name##ArgumentsType args, Isolate* isolate); \ |
| 130 MUST_USE_RESULT static MaybeObject* Builtin_##name( \ | 129 MUST_USE_RESULT static MaybeObject* Builtin_##name( \ |
| 131 name##ArgumentsType args) { \ | 130 name##ArgumentsType args, Isolate* isolate) { \ |
| 132 args.Verify(); \ | 131 ASSERT(isolate == Isolate::Current()); \ |
| 133 return Builtin_Impl_##name(args); \ | 132 args.Verify(); \ |
| 134 } \ | 133 return Builtin_Impl_##name(args, isolate); \ |
| 135 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ | 134 } \ |
| 136 name##ArgumentsType args) | 135 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
| 136 name##ArgumentsType args, Isolate* isolate) |
| 137 | 137 |
| 138 #else // For release mode. | 138 #else // For release mode. |
| 139 | 139 |
| 140 #define BUILTIN(name) \ | 140 #define BUILTIN(name) \ |
| 141 static MaybeObject* Builtin_##name(name##ArgumentsType args) | 141 static MaybeObject* Builtin_##name(name##ArgumentsType args, Isolate* isolate) |
| 142 | 142 |
| 143 #endif | 143 #endif |
| 144 | 144 |
| 145 | 145 |
| 146 static inline bool CalledAsConstructor() { | 146 static inline bool CalledAsConstructor(Isolate* isolate) { |
| 147 #ifdef DEBUG | 147 #ifdef DEBUG |
| 148 // Calculate the result using a full stack frame iterator and check | 148 // Calculate the result using a full stack frame iterator and check |
| 149 // that the state of the stack is as we assume it to be in the | 149 // that the state of the stack is as we assume it to be in the |
| 150 // code below. | 150 // code below. |
| 151 StackFrameIterator it; | 151 StackFrameIterator it; |
| 152 ASSERT(it.frame()->is_exit()); | 152 ASSERT(it.frame()->is_exit()); |
| 153 it.Advance(); | 153 it.Advance(); |
| 154 StackFrame* frame = it.frame(); | 154 StackFrame* frame = it.frame(); |
| 155 bool reference_result = frame->is_construct(); | 155 bool reference_result = frame->is_construct(); |
| 156 #endif | 156 #endif |
| 157 Address fp = Top::c_entry_fp(Top::GetCurrentThread()); | 157 Address fp = Isolate::c_entry_fp(isolate->thread_local_top()); |
| 158 // Because we know fp points to an exit frame we can use the relevant | 158 // Because we know fp points to an exit frame we can use the relevant |
| 159 // part of ExitFrame::ComputeCallerState directly. | 159 // part of ExitFrame::ComputeCallerState directly. |
| 160 const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; | 160 const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; |
| 161 Address caller_fp = Memory::Address_at(fp + kCallerOffset); | 161 Address caller_fp = Memory::Address_at(fp + kCallerOffset); |
| 162 // This inlines the part of StackFrame::ComputeType that grabs the | 162 // This inlines the part of StackFrame::ComputeType that grabs the |
| 163 // type of the current frame. Note that StackFrame::ComputeType | 163 // type of the current frame. Note that StackFrame::ComputeType |
| 164 // has been specialized for each architecture so if any one of them | 164 // has been specialized for each architecture so if any one of them |
| 165 // changes this code has to be changed as well. | 165 // changes this code has to be changed as well. |
| 166 const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; | 166 const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; |
| 167 const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); | 167 const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); |
| 168 Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); | 168 Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); |
| 169 bool result = (marker == kConstructMarker); | 169 bool result = (marker == kConstructMarker); |
| 170 ASSERT_EQ(result, reference_result); | 170 ASSERT_EQ(result, reference_result); |
| 171 return result; | 171 return result; |
| 172 } | 172 } |
| 173 | 173 |
| 174 // ---------------------------------------------------------------------------- | 174 // ---------------------------------------------------------------------------- |
| 175 | 175 |
| 176 | |
| 177 BUILTIN(Illegal) { | 176 BUILTIN(Illegal) { |
| 178 UNREACHABLE(); | 177 UNREACHABLE(); |
| 179 return Heap::undefined_value(); // Make compiler happy. | 178 return isolate->heap()->undefined_value(); // Make compiler happy. |
| 180 } | 179 } |
| 181 | 180 |
| 182 | 181 |
| 183 BUILTIN(EmptyFunction) { | 182 BUILTIN(EmptyFunction) { |
| 184 return Heap::undefined_value(); | 183 return isolate->heap()->undefined_value(); |
| 185 } | 184 } |
| 186 | 185 |
| 187 | 186 |
| 188 BUILTIN(ArrayCodeGeneric) { | 187 BUILTIN(ArrayCodeGeneric) { |
| 189 Counters::array_function_runtime.Increment(); | 188 Heap* heap = isolate->heap(); |
| 189 isolate->counters()->array_function_runtime()->Increment(); |
| 190 | 190 |
| 191 JSArray* array; | 191 JSArray* array; |
| 192 if (CalledAsConstructor()) { | 192 if (CalledAsConstructor(isolate)) { |
| 193 array = JSArray::cast(*args.receiver()); | 193 array = JSArray::cast(*args.receiver()); |
| 194 } else { | 194 } else { |
| 195 // Allocate the JS Array | 195 // Allocate the JS Array |
| 196 JSFunction* constructor = | 196 JSFunction* constructor = |
| 197 Top::context()->global_context()->array_function(); | 197 isolate->context()->global_context()->array_function(); |
| 198 Object* obj; | 198 Object* obj; |
| 199 { MaybeObject* maybe_obj = Heap::AllocateJSObject(constructor); | 199 { MaybeObject* maybe_obj = heap->AllocateJSObject(constructor); |
| 200 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 200 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 201 } | 201 } |
| 202 array = JSArray::cast(obj); | 202 array = JSArray::cast(obj); |
| 203 } | 203 } |
| 204 | 204 |
| 205 // 'array' now contains the JSArray we should initialize. | 205 // 'array' now contains the JSArray we should initialize. |
| 206 ASSERT(array->HasFastElements()); | 206 ASSERT(array->HasFastElements()); |
| 207 | 207 |
| 208 // Optimize the case where there is one argument and the argument is a | 208 // Optimize the case where there is one argument and the argument is a |
| 209 // small smi. | 209 // small smi. |
| 210 if (args.length() == 2) { | 210 if (args.length() == 2) { |
| 211 Object* obj = args[1]; | 211 Object* obj = args[1]; |
| 212 if (obj->IsSmi()) { | 212 if (obj->IsSmi()) { |
| 213 int len = Smi::cast(obj)->value(); | 213 int len = Smi::cast(obj)->value(); |
| 214 if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) { | 214 if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) { |
| 215 Object* obj; | 215 Object* obj; |
| 216 { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(len); | 216 { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(len); |
| 217 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 217 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 218 } | 218 } |
| 219 array->SetContent(FixedArray::cast(obj)); | 219 array->SetContent(FixedArray::cast(obj)); |
| 220 return array; | 220 return array; |
| 221 } | 221 } |
| 222 } | 222 } |
| 223 // Take the argument as the length. | 223 // Take the argument as the length. |
| 224 { MaybeObject* maybe_obj = array->Initialize(0); | 224 { MaybeObject* maybe_obj = array->Initialize(0); |
| 225 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 225 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 226 } | 226 } |
| 227 return array->SetElementsLength(args[1]); | 227 return array->SetElementsLength(args[1]); |
| 228 } | 228 } |
| 229 | 229 |
| 230 // Optimize the case where there are no parameters passed. | 230 // Optimize the case where there are no parameters passed. |
| 231 if (args.length() == 1) { | 231 if (args.length() == 1) { |
| 232 return array->Initialize(JSArray::kPreallocatedArrayElements); | 232 return array->Initialize(JSArray::kPreallocatedArrayElements); |
| 233 } | 233 } |
| 234 | 234 |
| 235 // Take the arguments as elements. | 235 // Take the arguments as elements. |
| 236 int number_of_elements = args.length() - 1; | 236 int number_of_elements = args.length() - 1; |
| 237 Smi* len = Smi::FromInt(number_of_elements); | 237 Smi* len = Smi::FromInt(number_of_elements); |
| 238 Object* obj; | 238 Object* obj; |
| 239 { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(len->value()); | 239 { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(len->value()); |
| 240 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 240 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 241 } | 241 } |
| 242 | 242 |
| 243 AssertNoAllocation no_gc; | 243 AssertNoAllocation no_gc; |
| 244 FixedArray* elms = FixedArray::cast(obj); | 244 FixedArray* elms = FixedArray::cast(obj); |
| 245 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 245 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| 246 // Fill in the content | 246 // Fill in the content |
| 247 for (int index = 0; index < number_of_elements; index++) { | 247 for (int index = 0; index < number_of_elements; index++) { |
| 248 elms->set(index, args[index+1], mode); | 248 elms->set(index, args[index+1], mode); |
| 249 } | 249 } |
| 250 | 250 |
| 251 // Set length and elements on the array. | 251 // Set length and elements on the array. |
| 252 array->set_elements(FixedArray::cast(obj)); | 252 array->set_elements(FixedArray::cast(obj)); |
| 253 array->set_length(len); | 253 array->set_length(len); |
| 254 | 254 |
| 255 return array; | 255 return array; |
| 256 } | 256 } |
| 257 | 257 |
| 258 | 258 |
| 259 MUST_USE_RESULT static MaybeObject* AllocateJSArray() { | 259 MUST_USE_RESULT static MaybeObject* AllocateJSArray(Heap* heap) { |
| 260 JSFunction* array_function = | 260 JSFunction* array_function = |
| 261 Top::context()->global_context()->array_function(); | 261 heap->isolate()->context()->global_context()->array_function(); |
| 262 Object* result; | 262 Object* result; |
| 263 { MaybeObject* maybe_result = Heap::AllocateJSObject(array_function); | 263 { MaybeObject* maybe_result = heap->AllocateJSObject(array_function); |
| 264 if (!maybe_result->ToObject(&result)) return maybe_result; | 264 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 265 } | 265 } |
| 266 return result; | 266 return result; |
| 267 } | 267 } |
| 268 | 268 |
| 269 | 269 |
| 270 MUST_USE_RESULT static MaybeObject* AllocateEmptyJSArray() { | 270 MUST_USE_RESULT static MaybeObject* AllocateEmptyJSArray(Heap* heap) { |
| 271 Object* result; | 271 Object* result; |
| 272 { MaybeObject* maybe_result = AllocateJSArray(); | 272 { MaybeObject* maybe_result = AllocateJSArray(heap); |
| 273 if (!maybe_result->ToObject(&result)) return maybe_result; | 273 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 274 } | 274 } |
| 275 JSArray* result_array = JSArray::cast(result); | 275 JSArray* result_array = JSArray::cast(result); |
| 276 result_array->set_length(Smi::FromInt(0)); | 276 result_array->set_length(Smi::FromInt(0)); |
| 277 result_array->set_elements(Heap::empty_fixed_array()); | 277 result_array->set_elements(heap->empty_fixed_array()); |
| 278 return result_array; | 278 return result_array; |
| 279 } | 279 } |
| 280 | 280 |
| 281 | 281 |
| 282 static void CopyElements(AssertNoAllocation* no_gc, | 282 static void CopyElements(Heap* heap, |
| 283 AssertNoAllocation* no_gc, |
| 283 FixedArray* dst, | 284 FixedArray* dst, |
| 284 int dst_index, | 285 int dst_index, |
| 285 FixedArray* src, | 286 FixedArray* src, |
| 286 int src_index, | 287 int src_index, |
| 287 int len) { | 288 int len) { |
| 288 ASSERT(dst != src); // Use MoveElements instead. | 289 ASSERT(dst != src); // Use MoveElements instead. |
| 289 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 290 ASSERT(dst->map() != HEAP->fixed_cow_array_map()); |
| 290 ASSERT(len > 0); | 291 ASSERT(len > 0); |
| 291 CopyWords(dst->data_start() + dst_index, | 292 CopyWords(dst->data_start() + dst_index, |
| 292 src->data_start() + src_index, | 293 src->data_start() + src_index, |
| 293 len); | 294 len); |
| 294 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); | 295 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); |
| 295 if (mode == UPDATE_WRITE_BARRIER) { | 296 if (mode == UPDATE_WRITE_BARRIER) { |
| 296 Heap::RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); | 297 heap->RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); |
| 297 } | 298 } |
| 298 IncrementalMarking::RecordWrites(dst); | 299 heap->incremental_marking()->RecordWrites(dst); |
| 299 } | 300 } |
| 300 | 301 |
| 301 | 302 |
| 302 static void MoveElements(AssertNoAllocation* no_gc, | 303 static void MoveElements(Heap* heap, |
| 304 AssertNoAllocation* no_gc, |
| 303 FixedArray* dst, | 305 FixedArray* dst, |
| 304 int dst_index, | 306 int dst_index, |
| 305 FixedArray* src, | 307 FixedArray* src, |
| 306 int src_index, | 308 int src_index, |
| 307 int len) { | 309 int len) { |
| 308 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 310 ASSERT(dst->map() != HEAP->fixed_cow_array_map()); |
| 309 memmove(dst->data_start() + dst_index, | 311 memmove(dst->data_start() + dst_index, |
| 310 src->data_start() + src_index, | 312 src->data_start() + src_index, |
| 311 len * kPointerSize); | 313 len * kPointerSize); |
| 312 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); | 314 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); |
| 313 if (mode == UPDATE_WRITE_BARRIER) { | 315 if (mode == UPDATE_WRITE_BARRIER) { |
| 314 Heap::RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); | 316 heap->RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); |
| 315 } | 317 } |
| 316 IncrementalMarking::RecordWrites(dst); | 318 heap->incremental_marking()->RecordWrites(dst); |
| 317 } | 319 } |
| 318 | 320 |
| 319 | 321 |
| 320 static void FillWithHoles(FixedArray* dst, int from, int to) { | 322 static void FillWithHoles(Heap* heap, FixedArray* dst, int from, int to) { |
| 321 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 323 ASSERT(dst->map() != heap->fixed_cow_array_map()); |
| 322 MemsetPointer(dst->data_start() + from, Heap::the_hole_value(), to - from); | 324 MemsetPointer(dst->data_start() + from, heap->the_hole_value(), to - from); |
| 323 } | 325 } |
| 324 | 326 |
| 325 | 327 |
| 326 static FixedArray* LeftTrimFixedArray(FixedArray* elms, int to_trim) { | 328 static FixedArray* LeftTrimFixedArray(Heap* heap, |
| 327 ASSERT(elms->map() != Heap::fixed_cow_array_map()); | 329 FixedArray* elms, |
| 330 int to_trim) { |
| 331 ASSERT(elms->map() != HEAP->fixed_cow_array_map()); |
| 328 // For now this trick is only applied to fixed arrays in new and paged space. | 332 // For now this trick is only applied to fixed arrays in new and paged space. |
| 329 // In large object space the object's start must coincide with chunk | 333 // In large object space the object's start must coincide with chunk |
| 330 // and thus the trick is just not applicable. | 334 // and thus the trick is just not applicable. |
| 331 ASSERT(!Heap::lo_space()->Contains(elms)); | 335 ASSERT(!HEAP->lo_space()->Contains(elms)); |
| 332 | 336 |
| 333 STATIC_ASSERT(FixedArray::kMapOffset == 0); | 337 STATIC_ASSERT(FixedArray::kMapOffset == 0); |
| 334 STATIC_ASSERT(FixedArray::kLengthOffset == kPointerSize); | 338 STATIC_ASSERT(FixedArray::kLengthOffset == kPointerSize); |
| 335 STATIC_ASSERT(FixedArray::kHeaderSize == 2 * kPointerSize); | 339 STATIC_ASSERT(FixedArray::kHeaderSize == 2 * kPointerSize); |
| 336 | 340 |
| 337 Object** former_start = HeapObject::RawField(elms, 0); | 341 Object** former_start = HeapObject::RawField(elms, 0); |
| 338 | 342 |
| 339 const int len = elms->length(); | 343 const int len = elms->length(); |
| 340 | 344 |
| 341 if (to_trim > FixedArray::kHeaderSize / kPointerSize && | 345 if (to_trim > FixedArray::kHeaderSize / kPointerSize && |
| 342 !Heap::new_space()->Contains(elms)) { | 346 !heap->new_space()->Contains(elms)) { |
| 343 // If we are doing a big trim in old space then we zap the space that was | 347 // If we are doing a big trim in old space then we zap the space that was |
| 344 // formerly part of the array so that the GC (aided by the card-based | 348 // formerly part of the array so that the GC (aided by the card-based |
| 345 // remembered set) won't find pointers to new-space there. | 349 // remembered set) won't find pointers to new-space there. |
| 346 Object** zap = reinterpret_cast<Object**>(elms->address()); | 350 Object** zap = reinterpret_cast<Object**>(elms->address()); |
| 347 zap++; // Header of filler must be at least one word so skip that. | 351 zap++; // Header of filler must be at least one word so skip that. |
| 348 for (int i = 1; i < to_trim; i++) { | 352 for (int i = 1; i < to_trim; i++) { |
| 349 *zap++ = Smi::FromInt(0); | 353 *zap++ = Smi::FromInt(0); |
| 350 } | 354 } |
| 351 } | 355 } |
| 352 // Technically in new space this write might be omitted (except for | 356 // Technically in new space this write might be omitted (except for |
| 353 // debug mode which iterates through the heap), but to play safer | 357 // debug mode which iterates through the heap), but to play safer |
| 354 // we still do it. | 358 // we still do it. |
| 355 Heap::CreateFillerObjectAt(elms->address(), to_trim * kPointerSize); | 359 heap->CreateFillerObjectAt(elms->address(), to_trim * kPointerSize); |
| 356 | 360 |
| 357 former_start[to_trim] = Heap::fixed_array_map(); | 361 former_start[to_trim] = heap->fixed_array_map(); |
| 358 former_start[to_trim + 1] = Smi::FromInt(len - to_trim); | 362 former_start[to_trim + 1] = Smi::FromInt(len - to_trim); |
| 359 | 363 |
| 360 // Maintain marking consistency for HeapObjectIterator and | 364 // Maintain marking consistency for HeapObjectIterator and |
| 361 // IncrementalMarking. | 365 // IncrementalMarking. |
| 362 Marking::TransferMark(elms->address(), | 366 heap->marking()->TransferMark(elms->address(), |
| 363 elms->address() + to_trim * kPointerSize); | 367 elms->address() + to_trim * kPointerSize); |
| 364 | 368 |
| 365 return FixedArray::cast(HeapObject::FromAddress( | 369 return FixedArray::cast(HeapObject::FromAddress( |
| 366 elms->address() + to_trim * kPointerSize)); | 370 elms->address() + to_trim * kPointerSize)); |
| 367 } | 371 } |
| 368 | 372 |
| 369 | 373 |
| 370 static bool ArrayPrototypeHasNoElements(Context* global_context, | 374 static bool ArrayPrototypeHasNoElements(Heap* heap, |
| 375 Context* global_context, |
| 371 JSObject* array_proto) { | 376 JSObject* array_proto) { |
| 372 // This method depends on non writability of Object and Array prototype | 377 // This method depends on non writability of Object and Array prototype |
| 373 // fields. | 378 // fields. |
| 374 if (array_proto->elements() != Heap::empty_fixed_array()) return false; | 379 if (array_proto->elements() != heap->empty_fixed_array()) return false; |
| 375 // Hidden prototype | 380 // Hidden prototype |
| 376 array_proto = JSObject::cast(array_proto->GetPrototype()); | 381 array_proto = JSObject::cast(array_proto->GetPrototype()); |
| 377 ASSERT(array_proto->elements() == Heap::empty_fixed_array()); | 382 ASSERT(array_proto->elements() == heap->empty_fixed_array()); |
| 378 // Object.prototype | 383 // Object.prototype |
| 379 Object* proto = array_proto->GetPrototype(); | 384 Object* proto = array_proto->GetPrototype(); |
| 380 if (proto == Heap::null_value()) return false; | 385 if (proto == heap->null_value()) return false; |
| 381 array_proto = JSObject::cast(proto); | 386 array_proto = JSObject::cast(proto); |
| 382 if (array_proto != global_context->initial_object_prototype()) return false; | 387 if (array_proto != global_context->initial_object_prototype()) return false; |
| 383 if (array_proto->elements() != Heap::empty_fixed_array()) return false; | 388 if (array_proto->elements() != heap->empty_fixed_array()) return false; |
| 384 ASSERT(array_proto->GetPrototype()->IsNull()); | 389 ASSERT(array_proto->GetPrototype()->IsNull()); |
| 385 return true; | 390 return true; |
| 386 } | 391 } |
| 387 | 392 |
| 388 | 393 |
| 389 MUST_USE_RESULT | 394 MUST_USE_RESULT |
| 390 static inline MaybeObject* EnsureJSArrayWithWritableFastElements( | 395 static inline MaybeObject* EnsureJSArrayWithWritableFastElements( |
| 391 Object* receiver) { | 396 Heap* heap, Object* receiver) { |
| 392 if (!receiver->IsJSArray()) return NULL; | 397 if (!receiver->IsJSArray()) return NULL; |
| 393 JSArray* array = JSArray::cast(receiver); | 398 JSArray* array = JSArray::cast(receiver); |
| 394 HeapObject* elms = array->elements(); | 399 HeapObject* elms = array->elements(); |
| 395 if (elms->map() == Heap::fixed_array_map()) return elms; | 400 if (elms->map() == heap->fixed_array_map()) return elms; |
| 396 if (elms->map() == Heap::fixed_cow_array_map()) { | 401 if (elms->map() == heap->fixed_cow_array_map()) { |
| 397 return array->EnsureWritableFastElements(); | 402 return array->EnsureWritableFastElements(); |
| 398 } | 403 } |
| 399 return NULL; | 404 return NULL; |
| 400 } | 405 } |
| 401 | 406 |
| 402 | 407 |
| 403 static inline bool IsJSArrayFastElementMovingAllowed(JSArray* receiver) { | 408 static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap, |
| 404 Context* global_context = Top::context()->global_context(); | 409 JSArray* receiver) { |
| 410 Context* global_context = heap->isolate()->context()->global_context(); |
| 405 JSObject* array_proto = | 411 JSObject* array_proto = |
| 406 JSObject::cast(global_context->array_function()->prototype()); | 412 JSObject::cast(global_context->array_function()->prototype()); |
| 407 return receiver->GetPrototype() == array_proto && | 413 return receiver->GetPrototype() == array_proto && |
| 408 ArrayPrototypeHasNoElements(global_context, array_proto); | 414 ArrayPrototypeHasNoElements(heap, global_context, array_proto); |
| 409 } | 415 } |
| 410 | 416 |
| 411 | 417 |
| 412 MUST_USE_RESULT static MaybeObject* CallJsBuiltin( | 418 MUST_USE_RESULT static MaybeObject* CallJsBuiltin( |
| 419 Isolate* isolate, |
| 413 const char* name, | 420 const char* name, |
| 414 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { | 421 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
| 415 HandleScope handleScope; | 422 HandleScope handleScope(isolate); |
| 416 | 423 |
| 417 Handle<Object> js_builtin = | 424 Handle<Object> js_builtin = |
| 418 GetProperty(Handle<JSObject>(Top::global_context()->builtins()), | 425 GetProperty(Handle<JSObject>( |
| 419 name); | 426 isolate->global_context()->builtins()), |
| 427 name); |
| 420 ASSERT(js_builtin->IsJSFunction()); | 428 ASSERT(js_builtin->IsJSFunction()); |
| 421 Handle<JSFunction> function(Handle<JSFunction>::cast(js_builtin)); | 429 Handle<JSFunction> function(Handle<JSFunction>::cast(js_builtin)); |
| 422 ScopedVector<Object**> argv(args.length() - 1); | 430 ScopedVector<Object**> argv(args.length() - 1); |
| 423 int n_args = args.length() - 1; | 431 int n_args = args.length() - 1; |
| 424 for (int i = 0; i < n_args; i++) { | 432 for (int i = 0; i < n_args; i++) { |
| 425 argv[i] = args.at<Object>(i + 1).location(); | 433 argv[i] = args.at<Object>(i + 1).location(); |
| 426 } | 434 } |
| 427 bool pending_exception = false; | 435 bool pending_exception = false; |
| 428 Handle<Object> result = Execution::Call(function, | 436 Handle<Object> result = Execution::Call(function, |
| 429 args.receiver(), | 437 args.receiver(), |
| 430 n_args, | 438 n_args, |
| 431 argv.start(), | 439 argv.start(), |
| 432 &pending_exception); | 440 &pending_exception); |
| 433 if (pending_exception) return Failure::Exception(); | 441 if (pending_exception) return Failure::Exception(); |
| 434 return *result; | 442 return *result; |
| 435 } | 443 } |
| 436 | 444 |
| 437 | 445 |
| 438 BUILTIN(ArrayPush) { | 446 BUILTIN(ArrayPush) { |
| 447 Heap* heap = isolate->heap(); |
| 439 Object* receiver = *args.receiver(); | 448 Object* receiver = *args.receiver(); |
| 440 Object* elms_obj; | 449 Object* elms_obj; |
| 441 { MaybeObject* maybe_elms_obj = | 450 { MaybeObject* maybe_elms_obj = |
| 442 EnsureJSArrayWithWritableFastElements(receiver); | 451 EnsureJSArrayWithWritableFastElements(heap, receiver); |
| 443 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayPush", args); | 452 if (maybe_elms_obj == NULL) { |
| 453 return CallJsBuiltin(isolate, "ArrayPush", args); |
| 454 } |
| 444 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 455 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| 445 } | 456 } |
| 446 FixedArray* elms = FixedArray::cast(elms_obj); | 457 FixedArray* elms = FixedArray::cast(elms_obj); |
| 447 JSArray* array = JSArray::cast(receiver); | 458 JSArray* array = JSArray::cast(receiver); |
| 448 | 459 |
| 449 int len = Smi::cast(array->length())->value(); | 460 int len = Smi::cast(array->length())->value(); |
| 450 int to_add = args.length() - 1; | 461 int to_add = args.length() - 1; |
| 451 if (to_add == 0) { | 462 if (to_add == 0) { |
| 452 return Smi::FromInt(len); | 463 return Smi::FromInt(len); |
| 453 } | 464 } |
| 454 // Currently fixed arrays cannot grow too big, so | 465 // Currently fixed arrays cannot grow too big, so |
| 455 // we should never hit this case. | 466 // we should never hit this case. |
| 456 ASSERT(to_add <= (Smi::kMaxValue - len)); | 467 ASSERT(to_add <= (Smi::kMaxValue - len)); |
| 457 | 468 |
| 458 int new_length = len + to_add; | 469 int new_length = len + to_add; |
| 459 | 470 |
| 460 if (new_length > elms->length()) { | 471 if (new_length > elms->length()) { |
| 461 // New backing storage is needed. | 472 // New backing storage is needed. |
| 462 int capacity = new_length + (new_length >> 1) + 16; | 473 int capacity = new_length + (new_length >> 1) + 16; |
| 463 Object* obj; | 474 Object* obj; |
| 464 { MaybeObject* maybe_obj = Heap::AllocateUninitializedFixedArray(capacity); | 475 { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
| 465 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 476 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 466 } | 477 } |
| 467 FixedArray* new_elms = FixedArray::cast(obj); | 478 FixedArray* new_elms = FixedArray::cast(obj); |
| 468 | 479 |
| 469 AssertNoAllocation no_gc; | 480 AssertNoAllocation no_gc; |
| 470 if (len > 0) { | 481 if (len > 0) { |
| 471 CopyElements(&no_gc, new_elms, 0, elms, 0, len); | 482 CopyElements(heap, &no_gc, new_elms, 0, elms, 0, len); |
| 472 } | 483 } |
| 473 FillWithHoles(new_elms, new_length, capacity); | 484 FillWithHoles(heap, new_elms, new_length, capacity); |
| 474 | 485 |
| 475 elms = new_elms; | 486 elms = new_elms; |
| 476 array->set_elements(elms); | 487 array->set_elements(elms); |
| 477 } | 488 } |
| 478 | 489 |
| 479 // Add the provided values. | 490 // Add the provided values. |
| 480 AssertNoAllocation no_gc; | 491 AssertNoAllocation no_gc; |
| 481 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 492 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| 482 for (int index = 0; index < to_add; index++) { | 493 for (int index = 0; index < to_add; index++) { |
| 483 elms->set(index + len, args[index + 1], mode); | 494 elms->set(index + len, args[index + 1], mode); |
| 484 } | 495 } |
| 485 | 496 |
| 486 // Set the length. | 497 // Set the length. |
| 487 array->set_length(Smi::FromInt(new_length)); | 498 array->set_length(Smi::FromInt(new_length)); |
| 488 return Smi::FromInt(new_length); | 499 return Smi::FromInt(new_length); |
| 489 } | 500 } |
| 490 | 501 |
| 491 | 502 |
| 492 BUILTIN(ArrayPop) { | 503 BUILTIN(ArrayPop) { |
| 504 Heap* heap = isolate->heap(); |
| 493 Object* receiver = *args.receiver(); | 505 Object* receiver = *args.receiver(); |
| 494 Object* elms_obj; | 506 Object* elms_obj; |
| 495 { MaybeObject* maybe_elms_obj = | 507 { MaybeObject* maybe_elms_obj = |
| 496 EnsureJSArrayWithWritableFastElements(receiver); | 508 EnsureJSArrayWithWritableFastElements(heap, receiver); |
| 497 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayPop", args); | 509 if (maybe_elms_obj == NULL) return CallJsBuiltin(isolate, "ArrayPop", args); |
| 498 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 510 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| 499 } | 511 } |
| 500 FixedArray* elms = FixedArray::cast(elms_obj); | 512 FixedArray* elms = FixedArray::cast(elms_obj); |
| 501 JSArray* array = JSArray::cast(receiver); | 513 JSArray* array = JSArray::cast(receiver); |
| 502 | 514 |
| 503 int len = Smi::cast(array->length())->value(); | 515 int len = Smi::cast(array->length())->value(); |
| 504 if (len == 0) return Heap::undefined_value(); | 516 if (len == 0) return heap->undefined_value(); |
| 505 | 517 |
| 506 // Get top element | 518 // Get top element |
| 507 MaybeObject* top = elms->get(len - 1); | 519 MaybeObject* top = elms->get(len - 1); |
| 508 | 520 |
| 509 // Set the length. | 521 // Set the length. |
| 510 array->set_length(Smi::FromInt(len - 1)); | 522 array->set_length(Smi::FromInt(len - 1)); |
| 511 | 523 |
| 512 if (!top->IsTheHole()) { | 524 if (!top->IsTheHole()) { |
| 513 // Delete the top element. | 525 // Delete the top element. |
| 514 elms->set_the_hole(len - 1); | 526 elms->set_the_hole(len - 1); |
| 515 return top; | 527 return top; |
| 516 } | 528 } |
| 517 | 529 |
| 518 top = array->GetPrototype()->GetElement(len - 1); | 530 top = array->GetPrototype()->GetElement(len - 1); |
| 519 | 531 |
| 520 return top; | 532 return top; |
| 521 } | 533 } |
| 522 | 534 |
| 523 | 535 |
| 524 BUILTIN(ArrayShift) { | 536 BUILTIN(ArrayShift) { |
| 537 Heap* heap = isolate->heap(); |
| 525 Object* receiver = *args.receiver(); | 538 Object* receiver = *args.receiver(); |
| 526 Object* elms_obj; | 539 Object* elms_obj; |
| 527 { MaybeObject* maybe_elms_obj = | 540 { MaybeObject* maybe_elms_obj = |
| 528 EnsureJSArrayWithWritableFastElements(receiver); | 541 EnsureJSArrayWithWritableFastElements(heap, receiver); |
| 529 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayShift", args); | 542 if (maybe_elms_obj == NULL) |
| 543 return CallJsBuiltin(isolate, "ArrayShift", args); |
| 530 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 544 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| 531 } | 545 } |
| 532 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 546 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| 533 return CallJsBuiltin("ArrayShift", args); | 547 return CallJsBuiltin(isolate, "ArrayShift", args); |
| 534 } | 548 } |
| 535 FixedArray* elms = FixedArray::cast(elms_obj); | 549 FixedArray* elms = FixedArray::cast(elms_obj); |
| 536 JSArray* array = JSArray::cast(receiver); | 550 JSArray* array = JSArray::cast(receiver); |
| 537 ASSERT(array->HasFastElements()); | 551 ASSERT(array->HasFastElements()); |
| 538 | 552 |
| 539 int len = Smi::cast(array->length())->value(); | 553 int len = Smi::cast(array->length())->value(); |
| 540 if (len == 0) return Heap::undefined_value(); | 554 if (len == 0) return heap->undefined_value(); |
| 541 | 555 |
| 542 // Get first element | 556 // Get first element |
| 543 Object* first = elms->get(0); | 557 Object* first = elms->get(0); |
| 544 if (first->IsTheHole()) { | 558 if (first->IsTheHole()) { |
| 545 first = Heap::undefined_value(); | 559 first = heap->undefined_value(); |
| 546 } | 560 } |
| 547 | 561 |
| 548 if (!Heap::lo_space()->Contains(elms)) { | 562 if (!heap->lo_space()->Contains(elms)) { |
| 549 // As elms still in the same space they used to be, | 563 // As elms still in the same space they used to be, |
| 550 // there is no need to update region dirty mark. | 564 // there is no need to update region dirty mark. |
| 551 array->set_elements(LeftTrimFixedArray(elms, 1), SKIP_WRITE_BARRIER); | 565 array->set_elements(LeftTrimFixedArray(heap, elms, 1), SKIP_WRITE_BARRIER); |
| 552 } else { | 566 } else { |
| 553 // Shift the elements. | 567 // Shift the elements. |
| 554 AssertNoAllocation no_gc; | 568 AssertNoAllocation no_gc; |
| 555 MoveElements(&no_gc, elms, 0, elms, 1, len - 1); | 569 MoveElements(heap, &no_gc, elms, 0, elms, 1, len - 1); |
| 556 elms->set(len - 1, Heap::the_hole_value()); | 570 elms->set(len - 1, heap->the_hole_value()); |
| 557 } | 571 } |
| 558 | 572 |
| 559 // Set the length. | 573 // Set the length. |
| 560 array->set_length(Smi::FromInt(len - 1)); | 574 array->set_length(Smi::FromInt(len - 1)); |
| 561 | 575 |
| 562 return first; | 576 return first; |
| 563 } | 577 } |
| 564 | 578 |
| 565 | 579 |
| 566 BUILTIN(ArrayUnshift) { | 580 BUILTIN(ArrayUnshift) { |
| 581 Heap* heap = isolate->heap(); |
| 567 Object* receiver = *args.receiver(); | 582 Object* receiver = *args.receiver(); |
| 568 Object* elms_obj; | 583 Object* elms_obj; |
| 569 { MaybeObject* maybe_elms_obj = | 584 { MaybeObject* maybe_elms_obj = |
| 570 EnsureJSArrayWithWritableFastElements(receiver); | 585 EnsureJSArrayWithWritableFastElements(heap, receiver); |
| 571 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayUnshift", args); | 586 if (maybe_elms_obj == NULL) |
| 587 return CallJsBuiltin(isolate, "ArrayUnshift", args); |
| 572 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 588 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| 573 } | 589 } |
| 574 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 590 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| 575 return CallJsBuiltin("ArrayUnshift", args); | 591 return CallJsBuiltin(isolate, "ArrayUnshift", args); |
| 576 } | 592 } |
| 577 FixedArray* elms = FixedArray::cast(elms_obj); | 593 FixedArray* elms = FixedArray::cast(elms_obj); |
| 578 JSArray* array = JSArray::cast(receiver); | 594 JSArray* array = JSArray::cast(receiver); |
| 579 ASSERT(array->HasFastElements()); | 595 ASSERT(array->HasFastElements()); |
| 580 | 596 |
| 581 int len = Smi::cast(array->length())->value(); | 597 int len = Smi::cast(array->length())->value(); |
| 582 int to_add = args.length() - 1; | 598 int to_add = args.length() - 1; |
| 583 int new_length = len + to_add; | 599 int new_length = len + to_add; |
| 584 // Currently fixed arrays cannot grow too big, so | 600 // Currently fixed arrays cannot grow too big, so |
| 585 // we should never hit this case. | 601 // we should never hit this case. |
| 586 ASSERT(to_add <= (Smi::kMaxValue - len)); | 602 ASSERT(to_add <= (Smi::kMaxValue - len)); |
| 587 | 603 |
| 588 if (new_length > elms->length()) { | 604 if (new_length > elms->length()) { |
| 589 // New backing storage is needed. | 605 // New backing storage is needed. |
| 590 int capacity = new_length + (new_length >> 1) + 16; | 606 int capacity = new_length + (new_length >> 1) + 16; |
| 591 Object* obj; | 607 Object* obj; |
| 592 { MaybeObject* maybe_obj = Heap::AllocateUninitializedFixedArray(capacity); | 608 { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
| 593 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 609 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 594 } | 610 } |
| 595 FixedArray* new_elms = FixedArray::cast(obj); | 611 FixedArray* new_elms = FixedArray::cast(obj); |
| 596 | 612 |
| 597 AssertNoAllocation no_gc; | 613 AssertNoAllocation no_gc; |
| 598 if (len > 0) { | 614 if (len > 0) { |
| 599 CopyElements(&no_gc, new_elms, to_add, elms, 0, len); | 615 CopyElements(heap, &no_gc, new_elms, to_add, elms, 0, len); |
| 600 } | 616 } |
| 601 FillWithHoles(new_elms, new_length, capacity); | 617 FillWithHoles(heap, new_elms, new_length, capacity); |
| 602 | 618 |
| 603 elms = new_elms; | 619 elms = new_elms; |
| 604 array->set_elements(elms); | 620 array->set_elements(elms); |
| 605 } else { | 621 } else { |
| 606 AssertNoAllocation no_gc; | 622 AssertNoAllocation no_gc; |
| 607 MoveElements(&no_gc, elms, to_add, elms, 0, len); | 623 MoveElements(heap, &no_gc, elms, to_add, elms, 0, len); |
| 608 } | 624 } |
| 609 | 625 |
| 610 // Add the provided values. | 626 // Add the provided values. |
| 611 AssertNoAllocation no_gc; | 627 AssertNoAllocation no_gc; |
| 612 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 628 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| 613 for (int i = 0; i < to_add; i++) { | 629 for (int i = 0; i < to_add; i++) { |
| 614 elms->set(i, args[i + 1], mode); | 630 elms->set(i, args[i + 1], mode); |
| 615 } | 631 } |
| 616 | 632 |
| 617 // Set the length. | 633 // Set the length. |
| 618 array->set_length(Smi::FromInt(new_length)); | 634 array->set_length(Smi::FromInt(new_length)); |
| 619 return Smi::FromInt(new_length); | 635 return Smi::FromInt(new_length); |
| 620 } | 636 } |
| 621 | 637 |
| 622 | 638 |
| 623 BUILTIN(ArraySlice) { | 639 BUILTIN(ArraySlice) { |
| 640 Heap* heap = isolate->heap(); |
| 624 Object* receiver = *args.receiver(); | 641 Object* receiver = *args.receiver(); |
| 625 FixedArray* elms; | 642 FixedArray* elms; |
| 626 int len = -1; | 643 int len = -1; |
| 627 if (receiver->IsJSArray()) { | 644 if (receiver->IsJSArray()) { |
| 628 JSArray* array = JSArray::cast(receiver); | 645 JSArray* array = JSArray::cast(receiver); |
| 629 if (!array->HasFastElements() || | 646 if (!array->HasFastElements() || |
| 630 !IsJSArrayFastElementMovingAllowed(array)) { | 647 !IsJSArrayFastElementMovingAllowed(heap, array)) { |
| 631 return CallJsBuiltin("ArraySlice", args); | 648 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 632 } | 649 } |
| 633 | 650 |
| 634 elms = FixedArray::cast(array->elements()); | 651 elms = FixedArray::cast(array->elements()); |
| 635 len = Smi::cast(array->length())->value(); | 652 len = Smi::cast(array->length())->value(); |
| 636 } else { | 653 } else { |
| 637 // Array.slice(arguments, ...) is quite a common idiom (notably more | 654 // Array.slice(arguments, ...) is quite a common idiom (notably more |
| 638 // than 50% of invocations in Web apps). Treat it in C++ as well. | 655 // than 50% of invocations in Web apps). Treat it in C++ as well. |
| 639 Map* arguments_map = | 656 Map* arguments_map = |
| 640 Top::context()->global_context()->arguments_boilerplate()->map(); | 657 isolate->context()->global_context()->arguments_boilerplate()->map(); |
| 641 | 658 |
| 642 bool is_arguments_object_with_fast_elements = | 659 bool is_arguments_object_with_fast_elements = |
| 643 receiver->IsJSObject() | 660 receiver->IsJSObject() |
| 644 && JSObject::cast(receiver)->map() == arguments_map | 661 && JSObject::cast(receiver)->map() == arguments_map |
| 645 && JSObject::cast(receiver)->HasFastElements(); | 662 && JSObject::cast(receiver)->HasFastElements(); |
| 646 if (!is_arguments_object_with_fast_elements) { | 663 if (!is_arguments_object_with_fast_elements) { |
| 647 return CallJsBuiltin("ArraySlice", args); | 664 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 648 } | 665 } |
| 649 elms = FixedArray::cast(JSObject::cast(receiver)->elements()); | 666 elms = FixedArray::cast(JSObject::cast(receiver)->elements()); |
| 650 Object* len_obj = JSObject::cast(receiver) | 667 Object* len_obj = JSObject::cast(receiver) |
| 651 ->InObjectPropertyAt(Heap::kArgumentsLengthIndex); | 668 ->InObjectPropertyAt(Heap::kArgumentsLengthIndex); |
| 652 if (!len_obj->IsSmi()) { | 669 if (!len_obj->IsSmi()) { |
| 653 return CallJsBuiltin("ArraySlice", args); | 670 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 654 } | 671 } |
| 655 len = Smi::cast(len_obj)->value(); | 672 len = Smi::cast(len_obj)->value(); |
| 656 if (len > elms->length()) { | 673 if (len > elms->length()) { |
| 657 return CallJsBuiltin("ArraySlice", args); | 674 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 658 } | 675 } |
| 659 for (int i = 0; i < len; i++) { | 676 for (int i = 0; i < len; i++) { |
| 660 if (elms->get(i) == Heap::the_hole_value()) { | 677 if (elms->get(i) == heap->the_hole_value()) { |
| 661 return CallJsBuiltin("ArraySlice", args); | 678 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 662 } | 679 } |
| 663 } | 680 } |
| 664 } | 681 } |
| 665 ASSERT(len >= 0); | 682 ASSERT(len >= 0); |
| 666 int n_arguments = args.length() - 1; | 683 int n_arguments = args.length() - 1; |
| 667 | 684 |
| 668 // Note carefully choosen defaults---if argument is missing, | 685 // Note carefully choosen defaults---if argument is missing, |
| 669 // it's undefined which gets converted to 0 for relative_start | 686 // it's undefined which gets converted to 0 for relative_start |
| 670 // and to len for relative_end. | 687 // and to len for relative_end. |
| 671 int relative_start = 0; | 688 int relative_start = 0; |
| 672 int relative_end = len; | 689 int relative_end = len; |
| 673 if (n_arguments > 0) { | 690 if (n_arguments > 0) { |
| 674 Object* arg1 = args[1]; | 691 Object* arg1 = args[1]; |
| 675 if (arg1->IsSmi()) { | 692 if (arg1->IsSmi()) { |
| 676 relative_start = Smi::cast(arg1)->value(); | 693 relative_start = Smi::cast(arg1)->value(); |
| 677 } else if (!arg1->IsUndefined()) { | 694 } else if (!arg1->IsUndefined()) { |
| 678 return CallJsBuiltin("ArraySlice", args); | 695 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 679 } | 696 } |
| 680 if (n_arguments > 1) { | 697 if (n_arguments > 1) { |
| 681 Object* arg2 = args[2]; | 698 Object* arg2 = args[2]; |
| 682 if (arg2->IsSmi()) { | 699 if (arg2->IsSmi()) { |
| 683 relative_end = Smi::cast(arg2)->value(); | 700 relative_end = Smi::cast(arg2)->value(); |
| 684 } else if (!arg2->IsUndefined()) { | 701 } else if (!arg2->IsUndefined()) { |
| 685 return CallJsBuiltin("ArraySlice", args); | 702 return CallJsBuiltin(isolate, "ArraySlice", args); |
| 686 } | 703 } |
| 687 } | 704 } |
| 688 } | 705 } |
| 689 | 706 |
| 690 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. | 707 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. |
| 691 int k = (relative_start < 0) ? Max(len + relative_start, 0) | 708 int k = (relative_start < 0) ? Max(len + relative_start, 0) |
| 692 : Min(relative_start, len); | 709 : Min(relative_start, len); |
| 693 | 710 |
| 694 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. | 711 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. |
| 695 int final = (relative_end < 0) ? Max(len + relative_end, 0) | 712 int final = (relative_end < 0) ? Max(len + relative_end, 0) |
| 696 : Min(relative_end, len); | 713 : Min(relative_end, len); |
| 697 | 714 |
| 698 // Calculate the length of result array. | 715 // Calculate the length of result array. |
| 699 int result_len = final - k; | 716 int result_len = final - k; |
| 700 if (result_len <= 0) { | 717 if (result_len <= 0) { |
| 701 return AllocateEmptyJSArray(); | 718 return AllocateEmptyJSArray(heap); |
| 702 } | 719 } |
| 703 | 720 |
| 704 Object* result; | 721 Object* result; |
| 705 { MaybeObject* maybe_result = AllocateJSArray(); | 722 { MaybeObject* maybe_result = AllocateJSArray(heap); |
| 706 if (!maybe_result->ToObject(&result)) return maybe_result; | 723 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 707 } | 724 } |
| 708 JSArray* result_array = JSArray::cast(result); | 725 JSArray* result_array = JSArray::cast(result); |
| 709 | 726 |
| 710 { MaybeObject* maybe_result = | 727 { MaybeObject* maybe_result = |
| 711 Heap::AllocateUninitializedFixedArray(result_len); | 728 heap->AllocateUninitializedFixedArray(result_len); |
| 712 if (!maybe_result->ToObject(&result)) return maybe_result; | 729 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 713 } | 730 } |
| 714 FixedArray* result_elms = FixedArray::cast(result); | 731 FixedArray* result_elms = FixedArray::cast(result); |
| 715 | 732 |
| 716 AssertNoAllocation no_gc; | 733 AssertNoAllocation no_gc; |
| 717 CopyElements(&no_gc, result_elms, 0, elms, k, result_len); | 734 CopyElements(heap, &no_gc, result_elms, 0, elms, k, result_len); |
| 718 | 735 |
| 719 // Set elements. | 736 // Set elements. |
| 720 result_array->set_elements(result_elms); | 737 result_array->set_elements(result_elms); |
| 721 | 738 |
| 722 // Set the length. | 739 // Set the length. |
| 723 result_array->set_length(Smi::FromInt(result_len)); | 740 result_array->set_length(Smi::FromInt(result_len)); |
| 724 return result_array; | 741 return result_array; |
| 725 } | 742 } |
| 726 | 743 |
| 727 | 744 |
| 728 BUILTIN(ArraySplice) { | 745 BUILTIN(ArraySplice) { |
| 746 Heap* heap = isolate->heap(); |
| 729 Object* receiver = *args.receiver(); | 747 Object* receiver = *args.receiver(); |
| 730 Object* elms_obj; | 748 Object* elms_obj; |
| 731 { MaybeObject* maybe_elms_obj = | 749 { MaybeObject* maybe_elms_obj = |
| 732 EnsureJSArrayWithWritableFastElements(receiver); | 750 EnsureJSArrayWithWritableFastElements(heap, receiver); |
| 733 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArraySplice", args); | 751 if (maybe_elms_obj == NULL) |
| 752 return CallJsBuiltin(isolate, "ArraySplice", args); |
| 734 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 753 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
| 735 } | 754 } |
| 736 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 755 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
| 737 return CallJsBuiltin("ArraySplice", args); | 756 return CallJsBuiltin(isolate, "ArraySplice", args); |
| 738 } | 757 } |
| 739 FixedArray* elms = FixedArray::cast(elms_obj); | 758 FixedArray* elms = FixedArray::cast(elms_obj); |
| 740 JSArray* array = JSArray::cast(receiver); | 759 JSArray* array = JSArray::cast(receiver); |
| 741 ASSERT(array->HasFastElements()); | 760 ASSERT(array->HasFastElements()); |
| 742 | 761 |
| 743 int len = Smi::cast(array->length())->value(); | 762 int len = Smi::cast(array->length())->value(); |
| 744 | 763 |
| 745 int n_arguments = args.length() - 1; | 764 int n_arguments = args.length() - 1; |
| 746 | 765 |
| 747 int relative_start = 0; | 766 int relative_start = 0; |
| 748 if (n_arguments > 0) { | 767 if (n_arguments > 0) { |
| 749 Object* arg1 = args[1]; | 768 Object* arg1 = args[1]; |
| 750 if (arg1->IsSmi()) { | 769 if (arg1->IsSmi()) { |
| 751 relative_start = Smi::cast(arg1)->value(); | 770 relative_start = Smi::cast(arg1)->value(); |
| 752 } else if (!arg1->IsUndefined()) { | 771 } else if (!arg1->IsUndefined()) { |
| 753 return CallJsBuiltin("ArraySplice", args); | 772 return CallJsBuiltin(isolate, "ArraySplice", args); |
| 754 } | 773 } |
| 755 } | 774 } |
| 756 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | 775 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
| 757 : Min(relative_start, len); | 776 : Min(relative_start, len); |
| 758 | 777 |
| 759 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is | 778 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is |
| 760 // given as a request to delete all the elements from the start. | 779 // given as a request to delete all the elements from the start. |
| 761 // And it differs from the case of undefined delete count. | 780 // And it differs from the case of undefined delete count. |
| 762 // This does not follow ECMA-262, but we do the same for | 781 // This does not follow ECMA-262, but we do the same for |
| 763 // compatibility. | 782 // compatibility. |
| 764 int actual_delete_count; | 783 int actual_delete_count; |
| 765 if (n_arguments == 1) { | 784 if (n_arguments == 1) { |
| 766 ASSERT(len - actual_start >= 0); | 785 ASSERT(len - actual_start >= 0); |
| 767 actual_delete_count = len - actual_start; | 786 actual_delete_count = len - actual_start; |
| 768 } else { | 787 } else { |
| 769 int value = 0; // ToInteger(undefined) == 0 | 788 int value = 0; // ToInteger(undefined) == 0 |
| 770 if (n_arguments > 1) { | 789 if (n_arguments > 1) { |
| 771 Object* arg2 = args[2]; | 790 Object* arg2 = args[2]; |
| 772 if (arg2->IsSmi()) { | 791 if (arg2->IsSmi()) { |
| 773 value = Smi::cast(arg2)->value(); | 792 value = Smi::cast(arg2)->value(); |
| 774 } else { | 793 } else { |
| 775 return CallJsBuiltin("ArraySplice", args); | 794 return CallJsBuiltin(isolate, "ArraySplice", args); |
| 776 } | 795 } |
| 777 } | 796 } |
| 778 actual_delete_count = Min(Max(value, 0), len - actual_start); | 797 actual_delete_count = Min(Max(value, 0), len - actual_start); |
| 779 } | 798 } |
| 780 | 799 |
| 781 JSArray* result_array = NULL; | 800 JSArray* result_array = NULL; |
| 782 if (actual_delete_count == 0) { | 801 if (actual_delete_count == 0) { |
| 783 Object* result; | 802 Object* result; |
| 784 { MaybeObject* maybe_result = AllocateEmptyJSArray(); | 803 { MaybeObject* maybe_result = AllocateEmptyJSArray(heap); |
| 785 if (!maybe_result->ToObject(&result)) return maybe_result; | 804 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 786 } | 805 } |
| 787 result_array = JSArray::cast(result); | 806 result_array = JSArray::cast(result); |
| 788 } else { | 807 } else { |
| 789 // Allocate result array. | 808 // Allocate result array. |
| 790 Object* result; | 809 Object* result; |
| 791 { MaybeObject* maybe_result = AllocateJSArray(); | 810 { MaybeObject* maybe_result = AllocateJSArray(heap); |
| 792 if (!maybe_result->ToObject(&result)) return maybe_result; | 811 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 793 } | 812 } |
| 794 result_array = JSArray::cast(result); | 813 result_array = JSArray::cast(result); |
| 795 | 814 |
| 796 { MaybeObject* maybe_result = | 815 { MaybeObject* maybe_result = |
| 797 Heap::AllocateUninitializedFixedArray(actual_delete_count); | 816 heap->AllocateUninitializedFixedArray(actual_delete_count); |
| 798 if (!maybe_result->ToObject(&result)) return maybe_result; | 817 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 799 } | 818 } |
| 800 FixedArray* result_elms = FixedArray::cast(result); | 819 FixedArray* result_elms = FixedArray::cast(result); |
| 801 | 820 |
| 802 AssertNoAllocation no_gc; | 821 AssertNoAllocation no_gc; |
| 803 // Fill newly created array. | 822 // Fill newly created array. |
| 804 CopyElements(&no_gc, | 823 CopyElements(heap, |
| 824 &no_gc, |
| 805 result_elms, 0, | 825 result_elms, 0, |
| 806 elms, actual_start, | 826 elms, actual_start, |
| 807 actual_delete_count); | 827 actual_delete_count); |
| 808 | 828 |
| 809 // Set elements. | 829 // Set elements. |
| 810 result_array->set_elements(result_elms); | 830 result_array->set_elements(result_elms); |
| 811 | 831 |
| 812 // Set the length. | 832 // Set the length. |
| 813 result_array->set_length(Smi::FromInt(actual_delete_count)); | 833 result_array->set_length(Smi::FromInt(actual_delete_count)); |
| 814 } | 834 } |
| 815 | 835 |
| 816 int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; | 836 int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; |
| 817 | 837 |
| 818 int new_length = len - actual_delete_count + item_count; | 838 int new_length = len - actual_delete_count + item_count; |
| 819 | 839 |
| 820 if (item_count < actual_delete_count) { | 840 if (item_count < actual_delete_count) { |
| 821 // Shrink the array. | 841 // Shrink the array. |
| 822 const bool trim_array = !Heap::lo_space()->Contains(elms) && | 842 const bool trim_array = !heap->lo_space()->Contains(elms) && |
| 823 ((actual_start + item_count) < | 843 ((actual_start + item_count) < |
| 824 (len - actual_delete_count - actual_start)); | 844 (len - actual_delete_count - actual_start)); |
| 825 if (trim_array) { | 845 if (trim_array) { |
| 826 const int delta = actual_delete_count - item_count; | 846 const int delta = actual_delete_count - item_count; |
| 827 | 847 |
| 828 if (actual_start > 0) { | 848 if (actual_start > 0) { |
| 829 Object** start = elms->data_start(); | 849 Object** start = elms->data_start(); |
| 830 memmove(start + delta, start, actual_start * kPointerSize); | 850 memmove(start + delta, start, actual_start * kPointerSize); |
| 831 } | 851 } |
| 832 | 852 |
| 833 elms = LeftTrimFixedArray(elms, delta); | 853 elms = LeftTrimFixedArray(heap, elms, delta); |
| 834 array->set_elements(elms, SKIP_WRITE_BARRIER); | 854 array->set_elements(elms, SKIP_WRITE_BARRIER); |
| 835 } else { | 855 } else { |
| 836 AssertNoAllocation no_gc; | 856 AssertNoAllocation no_gc; |
| 837 MoveElements(&no_gc, | 857 MoveElements(heap, &no_gc, |
| 838 elms, actual_start + item_count, | 858 elms, actual_start + item_count, |
| 839 elms, actual_start + actual_delete_count, | 859 elms, actual_start + actual_delete_count, |
| 840 (len - actual_delete_count - actual_start)); | 860 (len - actual_delete_count - actual_start)); |
| 841 FillWithHoles(elms, new_length, len); | 861 FillWithHoles(heap, elms, new_length, len); |
| 842 } | 862 } |
| 843 } else if (item_count > actual_delete_count) { | 863 } else if (item_count > actual_delete_count) { |
| 844 // Currently fixed arrays cannot grow too big, so | 864 // Currently fixed arrays cannot grow too big, so |
| 845 // we should never hit this case. | 865 // we should never hit this case. |
| 846 ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); | 866 ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); |
| 847 | 867 |
| 848 // Check if array need to grow. | 868 // Check if array need to grow. |
| 849 if (new_length > elms->length()) { | 869 if (new_length > elms->length()) { |
| 850 // New backing storage is needed. | 870 // New backing storage is needed. |
| 851 int capacity = new_length + (new_length >> 1) + 16; | 871 int capacity = new_length + (new_length >> 1) + 16; |
| 852 Object* obj; | 872 Object* obj; |
| 853 { MaybeObject* maybe_obj = | 873 { MaybeObject* maybe_obj = |
| 854 Heap::AllocateUninitializedFixedArray(capacity); | 874 heap->AllocateUninitializedFixedArray(capacity); |
| 855 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 875 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| 856 } | 876 } |
| 857 FixedArray* new_elms = FixedArray::cast(obj); | 877 FixedArray* new_elms = FixedArray::cast(obj); |
| 858 | 878 |
| 859 AssertNoAllocation no_gc; | 879 AssertNoAllocation no_gc; |
| 860 // Copy the part before actual_start as is. | 880 // Copy the part before actual_start as is. |
| 861 if (actual_start > 0) { | 881 if (actual_start > 0) { |
| 862 CopyElements(&no_gc, new_elms, 0, elms, 0, actual_start); | 882 CopyElements(heap, &no_gc, new_elms, 0, elms, 0, actual_start); |
| 863 } | 883 } |
| 864 const int to_copy = len - actual_delete_count - actual_start; | 884 const int to_copy = len - actual_delete_count - actual_start; |
| 865 if (to_copy > 0) { | 885 if (to_copy > 0) { |
| 866 CopyElements(&no_gc, | 886 CopyElements(heap, &no_gc, |
| 867 new_elms, actual_start + item_count, | 887 new_elms, actual_start + item_count, |
| 868 elms, actual_start + actual_delete_count, | 888 elms, actual_start + actual_delete_count, |
| 869 to_copy); | 889 to_copy); |
| 870 } | 890 } |
| 871 FillWithHoles(new_elms, new_length, capacity); | 891 FillWithHoles(heap, new_elms, new_length, capacity); |
| 872 | 892 |
| 873 elms = new_elms; | 893 elms = new_elms; |
| 874 array->set_elements(elms); | 894 array->set_elements(elms); |
| 875 } else { | 895 } else { |
| 876 AssertNoAllocation no_gc; | 896 AssertNoAllocation no_gc; |
| 877 MoveElements(&no_gc, | 897 MoveElements(heap, &no_gc, |
| 878 elms, actual_start + item_count, | 898 elms, actual_start + item_count, |
| 879 elms, actual_start + actual_delete_count, | 899 elms, actual_start + actual_delete_count, |
| 880 (len - actual_delete_count - actual_start)); | 900 (len - actual_delete_count - actual_start)); |
| 881 } | 901 } |
| 882 } | 902 } |
| 883 | 903 |
| 884 AssertNoAllocation no_gc; | 904 AssertNoAllocation no_gc; |
| 885 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 905 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
| 886 for (int k = actual_start; k < actual_start + item_count; k++) { | 906 for (int k = actual_start; k < actual_start + item_count; k++) { |
| 887 elms->set(k, args[3 + k - actual_start], mode); | 907 elms->set(k, args[3 + k - actual_start], mode); |
| 888 } | 908 } |
| 889 | 909 |
| 890 // Set the length. | 910 // Set the length. |
| 891 array->set_length(Smi::FromInt(new_length)); | 911 array->set_length(Smi::FromInt(new_length)); |
| 892 | 912 |
| 893 return result_array; | 913 return result_array; |
| 894 } | 914 } |
| 895 | 915 |
| 896 | 916 |
| 897 BUILTIN(ArrayConcat) { | 917 BUILTIN(ArrayConcat) { |
| 898 Context* global_context = Top::context()->global_context(); | 918 Heap* heap = isolate->heap(); |
| 919 Context* global_context = isolate->context()->global_context(); |
| 899 JSObject* array_proto = | 920 JSObject* array_proto = |
| 900 JSObject::cast(global_context->array_function()->prototype()); | 921 JSObject::cast(global_context->array_function()->prototype()); |
| 901 if (!ArrayPrototypeHasNoElements(global_context, array_proto)) { | 922 if (!ArrayPrototypeHasNoElements(heap, global_context, array_proto)) { |
| 902 return CallJsBuiltin("ArrayConcat", args); | 923 return CallJsBuiltin(isolate, "ArrayConcat", args); |
| 903 } | 924 } |
| 904 | 925 |
| 905 // Iterate through all the arguments performing checks | 926 // Iterate through all the arguments performing checks |
| 906 // and calculating total length. | 927 // and calculating total length. |
| 907 int n_arguments = args.length(); | 928 int n_arguments = args.length(); |
| 908 int result_len = 0; | 929 int result_len = 0; |
| 909 for (int i = 0; i < n_arguments; i++) { | 930 for (int i = 0; i < n_arguments; i++) { |
| 910 Object* arg = args[i]; | 931 Object* arg = args[i]; |
| 911 if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() | 932 if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() |
| 912 || JSArray::cast(arg)->GetPrototype() != array_proto) { | 933 || JSArray::cast(arg)->GetPrototype() != array_proto) { |
| 913 return CallJsBuiltin("ArrayConcat", args); | 934 return CallJsBuiltin(isolate, "ArrayConcat", args); |
| 914 } | 935 } |
| 915 | 936 |
| 916 int len = Smi::cast(JSArray::cast(arg)->length())->value(); | 937 int len = Smi::cast(JSArray::cast(arg)->length())->value(); |
| 917 | 938 |
| 918 // We shouldn't overflow when adding another len. | 939 // We shouldn't overflow when adding another len. |
| 919 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); | 940 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); |
| 920 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); | 941 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); |
| 921 USE(kHalfOfMaxInt); | 942 USE(kHalfOfMaxInt); |
| 922 result_len += len; | 943 result_len += len; |
| 923 ASSERT(result_len >= 0); | 944 ASSERT(result_len >= 0); |
| 924 | 945 |
| 925 if (result_len > FixedArray::kMaxLength) { | 946 if (result_len > FixedArray::kMaxLength) { |
| 926 return CallJsBuiltin("ArrayConcat", args); | 947 return CallJsBuiltin(isolate, "ArrayConcat", args); |
| 927 } | 948 } |
| 928 } | 949 } |
| 929 | 950 |
| 930 if (result_len == 0) { | 951 if (result_len == 0) { |
| 931 return AllocateEmptyJSArray(); | 952 return AllocateEmptyJSArray(heap); |
| 932 } | 953 } |
| 933 | 954 |
| 934 // Allocate result. | 955 // Allocate result. |
| 935 Object* result; | 956 Object* result; |
| 936 { MaybeObject* maybe_result = AllocateJSArray(); | 957 { MaybeObject* maybe_result = AllocateJSArray(heap); |
| 937 if (!maybe_result->ToObject(&result)) return maybe_result; | 958 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 938 } | 959 } |
| 939 JSArray* result_array = JSArray::cast(result); | 960 JSArray* result_array = JSArray::cast(result); |
| 940 | 961 |
| 941 { MaybeObject* maybe_result = | 962 { MaybeObject* maybe_result = |
| 942 Heap::AllocateUninitializedFixedArray(result_len); | 963 heap->AllocateUninitializedFixedArray(result_len); |
| 943 if (!maybe_result->ToObject(&result)) return maybe_result; | 964 if (!maybe_result->ToObject(&result)) return maybe_result; |
| 944 } | 965 } |
| 945 FixedArray* result_elms = FixedArray::cast(result); | 966 FixedArray* result_elms = FixedArray::cast(result); |
| 946 | 967 |
| 947 // Copy data. | 968 // Copy data. |
| 948 AssertNoAllocation no_gc; | 969 AssertNoAllocation no_gc; |
| 949 int start_pos = 0; | 970 int start_pos = 0; |
| 950 for (int i = 0; i < n_arguments; i++) { | 971 for (int i = 0; i < n_arguments; i++) { |
| 951 JSArray* array = JSArray::cast(args[i]); | 972 JSArray* array = JSArray::cast(args[i]); |
| 952 int len = Smi::cast(array->length())->value(); | 973 int len = Smi::cast(array->length())->value(); |
| 953 if (len > 0) { | 974 if (len > 0) { |
| 954 FixedArray* elms = FixedArray::cast(array->elements()); | 975 FixedArray* elms = FixedArray::cast(array->elements()); |
| 955 CopyElements(&no_gc, result_elms, start_pos, elms, 0, len); | 976 CopyElements(heap, &no_gc, result_elms, start_pos, elms, 0, len); |
| 956 start_pos += len; | 977 start_pos += len; |
| 957 } | 978 } |
| 958 } | 979 } |
| 959 ASSERT(start_pos == result_len); | 980 ASSERT(start_pos == result_len); |
| 960 | 981 |
| 961 // Set the length and elements. | 982 // Set the length and elements. |
| 962 result_array->set_length(Smi::FromInt(result_len)); | 983 result_array->set_length(Smi::FromInt(result_len)); |
| 963 result_array->set_elements(result_elms); | 984 result_array->set_elements(result_elms); |
| 964 | 985 |
| 965 return result_array; | 986 return result_array; |
| 966 } | 987 } |
| 967 | 988 |
| 968 | 989 |
| 969 // ----------------------------------------------------------------------------- | 990 // ----------------------------------------------------------------------------- |
| 970 // Strict mode poison pills | 991 // Strict mode poison pills |
| 971 | 992 |
| 972 | 993 |
| 973 BUILTIN(StrictArgumentsCallee) { | 994 BUILTIN(StrictArgumentsCallee) { |
| 974 HandleScope scope; | 995 HandleScope scope; |
| 975 return Top::Throw(*Factory::NewTypeError("strict_arguments_callee", | 996 return isolate->Throw(*isolate->factory()->NewTypeError( |
| 976 HandleVector<Object>(NULL, 0))); | 997 "strict_arguments_callee", HandleVector<Object>(NULL, 0))); |
| 977 } | 998 } |
| 978 | 999 |
| 979 | 1000 |
| 980 BUILTIN(StrictArgumentsCaller) { | 1001 BUILTIN(StrictArgumentsCaller) { |
| 981 HandleScope scope; | 1002 HandleScope scope; |
| 982 return Top::Throw(*Factory::NewTypeError("strict_arguments_caller", | 1003 return isolate->Throw(*isolate->factory()->NewTypeError( |
| 983 HandleVector<Object>(NULL, 0))); | 1004 "strict_arguments_caller", HandleVector<Object>(NULL, 0))); |
| 984 } | 1005 } |
| 985 | 1006 |
| 986 | 1007 |
| 987 BUILTIN(StrictFunctionCaller) { | 1008 BUILTIN(StrictFunctionCaller) { |
| 988 HandleScope scope; | 1009 HandleScope scope; |
| 989 return Top::Throw(*Factory::NewTypeError("strict_function_caller", | 1010 return isolate->Throw(*isolate->factory()->NewTypeError( |
| 990 HandleVector<Object>(NULL, 0))); | 1011 "strict_function_caller", HandleVector<Object>(NULL, 0))); |
| 991 } | 1012 } |
| 992 | 1013 |
| 993 | 1014 |
| 994 BUILTIN(StrictFunctionArguments) { | 1015 BUILTIN(StrictFunctionArguments) { |
| 995 HandleScope scope; | 1016 HandleScope scope; |
| 996 return Top::Throw(*Factory::NewTypeError("strict_function_arguments", | 1017 return isolate->Throw(*isolate->factory()->NewTypeError( |
| 997 HandleVector<Object>(NULL, 0))); | 1018 "strict_function_arguments", HandleVector<Object>(NULL, 0))); |
| 998 } | 1019 } |
| 999 | 1020 |
| 1000 | 1021 |
| 1001 // ----------------------------------------------------------------------------- | 1022 // ----------------------------------------------------------------------------- |
| 1002 // | 1023 // |
| 1003 | 1024 |
| 1004 | 1025 |
| 1005 // Returns the holder JSObject if the function can legally be called | 1026 // Returns the holder JSObject if the function can legally be called |
| 1006 // with this receiver. Returns Heap::null_value() if the call is | 1027 // with this receiver. Returns Heap::null_value() if the call is |
| 1007 // illegal. Any arguments that don't fit the expected type is | 1028 // illegal. Any arguments that don't fit the expected type is |
| 1008 // overwritten with undefined. Arguments that do fit the expected | 1029 // overwritten with undefined. Arguments that do fit the expected |
| 1009 // type is overwritten with the object in the prototype chain that | 1030 // type is overwritten with the object in the prototype chain that |
| 1010 // actually has that type. | 1031 // actually has that type. |
| 1011 static inline Object* TypeCheck(int argc, | 1032 static inline Object* TypeCheck(Heap* heap, |
| 1033 int argc, |
| 1012 Object** argv, | 1034 Object** argv, |
| 1013 FunctionTemplateInfo* info) { | 1035 FunctionTemplateInfo* info) { |
| 1014 Object* recv = argv[0]; | 1036 Object* recv = argv[0]; |
| 1015 Object* sig_obj = info->signature(); | 1037 Object* sig_obj = info->signature(); |
| 1016 if (sig_obj->IsUndefined()) return recv; | 1038 if (sig_obj->IsUndefined()) return recv; |
| 1017 SignatureInfo* sig = SignatureInfo::cast(sig_obj); | 1039 SignatureInfo* sig = SignatureInfo::cast(sig_obj); |
| 1018 // If necessary, check the receiver | 1040 // If necessary, check the receiver |
| 1019 Object* recv_type = sig->receiver(); | 1041 Object* recv_type = sig->receiver(); |
| 1020 | 1042 |
| 1021 Object* holder = recv; | 1043 Object* holder = recv; |
| 1022 if (!recv_type->IsUndefined()) { | 1044 if (!recv_type->IsUndefined()) { |
| 1023 for (; holder != Heap::null_value(); holder = holder->GetPrototype()) { | 1045 for (; holder != heap->null_value(); holder = holder->GetPrototype()) { |
| 1024 if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) { | 1046 if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) { |
| 1025 break; | 1047 break; |
| 1026 } | 1048 } |
| 1027 } | 1049 } |
| 1028 if (holder == Heap::null_value()) return holder; | 1050 if (holder == heap->null_value()) return holder; |
| 1029 } | 1051 } |
| 1030 Object* args_obj = sig->args(); | 1052 Object* args_obj = sig->args(); |
| 1031 // If there is no argument signature we're done | 1053 // If there is no argument signature we're done |
| 1032 if (args_obj->IsUndefined()) return holder; | 1054 if (args_obj->IsUndefined()) return holder; |
| 1033 FixedArray* args = FixedArray::cast(args_obj); | 1055 FixedArray* args = FixedArray::cast(args_obj); |
| 1034 int length = args->length(); | 1056 int length = args->length(); |
| 1035 if (argc <= length) length = argc - 1; | 1057 if (argc <= length) length = argc - 1; |
| 1036 for (int i = 0; i < length; i++) { | 1058 for (int i = 0; i < length; i++) { |
| 1037 Object* argtype = args->get(i); | 1059 Object* argtype = args->get(i); |
| 1038 if (argtype->IsUndefined()) continue; | 1060 if (argtype->IsUndefined()) continue; |
| 1039 Object** arg = &argv[-1 - i]; | 1061 Object** arg = &argv[-1 - i]; |
| 1040 Object* current = *arg; | 1062 Object* current = *arg; |
| 1041 for (; current != Heap::null_value(); current = current->GetPrototype()) { | 1063 for (; current != heap->null_value(); current = current->GetPrototype()) { |
| 1042 if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) { | 1064 if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) { |
| 1043 *arg = current; | 1065 *arg = current; |
| 1044 break; | 1066 break; |
| 1045 } | 1067 } |
| 1046 } | 1068 } |
| 1047 if (current == Heap::null_value()) *arg = Heap::undefined_value(); | 1069 if (current == heap->null_value()) *arg = heap->undefined_value(); |
| 1048 } | 1070 } |
| 1049 return holder; | 1071 return holder; |
| 1050 } | 1072 } |
| 1051 | 1073 |
| 1052 | 1074 |
| 1053 template <bool is_construct> | 1075 template <bool is_construct> |
| 1054 MUST_USE_RESULT static MaybeObject* HandleApiCallHelper( | 1076 MUST_USE_RESULT static MaybeObject* HandleApiCallHelper( |
| 1055 BuiltinArguments<NEEDS_CALLED_FUNCTION> args) { | 1077 BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) { |
| 1056 ASSERT(is_construct == CalledAsConstructor()); | 1078 ASSERT(is_construct == CalledAsConstructor(isolate)); |
| 1079 Heap* heap = isolate->heap(); |
| 1057 | 1080 |
| 1058 HandleScope scope; | 1081 HandleScope scope(isolate); |
| 1059 Handle<JSFunction> function = args.called_function(); | 1082 Handle<JSFunction> function = args.called_function(); |
| 1060 ASSERT(function->shared()->IsApiFunction()); | 1083 ASSERT(function->shared()->IsApiFunction()); |
| 1061 | 1084 |
| 1062 FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data(); | 1085 FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data(); |
| 1063 if (is_construct) { | 1086 if (is_construct) { |
| 1064 Handle<FunctionTemplateInfo> desc(fun_data); | 1087 Handle<FunctionTemplateInfo> desc(fun_data, isolate); |
| 1065 bool pending_exception = false; | 1088 bool pending_exception = false; |
| 1066 Factory::ConfigureInstance(desc, Handle<JSObject>::cast(args.receiver()), | 1089 isolate->factory()->ConfigureInstance( |
| 1067 &pending_exception); | 1090 desc, Handle<JSObject>::cast(args.receiver()), &pending_exception); |
| 1068 ASSERT(Top::has_pending_exception() == pending_exception); | 1091 ASSERT(isolate->has_pending_exception() == pending_exception); |
| 1069 if (pending_exception) return Failure::Exception(); | 1092 if (pending_exception) return Failure::Exception(); |
| 1070 fun_data = *desc; | 1093 fun_data = *desc; |
| 1071 } | 1094 } |
| 1072 | 1095 |
| 1073 Object* raw_holder = TypeCheck(args.length(), &args[0], fun_data); | 1096 Object* raw_holder = TypeCheck(heap, args.length(), &args[0], fun_data); |
| 1074 | 1097 |
| 1075 if (raw_holder->IsNull()) { | 1098 if (raw_holder->IsNull()) { |
| 1076 // This function cannot be called with the given receiver. Abort! | 1099 // This function cannot be called with the given receiver. Abort! |
| 1077 Handle<Object> obj = | 1100 Handle<Object> obj = |
| 1078 Factory::NewTypeError("illegal_invocation", HandleVector(&function, 1)); | 1101 isolate->factory()->NewTypeError( |
| 1079 return Top::Throw(*obj); | 1102 "illegal_invocation", HandleVector(&function, 1)); |
| 1103 return isolate->Throw(*obj); |
| 1080 } | 1104 } |
| 1081 | 1105 |
| 1082 Object* raw_call_data = fun_data->call_code(); | 1106 Object* raw_call_data = fun_data->call_code(); |
| 1083 if (!raw_call_data->IsUndefined()) { | 1107 if (!raw_call_data->IsUndefined()) { |
| 1084 CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); | 1108 CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); |
| 1085 Object* callback_obj = call_data->callback(); | 1109 Object* callback_obj = call_data->callback(); |
| 1086 v8::InvocationCallback callback = | 1110 v8::InvocationCallback callback = |
| 1087 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1111 v8::ToCData<v8::InvocationCallback>(callback_obj); |
| 1088 Object* data_obj = call_data->data(); | 1112 Object* data_obj = call_data->data(); |
| 1089 Object* result; | 1113 Object* result; |
| 1090 | 1114 |
| 1091 LOG(ApiObjectAccess("call", JSObject::cast(*args.receiver()))); | 1115 LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver()))); |
| 1092 ASSERT(raw_holder->IsJSObject()); | 1116 ASSERT(raw_holder->IsJSObject()); |
| 1093 | 1117 |
| 1094 CustomArguments custom; | 1118 CustomArguments custom(isolate); |
| 1095 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), | 1119 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
| 1096 data_obj, *function, raw_holder); | 1120 data_obj, *function, raw_holder); |
| 1097 | 1121 |
| 1098 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1122 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| 1099 custom.end(), | 1123 custom.end(), |
| 1100 &args[0] - 1, | 1124 &args[0] - 1, |
| 1101 args.length() - 1, | 1125 args.length() - 1, |
| 1102 is_construct); | 1126 is_construct); |
| 1103 | 1127 |
| 1104 v8::Handle<v8::Value> value; | 1128 v8::Handle<v8::Value> value; |
| 1105 { | 1129 { |
| 1106 // Leaving JavaScript. | 1130 // Leaving JavaScript. |
| 1107 VMState state(EXTERNAL); | 1131 VMState state(isolate, EXTERNAL); |
| 1108 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1132 ExternalCallbackScope call_scope(isolate, |
| 1133 v8::ToCData<Address>(callback_obj)); |
| 1109 value = callback(new_args); | 1134 value = callback(new_args); |
| 1110 } | 1135 } |
| 1111 if (value.IsEmpty()) { | 1136 if (value.IsEmpty()) { |
| 1112 result = Heap::undefined_value(); | 1137 result = heap->undefined_value(); |
| 1113 } else { | 1138 } else { |
| 1114 result = *reinterpret_cast<Object**>(*value); | 1139 result = *reinterpret_cast<Object**>(*value); |
| 1115 } | 1140 } |
| 1116 | 1141 |
| 1117 RETURN_IF_SCHEDULED_EXCEPTION(); | 1142 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| 1118 if (!is_construct || result->IsJSObject()) return result; | 1143 if (!is_construct || result->IsJSObject()) return result; |
| 1119 } | 1144 } |
| 1120 | 1145 |
| 1121 return *args.receiver(); | 1146 return *args.receiver(); |
| 1122 } | 1147 } |
| 1123 | 1148 |
| 1124 | 1149 |
| 1125 BUILTIN(HandleApiCall) { | 1150 BUILTIN(HandleApiCall) { |
| 1126 return HandleApiCallHelper<false>(args); | 1151 return HandleApiCallHelper<false>(args, isolate); |
| 1127 } | 1152 } |
| 1128 | 1153 |
| 1129 | 1154 |
| 1130 BUILTIN(HandleApiCallConstruct) { | 1155 BUILTIN(HandleApiCallConstruct) { |
| 1131 return HandleApiCallHelper<true>(args); | 1156 return HandleApiCallHelper<true>(args, isolate); |
| 1132 } | 1157 } |
| 1133 | 1158 |
| 1134 | 1159 |
| 1135 #ifdef DEBUG | 1160 #ifdef DEBUG |
| 1136 | 1161 |
| 1137 static void VerifyTypeCheck(Handle<JSObject> object, | 1162 static void VerifyTypeCheck(Handle<JSObject> object, |
| 1138 Handle<JSFunction> function) { | 1163 Handle<JSFunction> function) { |
| 1139 ASSERT(function->shared()->IsApiFunction()); | 1164 ASSERT(function->shared()->IsApiFunction()); |
| 1140 FunctionTemplateInfo* info = function->shared()->get_api_func_data(); | 1165 FunctionTemplateInfo* info = function->shared()->get_api_func_data(); |
| 1141 if (info->signature()->IsUndefined()) return; | 1166 if (info->signature()->IsUndefined()) return; |
| 1142 SignatureInfo* signature = SignatureInfo::cast(info->signature()); | 1167 SignatureInfo* signature = SignatureInfo::cast(info->signature()); |
| 1143 Object* receiver_type = signature->receiver(); | 1168 Object* receiver_type = signature->receiver(); |
| 1144 if (receiver_type->IsUndefined()) return; | 1169 if (receiver_type->IsUndefined()) return; |
| 1145 FunctionTemplateInfo* type = FunctionTemplateInfo::cast(receiver_type); | 1170 FunctionTemplateInfo* type = FunctionTemplateInfo::cast(receiver_type); |
| 1146 ASSERT(object->IsInstanceOf(type)); | 1171 ASSERT(object->IsInstanceOf(type)); |
| 1147 } | 1172 } |
| 1148 | 1173 |
| 1149 #endif | 1174 #endif |
| 1150 | 1175 |
| 1151 | 1176 |
| 1152 BUILTIN(FastHandleApiCall) { | 1177 BUILTIN(FastHandleApiCall) { |
| 1153 ASSERT(!CalledAsConstructor()); | 1178 ASSERT(!CalledAsConstructor(isolate)); |
| 1179 Heap* heap = isolate->heap(); |
| 1154 const bool is_construct = false; | 1180 const bool is_construct = false; |
| 1155 | 1181 |
| 1156 // We expect four more arguments: callback, function, call data, and holder. | 1182 // We expect four more arguments: callback, function, call data, and holder. |
| 1157 const int args_length = args.length() - 4; | 1183 const int args_length = args.length() - 4; |
| 1158 ASSERT(args_length >= 0); | 1184 ASSERT(args_length >= 0); |
| 1159 | 1185 |
| 1160 Object* callback_obj = args[args_length]; | 1186 Object* callback_obj = args[args_length]; |
| 1161 | 1187 |
| 1162 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1188 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| 1163 &args[args_length + 1], | 1189 &args[args_length + 1], |
| 1164 &args[0] - 1, | 1190 &args[0] - 1, |
| 1165 args_length - 1, | 1191 args_length - 1, |
| 1166 is_construct); | 1192 is_construct); |
| 1167 | 1193 |
| 1168 #ifdef DEBUG | 1194 #ifdef DEBUG |
| 1169 VerifyTypeCheck(Utils::OpenHandle(*new_args.Holder()), | 1195 VerifyTypeCheck(Utils::OpenHandle(*new_args.Holder()), |
| 1170 Utils::OpenHandle(*new_args.Callee())); | 1196 Utils::OpenHandle(*new_args.Callee())); |
| 1171 #endif | 1197 #endif |
| 1172 HandleScope scope; | 1198 HandleScope scope(isolate); |
| 1173 Object* result; | 1199 Object* result; |
| 1174 v8::Handle<v8::Value> value; | 1200 v8::Handle<v8::Value> value; |
| 1175 { | 1201 { |
| 1176 // Leaving JavaScript. | 1202 // Leaving JavaScript. |
| 1177 VMState state(EXTERNAL); | 1203 VMState state(isolate, EXTERNAL); |
| 1178 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1204 ExternalCallbackScope call_scope(isolate, |
| 1205 v8::ToCData<Address>(callback_obj)); |
| 1179 v8::InvocationCallback callback = | 1206 v8::InvocationCallback callback = |
| 1180 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1207 v8::ToCData<v8::InvocationCallback>(callback_obj); |
| 1181 | 1208 |
| 1182 value = callback(new_args); | 1209 value = callback(new_args); |
| 1183 } | 1210 } |
| 1184 if (value.IsEmpty()) { | 1211 if (value.IsEmpty()) { |
| 1185 result = Heap::undefined_value(); | 1212 result = heap->undefined_value(); |
| 1186 } else { | 1213 } else { |
| 1187 result = *reinterpret_cast<Object**>(*value); | 1214 result = *reinterpret_cast<Object**>(*value); |
| 1188 } | 1215 } |
| 1189 | 1216 |
| 1190 RETURN_IF_SCHEDULED_EXCEPTION(); | 1217 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| 1191 return result; | 1218 return result; |
| 1192 } | 1219 } |
| 1193 | 1220 |
| 1194 | 1221 |
| 1195 // Helper function to handle calls to non-function objects created through the | 1222 // Helper function to handle calls to non-function objects created through the |
| 1196 // API. The object can be called as either a constructor (using new) or just as | 1223 // API. The object can be called as either a constructor (using new) or just as |
| 1197 // a function (without new). | 1224 // a function (without new). |
| 1198 MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor( | 1225 MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor( |
| 1226 Isolate* isolate, |
| 1199 bool is_construct_call, | 1227 bool is_construct_call, |
| 1200 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { | 1228 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
| 1201 // Non-functions are never called as constructors. Even if this is an object | 1229 // Non-functions are never called as constructors. Even if this is an object |
| 1202 // called as a constructor the delegate call is not a construct call. | 1230 // called as a constructor the delegate call is not a construct call. |
| 1203 ASSERT(!CalledAsConstructor()); | 1231 ASSERT(!CalledAsConstructor(isolate)); |
| 1232 Heap* heap = isolate->heap(); |
| 1204 | 1233 |
| 1205 Handle<Object> receiver = args.at<Object>(0); | 1234 Handle<Object> receiver = args.at<Object>(0); |
| 1206 | 1235 |
| 1207 // Get the object called. | 1236 // Get the object called. |
| 1208 JSObject* obj = JSObject::cast(*args.receiver()); | 1237 JSObject* obj = JSObject::cast(*args.receiver()); |
| 1209 | 1238 |
| 1210 // Get the invocation callback from the function descriptor that was | 1239 // Get the invocation callback from the function descriptor that was |
| 1211 // used to create the called object. | 1240 // used to create the called object. |
| 1212 ASSERT(obj->map()->has_instance_call_handler()); | 1241 ASSERT(obj->map()->has_instance_call_handler()); |
| 1213 JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); | 1242 JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); |
| 1214 ASSERT(constructor->shared()->IsApiFunction()); | 1243 ASSERT(constructor->shared()->IsApiFunction()); |
| 1215 Object* handler = | 1244 Object* handler = |
| 1216 constructor->shared()->get_api_func_data()->instance_call_handler(); | 1245 constructor->shared()->get_api_func_data()->instance_call_handler(); |
| 1217 ASSERT(!handler->IsUndefined()); | 1246 ASSERT(!handler->IsUndefined()); |
| 1218 CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); | 1247 CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); |
| 1219 Object* callback_obj = call_data->callback(); | 1248 Object* callback_obj = call_data->callback(); |
| 1220 v8::InvocationCallback callback = | 1249 v8::InvocationCallback callback = |
| 1221 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1250 v8::ToCData<v8::InvocationCallback>(callback_obj); |
| 1222 | 1251 |
| 1223 // Get the data for the call and perform the callback. | 1252 // Get the data for the call and perform the callback. |
| 1224 Object* result; | 1253 Object* result; |
| 1225 { | 1254 { |
| 1226 HandleScope scope; | 1255 HandleScope scope(isolate); |
| 1256 LOG(isolate, ApiObjectAccess("call non-function", obj)); |
| 1227 | 1257 |
| 1228 LOG(ApiObjectAccess("call non-function", obj)); | 1258 CustomArguments custom(isolate); |
| 1229 | |
| 1230 CustomArguments custom; | |
| 1231 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), | 1259 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
| 1232 call_data->data(), constructor, obj); | 1260 call_data->data(), constructor, obj); |
| 1233 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1261 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
| 1234 custom.end(), | 1262 custom.end(), |
| 1235 &args[0] - 1, | 1263 &args[0] - 1, |
| 1236 args.length() - 1, | 1264 args.length() - 1, |
| 1237 is_construct_call); | 1265 is_construct_call); |
| 1238 v8::Handle<v8::Value> value; | 1266 v8::Handle<v8::Value> value; |
| 1239 { | 1267 { |
| 1240 // Leaving JavaScript. | 1268 // Leaving JavaScript. |
| 1241 VMState state(EXTERNAL); | 1269 VMState state(isolate, EXTERNAL); |
| 1242 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1270 ExternalCallbackScope call_scope(isolate, |
| 1271 v8::ToCData<Address>(callback_obj)); |
| 1243 value = callback(new_args); | 1272 value = callback(new_args); |
| 1244 } | 1273 } |
| 1245 if (value.IsEmpty()) { | 1274 if (value.IsEmpty()) { |
| 1246 result = Heap::undefined_value(); | 1275 result = heap->undefined_value(); |
| 1247 } else { | 1276 } else { |
| 1248 result = *reinterpret_cast<Object**>(*value); | 1277 result = *reinterpret_cast<Object**>(*value); |
| 1249 } | 1278 } |
| 1250 } | 1279 } |
| 1251 // Check for exceptions and return result. | 1280 // Check for exceptions and return result. |
| 1252 RETURN_IF_SCHEDULED_EXCEPTION(); | 1281 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| 1253 return result; | 1282 return result; |
| 1254 } | 1283 } |
| 1255 | 1284 |
| 1256 | 1285 |
| 1257 // Handle calls to non-function objects created through the API. This delegate | 1286 // Handle calls to non-function objects created through the API. This delegate |
| 1258 // function is used when the call is a normal function call. | 1287 // function is used when the call is a normal function call. |
| 1259 BUILTIN(HandleApiCallAsFunction) { | 1288 BUILTIN(HandleApiCallAsFunction) { |
| 1260 return HandleApiCallAsFunctionOrConstructor(false, args); | 1289 return HandleApiCallAsFunctionOrConstructor(isolate, false, args); |
| 1261 } | 1290 } |
| 1262 | 1291 |
| 1263 | 1292 |
| 1264 // Handle calls to non-function objects created through the API. This delegate | 1293 // Handle calls to non-function objects created through the API. This delegate |
| 1265 // function is used when the call is a construct call. | 1294 // function is used when the call is a construct call. |
| 1266 BUILTIN(HandleApiCallAsConstructor) { | 1295 BUILTIN(HandleApiCallAsConstructor) { |
| 1267 return HandleApiCallAsFunctionOrConstructor(true, args); | 1296 return HandleApiCallAsFunctionOrConstructor(isolate, true, args); |
| 1268 } | 1297 } |
| 1269 | 1298 |
| 1270 | 1299 |
| 1271 static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) { | 1300 static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) { |
| 1272 LoadIC::GenerateArrayLength(masm); | 1301 LoadIC::GenerateArrayLength(masm); |
| 1273 } | 1302 } |
| 1274 | 1303 |
| 1275 | 1304 |
| 1276 static void Generate_LoadIC_StringLength(MacroAssembler* masm) { | 1305 static void Generate_LoadIC_StringLength(MacroAssembler* masm) { |
| 1277 LoadIC::GenerateStringLength(masm, false); | 1306 LoadIC::GenerateStringLength(masm, false); |
| (...skipping 188 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1466 static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { | 1495 static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { |
| 1467 Debug::GeneratePlainReturnLiveEdit(masm); | 1496 Debug::GeneratePlainReturnLiveEdit(masm); |
| 1468 } | 1497 } |
| 1469 | 1498 |
| 1470 | 1499 |
| 1471 static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { | 1500 static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { |
| 1472 Debug::GenerateFrameDropperLiveEdit(masm); | 1501 Debug::GenerateFrameDropperLiveEdit(masm); |
| 1473 } | 1502 } |
| 1474 #endif | 1503 #endif |
| 1475 | 1504 |
| 1476 Object* Builtins::builtins_[builtin_count] = { NULL, }; | 1505 |
| 1477 const char* Builtins::names_[builtin_count] = { NULL, }; | 1506 Builtins::Builtins() : initialized_(false) { |
| 1507 memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); |
| 1508 memset(names_, 0, sizeof(names_[0]) * builtin_count); |
| 1509 } |
| 1510 |
| 1511 |
| 1512 Builtins::~Builtins() { |
| 1513 } |
| 1514 |
| 1478 | 1515 |
| 1479 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), | 1516 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), |
| 1480 Address Builtins::c_functions_[cfunction_count] = { | 1517 Address const Builtins::c_functions_[cfunction_count] = { |
| 1481 BUILTIN_LIST_C(DEF_ENUM_C) | 1518 BUILTIN_LIST_C(DEF_ENUM_C) |
| 1482 }; | 1519 }; |
| 1483 #undef DEF_ENUM_C | 1520 #undef DEF_ENUM_C |
| 1484 | 1521 |
| 1485 #define DEF_JS_NAME(name, ignore) #name, | 1522 #define DEF_JS_NAME(name, ignore) #name, |
| 1486 #define DEF_JS_ARGC(ignore, argc) argc, | 1523 #define DEF_JS_ARGC(ignore, argc) argc, |
| 1487 const char* Builtins::javascript_names_[id_count] = { | 1524 const char* const Builtins::javascript_names_[id_count] = { |
| 1488 BUILTINS_LIST_JS(DEF_JS_NAME) | 1525 BUILTINS_LIST_JS(DEF_JS_NAME) |
| 1489 }; | 1526 }; |
| 1490 | 1527 |
| 1491 int Builtins::javascript_argc_[id_count] = { | 1528 int const Builtins::javascript_argc_[id_count] = { |
| 1492 BUILTINS_LIST_JS(DEF_JS_ARGC) | 1529 BUILTINS_LIST_JS(DEF_JS_ARGC) |
| 1493 }; | 1530 }; |
| 1494 #undef DEF_JS_NAME | 1531 #undef DEF_JS_NAME |
| 1495 #undef DEF_JS_ARGC | 1532 #undef DEF_JS_ARGC |
| 1496 | 1533 |
| 1497 static bool is_initialized = false; | 1534 struct BuiltinDesc { |
| 1535 byte* generator; |
| 1536 byte* c_code; |
| 1537 const char* s_name; // name is only used for generating log information. |
| 1538 int name; |
| 1539 Code::Flags flags; |
| 1540 BuiltinExtraArguments extra_args; |
| 1541 }; |
| 1542 |
| 1543 class BuiltinFunctionTable { |
| 1544 public: |
| 1545 BuiltinFunctionTable() { |
| 1546 Builtins::InitBuiltinFunctionTable(); |
| 1547 } |
| 1548 |
| 1549 static const BuiltinDesc* functions() { return functions_; } |
| 1550 |
| 1551 private: |
| 1552 static BuiltinDesc functions_[Builtins::builtin_count + 1]; |
| 1553 |
| 1554 friend class Builtins; |
| 1555 }; |
| 1556 |
| 1557 BuiltinDesc BuiltinFunctionTable::functions_[Builtins::builtin_count + 1]; |
| 1558 |
| 1559 static const BuiltinFunctionTable builtin_function_table_init; |
| 1560 |
| 1561 // Define array of pointers to generators and C builtin functions. |
| 1562 // We do this in a sort of roundabout way so that we can do the initialization |
| 1563 // within the lexical scope of Builtins:: and within a context where |
| 1564 // Code::Flags names a non-abstract type. |
| 1565 void Builtins::InitBuiltinFunctionTable() { |
| 1566 BuiltinDesc* functions = BuiltinFunctionTable::functions_; |
| 1567 functions[builtin_count].generator = NULL; |
| 1568 functions[builtin_count].c_code = NULL; |
| 1569 functions[builtin_count].s_name = NULL; |
| 1570 functions[builtin_count].name = builtin_count; |
| 1571 functions[builtin_count].flags = static_cast<Code::Flags>(0); |
| 1572 functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS; |
| 1573 |
| 1574 #define DEF_FUNCTION_PTR_C(aname, aextra_args) \ |
| 1575 functions->generator = FUNCTION_ADDR(Generate_Adaptor); \ |
| 1576 functions->c_code = FUNCTION_ADDR(Builtin_##aname); \ |
| 1577 functions->s_name = #aname; \ |
| 1578 functions->name = c_##aname; \ |
| 1579 functions->flags = Code::ComputeFlags(Code::BUILTIN); \ |
| 1580 functions->extra_args = aextra_args; \ |
| 1581 ++functions; |
| 1582 |
| 1583 #define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \ |
| 1584 functions->generator = FUNCTION_ADDR(Generate_##aname); \ |
| 1585 functions->c_code = NULL; \ |
| 1586 functions->s_name = #aname; \ |
| 1587 functions->name = aname; \ |
| 1588 functions->flags = Code::ComputeFlags(Code::kind, \ |
| 1589 NOT_IN_LOOP, \ |
| 1590 state, \ |
| 1591 extra); \ |
| 1592 functions->extra_args = NO_EXTRA_ARGUMENTS; \ |
| 1593 ++functions; |
| 1594 |
| 1595 BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) |
| 1596 BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) |
| 1597 BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) |
| 1598 |
| 1599 #undef DEF_FUNCTION_PTR_C |
| 1600 #undef DEF_FUNCTION_PTR_A |
| 1601 } |
| 1602 |
| 1498 void Builtins::Setup(bool create_heap_objects) { | 1603 void Builtins::Setup(bool create_heap_objects) { |
| 1499 ASSERT(!is_initialized); | 1604 ASSERT(!initialized_); |
| 1605 Heap* heap = Isolate::Current()->heap(); |
| 1500 | 1606 |
| 1501 // Create a scope for the handles in the builtins. | 1607 // Create a scope for the handles in the builtins. |
| 1502 HandleScope scope; | 1608 HandleScope scope; |
| 1503 | 1609 |
| 1504 struct BuiltinDesc { | 1610 const BuiltinDesc* functions = BuiltinFunctionTable::functions(); |
| 1505 byte* generator; | |
| 1506 byte* c_code; | |
| 1507 const char* s_name; // name is only used for generating log information. | |
| 1508 int name; | |
| 1509 Code::Flags flags; | |
| 1510 BuiltinExtraArguments extra_args; | |
| 1511 }; | |
| 1512 | |
| 1513 #define DEF_FUNCTION_PTR_C(name, extra_args) \ | |
| 1514 { FUNCTION_ADDR(Generate_Adaptor), \ | |
| 1515 FUNCTION_ADDR(Builtin_##name), \ | |
| 1516 #name, \ | |
| 1517 c_##name, \ | |
| 1518 Code::ComputeFlags(Code::BUILTIN), \ | |
| 1519 extra_args \ | |
| 1520 }, | |
| 1521 | |
| 1522 #define DEF_FUNCTION_PTR_A(name, kind, state, extra) \ | |
| 1523 { FUNCTION_ADDR(Generate_##name), \ | |
| 1524 NULL, \ | |
| 1525 #name, \ | |
| 1526 name, \ | |
| 1527 Code::ComputeFlags(Code::kind, NOT_IN_LOOP, state, extra), \ | |
| 1528 NO_EXTRA_ARGUMENTS \ | |
| 1529 }, | |
| 1530 | |
| 1531 // Define array of pointers to generators and C builtin functions. | |
| 1532 static BuiltinDesc functions[] = { | |
| 1533 BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) | |
| 1534 BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) | |
| 1535 BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) | |
| 1536 // Terminator: | |
| 1537 { NULL, NULL, NULL, builtin_count, static_cast<Code::Flags>(0), | |
| 1538 NO_EXTRA_ARGUMENTS } | |
| 1539 }; | |
| 1540 | |
| 1541 #undef DEF_FUNCTION_PTR_C | |
| 1542 #undef DEF_FUNCTION_PTR_A | |
| 1543 | 1611 |
| 1544 // For now we generate builtin adaptor code into a stack-allocated | 1612 // For now we generate builtin adaptor code into a stack-allocated |
| 1545 // buffer, before copying it into individual code objects. | 1613 // buffer, before copying it into individual code objects. |
| 1546 byte buffer[4*KB]; | 1614 byte buffer[4*KB]; |
| 1547 | 1615 |
| 1548 // Traverse the list of builtins and generate an adaptor in a | 1616 // Traverse the list of builtins and generate an adaptor in a |
| 1549 // separate code object for each one. | 1617 // separate code object for each one. |
| 1550 for (int i = 0; i < builtin_count; i++) { | 1618 for (int i = 0; i < builtin_count; i++) { |
| 1551 if (create_heap_objects) { | 1619 if (create_heap_objects) { |
| 1552 MacroAssembler masm(buffer, sizeof buffer); | 1620 MacroAssembler masm(buffer, sizeof buffer); |
| 1553 // Generate the code/adaptor. | 1621 // Generate the code/adaptor. |
| 1554 typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); | 1622 typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); |
| 1555 Generator g = FUNCTION_CAST<Generator>(functions[i].generator); | 1623 Generator g = FUNCTION_CAST<Generator>(functions[i].generator); |
| 1556 // We pass all arguments to the generator, but it may not use all of | 1624 // We pass all arguments to the generator, but it may not use all of |
| 1557 // them. This works because the first arguments are on top of the | 1625 // them. This works because the first arguments are on top of the |
| 1558 // stack. | 1626 // stack. |
| 1559 g(&masm, functions[i].name, functions[i].extra_args); | 1627 g(&masm, functions[i].name, functions[i].extra_args); |
| 1560 // Move the code into the object heap. | 1628 // Move the code into the object heap. |
| 1561 CodeDesc desc; | 1629 CodeDesc desc; |
| 1562 masm.GetCode(&desc); | 1630 masm.GetCode(&desc); |
| 1563 Code::Flags flags = functions[i].flags; | 1631 Code::Flags flags = functions[i].flags; |
| 1564 Object* code = NULL; | 1632 Object* code = NULL; |
| 1565 { | 1633 { |
| 1566 // During startup it's OK to always allocate and defer GC to later. | 1634 // During startup it's OK to always allocate and defer GC to later. |
| 1567 // This simplifies things because we don't need to retry. | 1635 // This simplifies things because we don't need to retry. |
| 1568 AlwaysAllocateScope __scope__; | 1636 AlwaysAllocateScope __scope__; |
| 1569 { MaybeObject* maybe_code = | 1637 { MaybeObject* maybe_code = |
| 1570 Heap::CreateCode(desc, flags, masm.CodeObject()); | 1638 heap->CreateCode(desc, flags, masm.CodeObject()); |
| 1571 if (!maybe_code->ToObject(&code)) { | 1639 if (!maybe_code->ToObject(&code)) { |
| 1572 v8::internal::V8::FatalProcessOutOfMemory("CreateCode"); | 1640 v8::internal::V8::FatalProcessOutOfMemory("CreateCode"); |
| 1573 } | 1641 } |
| 1574 } | 1642 } |
| 1575 } | 1643 } |
| 1576 // Log the event and add the code to the builtins array. | 1644 // Log the event and add the code to the builtins array. |
| 1577 PROFILE(CodeCreateEvent(Logger::BUILTIN_TAG, | 1645 PROFILE(ISOLATE, |
| 1646 CodeCreateEvent(Logger::BUILTIN_TAG, |
| 1578 Code::cast(code), | 1647 Code::cast(code), |
| 1579 functions[i].s_name)); | 1648 functions[i].s_name)); |
| 1580 GDBJIT(AddCode(GDBJITInterface::BUILTIN, | 1649 GDBJIT(AddCode(GDBJITInterface::BUILTIN, |
| 1581 functions[i].s_name, | 1650 functions[i].s_name, |
| 1582 Code::cast(code))); | 1651 Code::cast(code))); |
| 1583 builtins_[i] = code; | 1652 builtins_[i] = code; |
| 1584 #ifdef ENABLE_DISASSEMBLER | 1653 #ifdef ENABLE_DISASSEMBLER |
| 1585 if (FLAG_print_builtin_code) { | 1654 if (FLAG_print_builtin_code) { |
| 1586 PrintF("Builtin: %s\n", functions[i].s_name); | 1655 PrintF("Builtin: %s\n", functions[i].s_name); |
| 1587 Code::cast(code)->Disassemble(functions[i].s_name); | 1656 Code::cast(code)->Disassemble(functions[i].s_name); |
| 1588 PrintF("\n"); | 1657 PrintF("\n"); |
| 1589 } | 1658 } |
| 1590 #endif | 1659 #endif |
| 1591 } else { | 1660 } else { |
| 1592 // Deserializing. The values will be filled in during IterateBuiltins. | 1661 // Deserializing. The values will be filled in during IterateBuiltins. |
| 1593 builtins_[i] = NULL; | 1662 builtins_[i] = NULL; |
| 1594 } | 1663 } |
| 1595 names_[i] = functions[i].s_name; | 1664 names_[i] = functions[i].s_name; |
| 1596 } | 1665 } |
| 1597 | 1666 |
| 1598 // Mark as initialized. | 1667 // Mark as initialized. |
| 1599 is_initialized = true; | 1668 initialized_ = true; |
| 1600 } | 1669 } |
| 1601 | 1670 |
| 1602 | 1671 |
| 1603 void Builtins::TearDown() { | 1672 void Builtins::TearDown() { |
| 1604 is_initialized = false; | 1673 initialized_ = false; |
| 1605 } | 1674 } |
| 1606 | 1675 |
| 1607 | 1676 |
| 1608 void Builtins::IterateBuiltins(ObjectVisitor* v) { | 1677 void Builtins::IterateBuiltins(ObjectVisitor* v) { |
| 1609 v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); | 1678 v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); |
| 1610 } | 1679 } |
| 1611 | 1680 |
| 1612 | 1681 |
| 1613 const char* Builtins::Lookup(byte* pc) { | 1682 const char* Builtins::Lookup(byte* pc) { |
| 1614 if (is_initialized) { // may be called during initialization (disassembler!) | 1683 // may be called during initialization (disassembler!) |
| 1684 if (initialized_) { |
| 1615 for (int i = 0; i < builtin_count; i++) { | 1685 for (int i = 0; i < builtin_count; i++) { |
| 1616 Code* entry = Code::cast(builtins_[i]); | 1686 Code* entry = Code::cast(builtins_[i]); |
| 1617 if (entry->contains(pc)) { | 1687 if (entry->contains(pc)) { |
| 1618 return names_[i]; | 1688 return names_[i]; |
| 1619 } | 1689 } |
| 1620 } | 1690 } |
| 1621 } | 1691 } |
| 1622 return NULL; | 1692 return NULL; |
| 1623 } | 1693 } |
| 1624 | 1694 |
| 1625 | 1695 |
| 1626 } } // namespace v8::internal | 1696 } } // namespace v8::internal |
| OLD | NEW |