Chromium Code Reviews| Index: runtime/vm/regexp.cc |
| diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc |
| index 534e0c5072dc380457539422f1121bdecd81b0a8..467621b0e53002c03933159d60a54d953ceaaccc 100644 |
| --- a/runtime/vm/regexp.cc |
| +++ b/runtime/vm/regexp.cc |
| @@ -4,29 +4,66 @@ |
| #include "vm/regexp.h" |
| -// SNIP |
| +#include "vm/dart_entry.h" |
| +#include "vm/regexp_assembler.h" |
| +#include "vm/regexp_ast.h" |
| +#include "vm/unibrow-inl.h" |
| +#include "vm/unicode.h" |
| +#include "vm/symbols.h" |
| + |
| +#define I (isolate()) |
| +#define CI (compiler->isolate()) |
| namespace dart { |
| -// SNIP |
| +DECLARE_FLAG(bool, trace_irregexp); |
| + |
| +// Default to generating optimized regexp code. |
| +static const bool kRegexpOptimization = true; |
| + |
| +// More makes code generation slower, less makes V8 benchmark score lower. |
| +static const intptr_t kMaxLookaheadForBoyerMoore = 8; |
| + |
| +ContainedInLattice AddRange(ContainedInLattice containment, |
| + const intptr_t* ranges, |
| + intptr_t ranges_length, |
| + Interval new_range) { |
| + ASSERT((ranges_length & 1) == 1); |
| + ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1); |
| + if (containment == kLatticeUnknown) return containment; |
| + bool inside = false; |
| + intptr_t last = 0; |
| + for (intptr_t i = 0; i < ranges_length; |
| + inside = !inside, last = ranges[i], i++) { |
| + // Consider the range from last to ranges[i]. |
| + // We haven't got to the new range yet. |
| + if (ranges[i] <= new_range.from()) continue; |
| + // New range is wholly inside last-ranges[i]. Note that new_range.to() is |
| + // inclusive, but the values in ranges are not. |
| + if (last <= new_range.from() && new_range.to() < ranges[i]) { |
| + return Combine(containment, inside ? kLatticeIn : kLatticeOut); |
| + } |
| + return kLatticeUnknown; |
| + } |
| + return containment; |
| +} |
| // ------------------------------------------------------------------- |
| // Implementation of the Irregexp regular expression engine. |
| // |
| // The Irregexp regular expression engine is intended to be a complete |
| -// implementation of ECMAScript regular expressions. It generates either |
| -// bytecodes or native code. |
| +// implementation of ECMAScript regular expressions. It generates |
| +// IR code that is subsequently compiled to native code. |
| // The Irregexp regexp engine is structured in three steps. |
| -// 1) The parser generates an abstract syntax tree. See ast.cc. |
| +// 1) The parser generates an abstract syntax tree. See regexp_ast.cc. |
| // 2) From the AST a node network is created. The nodes are all |
| // subclasses of RegExpNode. The nodes represent states when |
| // executing a regular expression. Several optimizations are |
| // performed on the node network. |
| -// 3) From the nodes we generate either byte codes or native code |
| -// that can actually execute the regular expression (perform |
| -// the search). The code generation step is described in more |
| -// detail below. |
| +// 3) From the nodes we generate IR instructions that can actually |
| +// execute the regular expression (perform the search). The |
| +// code generation step is described in more detail below. |
| // Code generation. |
| // |
| @@ -49,8 +86,8 @@ namespace dart { |
| // These are used to implement the actions required on finding |
| // a successful match or failing to find a match. |
| // |
| -// The code generated (whether as byte codes or native code) maintains |
| -// some state as it runs. This consists of the following elements: |
| +// The code generated maintains some state as it runs. This consists of the |
| +// following elements: |
| // |
| // * The capture registers. Used for string captures. |
| // * Other registers. Used for counters etc. |
| @@ -160,24 +197,24 @@ namespace dart { |
| // the event that code generation is requested for an identical trace. |
| -void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { |
| +void RegExpTree::AppendToText(RegExpText* text) { |
| UNREACHABLE(); |
| } |
| -void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { |
| - text->AddElement(TextElement::Atom(this), zone); |
| +void RegExpAtom::AppendToText(RegExpText* text) { |
| + text->AddElement(TextElement::Atom(this)); |
| } |
| -void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { |
| - text->AddElement(TextElement::CharClass(this), zone); |
| +void RegExpCharacterClass::AppendToText(RegExpText* text) { |
| + text->AddElement(TextElement::CharClass(this)); |
| } |
| -void RegExpText::AppendToText(RegExpText* text, Zone* zone) { |
| - for (int i = 0; i < elements()->length(); i++) |
| - text->AddElement(elements()->at(i), zone); |
| +void RegExpText::AppendToText(RegExpText* text) { |
| + for (intptr_t i = 0; i < elements()->length(); i++) |
| + text->AddElement((*elements())[i]); |
| } |
| @@ -191,7 +228,7 @@ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { |
| } |
| -int TextElement::length() const { |
| +intptr_t TextElement::length() const { |
| switch (text_type()) { |
| case ATOM: |
| return atom()->length(); |
| @@ -204,36 +241,26 @@ int TextElement::length() const { |
| } |
| -DispatchTable* ChoiceNode::GetTable(bool ignore_case) { |
| - if (table_ == NULL) { |
| - table_ = new(zone()) DispatchTable(zone()); |
| - DispatchTableConstructor cons(table_, ignore_case, zone()); |
| - cons.BuildTable(this); |
| - } |
| - return table_; |
| -} |
| - |
| - |
| -class FrequencyCollator { |
| +class FrequencyCollator : public ValueObject { |
| public: |
| FrequencyCollator() : total_samples_(0) { |
| - for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
| + for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
| frequencies_[i] = CharacterFrequency(i); |
| } |
| } |
| - void CountCharacter(int character) { |
| - int index = (character & RegExpMacroAssembler::kTableMask); |
| + void CountCharacter(intptr_t character) { |
| + intptr_t index = (character & RegExpMacroAssembler::kTableMask); |
| frequencies_[index].Increment(); |
| total_samples_++; |
| } |
| // Does not measure in percent, but rather per-128 (the table size from the |
| // regexp macro assembler). |
| - int Frequency(int in_character) { |
| - DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
| + intptr_t Frequency(intptr_t in_character) { |
| + ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
| if (total_samples_ < 1) return 1; // Division by zero. |
| - int freq_in_per128 = |
| + intptr_t freq_in_per128 = |
| (frequencies_[in_character].counter() * 128) / total_samples_; |
| return freq_in_per128; |
| } |
| @@ -242,88 +269,91 @@ class FrequencyCollator { |
| class CharacterFrequency { |
| public: |
| CharacterFrequency() : counter_(0), character_(-1) { } |
| - explicit CharacterFrequency(int character) |
| + explicit CharacterFrequency(intptr_t character) |
| : counter_(0), character_(character) { } |
| void Increment() { counter_++; } |
| - int counter() { return counter_; } |
| - int character() { return character_; } |
| + intptr_t counter() { return counter_; } |
| + intptr_t character() { return character_; } |
| private: |
| - int counter_; |
| - int character_; |
| + intptr_t counter_; |
| + intptr_t character_; |
| + |
| + DISALLOW_ALLOCATION(); |
| }; |
| private: |
| CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; |
| - int total_samples_; |
| + intptr_t total_samples_; |
| }; |
| -class RegExpCompiler { |
| +class RegExpCompiler : public ValueObject { |
| public: |
| - RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte, |
| - Zone* zone); |
| + RegExpCompiler(intptr_t capture_count, |
| + bool ignore_case, |
| + intptr_t specialization_cid); |
| - int AllocateRegister() { |
| - if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { |
| - reg_exp_too_big_ = true; |
| - return next_register_; |
| - } |
| + intptr_t AllocateRegister() { |
| return next_register_++; |
| } |
| - RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, |
| + RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler, |
| RegExpNode* start, |
| - int capture_count, |
| - Handle<String> pattern); |
| + intptr_t capture_count, |
| + const String& pattern); |
| inline void AddWork(RegExpNode* node) { work_list_->Add(node); } |
| - static const int kImplementationOffset = 0; |
| - static const int kNumberOfRegistersOffset = 0; |
| - static const int kCodeOffset = 1; |
| + static const intptr_t kImplementationOffset = 0; |
| + static const intptr_t kNumberOfRegistersOffset = 0; |
| + static const intptr_t kCodeOffset = 1; |
| - RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
| + IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
| EndNode* accept() { return accept_; } |
| - static const int kMaxRecursion = 100; |
| - inline int recursion_depth() { return recursion_depth_; } |
| + static const intptr_t kMaxRecursion = 100; |
| + inline intptr_t recursion_depth() { return recursion_depth_; } |
| inline void IncrementRecursionDepth() { recursion_depth_++; } |
| inline void DecrementRecursionDepth() { recursion_depth_--; } |
| void SetRegExpTooBig() { reg_exp_too_big_ = true; } |
| inline bool ignore_case() { return ignore_case_; } |
| - inline bool one_byte() { return one_byte_; } |
| + inline bool one_byte() const { |
| + return (specialization_cid_ == kOneByteStringCid || |
| + specialization_cid_ == kExternalOneByteStringCid); |
| + } |
| + inline intptr_t specialization_cid() { return specialization_cid_; } |
| FrequencyCollator* frequency_collator() { return &frequency_collator_; } |
| - int current_expansion_factor() { return current_expansion_factor_; } |
| - void set_current_expansion_factor(int value) { |
| + intptr_t current_expansion_factor() { return current_expansion_factor_; } |
| + void set_current_expansion_factor(intptr_t value) { |
| current_expansion_factor_ = value; |
| } |
| - Zone* zone() const { return zone_; } |
| + Isolate* isolate() const { return isolate_; } |
| - static const int kNoRegister = -1; |
| + static const intptr_t kNoRegister = -1; |
| private: |
| EndNode* accept_; |
| - int next_register_; |
| - List<RegExpNode*>* work_list_; |
| - int recursion_depth_; |
| - RegExpMacroAssembler* macro_assembler_; |
| + intptr_t next_register_; |
| + ZoneGrowableArray<RegExpNode*>* work_list_; |
| + intptr_t recursion_depth_; |
| + IRRegExpMacroAssembler* macro_assembler_; |
| bool ignore_case_; |
| - bool one_byte_; |
| + intptr_t specialization_cid_; |
| bool reg_exp_too_big_; |
| - int current_expansion_factor_; |
| + intptr_t current_expansion_factor_; |
| FrequencyCollator frequency_collator_; |
| - Zone* zone_; |
| + Isolate* isolate_; |
| }; |
| -class RecursionCheck { |
| +class RecursionCheck : public ValueObject { |
| public: |
| explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { |
| compiler->IncrementRecursionDepth(); |
| @@ -334,84 +364,60 @@ class RecursionCheck { |
| }; |
| -static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) { |
| - return RegExpEngine::CompilationResult(isolate, "RegExp too big"); |
| +static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { |
| + return RegExpEngine::CompilationResult("RegExp too big"); |
| } |
| // Attempts to compile the regexp using an Irregexp code generator. Returns |
| // a fixed array or a null handle depending on whether it succeeded. |
| -RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, |
| - bool one_byte, Zone* zone) |
| +RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case, |
| + intptr_t specialization_cid) |
| : next_register_(2 * (capture_count + 1)), |
| work_list_(NULL), |
| recursion_depth_(0), |
| ignore_case_(ignore_case), |
| - one_byte_(one_byte), |
| + specialization_cid_(specialization_cid), |
| reg_exp_too_big_(false), |
| current_expansion_factor_(1), |
| - frequency_collator_(), |
| - zone_(zone) { |
| - accept_ = new(zone) EndNode(EndNode::ACCEPT, zone); |
| - DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); |
| + isolate_(Isolate::Current()) { |
| + accept_ = new(I) EndNode(EndNode::ACCEPT, I); |
| } |
| RegExpEngine::CompilationResult RegExpCompiler::Assemble( |
| - RegExpMacroAssembler* macro_assembler, |
| + IRRegExpMacroAssembler* macro_assembler, |
| RegExpNode* start, |
| - int capture_count, |
| - Handle<String> pattern) { |
| - Heap* heap = pattern->GetHeap(); |
| - |
| - bool use_slow_safe_regexp_compiler = false; |
| - if (heap->total_regexp_code_generated() > |
| - RegExpImpl::kRegWxpCompiledLimit && |
| - heap->isolate()->memory_allocator()->SizeExecutable() > |
| - RegExpImpl::kRegExpExecutableMemoryLimit) { |
| - use_slow_safe_regexp_compiler = true; |
| - } |
| + intptr_t capture_count, |
| + const String& pattern) { |
| + static const bool use_slow_safe_regexp_compiler = false; |
| macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler); |
| + macro_assembler_ = macro_assembler; |
| -#ifdef DEBUG |
| - if (FLAG_trace_regexp_assembler) |
| - macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler); |
| - else |
| -#endif |
| - macro_assembler_ = macro_assembler; |
| - |
| - List <RegExpNode*> work_list(0); |
| + ZoneGrowableArray<RegExpNode*> work_list(0); |
| work_list_ = &work_list; |
| - Label fail; |
| + BlockLabel fail; |
| macro_assembler_->PushBacktrack(&fail); |
| Trace new_trace; |
| start->Emit(this, &new_trace); |
| - macro_assembler_->Bind(&fail); |
| + macro_assembler_->BindBlock(&fail); |
| macro_assembler_->Fail(); |
| while (!work_list.is_empty()) { |
| work_list.RemoveLast()->Emit(this, &new_trace); |
| } |
| - if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate()); |
| + if (reg_exp_too_big_) return IrregexpRegExpTooBig(); |
| - Handle<HeapObject> code = macro_assembler_->GetCode(pattern); |
| - heap->IncreaseTotalRegexpCodeGenerated(code->Size()); |
| - work_list_ = NULL; |
| -#ifdef DEBUG |
| - if (FLAG_print_code) { |
| - CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer()); |
| - OFStream os(trace_scope.file()); |
| - Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os); |
| - } |
| - if (FLAG_trace_regexp_assembler) { |
| - delete macro_assembler_; |
| - } |
| -#endif |
| - return RegExpEngine::CompilationResult(*code, next_register_); |
| + macro_assembler->FinalizeIndirectGotos(); |
| + |
| + return RegExpEngine::CompilationResult(macro_assembler, |
| + macro_assembler->graph_entry(), |
| + macro_assembler->num_blocks(), |
| + macro_assembler->num_stack_locals()); |
| } |
| -bool Trace::DeferredAction::Mentions(int that) { |
| +bool Trace::DeferredAction::Mentions(intptr_t that) { |
| if (action_type() == ActionNode::CLEAR_CAPTURES) { |
| Interval range = static_cast<DeferredClearCaptures*>(this)->range(); |
| return range.Contains(that); |
| @@ -421,7 +427,7 @@ bool Trace::DeferredAction::Mentions(int that) { |
| } |
| -bool Trace::mentions_reg(int reg) { |
| +bool Trace::mentions_reg(intptr_t reg) { |
| for (DeferredAction* action = actions_; |
| action != NULL; |
| action = action->next()) { |
| @@ -432,8 +438,8 @@ bool Trace::mentions_reg(int reg) { |
| } |
| -bool Trace::GetStoredPosition(int reg, int* cp_offset) { |
| - DCHECK_EQ(0, *cp_offset); |
| +bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) { |
| + ASSERT(*cp_offset == 0); |
| for (DeferredAction* action = actions_; |
| action != NULL; |
| action = action->next()) { |
| @@ -450,19 +456,22 @@ bool Trace::GetStoredPosition(int reg, int* cp_offset) { |
| } |
| -int Trace::FindAffectedRegisters(OutSet* affected_registers, |
| - Zone* zone) { |
| - int max_register = RegExpCompiler::kNoRegister; |
| +// This is called as we come into a loop choice node and some other tricky |
| +// nodes. It normalizes the state of the code generator to ensure we can |
| +// generate generic code. |
| +intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, |
| + Isolate* isolate) { |
| + intptr_t max_register = RegExpCompiler::kNoRegister; |
| for (DeferredAction* action = actions_; |
| action != NULL; |
| action = action->next()) { |
| if (action->action_type() == ActionNode::CLEAR_CAPTURES) { |
| Interval range = static_cast<DeferredClearCaptures*>(action)->range(); |
| - for (int i = range.from(); i <= range.to(); i++) |
| - affected_registers->Set(i, zone); |
| + for (intptr_t i = range.from(); i <= range.to(); i++) |
| + affected_registers->Set(i, isolate); |
| if (range.to() > max_register) max_register = range.to(); |
| } else { |
| - affected_registers->Set(action->reg(), zone); |
| + affected_registers->Set(action->reg(), isolate); |
| if (action->reg() > max_register) max_register = action->reg(); |
| } |
| } |
| @@ -471,14 +480,14 @@ int Trace::FindAffectedRegisters(OutSet* affected_registers, |
| void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
| - int max_register, |
| + intptr_t max_register, |
| const OutSet& registers_to_pop, |
| const OutSet& registers_to_clear) { |
| - for (int reg = max_register; reg >= 0; reg--) { |
| + for (intptr_t reg = max_register; reg >= 0; reg--) { |
| if (registers_to_pop.Get(reg)) { |
| assembler->PopRegister(reg); |
| } else if (registers_to_clear.Get(reg)) { |
| - int clear_to = reg; |
| + intptr_t clear_to = reg; |
| while (reg > 0 && registers_to_clear.Get(reg - 1)) { |
| reg--; |
| } |
| @@ -489,18 +498,12 @@ void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
| void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| - int max_register, |
| + intptr_t max_register, |
| const OutSet& affected_registers, |
| OutSet* registers_to_pop, |
| OutSet* registers_to_clear, |
| - Zone* zone) { |
| - // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. |
| - const int push_limit = (assembler->stack_limit_slack() + 1) / 2; |
| - |
| - // Count pushes performed to force a stack limit check occasionally. |
| - int pushes = 0; |
| - |
| - for (int reg = 0; reg <= max_register; reg++) { |
| + Isolate* isolate) { |
| + for (intptr_t reg = 0; reg <= max_register; reg++) { |
| if (!affected_registers.Get(reg)) { |
| continue; |
| } |
| @@ -511,10 +514,10 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; |
| DeferredActionUndoType undo_action = IGNORE; |
| - int value = 0; |
| + intptr_t value = 0; |
| bool absolute = false; |
| bool clear = false; |
| - int store_position = -1; |
| + intptr_t store_position = -1; |
| // This is a little tricky because we are scanning the actions in reverse |
| // historical order (newest first). |
| for (DeferredAction* action = actions_; |
| @@ -535,16 +538,16 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| // we can set undo_action to IGNORE if we know there is no value to |
| // restore. |
| undo_action = RESTORE; |
| - DCHECK_EQ(store_position, -1); |
| - DCHECK(!clear); |
| + ASSERT(store_position == -1); |
| + ASSERT(!clear); |
| break; |
| } |
| case ActionNode::INCREMENT_REGISTER: |
| if (!absolute) { |
| value++; |
| } |
| - DCHECK_EQ(store_position, -1); |
| - DCHECK(!clear); |
| + ASSERT(store_position == -1); |
| + ASSERT(!clear); |
| undo_action = RESTORE; |
| break; |
| case ActionNode::STORE_POSITION: { |
| @@ -566,8 +569,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| } else { |
| undo_action = pc->is_capture() ? CLEAR : RESTORE; |
| } |
| - DCHECK(!absolute); |
| - DCHECK_EQ(value, 0); |
| + ASSERT(!absolute); |
| + ASSERT(value == 0); |
| break; |
| } |
| case ActionNode::CLEAR_CAPTURES: { |
| @@ -578,8 +581,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| clear = true; |
| } |
| undo_action = RESTORE; |
| - DCHECK(!absolute); |
| - DCHECK_EQ(value, 0); |
| + ASSERT(!absolute); |
| + ASSERT(value == 0); |
| break; |
| } |
| default: |
| @@ -590,18 +593,10 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| } |
| // Prepare for the undo-action (e.g., push if it's going to be popped). |
| if (undo_action == RESTORE) { |
| - pushes++; |
| - RegExpMacroAssembler::StackCheckFlag stack_check = |
| - RegExpMacroAssembler::kNoStackLimitCheck; |
| - if (pushes == push_limit) { |
| - stack_check = RegExpMacroAssembler::kCheckStackLimit; |
| - pushes = 0; |
| - } |
| - |
| - assembler->PushRegister(reg, stack_check); |
| - registers_to_pop->Set(reg, zone); |
| + assembler->PushRegister(reg); |
| + registers_to_pop->Set(reg, isolate); |
| } else if (undo_action == CLEAR) { |
| - registers_to_clear->Set(reg, zone); |
| + registers_to_clear->Set(reg, isolate); |
| } |
| // Perform the chronologically last action (or accumulated increment) |
| // for the register. |
| @@ -624,7 +619,7 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| - DCHECK(!is_trivial()); |
| + ASSERT(!is_trivial()); |
| if (actions_ == NULL && backtrack() == NULL) { |
| // Here we just have some deferred cp advances to fix and we are back to |
| @@ -647,8 +642,7 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
| assembler->PushCurrentPosition(); |
| } |
| - int max_register = FindAffectedRegisters(&affected_registers, |
| - compiler->zone()); |
| + intptr_t max_register = FindAffectedRegisters(&affected_registers, CI); |
| OutSet registers_to_pop; |
| OutSet registers_to_clear; |
| PerformDeferredActions(assembler, |
| @@ -656,19 +650,19 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
| affected_registers, |
| ®isters_to_pop, |
| ®isters_to_clear, |
| - compiler->zone()); |
| + CI); |
| if (cp_offset_ != 0) { |
| assembler->AdvanceCurrentPosition(cp_offset_); |
| } |
| // Create a new trivial state and generate the node with that. |
| - Label undo; |
| + BlockLabel undo; |
| assembler->PushBacktrack(&undo); |
| Trace new_state; |
| successor->Emit(compiler, &new_state); |
| // On backtrack we need to restore state. |
| - assembler->Bind(&undo); |
| + assembler->BindBlock(&undo); |
| RestoreAffectedRegisters(assembler, |
| max_register, |
| registers_to_pop, |
| @@ -687,10 +681,10 @@ void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { |
| // Omit flushing the trace. We discard the entire stack frame anyway. |
| - if (!label()->is_bound()) { |
| + if (!label()->IsBound()) { |
| // We are completely independent of the trace, since we ignore it, |
| // so this code can be used as the generic version. |
| - assembler->Bind(label()); |
| + assembler->BindBlock(label()); |
| } |
| // Throw away everything on the backtrack stack since the start |
| @@ -715,8 +709,8 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| return; |
| } |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| - if (!label()->is_bound()) { |
| - assembler->Bind(label()); |
| + if (!label()->IsBound()) { |
| + assembler->BindBlock(label()); |
| } |
| switch (action_) { |
| case ACCEPT: |
| @@ -733,37 +727,38 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } |
| -void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { |
| +void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) { |
| if (guards_ == NULL) |
| - guards_ = new(zone) ZoneList<Guard*>(1, zone); |
| - guards_->Add(guard, zone); |
| + guards_ = new(isolate) ZoneGrowableArray<Guard*>(1); |
| + guards_->Add(guard); |
| } |
| -ActionNode* ActionNode::SetRegister(int reg, |
| - int val, |
| +ActionNode* ActionNode::SetRegister(intptr_t reg, |
| + intptr_t val, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(SET_REGISTER, on_success); |
| + new(on_success->isolate()) ActionNode(SET_REGISTER, on_success); |
| result->data_.u_store_register.reg = reg; |
| result->data_.u_store_register.value = val; |
| return result; |
| } |
| -ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { |
| +ActionNode* ActionNode::IncrementRegister(intptr_t reg, |
| + RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); |
| + new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success); |
| result->data_.u_increment_register.reg = reg; |
| return result; |
| } |
| -ActionNode* ActionNode::StorePosition(int reg, |
| +ActionNode* ActionNode::StorePosition(intptr_t reg, |
| bool is_capture, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(STORE_POSITION, on_success); |
| + new(on_success->isolate()) ActionNode(STORE_POSITION, on_success); |
| result->data_.u_position_register.reg = reg; |
| result->data_.u_position_register.is_capture = is_capture; |
| return result; |
| @@ -773,31 +768,32 @@ ActionNode* ActionNode::StorePosition(int reg, |
| ActionNode* ActionNode::ClearCaptures(Interval range, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); |
| + new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success); |
| result->data_.u_clear_captures.range_from = range.from(); |
| result->data_.u_clear_captures.range_to = range.to(); |
| return result; |
| } |
| -ActionNode* ActionNode::BeginSubmatch(int stack_reg, |
| - int position_reg, |
| +ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg, |
| + intptr_t position_reg, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); |
| + new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success); |
| result->data_.u_submatch.stack_pointer_register = stack_reg; |
| result->data_.u_submatch.current_position_register = position_reg; |
| return result; |
| } |
| -ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, |
| - int position_reg, |
| - int clear_register_count, |
| - int clear_register_from, |
| +ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg, |
| + intptr_t position_reg, |
| + intptr_t clear_register_count, |
| + intptr_t clear_register_from, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); |
| + new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, |
| + on_success); |
| result->data_.u_submatch.stack_pointer_register = stack_reg; |
| result->data_.u_submatch.current_position_register = position_reg; |
| result->data_.u_submatch.clear_register_count = clear_register_count; |
| @@ -806,12 +802,12 @@ ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, |
| } |
| -ActionNode* ActionNode::EmptyMatchCheck(int start_register, |
| - int repetition_register, |
| - int repetition_limit, |
| +ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register, |
| + intptr_t repetition_register, |
| + intptr_t repetition_limit, |
| RegExpNode* on_success) { |
| ActionNode* result = |
| - new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); |
| + new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success); |
| result->data_.u_empty_match_check.start_register = start_register; |
| result->data_.u_empty_match_check.repetition_register = repetition_register; |
| result->data_.u_empty_match_check.repetition_limit = repetition_limit; |
| @@ -841,13 +837,13 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| Trace* trace) { |
| switch (guard->op()) { |
| case Guard::LT: |
| - DCHECK(!trace->mentions_reg(guard->reg())); |
| + ASSERT(!trace->mentions_reg(guard->reg())); |
| macro_assembler->IfRegisterGE(guard->reg(), |
| guard->value(), |
| trace->backtrack()); |
| break; |
| case Guard::GEQ: |
| - DCHECK(!trace->mentions_reg(guard->reg())); |
| + ASSERT(!trace->mentions_reg(guard->reg())); |
| macro_assembler->IfRegisterLT(guard->reg(), |
| guard->value(), |
| trace->backtrack()); |
| @@ -858,18 +854,18 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| // Returns the number of characters in the equivalence class, omitting those |
| // that cannot occur in the source string because it is ASCII. |
| -static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, |
| - bool one_byte_subject, |
| - unibrow::uchar* letters) { |
| - int length = |
| - isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); |
| +static intptr_t GetCaseIndependentLetters(uint16_t character, |
| + bool one_byte_subject, |
| + int32_t* letters) { |
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
| + intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters); |
| // Unibrow returns 0 or 1 for characters where case independence is |
| // trivial. |
| if (length == 0) { |
| letters[0] = character; |
| length = 1; |
| } |
| - if (!one_byte_subject || character <= String::kMaxOneByteCharCode) { |
| + if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) { |
| return length; |
| } |
| @@ -883,9 +879,9 @@ static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, |
| static inline bool EmitSimpleCharacter(Isolate* isolate, |
| RegExpCompiler* compiler, |
| - uc16 c, |
| - Label* on_failure, |
| - int cp_offset, |
| + uint16_t c, |
| + BlockLabel* on_failure, |
| + intptr_t cp_offset, |
| bool check, |
| bool preloaded) { |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| @@ -906,15 +902,15 @@ static inline bool EmitSimpleCharacter(Isolate* isolate, |
| // independent matches. |
| static inline bool EmitAtomNonLetter(Isolate* isolate, |
| RegExpCompiler* compiler, |
| - uc16 c, |
| - Label* on_failure, |
| - int cp_offset, |
| + uint16_t c, |
| + BlockLabel* on_failure, |
| + intptr_t cp_offset, |
| bool check, |
| bool preloaded) { |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| bool one_byte = compiler->one_byte(); |
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); |
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
| if (length < 1) { |
| // This can't match. Must be an one-byte subject and a non-one-byte |
| // character. We do not need to do anything since the one-byte pass |
| @@ -924,7 +920,7 @@ static inline bool EmitAtomNonLetter(Isolate* isolate, |
| bool checked = false; |
| // We handle the length > 1 case in a later pass. |
| if (length == 1) { |
| - if (one_byte && c > String::kMaxOneByteCharCodeU) { |
| + if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) { |
| // Can't match - see above. |
| return false; // Bounds not checked. |
| } |
| @@ -939,32 +935,34 @@ static inline bool EmitAtomNonLetter(Isolate* isolate, |
| static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
| - bool one_byte, uc16 c1, uc16 c2, |
| - Label* on_failure) { |
| - uc16 char_mask; |
| + bool one_byte, |
| + uint16_t c1, |
| + uint16_t c2, |
| + BlockLabel* on_failure) { |
| + uint16_t char_mask; |
| if (one_byte) { |
| - char_mask = String::kMaxOneByteCharCode; |
| + char_mask = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - char_mask = String::kMaxUtf16CodeUnit; |
| + char_mask = Utf16::kMaxCodeUnit; |
| } |
| - uc16 exor = c1 ^ c2; |
| + uint16_t exor = c1 ^ c2; |
| // Check whether exor has only one bit set. |
| if (((exor - 1) & exor) == 0) { |
| // If c1 and c2 differ only by one bit. |
| // Ecma262UnCanonicalize always gives the highest number last. |
| - DCHECK(c2 > c1); |
| - uc16 mask = char_mask ^ exor; |
| + ASSERT(c2 > c1); |
| + uint16_t mask = char_mask ^ exor; |
| macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); |
| return true; |
| } |
| - DCHECK(c2 > c1); |
| - uc16 diff = c2 - c1; |
| + ASSERT(c2 > c1); |
| + uint16_t diff = c2 - c1; |
| if (((diff - 1) & diff) == 0 && c1 >= diff) { |
| // If the characters differ by 2^n but don't differ by one bit then |
| // subtract the difference from the found character, then do the or |
| // trick. We avoid the theoretical case where negative numbers are |
| // involved in order to simplify code generation. |
| - uc16 mask = char_mask ^ diff; |
| + uint16_t mask = char_mask ^ diff; |
| macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, |
| diff, |
| mask, |
| @@ -977,9 +975,9 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
| typedef bool EmitCharacterFunction(Isolate* isolate, |
| RegExpCompiler* compiler, |
| - uc16 c, |
| - Label* on_failure, |
| - int cp_offset, |
| + uint16_t c, |
| + BlockLabel* on_failure, |
| + intptr_t cp_offset, |
| bool check, |
| bool preloaded); |
| @@ -987,31 +985,34 @@ typedef bool EmitCharacterFunction(Isolate* isolate, |
| // matches. |
| static inline bool EmitAtomLetter(Isolate* isolate, |
| RegExpCompiler* compiler, |
| - uc16 c, |
| - Label* on_failure, |
| - int cp_offset, |
| + uint16_t c, |
| + BlockLabel* on_failure, |
| + intptr_t cp_offset, |
| bool check, |
| bool preloaded) { |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| bool one_byte = compiler->one_byte(); |
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); |
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
| if (length <= 1) return false; |
| // We may not need to check against the end of the input string |
| // if this character lies before a character that matched. |
| if (!preloaded) { |
| macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
| } |
| - Label ok; |
| - DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
| + BlockLabel ok; |
| + ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
| switch (length) { |
| case 2: { |
| - if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], |
| - chars[1], on_failure)) { |
| + if (ShortCutEmitCharacterPair(macro_assembler, |
| + one_byte, |
| + chars[0], |
| + chars[1], |
| + on_failure)) { |
| } else { |
| macro_assembler->CheckCharacter(chars[0], &ok); |
| macro_assembler->CheckNotCharacter(chars[1], on_failure); |
| - macro_assembler->Bind(&ok); |
| + macro_assembler->BindBlock(&ok); |
| } |
| break; |
| } |
| @@ -1022,7 +1023,7 @@ static inline bool EmitAtomLetter(Isolate* isolate, |
| macro_assembler->CheckCharacter(chars[0], &ok); |
| macro_assembler->CheckCharacter(chars[1], &ok); |
| macro_assembler->CheckNotCharacter(chars[2], on_failure); |
| - macro_assembler->Bind(&ok); |
| + macro_assembler->BindBlock(&ok); |
| break; |
| default: |
| UNREACHABLE(); |
| @@ -1033,10 +1034,10 @@ static inline bool EmitAtomLetter(Isolate* isolate, |
| static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
| - int border, |
| - Label* fall_through, |
| - Label* above_or_equal, |
| - Label* below) { |
| + intptr_t border, |
| + BlockLabel* fall_through, |
| + BlockLabel* above_or_equal, |
| + BlockLabel* below) { |
| if (below != fall_through) { |
| masm->CheckCharacterLT(border, below); |
| if (above_or_equal != fall_through) masm->GoTo(above_or_equal); |
| @@ -1047,11 +1048,11 @@ static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
| static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
| - int first, |
| - int last, |
| - Label* fall_through, |
| - Label* in_range, |
| - Label* out_of_range) { |
| + intptr_t first, |
| + intptr_t last, |
| + BlockLabel* fall_through, |
| + BlockLabel* in_range, |
| + BlockLabel* out_of_range) { |
| if (in_range == fall_through) { |
| if (first == last) { |
| masm->CheckNotCharacter(first, out_of_range); |
| @@ -1073,29 +1074,28 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
| // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. |
| static void EmitUseLookupTable( |
| RegExpMacroAssembler* masm, |
| - ZoneList<int>* ranges, |
| - int start_index, |
| - int end_index, |
| - int min_char, |
| - Label* fall_through, |
| - Label* even_label, |
| - Label* odd_label) { |
| - static const int kSize = RegExpMacroAssembler::kTableSize; |
| - static const int kMask = RegExpMacroAssembler::kTableMask; |
| - |
| - int base = (min_char & ~kMask); |
| - USE(base); |
| + ZoneGrowableArray<int>* ranges, |
| + intptr_t start_index, |
| + intptr_t end_index, |
| + intptr_t min_char, |
| + BlockLabel* fall_through, |
| + BlockLabel* even_label, |
| + BlockLabel* odd_label) { |
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
| + |
| + intptr_t base = (min_char & ~kMask); |
| // Assert that everything is on one kTableSize page. |
| - for (int i = start_index; i <= end_index; i++) { |
| - DCHECK_EQ(ranges->at(i) & ~kMask, base); |
| + for (intptr_t i = start_index; i <= end_index; i++) { |
| + ASSERT((ranges->At(i) & ~kMask) == base); |
| } |
| - DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); |
| + ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base); |
| char templ[kSize]; |
| - Label* on_bit_set; |
| - Label* on_bit_clear; |
| - int bit; |
| + BlockLabel* on_bit_set; |
| + BlockLabel* on_bit_clear; |
| + intptr_t bit; |
| if (even_label == fall_through) { |
| on_bit_set = odd_label; |
| on_bit_clear = even_label; |
| @@ -1105,25 +1105,27 @@ static void EmitUseLookupTable( |
| on_bit_clear = odd_label; |
| bit = 0; |
| } |
| - for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { |
| + for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize; |
| + i++) { |
| templ[i] = bit; |
| } |
| - int j = 0; |
| + intptr_t j = 0; |
| bit ^= 1; |
| - for (int i = start_index; i < end_index; i++) { |
| - for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { |
| + for (intptr_t i = start_index; i < end_index; i++) { |
| + for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) { |
| templ[j] = bit; |
| } |
| bit ^= 1; |
| } |
| - for (int i = j; i < kSize; i++) { |
| + for (intptr_t i = j; i < kSize; i++) { |
| templ[i] = bit; |
| } |
| - Factory* factory = masm->zone()->isolate()->factory(); |
| // TODO(erikcorry): Cache these. |
| - Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED); |
| - for (int i = 0; i < kSize; i++) { |
| - ba->set(i, templ[i]); |
| + const TypedData& ba = TypedData::ZoneHandle( |
| + masm->isolate(), |
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
| + for (intptr_t i = 0; i < kSize; i++) { |
| + ba.SetUint8(i, templ[i]); |
| } |
| masm->CheckBitInTable(ba, on_bit_set); |
| if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); |
| @@ -1131,52 +1133,52 @@ static void EmitUseLookupTable( |
| static void CutOutRange(RegExpMacroAssembler* masm, |
| - ZoneList<int>* ranges, |
| - int start_index, |
| - int end_index, |
| - int cut_index, |
| - Label* even_label, |
| - Label* odd_label) { |
| + ZoneGrowableArray<int>* ranges, |
| + intptr_t start_index, |
| + intptr_t end_index, |
| + intptr_t cut_index, |
| + BlockLabel* even_label, |
| + BlockLabel* odd_label) { |
| bool odd = (((cut_index - start_index) & 1) == 1); |
| - Label* in_range_label = odd ? odd_label : even_label; |
| - Label dummy; |
| + BlockLabel* in_range_label = odd ? odd_label : even_label; |
| + BlockLabel dummy; |
| EmitDoubleBoundaryTest(masm, |
| - ranges->at(cut_index), |
| - ranges->at(cut_index + 1) - 1, |
| + ranges->At(cut_index), |
| + ranges->At(cut_index + 1) - 1, |
| &dummy, |
| in_range_label, |
| &dummy); |
| - DCHECK(!dummy.is_linked()); |
| + ASSERT(!dummy.IsLinked()); |
| // Cut out the single range by rewriting the array. This creates a new |
| // range that is a merger of the two ranges on either side of the one we |
| // are cutting out. The oddity of the labels is preserved. |
| - for (int j = cut_index; j > start_index; j--) { |
| - ranges->at(j) = ranges->at(j - 1); |
| + for (intptr_t j = cut_index; j > start_index; j--) { |
| + (*ranges)[j] = ranges->At(j - 1); |
| } |
| - for (int j = cut_index + 1; j < end_index; j++) { |
| - ranges->at(j) = ranges->at(j + 1); |
| + for (intptr_t j = cut_index + 1; j < end_index; j++) { |
| + (*ranges)[j] = ranges->At(j + 1); |
| } |
| } |
| // Unicode case. Split the search space into kSize spaces that are handled |
| // with recursion. |
| -static void SplitSearchSpace(ZoneList<int>* ranges, |
| - int start_index, |
| - int end_index, |
| - int* new_start_index, |
| - int* new_end_index, |
| - int* border) { |
| - static const int kSize = RegExpMacroAssembler::kTableSize; |
| - static const int kMask = RegExpMacroAssembler::kTableMask; |
| - |
| - int first = ranges->at(start_index); |
| - int last = ranges->at(end_index) - 1; |
| +static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
| + intptr_t start_index, |
| + intptr_t end_index, |
| + intptr_t* new_start_index, |
| + intptr_t* new_end_index, |
| + intptr_t* border) { |
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
| + |
| + intptr_t first = ranges->At(start_index); |
| + intptr_t last = ranges->At(end_index) - 1; |
| *new_start_index = start_index; |
| - *border = (ranges->at(start_index) & ~kMask) + kSize; |
| + *border = (ranges->At(start_index) & ~kMask) + kSize; |
| while (*new_start_index < end_index) { |
| - if (ranges->at(*new_start_index) > *border) break; |
| + if (ranges->At(*new_start_index) > *border) break; |
| (*new_start_index)++; |
| } |
| // new_start_index is the index of the first edge that is beyond the |
| @@ -1190,20 +1192,21 @@ static void SplitSearchSpace(ZoneList<int>* ranges, |
| // 128-character space can take up a lot of space in the ranges array if, |
| // for example, we only want to match every second character (eg. the lower |
| // case characters on some Unicode pages). |
| - int binary_chop_index = (end_index + start_index) / 2; |
| + intptr_t binary_chop_index = (end_index + start_index) / 2; |
| // The first test ensures that we get to the code that handles the Latin1 |
| // range with a single not-taken branch, speeding up this important |
| // character range (even non-Latin1 charset-based text has spaces and |
| // punctuation). |
| - if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. |
| + if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case. |
| end_index - start_index > (*new_start_index - start_index) * 2 && |
| - last - first > kSize * 2 && binary_chop_index > *new_start_index && |
| - ranges->at(binary_chop_index) >= first + 2 * kSize) { |
| - int scan_forward_for_section_border = binary_chop_index;; |
| - int new_border = (ranges->at(binary_chop_index) | kMask) + 1; |
| + last - first > kSize * 2 && |
| + binary_chop_index > *new_start_index && |
| + ranges->At(binary_chop_index) >= first + 2 * kSize) { |
| + intptr_t scan_forward_for_section_border = binary_chop_index;; |
| + intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1; |
| while (scan_forward_for_section_border < end_index) { |
| - if (ranges->at(scan_forward_for_section_border) > new_border) { |
| + if (ranges->At(scan_forward_for_section_border) > new_border) { |
| *new_start_index = scan_forward_for_section_border; |
| *border = new_border; |
| break; |
| @@ -1212,13 +1215,13 @@ static void SplitSearchSpace(ZoneList<int>* ranges, |
| } |
| } |
| - DCHECK(*new_start_index > start_index); |
| + ASSERT(*new_start_index > start_index); |
| *new_end_index = *new_start_index - 1; |
| - if (ranges->at(*new_end_index) == *border) { |
| + if (ranges->At(*new_end_index) == *border) { |
| (*new_end_index)--; |
| } |
| - if (*border >= ranges->at(end_index)) { |
| - *border = ranges->at(end_index); |
| + if (*border >= ranges->At(end_index)) { |
| + *border = ranges->At(end_index); |
| *new_start_index = end_index; // Won't be used. |
| *new_end_index = end_index - 1; |
| } |
| @@ -1232,18 +1235,18 @@ static void SplitSearchSpace(ZoneList<int>* ranges, |
| // Either label can be NULL indicating backtracking. Either label can also be |
| // equal to the fall_through label. |
| static void GenerateBranches(RegExpMacroAssembler* masm, |
| - ZoneList<int>* ranges, |
| - int start_index, |
| - int end_index, |
| - uc16 min_char, |
| - uc16 max_char, |
| - Label* fall_through, |
| - Label* even_label, |
| - Label* odd_label) { |
| - int first = ranges->at(start_index); |
| - int last = ranges->at(end_index) - 1; |
| - |
| - DCHECK_LT(min_char, first); |
| + ZoneGrowableArray<int>* ranges, |
| + intptr_t start_index, |
| + intptr_t end_index, |
| + uint16_t min_char, |
| + uint16_t max_char, |
| + BlockLabel* fall_through, |
| + BlockLabel* even_label, |
| + BlockLabel* odd_label) { |
| + intptr_t first = ranges->At(start_index); |
| + intptr_t last = ranges->At(end_index) - 1; |
| + |
| + ASSERT(min_char < first); |
| // Just need to test if the character is before or on-or-after |
| // a particular character. |
| @@ -1265,10 +1268,10 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| if (end_index - start_index <= 6) { |
| // It is faster to test for individual characters, so we look for those |
| // first, then try arbitrary ranges in the second round. |
| - static int kNoCutIndex = -1; |
| - int cut = kNoCutIndex; |
| - for (int i = start_index; i < end_index; i++) { |
| - if (ranges->at(i) == ranges->at(i + 1) - 1) { |
| + static intptr_t kNoCutIndex = -1; |
| + intptr_t cut = kNoCutIndex; |
| + for (intptr_t i = start_index; i < end_index; i++) { |
| + if (ranges->At(i) == ranges->At(i + 1) - 1) { |
| cut = i; |
| break; |
| } |
| @@ -1276,7 +1279,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| if (cut == kNoCutIndex) cut = start_index; |
| CutOutRange( |
| masm, ranges, start_index, end_index, cut, even_label, odd_label); |
| - DCHECK_GE(end_index - start_index, 2); |
| + ASSERT(end_index - start_index >= 2); |
| GenerateBranches(masm, |
| ranges, |
| start_index + 1, |
| @@ -1291,7 +1294,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| // If there are a lot of intervals in the regexp, then we will use tables to |
| // determine whether the character is inside or outside the character class. |
| - static const int kBits = RegExpMacroAssembler::kTableSizeBits; |
| + static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits; |
| if ((max_char >> kBits) == (min_char >> kBits)) { |
| EmitUseLookupTable(masm, |
| @@ -1319,9 +1322,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| return; |
| } |
| - int new_start_index = 0; |
| - int new_end_index = 0; |
| - int border = 0; |
| + intptr_t new_start_index = 0; |
| + intptr_t new_end_index = 0; |
| + intptr_t border = 0; |
| SplitSearchSpace(ranges, |
| start_index, |
| @@ -1330,34 +1333,34 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| &new_end_index, |
| &border); |
| - Label handle_rest; |
| - Label* above = &handle_rest; |
| + BlockLabel handle_rest; |
| + BlockLabel* above = &handle_rest; |
| if (border == last + 1) { |
| // We didn't find any section that started after the limit, so everything |
| // above the border is one of the terminal labels. |
| above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; |
| - DCHECK(new_end_index == end_index - 1); |
| + ASSERT(new_end_index == end_index - 1); |
| } |
| - DCHECK_LE(start_index, new_end_index); |
| - DCHECK_LE(new_start_index, end_index); |
| - DCHECK_LT(start_index, new_start_index); |
| - DCHECK_LT(new_end_index, end_index); |
| - DCHECK(new_end_index + 1 == new_start_index || |
| + ASSERT(start_index <= new_end_index); |
| + ASSERT(new_start_index <= end_index); |
| + ASSERT(start_index < new_start_index); |
| + ASSERT(new_end_index < end_index); |
| + ASSERT(new_end_index + 1 == new_start_index || |
| (new_end_index + 2 == new_start_index && |
| - border == ranges->at(new_end_index + 1))); |
| - DCHECK_LT(min_char, border - 1); |
| - DCHECK_LT(border, max_char); |
| - DCHECK_LT(ranges->at(new_end_index), border); |
| - DCHECK(border < ranges->at(new_start_index) || |
| - (border == ranges->at(new_start_index) && |
| + border == ranges->At(new_end_index + 1))); |
| + ASSERT(min_char < border - 1); |
| + ASSERT(border < max_char); |
| + ASSERT(ranges->At(new_end_index) < border); |
| + ASSERT(border < ranges->At(new_start_index) || |
| + (border == ranges->At(new_start_index) && |
| new_start_index == end_index && |
| new_end_index == end_index - 1 && |
| border == last + 1)); |
| - DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); |
| + ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1)); |
| masm->CheckCharacterGT(border - 1, above); |
| - Label dummy; |
| + BlockLabel dummy; |
| GenerateBranches(masm, |
| ranges, |
| start_index, |
| @@ -1367,8 +1370,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| &dummy, |
| even_label, |
| odd_label); |
| - if (handle_rest.is_linked()) { |
| - masm->Bind(&handle_rest); |
| + |
| + if (handle_rest.IsLinked()) { |
| + masm->BindBlock(&handle_rest); |
| bool flip = (new_start_index & 1) != (start_index & 1); |
| GenerateBranches(masm, |
| ranges, |
| @@ -1384,26 +1388,30 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
| static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| - RegExpCharacterClass* cc, bool one_byte, |
| - Label* on_failure, int cp_offset, bool check_offset, |
| - bool preloaded, Zone* zone) { |
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone); |
| + RegExpCharacterClass* cc, |
| + bool one_byte, |
| + BlockLabel* on_failure, |
| + intptr_t cp_offset, |
| + bool check_offset, |
| + bool preloaded, |
| + Isolate* isolate) { |
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
| if (!CharacterRange::IsCanonical(ranges)) { |
| CharacterRange::Canonicalize(ranges); |
| } |
| - int max_char; |
| + intptr_t max_char; |
| if (one_byte) { |
| - max_char = String::kMaxOneByteCharCode; |
| + max_char = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - max_char = String::kMaxUtf16CodeUnit; |
| + max_char = Utf16::kMaxCodeUnit; |
| } |
| - int range_count = ranges->length(); |
| + intptr_t range_count = ranges->length(); |
| - int last_valid_range = range_count - 1; |
| + intptr_t last_valid_range = range_count - 1; |
| while (last_valid_range >= 0) { |
| - CharacterRange& range = ranges->at(last_valid_range); |
| + CharacterRange& range = (*ranges)[last_valid_range]; |
| if (range.from() <= max_char) { |
| break; |
| } |
| @@ -1421,7 +1429,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| } |
| if (last_valid_range == 0 && |
| - ranges->at(0).IsEverything(max_char)) { |
| + ranges->At(0).IsEverything(max_char)) { |
| if (cc->is_negated()) { |
| macro_assembler->GoTo(on_failure); |
| } else { |
| @@ -1434,7 +1442,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| } |
| if (last_valid_range == 0 && |
| !cc->is_negated() && |
| - ranges->at(0).IsEverything(max_char)) { |
| + ranges->At(0).IsEverything(max_char)) { |
| // This is a common case hit by non-anchored expressions. |
| if (check_offset) { |
| macro_assembler->CheckPosition(cp_offset, on_failure); |
| @@ -1446,7 +1454,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); |
| } |
| - if (cc->is_standard(zone) && |
| + if (cc->is_standard() && |
| macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), |
| on_failure)) { |
| return; |
| @@ -1459,27 +1467,27 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| // entry at zero which goes to the failure label, but if there |
| // was already one there we fall through for success on that entry. |
| // Subsequent entries have alternating meaning (success/failure). |
| - ZoneList<int>* range_boundaries = |
| - new(zone) ZoneList<int>(last_valid_range, zone); |
| + ZoneGrowableArray<int>* range_boundaries = |
| + new(isolate) ZoneGrowableArray<int>(last_valid_range); |
| bool zeroth_entry_is_failure = !cc->is_negated(); |
| - for (int i = 0; i <= last_valid_range; i++) { |
| - CharacterRange& range = ranges->at(i); |
| + for (intptr_t i = 0; i <= last_valid_range; i++) { |
| + CharacterRange& range = (*ranges)[i]; |
| if (range.from() == 0) { |
| - DCHECK_EQ(i, 0); |
| + ASSERT(i == 0); |
| zeroth_entry_is_failure = !zeroth_entry_is_failure; |
| } else { |
| - range_boundaries->Add(range.from(), zone); |
| + range_boundaries->Add(range.from()); |
| } |
| - range_boundaries->Add(range.to() + 1, zone); |
| + range_boundaries->Add(range.to() + 1); |
| } |
| - int end_index = range_boundaries->length() - 1; |
| - if (range_boundaries->at(end_index) > max_char) { |
| + intptr_t end_index = range_boundaries->length() - 1; |
| + if (range_boundaries->At(end_index) > max_char) { |
| end_index--; |
| } |
| - Label fall_through; |
| + BlockLabel fall_through; |
| GenerateBranches(macro_assembler, |
| range_boundaries, |
| 0, // start_index. |
| @@ -1489,7 +1497,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| &fall_through, |
| zeroth_entry_is_failure ? &fall_through : on_failure, |
| zeroth_entry_is_failure ? on_failure : &fall_through); |
| - macro_assembler->Bind(&fall_through); |
| + macro_assembler->BindBlock(&fall_through); |
| } |
| @@ -1506,7 +1514,7 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| if (trace->is_trivial()) { |
| - if (label_.is_bound()) { |
| + if (label_.IsBound()) { |
| // We are being asked to generate a generic version, but that's already |
| // been done so just go to it. |
| macro_assembler->GoTo(&label_); |
| @@ -1520,14 +1528,14 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
| return DONE; |
| } |
| // Generate generic version of the node and bind the label for later use. |
| - macro_assembler->Bind(&label_); |
| + macro_assembler->BindBlock(&label_); |
| return CONTINUE; |
| } |
| // We are being asked to make a non-generic version. Keep track of how many |
| // non-generic versions we generate so as not to overdo it. |
| trace_count_++; |
| - if (FLAG_regexp_optimization && |
| + if (kRegexpOptimization && |
| trace_count_ < kMaxCopiesCodeGenerated && |
| compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { |
| return CONTINUE; |
| @@ -1541,9 +1549,9 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
| } |
| -int ActionNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| if (budget <= 0) return 0; |
| if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! |
| return on_success()->EatsAtLeast(still_to_find, |
| @@ -1552,8 +1560,8 @@ int ActionNode::EatsAtLeast(int still_to_find, |
| } |
| -void ActionNode::FillInBMInfo(int offset, |
| - int budget, |
| +void ActionNode::FillInBMInfo(intptr_t offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| if (action_type_ == BEGIN_SUBMATCH) { |
| @@ -1565,9 +1573,9 @@ void ActionNode::FillInBMInfo(int offset, |
| } |
| -int AssertionNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| if (budget <= 0) return 0; |
| // If we know we are not at the start and we are asked "how many characters |
| // will you match if you succeed?" then we can answer anything since false |
| @@ -1581,8 +1589,8 @@ int AssertionNode::EatsAtLeast(int still_to_find, |
| } |
| -void AssertionNode::FillInBMInfo(int offset, |
| - int budget, |
| +void AssertionNode::FillInBMInfo(intptr_t offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| // Match the behaviour of EatsAtLeast on this node. |
| @@ -1592,9 +1600,9 @@ void AssertionNode::FillInBMInfo(int offset, |
| } |
| -int BackReferenceNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| if (budget <= 0) return 0; |
| return on_success()->EatsAtLeast(still_to_find, |
| budget - 1, |
| @@ -1602,10 +1610,10 @@ int BackReferenceNode::EatsAtLeast(int still_to_find, |
| } |
| -int TextNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| - int answer = Length(); |
| +intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| + intptr_t answer = Length(); |
| if (answer >= still_to_find) return answer; |
| if (budget <= 0) return answer; |
| // We are not at start after this node so we set the last argument to 'true'. |
| @@ -1615,13 +1623,13 @@ int TextNode::EatsAtLeast(int still_to_find, |
| } |
| -int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| if (budget <= 0) return 0; |
| // Alternative 0 is the negative lookahead, alternative 1 is what comes |
| // afterwards. |
| - RegExpNode* node = alternatives_->at(1).node(); |
| + RegExpNode* node = (*alternatives_)[1].node(); |
| return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
| } |
| @@ -1629,27 +1637,27 @@ int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, |
| void NegativeLookaheadChoiceNode::GetQuickCheckDetails( |
| QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| - int filled_in, |
| + intptr_t filled_in, |
| bool not_at_start) { |
| // Alternative 0 is the negative lookahead, alternative 1 is what comes |
| // afterwards. |
| - RegExpNode* node = alternatives_->at(1).node(); |
| + RegExpNode* node = (*alternatives_)[1].node(); |
| return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); |
| } |
| -int ChoiceNode::EatsAtLeastHelper(int still_to_find, |
| - int budget, |
| - RegExpNode* ignore_this_node, |
| - bool not_at_start) { |
| +intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find, |
| + intptr_t budget, |
| + RegExpNode* ignore_this_node, |
| + bool not_at_start) { |
| if (budget <= 0) return 0; |
| - int min = 100; |
| - int choice_count = alternatives_->length(); |
| + intptr_t min = 100; |
| + intptr_t choice_count = alternatives_->length(); |
| budget = (budget - 1) / choice_count; |
| - for (int i = 0; i < choice_count; i++) { |
| - RegExpNode* node = alternatives_->at(i).node(); |
| + for (intptr_t i = 0; i < choice_count; i++) { |
| + RegExpNode* node = (*alternatives_)[i].node(); |
| if (node == ignore_this_node) continue; |
| - int node_eats_at_least = |
| + intptr_t node_eats_at_least = |
| node->EatsAtLeast(still_to_find, budget, not_at_start); |
| if (node_eats_at_least < min) min = node_eats_at_least; |
| if (min == 0) return 0; |
| @@ -1658,9 +1666,9 @@ int ChoiceNode::EatsAtLeastHelper(int still_to_find, |
| } |
| -int LoopChoiceNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| return EatsAtLeastHelper(still_to_find, |
| budget - 1, |
| loop_node_, |
| @@ -1668,9 +1676,9 @@ int LoopChoiceNode::EatsAtLeast(int still_to_find, |
| } |
| -int ChoiceNode::EatsAtLeast(int still_to_find, |
| - int budget, |
| - bool not_at_start) { |
| +intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find, |
| + intptr_t budget, |
| + bool not_at_start) { |
| return EatsAtLeastHelper(still_to_find, |
| budget, |
| NULL, |
| @@ -1693,16 +1701,16 @@ bool QuickCheckDetails::Rationalize(bool asc) { |
| bool found_useful_op = false; |
| uint32_t char_mask; |
| if (asc) { |
| - char_mask = String::kMaxOneByteCharCode; |
| + char_mask = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - char_mask = String::kMaxUtf16CodeUnit; |
| + char_mask = Utf16::kMaxCodeUnit; |
| } |
| mask_ = 0; |
| value_ = 0; |
| - int char_shift = 0; |
| - for (int i = 0; i < characters_; i++) { |
| + intptr_t char_shift = 0; |
| + for (intptr_t i = 0; i < characters_; i++) { |
| Position* pos = &positions_[i]; |
| - if ((pos->mask & String::kMaxOneByteCharCode) != 0) { |
| + if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) { |
| found_useful_op = true; |
| } |
| mask_ |= (pos->mask & char_mask) << char_shift; |
| @@ -1717,7 +1725,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| Trace* bounds_check_trace, |
| Trace* trace, |
| bool preload_has_checked_bounds, |
| - Label* on_possible_success, |
| + BlockLabel* on_possible_success, |
| QuickCheckDetails* details, |
| bool fall_through_on_failure) { |
| if (details->characters() == 0) return false; |
| @@ -1725,7 +1733,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); |
| if (details->cannot_match()) return false; |
| if (!details->Rationalize(compiler->one_byte())) return false; |
| - DCHECK(details->characters() == 1 || |
| + ASSERT(details->characters() == 1 || |
| compiler->macro_assembler()->CanReadUnaligned()); |
| uint32_t mask = details->mask(); |
| uint32_t value = details->value(); |
| @@ -1733,7 +1741,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| if (trace->characters_preloaded() != details->characters()) { |
| - DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); |
| + ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset()); |
| // We are attempting to preload the minimum number of characters |
| // any choice would eat, so if the bounds check fails, then none of the |
| // choices can succeed, so we can just immediately backtrack, rather |
| @@ -1752,9 +1760,9 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| // load so the value is already masked down. |
| uint32_t char_mask; |
| if (compiler->one_byte()) { |
| - char_mask = String::kMaxOneByteCharCode; |
| + char_mask = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - char_mask = String::kMaxUtf16CodeUnit; |
| + char_mask = Utf16::kMaxCodeUnit; |
| } |
| if ((mask & char_mask) == char_mask) need_mask = false; |
| mask &= char_mask; |
| @@ -1797,28 +1805,32 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| // generating a quick check. |
| void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| - int characters_filled_in, |
| + intptr_t characters_filled_in, |
| bool not_at_start) { |
| - Isolate* isolate = compiler->macro_assembler()->zone()->isolate(); |
| - DCHECK(characters_filled_in < details->characters()); |
| - int characters = details->characters(); |
| - int char_mask; |
| +#if defined(__GNUC__) |
| + // TODO(zerny): Make the combination code byte-order independent. |
| + ASSERT(details->characters() == 1 || |
| + (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)); |
| +#endif |
| + ASSERT(characters_filled_in < details->characters()); |
| + intptr_t characters = details->characters(); |
| + intptr_t char_mask; |
| if (compiler->one_byte()) { |
| - char_mask = String::kMaxOneByteCharCode; |
| + char_mask = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - char_mask = String::kMaxUtf16CodeUnit; |
| + char_mask = Utf16::kMaxCodeUnit; |
| } |
| - for (int k = 0; k < elms_->length(); k++) { |
| - TextElement elm = elms_->at(k); |
| + for (intptr_t k = 0; k < elms_->length(); k++) { |
| + TextElement elm = elms_->At(k); |
| if (elm.text_type() == TextElement::ATOM) { |
| - Vector<const uc16> quarks = elm.atom()->data(); |
| - for (int i = 0; i < characters && i < quarks.length(); i++) { |
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
| + for (intptr_t i = 0; i < characters && i < quarks->length(); i++) { |
| QuickCheckDetails::Position* pos = |
| details->positions(characters_filled_in); |
| - uc16 c = quarks[i]; |
| + uint16_t c = quarks->At(i); |
| if (c > char_mask) { |
| // If we expect a non-Latin1 character from an one-byte string, |
| - // there is no way we can match. Not even case-independent |
| + // there is no way we can match. Not even case independent |
| // matching can turn an Latin1 character into non-Latin1 or |
| // vice versa. |
| // TODO(dcarney): issue 3550. Verify that this works as expected. |
| @@ -1828,10 +1840,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| return; |
| } |
| if (compiler->ignore_case()) { |
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| - int length = GetCaseIndependentLetters(isolate, c, |
| - compiler->one_byte(), chars); |
| - DCHECK(length != 0); // Can only happen if c > char_mask (see above). |
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + intptr_t length = |
| + GetCaseIndependentLetters(c, compiler->one_byte(), chars); |
| + ASSERT(length != 0); // Can only happen if c > char_mask (see above). |
| if (length == 1) { |
| // This letter has no case equivalents, so it's nice and simple |
| // and the mask-compare will determine definitely whether we have |
| @@ -1842,7 +1854,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| } else { |
| uint32_t common_bits = char_mask; |
| uint32_t bits = chars[0]; |
| - for (int j = 1; j < length; j++) { |
| + for (intptr_t j = 1; j < length; j++) { |
| uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); |
| common_bits ^= differing_bits; |
| bits &= common_bits; |
| @@ -1867,7 +1879,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| pos->determines_perfectly = true; |
| } |
| characters_filled_in++; |
| - DCHECK(characters_filled_in <= details->characters()); |
| + ASSERT(characters_filled_in <= details->characters()); |
| if (characters_filled_in == details->characters()) { |
| return; |
| } |
| @@ -1876,7 +1888,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| QuickCheckDetails::Position* pos = |
| details->positions(characters_filled_in); |
| RegExpCharacterClass* tree = elm.char_class(); |
| - ZoneList<CharacterRange>* ranges = tree->ranges(zone()); |
| + ZoneGrowableArray<CharacterRange>* ranges = tree->ranges(); |
| if (tree->is_negated()) { |
| // A quick check uses multi-character mask and compare. There is no |
| // useful way to incorporate a negative char class into this scheme |
| @@ -1885,8 +1897,8 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| pos->mask = 0; |
| pos->value = 0; |
| } else { |
| - int first_range = 0; |
| - while (ranges->at(first_range).from() > char_mask) { |
| + intptr_t first_range = 0; |
| + while (ranges->At(first_range).from() > char_mask) { |
| first_range++; |
| if (first_range == ranges->length()) { |
| details->set_cannot_match(); |
| @@ -1894,9 +1906,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| return; |
| } |
| } |
| - CharacterRange range = ranges->at(first_range); |
| - uc16 from = range.from(); |
| - uc16 to = range.to(); |
| + CharacterRange range = ranges->At(first_range); |
| + uint16_t from = range.from(); |
| + uint16_t to = range.to(); |
| if (to > char_mask) { |
| to = char_mask; |
| } |
| @@ -1909,10 +1921,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| } |
| uint32_t common_bits = ~SmearBitsRight(differing_bits); |
| uint32_t bits = (from & common_bits); |
| - for (int i = first_range + 1; i < ranges->length(); i++) { |
| - CharacterRange range = ranges->at(i); |
| - uc16 from = range.from(); |
| - uc16 to = range.to(); |
| + for (intptr_t i = first_range + 1; i < ranges->length(); i++) { |
| + CharacterRange range = ranges->At(i); |
| + uint16_t from = range.from(); |
| + uint16_t to = range.to(); |
| if (from > char_mask) continue; |
| if (to > char_mask) to = char_mask; |
| // Here we are combining more ranges into the mask and compare |
| @@ -1933,13 +1945,13 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| pos->value = bits; |
| } |
| characters_filled_in++; |
| - DCHECK(characters_filled_in <= details->characters()); |
| + ASSERT(characters_filled_in <= details->characters()); |
| if (characters_filled_in == details->characters()) { |
| return; |
| } |
| } |
| } |
| - DCHECK(characters_filled_in != details->characters()); |
| + ASSERT(characters_filled_in != details->characters()); |
| if (!details->cannot_match()) { |
| on_success()-> GetQuickCheckDetails(details, |
| compiler, |
| @@ -1959,16 +1971,16 @@ void QuickCheckDetails::Clear() { |
| } |
| -void QuickCheckDetails::Advance(int by, bool one_byte) { |
| - DCHECK(by >= 0); |
| +void QuickCheckDetails::Advance(intptr_t by, bool one_byte) { |
| + ASSERT(by >= 0); |
| if (by >= characters_) { |
| Clear(); |
| return; |
| } |
| - for (int i = 0; i < characters_ - by; i++) { |
| + for (intptr_t i = 0; i < characters_ - by; i++) { |
| positions_[i] = positions_[by + i]; |
| } |
| - for (int i = characters_ - by; i < characters_; i++) { |
| + for (intptr_t i = characters_ - by; i < characters_; i++) { |
| positions_[i].mask = 0; |
| positions_[i].value = 0; |
| positions_[i].determines_perfectly = false; |
| @@ -1980,8 +1992,8 @@ void QuickCheckDetails::Advance(int by, bool one_byte) { |
| } |
| -void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { |
| - DCHECK(characters_ == other->characters_); |
| +void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) { |
| + ASSERT(characters_ == other->characters_); |
| if (other->cannot_match_) { |
| return; |
| } |
| @@ -1989,7 +2001,7 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { |
| *this = *other; |
| return; |
| } |
| - for (int i = from_index; i < characters_; i++) { |
| + for (intptr_t i = from_index; i < characters_; i++) { |
| QuickCheckDetails::Position* pos = positions(i); |
| QuickCheckDetails::Position* other_pos = other->positions(i); |
| if (pos->mask != other_pos->mask || |
| @@ -2002,17 +2014,17 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { |
| pos->mask &= other_pos->mask; |
| pos->value &= pos->mask; |
| other_pos->value &= pos->mask; |
| - uc16 differing_bits = (pos->value ^ other_pos->value); |
| + uint16_t differing_bits = (pos->value ^ other_pos->value); |
| pos->mask &= ~differing_bits; |
| pos->value &= pos->mask; |
| } |
| } |
| -class VisitMarker { |
| +class VisitMarker : public ValueObject { |
| public: |
| explicit VisitMarker(NodeInfo* info) : info_(info) { |
| - DCHECK(!info->visited); |
| + ASSERT(!info->visited); |
| info->visited = true; |
| } |
| ~VisitMarker() { |
| @@ -2023,16 +2035,16 @@ class VisitMarker { |
| }; |
| -RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) { |
| +RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
| if (info()->replacement_calculated) return replacement(); |
| if (depth < 0) return this; |
| - DCHECK(!info()->visited); |
| + ASSERT(!info()->visited); |
| VisitMarker marker(info()); |
| return FilterSuccessor(depth - 1, ignore_case); |
| } |
| -RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) { |
| +RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) { |
| RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case); |
| if (next == NULL) return set_replacement(NULL); |
| on_success_ = next; |
| @@ -2048,58 +2060,74 @@ static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { |
| } |
| -static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { |
| - for (int i = 0; i < ranges->length(); i++) { |
| +static bool RangesContainLatin1Equivalents( |
| + ZoneGrowableArray<CharacterRange>* ranges) { |
| + for (intptr_t i = 0; i < ranges->length(); i++) { |
| // TODO(dcarney): this could be a lot more efficient. |
| - if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; |
| + if (RangeContainsLatin1Equivalents(ranges->At(i))) return true; |
| } |
| return false; |
| } |
| -RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) { |
| +static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) { |
| + ASSERT(c > Symbols::kMaxOneCharCodeSymbol); |
| + switch (c) { |
| + // This are equivalent characters in unicode. |
| + case 0x39c: |
| + case 0x3bc: |
| + return 0xb5; |
| + // This is an uppercase of a Latin-1 character |
| + // outside of Latin-1. |
| + case 0x178: |
| + return 0xff; |
| + } |
| + return 0; |
| +} |
| + |
| + |
| +RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
| if (info()->replacement_calculated) return replacement(); |
| if (depth < 0) return this; |
| - DCHECK(!info()->visited); |
| + ASSERT(!info()->visited); |
| VisitMarker marker(info()); |
| - int element_count = elms_->length(); |
| - for (int i = 0; i < element_count; i++) { |
| - TextElement elm = elms_->at(i); |
| + intptr_t element_count = elms_->length(); |
| + for (intptr_t i = 0; i < element_count; i++) { |
| + TextElement elm = elms_->At(i); |
| if (elm.text_type() == TextElement::ATOM) { |
| - Vector<const uc16> quarks = elm.atom()->data(); |
| - for (int j = 0; j < quarks.length(); j++) { |
| - uint16_t c = quarks[j]; |
| - if (c <= String::kMaxOneByteCharCode) continue; |
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
| + for (intptr_t j = 0; j < quarks->length(); j++) { |
| + uint16_t c = quarks->At(j); |
| + if (c <= Symbols::kMaxOneCharCodeSymbol) continue; |
| if (!ignore_case) return set_replacement(NULL); |
| // Here, we need to check for characters whose upper and lower cases |
| // are outside the Latin-1 range. |
| - uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c); |
| + uint16_t converted = ConvertNonLatin1ToLatin1(c); |
| // Character is outside Latin-1 completely |
| if (converted == 0) return set_replacement(NULL); |
| // Convert quark to Latin-1 in place. |
| - uint16_t* copy = const_cast<uint16_t*>(quarks.start()); |
| - copy[j] = converted; |
| + (*quarks)[0] = converted; |
| } |
| } else { |
| - DCHECK(elm.text_type() == TextElement::CHAR_CLASS); |
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
| RegExpCharacterClass* cc = elm.char_class(); |
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone()); |
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
| if (!CharacterRange::IsCanonical(ranges)) { |
| CharacterRange::Canonicalize(ranges); |
| } |
| // Now they are in order so we only need to look at the first. |
| - int range_count = ranges->length(); |
| + intptr_t range_count = ranges->length(); |
| if (cc->is_negated()) { |
| if (range_count != 0 && |
| - ranges->at(0).from() == 0 && |
| - ranges->at(0).to() >= String::kMaxOneByteCharCode) { |
| + ranges->At(0).from() == 0 && |
| + ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) { |
| // This will be handled in a later filter. |
| if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; |
| return set_replacement(NULL); |
| } |
| } else { |
| if (range_count == 0 || |
| - ranges->at(0).from() > String::kMaxOneByteCharCode) { |
| + ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) { |
| // This will be handled in a later filter. |
| if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; |
| return set_replacement(NULL); |
| @@ -2111,7 +2139,7 @@ RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) { |
| } |
| -RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
| +RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
| if (info()->replacement_calculated) return replacement(); |
| if (depth < 0) return this; |
| if (info()->visited) return this; |
| @@ -2129,30 +2157,30 @@ RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
| } |
| -RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
| +RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
| if (info()->replacement_calculated) return replacement(); |
| if (depth < 0) return this; |
| if (info()->visited) return this; |
| VisitMarker marker(info()); |
| - int choice_count = alternatives_->length(); |
| + intptr_t choice_count = alternatives_->length(); |
| - for (int i = 0; i < choice_count; i++) { |
| - GuardedAlternative alternative = alternatives_->at(i); |
| + for (intptr_t i = 0; i < choice_count; i++) { |
| + GuardedAlternative alternative = alternatives_->At(i); |
| if (alternative.guards() != NULL && alternative.guards()->length() != 0) { |
| set_replacement(this); |
| return this; |
| } |
| } |
| - int surviving = 0; |
| + intptr_t surviving = 0; |
| RegExpNode* survivor = NULL; |
| - for (int i = 0; i < choice_count; i++) { |
| - GuardedAlternative alternative = alternatives_->at(i); |
| + for (intptr_t i = 0; i < choice_count; i++) { |
| + GuardedAlternative alternative = alternatives_->At(i); |
| RegExpNode* replacement = |
| alternative.node()->FilterOneByte(depth - 1, ignore_case); |
| - DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. |
| + ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK. |
| if (replacement != NULL) { |
| - alternatives_->at(i).set_node(replacement); |
| + (*alternatives_)[i].set_node(replacement); |
| surviving++; |
| survivor = replacement; |
| } |
| @@ -2165,14 +2193,14 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
| } |
| // Only some of the nodes survived the filtering. We need to rebuild the |
| // alternatives list. |
| - ZoneList<GuardedAlternative>* new_alternatives = |
| - new(zone()) ZoneList<GuardedAlternative>(surviving, zone()); |
| - for (int i = 0; i < choice_count; i++) { |
| + ZoneGrowableArray<GuardedAlternative>* new_alternatives = |
| + new(I) ZoneGrowableArray<GuardedAlternative>(surviving); |
| + for (intptr_t i = 0; i < choice_count; i++) { |
| RegExpNode* replacement = |
| - alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case); |
| + (*alternatives_)[i].node()->FilterOneByte(depth - 1, ignore_case); |
| if (replacement != NULL) { |
| - alternatives_->at(i).set_node(replacement); |
| - new_alternatives->Add(alternatives_->at(i), zone()); |
| + (*alternatives_)[i].set_node(replacement); |
| + new_alternatives->Add((*alternatives_)[i]); |
| } |
| } |
| alternatives_ = new_alternatives; |
| @@ -2180,7 +2208,7 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
| } |
| -RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth, |
| +RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth, |
| bool ignore_case) { |
| if (info()->replacement_calculated) return replacement(); |
| if (depth < 0) return this; |
| @@ -2188,24 +2216,24 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth, |
| VisitMarker marker(info()); |
| // Alternative 0 is the negative lookahead, alternative 1 is what comes |
| // afterwards. |
| - RegExpNode* node = alternatives_->at(1).node(); |
| + RegExpNode* node = (*alternatives_)[1].node(); |
| RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case); |
| if (replacement == NULL) return set_replacement(NULL); |
| - alternatives_->at(1).set_node(replacement); |
| + (*alternatives_)[1].set_node(replacement); |
| - RegExpNode* neg_node = alternatives_->at(0).node(); |
| + RegExpNode* neg_node = (*alternatives_)[0].node(); |
| RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case); |
| // If the negative lookahead is always going to fail then |
| // we don't need to check it. |
| if (neg_replacement == NULL) return set_replacement(replacement); |
| - alternatives_->at(0).set_node(neg_replacement); |
| + (*alternatives_)[0].set_node(neg_replacement); |
| return set_replacement(this); |
| } |
| void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| - int characters_filled_in, |
| + intptr_t characters_filled_in, |
| bool not_at_start) { |
| if (body_can_be_zero_length_ || info()->visited) return; |
| VisitMarker marker(info()); |
| @@ -2216,8 +2244,8 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| } |
| -void LoopChoiceNode::FillInBMInfo(int offset, |
| - int budget, |
| +void LoopChoiceNode::FillInBMInfo(intptr_t offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| if (body_can_be_zero_length_ || budget <= 0) { |
| @@ -2232,18 +2260,18 @@ void LoopChoiceNode::FillInBMInfo(int offset, |
| void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| - int characters_filled_in, |
| + intptr_t characters_filled_in, |
| bool not_at_start) { |
| not_at_start = (not_at_start || not_at_start_); |
| - int choice_count = alternatives_->length(); |
| - DCHECK(choice_count > 0); |
| - alternatives_->at(0).node()->GetQuickCheckDetails(details, |
| + intptr_t choice_count = alternatives_->length(); |
| + ASSERT(choice_count > 0); |
| + (*alternatives_)[0].node()->GetQuickCheckDetails(details, |
| compiler, |
| characters_filled_in, |
| not_at_start); |
| - for (int i = 1; i < choice_count; i++) { |
| + for (intptr_t i = 1; i < choice_count; i++) { |
| QuickCheckDetails new_details(details->characters()); |
| - RegExpNode* node = alternatives_->at(i).node(); |
| + RegExpNode* node = (*alternatives_)[i].node(); |
| node->GetQuickCheckDetails(&new_details, compiler, |
| characters_filled_in, |
| not_at_start); |
| @@ -2255,8 +2283,8 @@ void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| // Check for [0-9A-Z_a-z]. |
| static void EmitWordCheck(RegExpMacroAssembler* assembler, |
| - Label* word, |
| - Label* non_word, |
| + BlockLabel* word, |
| + BlockLabel* non_word, |
| bool fall_through_on_word) { |
| if (assembler->CheckSpecialCharacterClass( |
| fall_through_on_word ? 'w' : 'W', |
| @@ -2289,7 +2317,7 @@ static void EmitHat(RegExpCompiler* compiler, |
| Trace new_trace(*trace); |
| new_trace.InvalidateCurrentCharacter(); |
| - Label ok; |
| + BlockLabel ok; |
| if (new_trace.cp_offset() == 0) { |
| // The start of input counts as a newline in this context, so skip to |
| // ok if we are at the start. |
| @@ -2309,7 +2337,7 @@ static void EmitHat(RegExpCompiler* compiler, |
| assembler->CheckCharacter('\n', &ok); |
| assembler->CheckNotCharacter('\r', new_trace.backtrack()); |
| } |
| - assembler->Bind(&ok); |
| + assembler->BindBlock(&ok); |
| on_success->Emit(compiler, &new_trace); |
| } |
| @@ -2321,13 +2349,14 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
| bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); |
| BoyerMooreLookahead* lookahead = bm_info(not_at_start); |
| if (lookahead == NULL) { |
| - int eats_at_least = |
| - Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, |
| - kRecursionBudget, |
| - not_at_start)); |
| + intptr_t eats_at_least = |
| + Utils::Minimum(kMaxLookaheadForBoyerMoore, |
| + EatsAtLeast(kMaxLookaheadForBoyerMoore, |
| + kRecursionBudget, |
| + not_at_start)); |
| if (eats_at_least >= 1) { |
| BoyerMooreLookahead* bm = |
| - new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); |
| + new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
| FillInBMInfo(0, kRecursionBudget, bm, not_at_start); |
| if (bm->at(0)->is_non_word()) |
| next_is_word_character = Trace::FALSE_VALUE; |
| @@ -2341,26 +2370,31 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
| } |
| bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); |
| if (next_is_word_character == Trace::UNKNOWN) { |
| - Label before_non_word; |
| - Label before_word; |
| + BlockLabel before_non_word; |
| + BlockLabel before_word; |
| if (trace->characters_preloaded() != 1) { |
| assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); |
| } |
| // Fall through on non-word. |
| EmitWordCheck(assembler, &before_word, &before_non_word, false); |
| // Next character is not a word character. |
| - assembler->Bind(&before_non_word); |
| - Label ok; |
| + assembler->BindBlock(&before_non_word); |
| + BlockLabel ok; |
| + // Backtrack on \B (non-boundary check) if previous is a word, |
| + // since we know next *is not* a word and this would be a boundary. |
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
| - assembler->GoTo(&ok); |
| - assembler->Bind(&before_word); |
| + if (!assembler->IsClosed()) { |
| + assembler->GoTo(&ok); |
| + } |
| + |
| + assembler->BindBlock(&before_word); |
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
| - assembler->Bind(&ok); |
| + assembler->BindBlock(&ok); |
| } else if (next_is_word_character == Trace::TRUE_VALUE) { |
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
| } else { |
| - DCHECK(next_is_word_character == Trace::FALSE_VALUE); |
| + ASSERT(next_is_word_character == Trace::FALSE_VALUE); |
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
| } |
| } |
| @@ -2374,14 +2408,14 @@ void AssertionNode::BacktrackIfPrevious( |
| Trace new_trace(*trace); |
| new_trace.InvalidateCurrentCharacter(); |
| - Label fall_through, dummy; |
| + BlockLabel fall_through, dummy; |
| - Label* non_word = backtrack_if_previous == kIsNonWord ? |
| - new_trace.backtrack() : |
| - &fall_through; |
| - Label* word = backtrack_if_previous == kIsNonWord ? |
| - &fall_through : |
| - new_trace.backtrack(); |
| + BlockLabel* non_word = backtrack_if_previous == kIsNonWord ? |
| + new_trace.backtrack() : |
| + &fall_through; |
| + BlockLabel* word = backtrack_if_previous == kIsNonWord ? |
| + &fall_through : |
| + new_trace.backtrack(); |
| if (new_trace.cp_offset() == 0) { |
| // The start of input counts as a non-word character, so the question is |
| @@ -2393,14 +2427,14 @@ void AssertionNode::BacktrackIfPrevious( |
| assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); |
| EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); |
| - assembler->Bind(&fall_through); |
| + assembler->BindBlock(&fall_through); |
| on_success()->Emit(compiler, &new_trace); |
| } |
| void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| - int filled_in, |
| + intptr_t filled_in, |
| bool not_at_start) { |
| if (assertion_type_ == AT_START && not_at_start) { |
| details->set_cannot_match(); |
| @@ -2417,10 +2451,10 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| switch (assertion_type_) { |
| case AT_END: { |
| - Label ok; |
| + BlockLabel ok; |
| assembler->CheckPosition(trace->cp_offset(), &ok); |
| assembler->GoTo(trace->backtrack()); |
| - assembler->Bind(&ok); |
| + assembler->BindBlock(&ok); |
| break; |
| } |
| case AT_START: { |
| @@ -2450,14 +2484,14 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } |
| -static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { |
| +static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) { |
| if (quick_check == NULL) return false; |
| if (offset >= quick_check->characters()) return false; |
| return quick_check->positions(offset)->determines_perfectly; |
| } |
| -static void UpdateBoundsCheck(int index, int* checked_up_to) { |
| +static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) { |
| if (index > *checked_up_to) { |
| *checked_up_to = index; |
| } |
| @@ -2498,26 +2532,25 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
| bool preloaded, |
| Trace* trace, |
| bool first_element_checked, |
| - int* checked_up_to) { |
| + intptr_t* checked_up_to) { |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| - Isolate* isolate = assembler->zone()->isolate(); |
| bool one_byte = compiler->one_byte(); |
| - Label* backtrack = trace->backtrack(); |
| + BlockLabel* backtrack = trace->backtrack(); |
| QuickCheckDetails* quick_check = trace->quick_check_performed(); |
| - int element_count = elms_->length(); |
| - for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
| - TextElement elm = elms_->at(i); |
| - int cp_offset = trace->cp_offset() + elm.cp_offset(); |
| + intptr_t element_count = elms_->length(); |
| + for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
| + TextElement elm = elms_->At(i); |
| + intptr_t cp_offset = trace->cp_offset() + elm.cp_offset(); |
| if (elm.text_type() == TextElement::ATOM) { |
| - Vector<const uc16> quarks = elm.atom()->data(); |
| - for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { |
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
| + for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) { |
| if (first_element_checked && i == 0 && j == 0) continue; |
| if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; |
| EmitCharacterFunction* emit_function = NULL; |
| switch (pass) { |
| case NON_LATIN1_MATCH: |
| - DCHECK(one_byte); |
| - if (quarks[j] > String::kMaxOneByteCharCode) { |
| + ASSERT(one_byte); |
| + if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) { |
| assembler->GoTo(backtrack); |
| return; |
| } |
| @@ -2535,9 +2568,9 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
| break; |
| } |
| if (emit_function != NULL) { |
| - bool bound_checked = emit_function(isolate, |
| + bool bound_checked = emit_function(I, |
| compiler, |
| - quarks[j], |
| + quarks->At(j), |
| backtrack, |
| cp_offset + j, |
| *checked_up_to < cp_offset + j, |
| @@ -2546,13 +2579,19 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
| } |
| } |
| } else { |
| - DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); |
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
| if (pass == CHARACTER_CLASS_MATCH) { |
| if (first_element_checked && i == 0) continue; |
| if (DeterminedAlready(quick_check, elm.cp_offset())) continue; |
| RegExpCharacterClass* cc = elm.char_class(); |
| - EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, |
| - *checked_up_to < cp_offset, preloaded, zone()); |
| + EmitCharClass(assembler, |
| + cc, |
| + one_byte, |
| + backtrack, |
| + cp_offset, |
| + *checked_up_to < cp_offset, |
| + preloaded, |
| + I); |
| UpdateBoundsCheck(cp_offset, checked_up_to); |
| } |
| } |
| @@ -2560,15 +2599,15 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
| } |
| -int TextNode::Length() { |
| - TextElement elm = elms_->last(); |
| - DCHECK(elm.cp_offset() >= 0); |
| +intptr_t TextNode::Length() { |
| + TextElement elm = elms_->Last(); |
| + ASSERT(elm.cp_offset() >= 0); |
| return elm.cp_offset() + elm.length(); |
| } |
| -bool TextNode::SkipPass(int int_pass, bool ignore_case) { |
| - TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); |
| +bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) { |
| + TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass); |
| if (ignore_case) { |
| return pass == SIMPLE_CHARACTER_MATCH; |
| } else { |
| @@ -2586,7 +2625,7 @@ bool TextNode::SkipPass(int int_pass, bool ignore_case) { |
| void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| LimitResult limit_result = LimitVersions(compiler, trace); |
| if (limit_result == DONE) return; |
| - DCHECK(limit_result == CONTINUE); |
| + ASSERT(limit_result == CONTINUE); |
| if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { |
| compiler->SetRegExpTooBig(); |
| @@ -2594,18 +2633,18 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } |
| if (compiler->one_byte()) { |
| - int dummy = 0; |
| + intptr_t dummy = 0; |
| TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); |
| } |
| bool first_elt_done = false; |
| - int bound_checked_to = trace->cp_offset() - 1; |
| + intptr_t bound_checked_to = trace->cp_offset() - 1; |
| bound_checked_to += trace->bound_checked_up_to(); |
| // If a character is preloaded into the current character register then |
| // check that now. |
| if (trace->characters_preloaded() == 1) { |
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| if (!SkipPass(pass, compiler->ignore_case())) { |
| TextEmitPass(compiler, |
| static_cast<TextEmitPassType>(pass), |
| @@ -2618,7 +2657,7 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| first_elt_done = true; |
| } |
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| if (!SkipPass(pass, compiler->ignore_case())) { |
| TextEmitPass(compiler, |
| static_cast<TextEmitPassType>(pass), |
| @@ -2642,8 +2681,9 @@ void Trace::InvalidateCurrentCharacter() { |
| } |
| -void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { |
| - DCHECK(by > 0); |
| +void Trace::AdvanceCurrentPositionInTrace(intptr_t by, |
| + RegExpCompiler* compiler) { |
| + ASSERT(by > 0); |
| // We don't have an instruction for shifting the current character register |
| // down or for using a shifted value for anything so lets just forget that |
| // we preloaded any characters into it. |
| @@ -2657,31 +2697,32 @@ void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { |
| compiler->SetRegExpTooBig(); |
| cp_offset_ = 0; |
| } |
| - bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); |
| + bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0), |
| + bound_checked_up_to_ - by); |
| } |
| void TextNode::MakeCaseIndependent(bool is_one_byte) { |
| - int element_count = elms_->length(); |
| - for (int i = 0; i < element_count; i++) { |
| - TextElement elm = elms_->at(i); |
| + intptr_t element_count = elms_->length(); |
| + for (intptr_t i = 0; i < element_count; i++) { |
| + TextElement elm = elms_->At(i); |
| if (elm.text_type() == TextElement::CHAR_CLASS) { |
| RegExpCharacterClass* cc = elm.char_class(); |
| // None of the standard character classes is different in the case |
| // independent case and it slows us down if we don't know that. |
| - if (cc->is_standard(zone())) continue; |
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone()); |
| - int range_count = ranges->length(); |
| - for (int j = 0; j < range_count; j++) { |
| - ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone()); |
| + if (cc->is_standard()) continue; |
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
| + intptr_t range_count = ranges->length(); |
| + for (intptr_t j = 0; j < range_count; j++) { |
| + (*ranges)[j].AddCaseEquivalents(ranges, is_one_byte, I); |
| } |
| } |
| } |
| } |
| -int TextNode::GreedyLoopTextLength() { |
| - TextElement elm = elms_->at(elms_->length() - 1); |
| +intptr_t TextNode::GreedyLoopTextLength() { |
| + TextElement elm = elms_->At(elms_->length() - 1); |
| return elm.cp_offset() + elm.length(); |
| } |
| @@ -2689,10 +2730,10 @@ int TextNode::GreedyLoopTextLength() { |
| RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
| RegExpCompiler* compiler) { |
| if (elms_->length() != 1) return NULL; |
| - TextElement elm = elms_->at(0); |
| + TextElement elm = elms_->At(0); |
| if (elm.text_type() != TextElement::CHAR_CLASS) return NULL; |
| RegExpCharacterClass* node = elm.char_class(); |
| - ZoneList<CharacterRange>* ranges = node->ranges(zone()); |
| + ZoneGrowableArray<CharacterRange>* ranges = node->ranges(); |
| if (!CharacterRange::IsCanonical(ranges)) { |
| CharacterRange::Canonicalize(ranges); |
| } |
| @@ -2702,11 +2743,11 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
| if (ranges->length() != 1) return NULL; |
| uint32_t max_char; |
| if (compiler->one_byte()) { |
| - max_char = String::kMaxOneByteCharCode; |
| + max_char = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - max_char = String::kMaxUtf16CodeUnit; |
| + max_char = Utf16::kMaxCodeUnit; |
| } |
| - return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; |
| + return ranges->At(0).IsEverything(max_char) ? on_success() : NULL; |
| } |
| @@ -2714,18 +2755,18 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
| // this alternative and back to this choice node. If there are variable |
| // length nodes or other complications in the way then return a sentinel |
| // value indicating that a greedy loop cannot be constructed. |
| -int ChoiceNode::GreedyLoopTextLengthForAlternative( |
| +intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative( |
| GuardedAlternative* alternative) { |
| - int length = 0; |
| + intptr_t length = 0; |
| RegExpNode* node = alternative->node(); |
| // Later we will generate code for all these text nodes using recursion |
| // so we have to limit the max number. |
| - int recursion_depth = 0; |
| + intptr_t recursion_depth = 0; |
| while (node != this) { |
| if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { |
| return kNodeIsTooComplexForGreedyLoops; |
| } |
| - int node_length = node->GreedyLoopTextLength(); |
| + intptr_t node_length = node->GreedyLoopTextLength(); |
| if (node_length == kNodeIsTooComplexForGreedyLoops) { |
| return kNodeIsTooComplexForGreedyLoops; |
| } |
| @@ -2738,14 +2779,14 @@ int ChoiceNode::GreedyLoopTextLengthForAlternative( |
| void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { |
| - DCHECK_EQ(loop_node_, NULL); |
| + ASSERT(loop_node_ == NULL); |
| AddAlternative(alt); |
| loop_node_ = alt.node(); |
| } |
| void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { |
| - DCHECK_EQ(continue_node_, NULL); |
| + ASSERT(continue_node_ == NULL); |
| AddAlternative(alt); |
| continue_node_ = alt.node(); |
| } |
| @@ -2755,17 +2796,17 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| if (trace->stop_node() == this) { |
| // Back edge of greedy optimized loop node graph. |
| - int text_length = |
| - GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); |
| - DCHECK(text_length != kNodeIsTooComplexForGreedyLoops); |
| + intptr_t text_length = |
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
| + ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); |
| // Update the counter-based backtracking info on the stack. This is an |
| // optimization for greedy loops (see below). |
| - DCHECK(trace->cp_offset() == text_length); |
| + ASSERT(trace->cp_offset() == text_length); |
| macro_assembler->AdvanceCurrentPosition(text_length); |
| macro_assembler->GoTo(trace->loop_label()); |
| return; |
| } |
| - DCHECK(trace->stop_node() == NULL); |
| + ASSERT(trace->stop_node() == NULL); |
| if (!trace->is_trivial()) { |
| trace->Flush(compiler, this); |
| return; |
| @@ -2774,9 +2815,10 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } |
| -int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
| - int eats_at_least) { |
| - int preload_characters = Min(4, eats_at_least); |
| +intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
| + intptr_t eats_at_least) { |
| + intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4), |
| + eats_at_least); |
| if (compiler->macro_assembler()->CanReadUnaligned()) { |
| bool one_byte = compiler->one_byte(); |
| if (one_byte) { |
| @@ -2795,18 +2837,17 @@ int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
| } |
| -// This class is used when generating the alternatives in a choice node. It |
| +// This structure is used when generating the alternatives in a choice node. It |
| // records the way the alternative is being code generated. |
| -class AlternativeGeneration: public Malloced { |
| - public: |
| +struct AlternativeGeneration { |
| AlternativeGeneration() |
| : possible_success(), |
| expects_preload(false), |
| after(), |
| quick_check_details() { } |
| - Label possible_success; |
| + BlockLabel possible_success; |
| bool expects_preload; |
| - Label after; |
| + BlockLabel after; |
| QuickCheckDetails quick_check_details; |
| }; |
| @@ -2815,55 +2856,57 @@ class AlternativeGeneration: public Malloced { |
| // size then it is on the stack, otherwise the excess is on the heap. |
| class AlternativeGenerationList { |
| public: |
| - AlternativeGenerationList(int count, Zone* zone) |
| - : alt_gens_(count, zone) { |
| - for (int i = 0; i < count && i < kAFew; i++) { |
| - alt_gens_.Add(a_few_alt_gens_ + i, zone); |
| + explicit AlternativeGenerationList(intptr_t count) |
| + : alt_gens_(count) { |
| + for (intptr_t i = 0; i < count && i < kAFew; i++) { |
| + alt_gens_.Add(a_few_alt_gens_ + i); |
| } |
| - for (int i = kAFew; i < count; i++) { |
| - alt_gens_.Add(new AlternativeGeneration(), zone); |
| + for (intptr_t i = kAFew; i < count; i++) { |
| + alt_gens_.Add(new AlternativeGeneration()); |
| } |
| } |
| ~AlternativeGenerationList() { |
| - for (int i = kAFew; i < alt_gens_.length(); i++) { |
| + for (intptr_t i = kAFew; i < alt_gens_.length(); i++) { |
| delete alt_gens_[i]; |
| alt_gens_[i] = NULL; |
| } |
| } |
| - AlternativeGeneration* at(int i) { |
| + AlternativeGeneration* at(intptr_t i) { |
| return alt_gens_[i]; |
| } |
| private: |
| - static const int kAFew = 10; |
| - ZoneList<AlternativeGeneration*> alt_gens_; |
| + static const intptr_t kAFew = 10; |
| + GrowableArray<AlternativeGeneration*> alt_gens_; |
| AlternativeGeneration a_few_alt_gens_[kAFew]; |
| + |
| + DISALLOW_ALLOCATION(); |
| }; |
| -// The '2' variant is has inclusive from and exclusive to. |
| +// The '2' variant is inclusive from and exclusive to. |
| // This covers \s as defined in ECMA-262 5.1, 15.10.2.12, |
| // which include WhiteSpace (7.2) or LineTerminator (7.3) values. |
| -static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, |
| +static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, |
| 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, |
| 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, |
| 0xFEFF, 0xFF00, 0x10000 }; |
| -static const int kSpaceRangeCount = arraysize(kSpaceRanges); |
| - |
| -static const int kWordRanges[] = { |
| +static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); |
| +static const intptr_t kWordRanges[] = { |
| '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; |
| -static const int kWordRangeCount = arraysize(kWordRanges); |
| -static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 }; |
| -static const int kDigitRangeCount = arraysize(kDigitRanges); |
| -static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; |
| -static const int kSurrogateRangeCount = arraysize(kSurrogateRanges); |
| -static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, |
| - 0x2028, 0x202A, 0x10000 }; |
| -static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges); |
| - |
| - |
| -void BoyerMoorePositionInfo::Set(int character) { |
| +static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges); |
| +static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 }; |
| +static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges); |
| +static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; |
| +static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges); |
| +static const intptr_t kLineTerminatorRanges[] = { |
| + 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 }; |
| +static const intptr_t kLineTerminatorRangeCount = |
| + ARRAY_SIZE(kLineTerminatorRanges); |
| + |
| + |
| +void BoyerMoorePositionInfo::Set(intptr_t character) { |
| SetInterval(Interval(character, character)); |
| } |
| @@ -2877,15 +2920,15 @@ void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { |
| if (interval.to() - interval.from() >= kMapSize - 1) { |
| if (map_count_ != kMapSize) { |
| map_count_ = kMapSize; |
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true; |
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
| } |
| return; |
| } |
| - for (int i = interval.from(); i <= interval.to(); i++) { |
| - int mod_character = (i & kMask); |
| - if (!map_->at(mod_character)) { |
| + for (intptr_t i = interval.from(); i <= interval.to(); i++) { |
| + intptr_t mod_character = (i & kMask); |
| + if (!map_->At(mod_character)) { |
| map_count_++; |
| - map_->at(mod_character) = true; |
| + (*map_)[mod_character] = true; |
| } |
| if (map_count_ == kMapSize) return; |
| } |
| @@ -2896,23 +2939,23 @@ void BoyerMoorePositionInfo::SetAll() { |
| s_ = w_ = d_ = kLatticeUnknown; |
| if (map_count_ != kMapSize) { |
| map_count_ = kMapSize; |
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true; |
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
| } |
| } |
| BoyerMooreLookahead::BoyerMooreLookahead( |
| - int length, RegExpCompiler* compiler, Zone* zone) |
| + intptr_t length, RegExpCompiler* compiler, Isolate* isolate) |
| : length_(length), |
| compiler_(compiler) { |
| if (compiler->one_byte()) { |
| - max_char_ = String::kMaxOneByteCharCode; |
| + max_char_ = Symbols::kMaxOneCharCodeSymbol; |
| } else { |
| - max_char_ = String::kMaxUtf16CodeUnit; |
| + max_char_ = Utf16::kMaxCodeUnit; |
| } |
| - bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); |
| - for (int i = 0; i < length; i++) { |
| - bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone); |
| + bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length); |
| + for (intptr_t i = 0; i < length; i++) { |
| + bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate)); |
| } |
| } |
| @@ -2920,12 +2963,12 @@ BoyerMooreLookahead::BoyerMooreLookahead( |
| // Find the longest range of lookahead that has the fewest number of different |
| // characters that can occur at a given position. Since we are optimizing two |
| // different parameters at once this is a tradeoff. |
| -bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { |
| - int biggest_points = 0; |
| +bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) { |
| + intptr_t biggest_points = 0; |
| // If more than 32 characters out of 128 can occur it is unlikely that we can |
| // be lucky enough to step forwards much of the time. |
| - const int kMaxMax = 32; |
| - for (int max_number_of_chars = 4; |
| + const intptr_t kMaxMax = 32; |
| + for (intptr_t max_number_of_chars = 4; |
| max_number_of_chars < kMaxMax; |
| max_number_of_chars *= 2) { |
| biggest_points = |
| @@ -2942,23 +2985,26 @@ bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { |
| // of points as the product of width-of-the-range and |
| // probability-of-finding-one-of-the-characters, where the probability is |
| // calculated using the frequency distribution of the sample subject string. |
| -int BoyerMooreLookahead::FindBestInterval( |
| - int max_number_of_chars, int old_biggest_points, int* from, int* to) { |
| - int biggest_points = old_biggest_points; |
| - static const int kSize = RegExpMacroAssembler::kTableSize; |
| - for (int i = 0; i < length_; ) { |
| +intptr_t BoyerMooreLookahead::FindBestInterval( |
| + intptr_t max_number_of_chars, |
| + intptr_t old_biggest_points, |
| + intptr_t* from, |
| + intptr_t* to) { |
| + intptr_t biggest_points = old_biggest_points; |
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| + for (intptr_t i = 0; i < length_; ) { |
| while (i < length_ && Count(i) > max_number_of_chars) i++; |
| if (i == length_) break; |
| - int remembered_from = i; |
| + intptr_t remembered_from = i; |
| bool union_map[kSize]; |
| - for (int j = 0; j < kSize; j++) union_map[j] = false; |
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] = false; |
| while (i < length_ && Count(i) <= max_number_of_chars) { |
| - BoyerMoorePositionInfo* map = bitmaps_->at(i); |
| - for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
| + BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
| i++; |
| } |
| - int frequency = 0; |
| - for (int j = 0; j < kSize; j++) { |
| + intptr_t frequency = 0; |
| + for (intptr_t j = 0; j < kSize; j++) { |
| if (union_map[j]) { |
| // Add 1 to the frequency to give a small per-character boost for |
| // the cases where our sampling is not good enough and many |
| @@ -2973,13 +3019,13 @@ int BoyerMooreLookahead::FindBestInterval( |
| // dividing by 2 we switch off the skipping if the probability of skipping |
| // is less than 50%. This is because the multibyte mask-and-compare |
| // skipping in quickcheck is more likely to do well on this case. |
| - bool in_quickcheck_range = |
| - ((i - remembered_from < 4) || |
| - (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); |
| + bool in_quickcheck_range = ((i - remembered_from < 4) || |
| + (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); |
| // Called 'probability' but it is only a rough estimate and can actually |
| // be outside the 0-kSize range. |
| - int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
| - int points = (i - remembered_from) * probability; |
| + intptr_t probability = |
| + (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
| + intptr_t points = (i - remembered_from) * probability; |
| if (points > biggest_points) { |
| *from = remembered_from; |
| *to = i - 1; |
| @@ -2995,24 +3041,25 @@ int BoyerMooreLookahead::FindBestInterval( |
| // max_lookahead (inclusive) measured from the current position. If the |
| // character at max_lookahead offset is not one of these characters, then we |
| // can safely skip forwards by the number of characters in the range. |
| -int BoyerMooreLookahead::GetSkipTable(int min_lookahead, |
| - int max_lookahead, |
| - Handle<ByteArray> boolean_skip_table) { |
| - const int kSize = RegExpMacroAssembler::kTableSize; |
| +intptr_t BoyerMooreLookahead::GetSkipTable( |
| + intptr_t min_lookahead, |
| + intptr_t max_lookahead, |
| + const TypedData& boolean_skip_table) { |
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| - const int kSkipArrayEntry = 0; |
| - const int kDontSkipArrayEntry = 1; |
| + const intptr_t kSkipArrayEntry = 0; |
| + const intptr_t kDontSkipArrayEntry = 1; |
| - for (int i = 0; i < kSize; i++) { |
| - boolean_skip_table->set(i, kSkipArrayEntry); |
| + for (intptr_t i = 0; i < kSize; i++) { |
| + boolean_skip_table.SetUint8(i, kSkipArrayEntry); |
| } |
| - int skip = max_lookahead + 1 - min_lookahead; |
| + intptr_t skip = max_lookahead + 1 - min_lookahead; |
| - for (int i = max_lookahead; i >= min_lookahead; i--) { |
| - BoyerMoorePositionInfo* map = bitmaps_->at(i); |
| - for (int j = 0; j < kSize; j++) { |
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
| + BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| + for (intptr_t j = 0; j < kSize; j++) { |
| if (map->at(j)) { |
| - boolean_skip_table->set(j, kDontSkipArrayEntry); |
| + boolean_skip_table.SetUint8(j, kDontSkipArrayEntry); |
| } |
| } |
| } |
| @@ -3023,23 +3070,23 @@ int BoyerMooreLookahead::GetSkipTable(int min_lookahead, |
| // See comment above on the implementation of GetSkipTable. |
| void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| - const int kSize = RegExpMacroAssembler::kTableSize; |
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| - int min_lookahead = 0; |
| - int max_lookahead = 0; |
| + intptr_t min_lookahead = 0; |
| + intptr_t max_lookahead = 0; |
| if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; |
| bool found_single_character = false; |
| - int single_character = 0; |
| - for (int i = max_lookahead; i >= min_lookahead; i--) { |
| - BoyerMoorePositionInfo* map = bitmaps_->at(i); |
| + intptr_t single_character = 0; |
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
| + BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| if (map->map_count() > 1 || |
| (found_single_character && map->map_count() != 0)) { |
| found_single_character = false; |
| break; |
| } |
| - for (int j = 0; j < kSize; j++) { |
| + for (intptr_t j = 0; j < kSize; j++) { |
| if (map->at(j)) { |
| found_single_character = true; |
| single_character = j; |
| @@ -3048,7 +3095,7 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| } |
| } |
| - int lookahead_width = max_lookahead + 1 - min_lookahead; |
| + intptr_t lookahead_width = max_lookahead + 1 - min_lookahead; |
| if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { |
| // The mask-compare can probably handle this better. |
| @@ -3056,8 +3103,8 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| } |
| if (found_single_character) { |
| - Label cont, again; |
| - masm->Bind(&again); |
| + BlockLabel cont, again; |
| + masm->BindBlock(&again); |
| masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| if (max_char_ > kSize) { |
| masm->CheckCharacterAfterAnd(single_character, |
| @@ -3068,23 +3115,27 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| } |
| masm->AdvanceCurrentPosition(lookahead_width); |
| masm->GoTo(&again); |
| - masm->Bind(&cont); |
| + masm->BindBlock(&cont); |
| return; |
| } |
| - Factory* factory = masm->zone()->isolate()->factory(); |
| - Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED); |
| - int skip_distance = GetSkipTable( |
| + const TypedData& boolean_skip_table = TypedData::ZoneHandle( |
| + compiler_->isolate(), |
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
| + intptr_t skip_distance = GetSkipTable( |
| min_lookahead, max_lookahead, boolean_skip_table); |
| - DCHECK(skip_distance != 0); |
| + ASSERT(skip_distance != 0); |
| - Label cont, again; |
| - masm->Bind(&again); |
| + BlockLabel cont, again; |
| + |
| + masm->BindBlock(&again); |
| masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| masm->CheckBitInTable(boolean_skip_table, &cont); |
| masm->AdvanceCurrentPosition(skip_distance); |
| masm->GoTo(&again); |
| - masm->Bind(&cont); |
| + masm->BindBlock(&cont); |
| + |
| + return; |
| } |
| @@ -3170,13 +3221,13 @@ GreedyLoopState::GreedyLoopState(bool not_at_start) { |
| void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { |
| #ifdef DEBUG |
| - int choice_count = alternatives_->length(); |
| - for (int i = 0; i < choice_count - 1; i++) { |
| - GuardedAlternative alternative = alternatives_->at(i); |
| - ZoneList<Guard*>* guards = alternative.guards(); |
| - int guard_count = (guards == NULL) ? 0 : guards->length(); |
| - for (int j = 0; j < guard_count; j++) { |
| - DCHECK(!trace->mentions_reg(guards->at(j)->reg())); |
| + intptr_t choice_count = alternatives_->length(); |
| + for (intptr_t i = 0; i < choice_count - 1; i++) { |
| + GuardedAlternative alternative = alternatives_->At(i); |
| + ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| + for (intptr_t j = 0; j < guard_count; j++) { |
| + ASSERT(!trace->mentions_reg(guards->At(j)->reg())); |
| } |
| } |
| #endif |
| @@ -3202,13 +3253,13 @@ void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, |
| void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| - int choice_count = alternatives_->length(); |
| + intptr_t choice_count = alternatives_->length(); |
| AssertGuardsMentionRegisters(trace); |
| LimitResult limit_result = LimitVersions(compiler, trace); |
| if (limit_result == DONE) return; |
| - DCHECK(limit_result == CONTINUE); |
| + ASSERT(limit_result == CONTINUE); |
| // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for |
| // other choice nodes we only flush if we are out of code size budget. |
| @@ -3223,8 +3274,9 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| preload.init(); |
| GreedyLoopState greedy_loop_state(not_at_start()); |
| - int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); |
| - AlternativeGenerationList alt_gens(choice_count, zone()); |
| + intptr_t text_length = |
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
| + AlternativeGenerationList alt_gens(choice_count); |
| if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { |
| trace = EmitGreedyLoop(compiler, |
| @@ -3236,8 +3288,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } else { |
| // TODO(erikcorry): Delete this. We don't need this label, but it makes us |
| // match the traces produced pre-cleanup. |
| - Label second_choice; |
| - compiler->macro_assembler()->Bind(&second_choice); |
| + BlockLabel second_choice; |
| + compiler->macro_assembler()->BindBlock(&second_choice); |
| preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); |
| @@ -3251,8 +3303,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| // At this point we need to generate slow checks for the alternatives where |
| // the quick check was inlined. We can recognize these because the associated |
| // label was bound. |
| - int new_flush_budget = trace->flush_budget() / choice_count; |
| - for (int i = 0; i < choice_count; i++) { |
| + intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
| + for (intptr_t i = 0; i < choice_count; i++) { |
| AlternativeGeneration* alt_gen = alt_gens.at(i); |
| Trace new_trace(*trace); |
| // If there are actions to be flushed we have to limit how many times |
| @@ -3265,20 +3317,19 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; |
| EmitOutOfLineContinuation(compiler, |
| &new_trace, |
| - alternatives_->at(i), |
| + alternatives_->At(i), |
| alt_gen, |
| preload.preload_characters_, |
| next_expects_preload); |
| } |
| } |
| - |
| Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
| Trace* trace, |
| AlternativeGenerationList* alt_gens, |
| PreloadState* preload, |
| GreedyLoopState* greedy_loop_state, |
| - int text_length) { |
| + intptr_t text_length) { |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| // Here we have special handling for greedy loops containing only text nodes |
| // and other simple nodes. These are handled by pushing the current |
| @@ -3287,21 +3338,21 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
| // and check it against the pushed value. This avoids pushing backtrack |
| // information for each iteration of the loop, which could take up a lot of |
| // space. |
| - DCHECK(trace->stop_node() == NULL); |
| + ASSERT(trace->stop_node() == NULL); |
| macro_assembler->PushCurrentPosition(); |
| - Label greedy_match_failed; |
| + BlockLabel greedy_match_failed; |
| Trace greedy_match_trace; |
| if (not_at_start()) greedy_match_trace.set_at_start(false); |
| greedy_match_trace.set_backtrack(&greedy_match_failed); |
| - Label loop_label; |
| - macro_assembler->Bind(&loop_label); |
| + BlockLabel loop_label; |
| + macro_assembler->BindBlock(&loop_label); |
| greedy_match_trace.set_stop_node(this); |
| greedy_match_trace.set_loop_label(&loop_label); |
| - alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); |
| - macro_assembler->Bind(&greedy_match_failed); |
| + (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace); |
| + macro_assembler->BindBlock(&greedy_match_failed); |
| - Label second_choice; // For use in greedy matches. |
| - macro_assembler->Bind(&second_choice); |
| + BlockLabel second_choice; // For use in greedy matches. |
| + macro_assembler->BindBlock(&second_choice); |
| Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); |
| @@ -3311,7 +3362,7 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
| new_trace, |
| preload); |
| - macro_assembler->Bind(greedy_loop_state->label()); |
| + macro_assembler->BindBlock(greedy_loop_state->label()); |
| // If we have unwound to the bottom then backtrack. |
| macro_assembler->CheckGreedyLoop(trace->backtrack()); |
| // Otherwise try the second priority at an earlier position. |
| @@ -3320,12 +3371,13 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
| return new_trace; |
| } |
| -int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| - Trace* trace) { |
| - int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; |
| + |
| +intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| + Trace* trace) { |
| + intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; |
| if (alternatives_->length() != 2) return eats_at_least; |
| - GuardedAlternative alt1 = alternatives_->at(1); |
| + GuardedAlternative alt1 = alternatives_->At(1); |
| if (alt1.guards() != NULL && alt1.guards()->length() != 0) { |
| return eats_at_least; |
| } |
| @@ -3340,7 +3392,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| // loop. That also implies that there are no preloaded characters, which is |
| // good, because it means we won't be violating any assumptions by |
| // overwriting those characters with new load instructions. |
| - DCHECK(trace->is_trivial()); |
| + ASSERT(trace->is_trivial()); |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| // At this point we know that we are at a non-greedy loop that will eat |
| @@ -3352,15 +3404,13 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| // small alternation. |
| BoyerMooreLookahead* bm = bm_info(false); |
| if (bm == NULL) { |
| - eats_at_least = Min(kMaxLookaheadForBoyerMoore, |
| + eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore, |
| EatsAtLeast(kMaxLookaheadForBoyerMoore, |
| kRecursionBudget, |
| false)); |
| if (eats_at_least >= 1) { |
| - bm = new(zone()) BoyerMooreLookahead(eats_at_least, |
| - compiler, |
| - zone()); |
| - GuardedAlternative alt0 = alternatives_->at(0); |
| + bm = new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
| + GuardedAlternative alt0 = alternatives_->At(0); |
| alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false); |
| } |
| } |
| @@ -3373,7 +3423,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
| AlternativeGenerationList* alt_gens, |
| - int first_choice, |
| + intptr_t first_choice, |
| Trace* trace, |
| PreloadState* preload) { |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| @@ -3381,18 +3431,18 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
| // For now we just call all choices one after the other. The idea ultimately |
| // is to use the Dispatch table to try only the relevant ones. |
| - int choice_count = alternatives_->length(); |
| + intptr_t choice_count = alternatives_->length(); |
| - int new_flush_budget = trace->flush_budget() / choice_count; |
| + intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
| - for (int i = first_choice; i < choice_count; i++) { |
| + for (intptr_t i = first_choice; i < choice_count; i++) { |
| bool is_last = i == choice_count - 1; |
| bool fall_through_on_failure = !is_last; |
| - GuardedAlternative alternative = alternatives_->at(i); |
| + GuardedAlternative alternative = alternatives_->At(i); |
| AlternativeGeneration* alt_gen = alt_gens->at(i); |
| alt_gen->quick_check_details.set_characters(preload->preload_characters_); |
| - ZoneList<Guard*>* guards = alternative.guards(); |
| - int guard_count = (guards == NULL) ? 0 : guards->length(); |
| + ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| Trace new_trace(*trace); |
| new_trace.set_characters_preloaded(preload->preload_is_current_ ? |
| preload->preload_characters_ : |
| @@ -3407,7 +3457,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
| } |
| alt_gen->expects_preload = preload->preload_is_current_; |
| bool generate_full_check_inline = false; |
| - if (FLAG_regexp_optimization && |
| + if (kRegexpOptimization && |
| try_to_emit_quick_check_for_alternative(i == 0) && |
| alternative.node()->EmitQuickCheck(compiler, |
| trace, |
| @@ -3422,7 +3472,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
| // If we generated the quick check to fall through on possible success, |
| // we now need to generate the full check inline. |
| if (!fall_through_on_failure) { |
| - macro_assembler->Bind(&alt_gen->possible_success); |
| + macro_assembler->BindBlock(&alt_gen->possible_success); |
| new_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
| new_trace.set_characters_preloaded(preload->preload_characters_); |
| new_trace.set_bound_checked_up_to(preload->preload_characters_); |
| @@ -3449,13 +3499,13 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
| if (new_trace.actions() != NULL) { |
| new_trace.set_flush_budget(new_flush_budget); |
| } |
| - for (int j = 0; j < guard_count; j++) { |
| - GenerateGuard(macro_assembler, guards->at(j), &new_trace); |
| + for (intptr_t j = 0; j < guard_count; j++) { |
| + GenerateGuard(macro_assembler, guards->At(j), &new_trace); |
| } |
| alternative.node()->Emit(compiler, &new_trace); |
| preload->preload_is_current_ = false; |
| } |
| - macro_assembler->Bind(&alt_gen->after); |
| + macro_assembler->BindBlock(&alt_gen->after); |
| } |
| } |
| @@ -3464,26 +3514,26 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| Trace* trace, |
| GuardedAlternative alternative, |
| AlternativeGeneration* alt_gen, |
| - int preload_characters, |
| + intptr_t preload_characters, |
| bool next_expects_preload) { |
| - if (!alt_gen->possible_success.is_linked()) return; |
| + if (!alt_gen->possible_success.IsLinked()) return; |
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| - macro_assembler->Bind(&alt_gen->possible_success); |
| + macro_assembler->BindBlock(&alt_gen->possible_success); |
| Trace out_of_line_trace(*trace); |
| out_of_line_trace.set_characters_preloaded(preload_characters); |
| out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
| if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); |
| - ZoneList<Guard*>* guards = alternative.guards(); |
| - int guard_count = (guards == NULL) ? 0 : guards->length(); |
| + ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| if (next_expects_preload) { |
| - Label reload_current_char; |
| + BlockLabel reload_current_char; |
| out_of_line_trace.set_backtrack(&reload_current_char); |
| - for (int j = 0; j < guard_count; j++) { |
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); |
| + for (intptr_t j = 0; j < guard_count; j++) { |
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
| } |
| alternative.node()->Emit(compiler, &out_of_line_trace); |
| - macro_assembler->Bind(&reload_current_char); |
| + macro_assembler->BindBlock(&reload_current_char); |
| // Reload the current character, since the next quick check expects that. |
| // We don't need to check bounds here because we only get into this |
| // code through a quick check which already did the checked load. |
| @@ -3494,8 +3544,8 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| macro_assembler->GoTo(&(alt_gen->after)); |
| } else { |
| out_of_line_trace.set_backtrack(&(alt_gen->after)); |
| - for (int j = 0; j < guard_count; j++) { |
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); |
| + for (intptr_t j = 0; j < guard_count; j++) { |
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
| } |
| alternative.node()->Emit(compiler, &out_of_line_trace); |
| } |
| @@ -3506,7 +3556,7 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| LimitResult limit_result = LimitVersions(compiler, trace); |
| if (limit_result == DONE) return; |
| - DCHECK(limit_result == CONTINUE); |
| + ASSERT(limit_result == CONTINUE); |
| RecursionCheck rc(compiler); |
| @@ -3558,9 +3608,9 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } |
| break; |
| case EMPTY_MATCH_CHECK: { |
| - int start_pos_reg = data_.u_empty_match_check.start_register; |
| - int stored_pos = 0; |
| - int rep_reg = data_.u_empty_match_check.repetition_register; |
| + intptr_t start_pos_reg = data_.u_empty_match_check.start_register; |
| + intptr_t stored_pos = 0; |
| + intptr_t rep_reg = data_.u_empty_match_check.repetition_register; |
| bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); |
| bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); |
| if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { |
| @@ -3574,18 +3624,18 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| } else if (!trace->is_trivial()) { |
| trace->Flush(compiler, this); |
| } else { |
| - Label skip_empty_check; |
| + BlockLabel skip_empty_check; |
| // If we have a minimum number of repetitions we check the current |
| // number first and skip the empty check if it's not enough. |
| if (has_minimum) { |
| - int limit = data_.u_empty_match_check.repetition_limit; |
| + intptr_t limit = data_.u_empty_match_check.repetition_limit; |
| assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); |
| } |
| // If the match is empty we bail out, otherwise we fall through |
| // to the on-success continuation. |
| assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, |
| trace->backtrack()); |
| - assembler->Bind(&skip_empty_check); |
| + assembler->BindBlock(&skip_empty_check); |
| on_success()->Emit(compiler, trace); |
| } |
| break; |
| @@ -3599,22 +3649,23 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| data_.u_submatch.current_position_register); |
| assembler->ReadStackPointerFromRegister( |
| data_.u_submatch.stack_pointer_register); |
| - int clear_register_count = data_.u_submatch.clear_register_count; |
| + intptr_t clear_register_count = data_.u_submatch.clear_register_count; |
| if (clear_register_count == 0) { |
| on_success()->Emit(compiler, trace); |
| return; |
| } |
| - int clear_registers_from = data_.u_submatch.clear_register_from; |
| - Label clear_registers_backtrack; |
| + intptr_t clear_registers_from = data_.u_submatch.clear_register_from; |
| + BlockLabel clear_registers_backtrack; |
| Trace new_trace = *trace; |
| new_trace.set_backtrack(&clear_registers_backtrack); |
| on_success()->Emit(compiler, &new_trace); |
| - assembler->Bind(&clear_registers_backtrack); |
| - int clear_registers_to = clear_registers_from + clear_register_count - 1; |
| + assembler->BindBlock(&clear_registers_backtrack); |
| + intptr_t clear_registers_to = |
| + clear_registers_from + clear_register_count - 1; |
| assembler->ClearRegisters(clear_registers_from, clear_registers_to); |
| - DCHECK(trace->backtrack() == NULL); |
| + ASSERT(trace->backtrack() == NULL); |
| assembler->Backtrack(); |
| return; |
| } |
| @@ -3633,11 +3684,11 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| LimitResult limit_result = LimitVersions(compiler, trace); |
| if (limit_result == DONE) return; |
| - DCHECK(limit_result == CONTINUE); |
| + ASSERT(limit_result == CONTINUE); |
| RecursionCheck rc(compiler); |
| - DCHECK_EQ(start_reg_ + 1, end_reg_); |
| + ASSERT(start_reg_ + 1 == end_reg_); |
| if (compiler->ignore_case()) { |
| assembler->CheckNotBackReferenceIgnoreCase(start_reg_, |
| trace->backtrack()); |
| @@ -3657,9 +3708,8 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| class DotPrinter: public NodeVisitor { |
| public: |
| - DotPrinter(OStream& os, bool ignore_case) // NOLINT |
| - : os_(os), |
| - ignore_case_(ignore_case) {} |
| + explicit DotPrinter(bool ignore_case) |
| + : ignore_case_(ignore_case) {} |
| void PrintNode(const char* label, RegExpNode* node); |
| void Visit(RegExpNode* node); |
| void PrintAttributes(RegExpNode* from); |
| @@ -3669,29 +3719,28 @@ class DotPrinter: public NodeVisitor { |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| private: |
| - OStream& os_; |
| bool ignore_case_; |
| }; |
| void DotPrinter::PrintNode(const char* label, RegExpNode* node) { |
| - os_ << "digraph G {\n graph [label=\""; |
| - for (int i = 0; label[i]; i++) { |
| + OS::Print("digraph G {\n graph [label=\""); |
| + for (intptr_t i = 0; label[i]; i++) { |
| switch (label[i]) { |
| case '\\': |
| - os_ << "\\\\"; |
| + OS::Print("\\\\"); |
| break; |
| case '"': |
| - os_ << "\""; |
| + OS::Print("\""); |
| break; |
| default: |
| - os_ << label[i]; |
| + OS::Print("%c", label[i]); |
| break; |
| } |
| } |
| - os_ << "\"];\n"; |
| + OS::Print("\"];\n"); |
| Visit(node); |
| - os_ << "}" << endl; |
| + OS::Print("}\n"); |
| } |
| @@ -3703,292 +3752,194 @@ void DotPrinter::Visit(RegExpNode* node) { |
| void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { |
| - os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n"; |
| + OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure); |
| Visit(on_failure); |
| } |
| -class TableEntryBodyPrinter { |
| +class AttributePrinter : public ValueObject { |
| public: |
| - TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT |
| - : os_(os), |
| - choice_(choice) {} |
| - void Call(uc16 from, DispatchTable::Entry entry) { |
| - OutSet* out_set = entry.out_set(); |
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
| - if (out_set->Get(i)) { |
| - os_ << " n" << choice() << ":s" << from << "o" << i << " -> n" |
| - << choice()->alternatives()->at(i).node() << ";\n"; |
| - } |
| - } |
| - } |
| - private: |
| - ChoiceNode* choice() { return choice_; } |
| - OStream& os_; |
| - ChoiceNode* choice_; |
| -}; |
| - |
| - |
| -class TableEntryHeaderPrinter { |
| - public: |
| - explicit TableEntryHeaderPrinter(OStream& os) // NOLINT |
| - : first_(true), |
| - os_(os) {} |
| - void Call(uc16 from, DispatchTable::Entry entry) { |
| - if (first_) { |
| - first_ = false; |
| - } else { |
| - os_ << "|"; |
| - } |
| - os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{"; |
| - OutSet* out_set = entry.out_set(); |
| - int priority = 0; |
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
| - if (out_set->Get(i)) { |
| - if (priority > 0) os_ << "|"; |
| - os_ << "<s" << from << "o" << i << "> " << priority; |
| - priority++; |
| - } |
| - } |
| - os_ << "}}"; |
| - } |
| - |
| - private: |
| - bool first_; |
| - OStream& os_; |
| -}; |
| - |
| - |
| -class AttributePrinter { |
| - public: |
| - explicit AttributePrinter(OStream& os) // NOLINT |
| - : os_(os), |
| - first_(true) {} |
| + AttributePrinter() : first_(true) {} |
| void PrintSeparator() { |
| if (first_) { |
| first_ = false; |
| } else { |
| - os_ << "|"; |
| + OS::Print("|"); |
| } |
| } |
| void PrintBit(const char* name, bool value) { |
| if (!value) return; |
| PrintSeparator(); |
| - os_ << "{" << name << "}"; |
| + OS::Print("{%s}", name); |
| } |
| - void PrintPositive(const char* name, int value) { |
| + void PrintPositive(const char* name, intptr_t value) { |
| if (value < 0) return; |
| PrintSeparator(); |
| - os_ << "{" << name << "|" << value << "}"; |
| + OS::Print("{%s|%" Pd "}", name, value); |
| } |
| private: |
| - OStream& os_; |
| bool first_; |
| }; |
| void DotPrinter::PrintAttributes(RegExpNode* that) { |
| - os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, " |
| - << "margin=0.1, fontsize=10, label=\"{"; |
| - AttributePrinter printer(os_); |
| + OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " |
| + "margin=0.1, fontsize=10, label=\"{", that); |
| + AttributePrinter printer; |
| NodeInfo* info = that->info(); |
| printer.PrintBit("NI", info->follows_newline_interest); |
| printer.PrintBit("WI", info->follows_word_interest); |
| printer.PrintBit("SI", info->follows_start_interest); |
| - Label* label = that->label(); |
| - if (label->is_bound()) |
| - printer.PrintPositive("@", label->pos()); |
| - os_ << "}\"];\n" |
| - << " a" << that << " -> n" << that |
| - << " [style=dashed, color=grey, arrowhead=none];\n"; |
| + BlockLabel* label = that->label(); |
| + if (label->IsBound()) |
| + printer.PrintPositive("@", label->Position()); |
| + OS::Print("}\"];\n" |
| + " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n", |
| + that, that); |
| } |
| -static const bool kPrintDispatchTable = false; |
| void DotPrinter::VisitChoice(ChoiceNode* that) { |
| - if (kPrintDispatchTable) { |
| - os_ << " n" << that << " [shape=Mrecord, label=\""; |
| - TableEntryHeaderPrinter header_printer(os_); |
| - that->GetTable(ignore_case_)->ForEach(&header_printer); |
| - os_ << "\"]\n"; |
| - PrintAttributes(that); |
| - TableEntryBodyPrinter body_printer(os_, that); |
| - that->GetTable(ignore_case_)->ForEach(&body_printer); |
| - } else { |
| - os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n"; |
| - for (int i = 0; i < that->alternatives()->length(); i++) { |
| - GuardedAlternative alt = that->alternatives()->at(i); |
| - os_ << " n" << that << " -> n" << alt.node(); |
| - } |
| + OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that); |
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
| + GuardedAlternative alt = that->alternatives()->At(i); |
| + OS::Print(" n%p -> n%p", that, alt.node()); |
| } |
| - for (int i = 0; i < that->alternatives()->length(); i++) { |
| - GuardedAlternative alt = that->alternatives()->at(i); |
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
| + GuardedAlternative alt = that->alternatives()->At(i); |
| alt.node()->Accept(this); |
| } |
| } |
| void DotPrinter::VisitText(TextNode* that) { |
| - Zone* zone = that->zone(); |
| - os_ << " n" << that << " [label=\""; |
| - for (int i = 0; i < that->elements()->length(); i++) { |
| - if (i > 0) os_ << " "; |
| - TextElement elm = that->elements()->at(i); |
| + OS::Print(" n%p [label=\"", that); |
| + for (intptr_t i = 0; i < that->elements()->length(); i++) { |
| + if (i > 0) OS::Print(" "); |
| + TextElement elm = that->elements()->At(i); |
| switch (elm.text_type()) { |
| case TextElement::ATOM: { |
| - Vector<const uc16> data = elm.atom()->data(); |
| - for (int i = 0; i < data.length(); i++) { |
| - os_ << static_cast<char>(data[i]); |
| + ZoneGrowableArray<uint16_t>* data = elm.atom()->data(); |
| + for (intptr_t i = 0; i < data->length(); i++) { |
| + OS::Print("%c", static_cast<char>(data->At(i))); |
| } |
| break; |
| } |
| case TextElement::CHAR_CLASS: { |
| RegExpCharacterClass* node = elm.char_class(); |
| - os_ << "["; |
| - if (node->is_negated()) os_ << "^"; |
| - for (int j = 0; j < node->ranges(zone)->length(); j++) { |
| - CharacterRange range = node->ranges(zone)->at(j); |
| - os_ << AsUC16(range.from()) << "-" << AsUC16(range.to()); |
| + OS::Print("["); |
| + if (node->is_negated()) OS::Print("^"); |
| + for (intptr_t j = 0; j < node->ranges()->length(); j++) { |
| + CharacterRange range = node->ranges()->At(j); |
| + PrintUtf16(range.from()); |
| + OS::Print("-"); |
| + PrintUtf16(range.to()); |
| } |
| - os_ << "]"; |
| + OS::Print("]"); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| - os_ << "\", shape=box, peripheries=2];\n"; |
| + OS::Print("\", shape=box, peripheries=2];\n"); |
| PrintAttributes(that); |
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n"; |
| + OS::Print(" n%p -> n%p;\n", that, that->on_success()); |
| Visit(that->on_success()); |
| } |
| void DotPrinter::VisitBackReference(BackReferenceNode* that) { |
| - os_ << " n" << that << " [label=\"$" << that->start_register() << "..$" |
| - << that->end_register() << "\", shape=doubleoctagon];\n"; |
| + OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n", |
| + that, that->start_register(), that->end_register()); |
| PrintAttributes(that); |
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n"; |
| + OS::Print(" n%p -> n%p;\n", that, that->on_success()); |
| Visit(that->on_success()); |
| } |
| void DotPrinter::VisitEnd(EndNode* that) { |
| - os_ << " n" << that << " [style=bold, shape=point];\n"; |
| + OS::Print(" n%p [style=bold, shape=point];\n", that); |
| PrintAttributes(that); |
| } |
| void DotPrinter::VisitAssertion(AssertionNode* that) { |
| - os_ << " n" << that << " ["; |
| + OS::Print(" n%p [", that); |
| switch (that->assertion_type()) { |
| case AssertionNode::AT_END: |
| - os_ << "label=\"$\", shape=septagon"; |
| + OS::Print("label=\"$\", shape=septagon"); |
| break; |
| case AssertionNode::AT_START: |
| - os_ << "label=\"^\", shape=septagon"; |
| + OS::Print("label=\"^\", shape=septagon"); |
| break; |
| case AssertionNode::AT_BOUNDARY: |
| - os_ << "label=\"\\b\", shape=septagon"; |
| + OS::Print("label=\"\\b\", shape=septagon"); |
| break; |
| case AssertionNode::AT_NON_BOUNDARY: |
| - os_ << "label=\"\\B\", shape=septagon"; |
| + OS::Print("label=\"\\B\", shape=septagon"); |
| break; |
| case AssertionNode::AFTER_NEWLINE: |
| - os_ << "label=\"(?<=\\n)\", shape=septagon"; |
| + OS::Print("label=\"(?<=\\n)\", shape=septagon"); |
| break; |
| } |
| - os_ << "];\n"; |
| + OS::Print("];\n"); |
| PrintAttributes(that); |
| RegExpNode* successor = that->on_success(); |
| - os_ << " n" << that << " -> n" << successor << ";\n"; |
| + OS::Print(" n%p -> n%p;\n", that, successor); |
| Visit(successor); |
| } |
| void DotPrinter::VisitAction(ActionNode* that) { |
| - os_ << " n" << that << " ["; |
| + OS::Print(" n%p [", that); |
| switch (that->action_type_) { |
| case ActionNode::SET_REGISTER: |
| - os_ << "label=\"$" << that->data_.u_store_register.reg |
| - << ":=" << that->data_.u_store_register.value << "\", shape=octagon"; |
| + OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon", |
| + that->data_.u_store_register.reg, |
| + that->data_.u_store_register.value); |
| break; |
| case ActionNode::INCREMENT_REGISTER: |
| - os_ << "label=\"$" << that->data_.u_increment_register.reg |
| - << "++\", shape=octagon"; |
| + OS::Print("label=\"$%" Pd "++\", shape=octagon", |
| + that->data_.u_increment_register.reg); |
| break; |
| case ActionNode::STORE_POSITION: |
| - os_ << "label=\"$" << that->data_.u_position_register.reg |
| - << ":=$pos\", shape=octagon"; |
| + OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon", |
| + that->data_.u_position_register.reg); |
| break; |
| case ActionNode::BEGIN_SUBMATCH: |
| - os_ << "label=\"$" << that->data_.u_submatch.current_position_register |
| - << ":=$pos,begin\", shape=septagon"; |
| + OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon", |
| + that->data_.u_submatch.current_position_register); |
| break; |
| case ActionNode::POSITIVE_SUBMATCH_SUCCESS: |
| - os_ << "label=\"escape\", shape=septagon"; |
| + OS::Print("label=\"escape\", shape=septagon"); |
| break; |
| case ActionNode::EMPTY_MATCH_CHECK: |
| - os_ << "label=\"$" << that->data_.u_empty_match_check.start_register |
| - << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register |
| - << "<" << that->data_.u_empty_match_check.repetition_limit |
| - << "?\", shape=septagon"; |
| + OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon", |
| + that->data_.u_empty_match_check.start_register, |
| + that->data_.u_empty_match_check.repetition_register, |
| + that->data_.u_empty_match_check.repetition_limit); |
| break; |
| case ActionNode::CLEAR_CAPTURES: { |
| - os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from |
| - << " to $" << that->data_.u_clear_captures.range_to |
| - << "\", shape=septagon"; |
| + OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon", |
| + that->data_.u_clear_captures.range_from, |
| + that->data_.u_clear_captures.range_to); |
| break; |
| } |
| } |
| - os_ << "];\n"; |
| + OS::Print("];\n"); |
| PrintAttributes(that); |
| RegExpNode* successor = that->on_success(); |
| - os_ << " n" << that << " -> n" << successor << ";\n"; |
| + OS::Print(" n%p -> n%p;\n", that, successor); |
| Visit(successor); |
| } |
| -class DispatchTableDumper { |
| - public: |
| - explicit DispatchTableDumper(OStream& os) : os_(os) {} |
| - void Call(uc16 key, DispatchTable::Entry entry); |
| - private: |
| - OStream& os_; |
| -}; |
| - |
| - |
| -void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { |
| - os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {"; |
| - OutSet* set = entry.out_set(); |
| - bool first = true; |
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
| - if (set->Get(i)) { |
| - if (first) { |
| - first = false; |
| - } else { |
| - os_ << ", "; |
| - } |
| - os_ << i; |
| - } |
| - } |
| - os_ << "}\n"; |
| -} |
| - |
| - |
| -void DispatchTable::Dump() { |
| - OFStream os(stderr); |
| - DispatchTableDumper dumper(os); |
| - tree()->ForEach(&dumper); |
| -} |
| - |
| - |
| void RegExpEngine::DotPrint(const char* label, |
| RegExpNode* node, |
| bool ignore_case) { |
| - OFStream os(stdout); |
| - DotPrinter printer(os, ignore_case); |
| + DotPrinter printer(ignore_case); |
| printer.PrintNode(label, node); |
| } |
| @@ -4001,39 +3952,44 @@ void RegExpEngine::DotPrint(const char* label, |
| RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - ZoneList<TextElement>* elms = |
| - new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); |
| - elms->Add(TextElement::Atom(this), compiler->zone()); |
| - return new(compiler->zone()) TextNode(elms, on_success); |
| + ZoneGrowableArray<TextElement>* elms = |
| + new(CI) ZoneGrowableArray<TextElement>(1); |
| + elms->Add(TextElement::Atom(this)); |
| + return new(CI) TextNode(elms, on_success); |
| } |
| RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - return new(compiler->zone()) TextNode(elements(), on_success); |
| + ZoneGrowableArray<TextElement>* elms = |
| + new(CI) ZoneGrowableArray<TextElement>(1); |
| + for (intptr_t i = 0; i < elements()->length(); i++) { |
| + elms->Add(elements()->At(i)); |
| + } |
| + return new(CI) TextNode(elms, on_success); |
| } |
| -static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, |
| - const int* special_class, |
| - int length) { |
| +static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges, |
| + const intptr_t* special_class, |
| + intptr_t length) { |
| length--; // Remove final 0x10000. |
| - DCHECK(special_class[length] == 0x10000); |
| - DCHECK(ranges->length() != 0); |
| - DCHECK(length != 0); |
| - DCHECK(special_class[0] != 0); |
| + ASSERT(special_class[length] == 0x10000); |
| + ASSERT(ranges->length() != 0); |
| + ASSERT(length != 0); |
| + ASSERT(special_class[0] != 0); |
| if (ranges->length() != (length >> 1) + 1) { |
| return false; |
| } |
| - CharacterRange range = ranges->at(0); |
| + CharacterRange range = ranges->At(0); |
| if (range.from() != 0) { |
| return false; |
| } |
| - for (int i = 0; i < length; i += 2) { |
| + for (intptr_t i = 0; i < length; i += 2) { |
| if (special_class[i] != (range.to() + 1)) { |
| return false; |
| } |
| - range = ranges->at((i >> 1) + 1); |
| + range = ranges->At((i >> 1) + 1); |
| if (special_class[i+1] != range.from()) { |
| return false; |
| } |
| @@ -4045,16 +4001,16 @@ static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, |
| } |
| -static bool CompareRanges(ZoneList<CharacterRange>* ranges, |
| - const int* special_class, |
| - int length) { |
| +static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges, |
| + const intptr_t* special_class, |
| + intptr_t length) { |
| length--; // Remove final 0x10000. |
| - DCHECK(special_class[length] == 0x10000); |
| + ASSERT(special_class[length] == 0x10000); |
| if (ranges->length() * 2 != length) { |
| return false; |
| } |
| - for (int i = 0; i < length; i += 2) { |
| - CharacterRange range = ranges->at(i >> 1); |
| + for (intptr_t i = 0; i < length; i += 2) { |
| + CharacterRange range = ranges->At(i >> 1); |
| if (range.from() != special_class[i] || |
| range.to() != special_class[i + 1] - 1) { |
| return false; |
| @@ -4064,7 +4020,7 @@ static bool CompareRanges(ZoneList<CharacterRange>* ranges, |
| } |
| -bool RegExpCharacterClass::is_standard(Zone* zone) { |
| +bool RegExpCharacterClass::is_standard() { |
| // TODO(lrn): Remove need for this function, by not throwing away information |
| // along the way. |
| if (is_negated_) { |
| @@ -4073,31 +4029,31 @@ bool RegExpCharacterClass::is_standard(Zone* zone) { |
| if (set_.is_standard()) { |
| return true; |
| } |
| - if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { |
| + if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
| set_.set_standard_set_type('s'); |
| return true; |
| } |
| - if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { |
| + if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
| set_.set_standard_set_type('S'); |
| return true; |
| } |
| - if (CompareInverseRanges(set_.ranges(zone), |
| + if (CompareInverseRanges(set_.ranges(), |
| kLineTerminatorRanges, |
| kLineTerminatorRangeCount)) { |
| set_.set_standard_set_type('.'); |
| return true; |
| } |
| - if (CompareRanges(set_.ranges(zone), |
| + if (CompareRanges(set_.ranges(), |
| kLineTerminatorRanges, |
| kLineTerminatorRangeCount)) { |
| set_.set_standard_set_type('n'); |
| return true; |
| } |
| - if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { |
| + if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
| set_.set_standard_set_type('w'); |
| return true; |
| } |
| - if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { |
| + if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
| set_.set_standard_set_type('W'); |
| return true; |
| } |
| @@ -4107,18 +4063,18 @@ bool RegExpCharacterClass::is_standard(Zone* zone) { |
| RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - return new(compiler->zone()) TextNode(this, on_success); |
| + return new(CI) TextNode(this, on_success); |
| } |
| RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - ZoneList<RegExpTree*>* alternatives = this->alternatives(); |
| - int length = alternatives->length(); |
| + ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives(); |
| + intptr_t length = alternatives->length(); |
| ChoiceNode* result = |
| - new(compiler->zone()) ChoiceNode(length, compiler->zone()); |
| - for (int i = 0; i < length; i++) { |
| - GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, |
| + new(CI) ChoiceNode(length, CI); |
| + for (intptr_t i = 0; i < length; i++) { |
| + GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler, |
| on_success)); |
| result->AddAlternative(alternative); |
| } |
| @@ -4139,21 +4095,21 @@ RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, |
| // Scoped object to keep track of how much we unroll quantifier loops in the |
| // regexp graph generator. |
| -class RegExpExpansionLimiter { |
| +class RegExpExpansionLimiter : public ValueObject { |
| public: |
| - static const int kMaxExpansionFactor = 6; |
| - RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) |
| + static const intptr_t kMaxExpansionFactor = 6; |
| + RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor) |
| : compiler_(compiler), |
| saved_expansion_factor_(compiler->current_expansion_factor()), |
| ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { |
| - DCHECK(factor > 0); |
| + ASSERT(factor > 0); |
| if (ok_to_expand_) { |
| if (factor > kMaxExpansionFactor) { |
| // Avoid integer overflow of the current expansion factor. |
| ok_to_expand_ = false; |
| compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); |
| } else { |
| - int new_factor = saved_expansion_factor_ * factor; |
| + intptr_t new_factor = saved_expansion_factor_ * factor; |
| ok_to_expand_ = (new_factor <= kMaxExpansionFactor); |
| compiler->set_current_expansion_factor(new_factor); |
| } |
| @@ -4168,15 +4124,15 @@ class RegExpExpansionLimiter { |
| private: |
| RegExpCompiler* compiler_; |
| - int saved_expansion_factor_; |
| + intptr_t saved_expansion_factor_; |
| bool ok_to_expand_; |
| DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); |
| }; |
| -RegExpNode* RegExpQuantifier::ToNode(int min, |
| - int max, |
| +RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
| + intptr_t max, |
| bool is_greedy, |
| RegExpTree* body, |
| RegExpCompiler* compiler, |
| @@ -4202,25 +4158,27 @@ RegExpNode* RegExpQuantifier::ToNode(int min, |
| // simpler since we don't need to make the special zero length match check |
| // from step 2.1. If the min and max are small we can unroll a little in |
| // this case. |
| - static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} |
| - static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} |
| + // Unroll (foo)+ and (foo){3,} |
| + static const intptr_t kMaxUnrolledMinMatches = 3; |
| + // Unroll (foo)? and (foo){x,3} |
| + static const intptr_t kMaxUnrolledMaxMatches = 3; |
| if (max == 0) return on_success; // This can happen due to recursion. |
| bool body_can_be_empty = (body->min_match() == 0); |
| - int body_start_reg = RegExpCompiler::kNoRegister; |
| + intptr_t body_start_reg = RegExpCompiler::kNoRegister; |
| Interval capture_registers = body->CaptureRegisters(); |
| bool needs_capture_clearing = !capture_registers.is_empty(); |
| - Zone* zone = compiler->zone(); |
| + Isolate* isolate = compiler->isolate(); |
| if (body_can_be_empty) { |
| body_start_reg = compiler->AllocateRegister(); |
| - } else if (FLAG_regexp_optimization && !needs_capture_clearing) { |
| + } else if (kRegexpOptimization && !needs_capture_clearing) { |
| // Only unroll if there are no captures and the body can't be |
| // empty. |
| { |
| RegExpExpansionLimiter limiter( |
| compiler, min + ((max != min) ? 1 : 0)); |
| if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { |
| - int new_max = (max == kInfinity) ? max : max - min; |
| + intptr_t new_max = (max == kInfinity) ? max : max - min; |
| // Recurse once to get the loop or optional matches after the fixed |
| // ones. |
| RegExpNode* answer = ToNode( |
| @@ -4228,20 +4186,20 @@ RegExpNode* RegExpQuantifier::ToNode(int min, |
| // Unroll the forced matches from 0 to min. This can cause chains of |
| // TextNodes (which the parser does not generate). These should be |
| // combined if it turns out they hinder good code generation. |
| - for (int i = 0; i < min; i++) { |
| + for (intptr_t i = 0; i < min; i++) { |
| answer = body->ToNode(compiler, answer); |
| } |
| return answer; |
| } |
| } |
| if (max <= kMaxUnrolledMaxMatches && min == 0) { |
| - DCHECK(max > 0); // Due to the 'if' above. |
| + ASSERT(max > 0); // Due to the 'if' above. |
| RegExpExpansionLimiter limiter(compiler, max); |
| if (limiter.ok_to_expand()) { |
| // Unroll the optional matches up to max. |
| RegExpNode* answer = on_success; |
| - for (int i = 0; i < max; i++) { |
| - ChoiceNode* alternation = new(zone) ChoiceNode(2, zone); |
| + for (intptr_t i = 0; i < max; i++) { |
| + ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate); |
| if (is_greedy) { |
| alternation->AddAlternative( |
| GuardedAlternative(body->ToNode(compiler, answer))); |
| @@ -4261,11 +4219,11 @@ RegExpNode* RegExpQuantifier::ToNode(int min, |
| bool has_min = min > 0; |
| bool has_max = max < RegExpTree::kInfinity; |
| bool needs_counter = has_min || has_max; |
| - int reg_ctr = needs_counter |
| + intptr_t reg_ctr = needs_counter |
| ? compiler->AllocateRegister() |
| : RegExpCompiler::kNoRegister; |
| - LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0, |
| - zone); |
| + LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0, |
| + isolate); |
| if (not_at_start) center->set_not_at_start(); |
| RegExpNode* loop_return = needs_counter |
| ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) |
| @@ -4291,13 +4249,13 @@ RegExpNode* RegExpQuantifier::ToNode(int min, |
| GuardedAlternative body_alt(body_node); |
| if (has_max) { |
| Guard* body_guard = |
| - new(zone) Guard(reg_ctr, Guard::LT, max); |
| - body_alt.AddGuard(body_guard, zone); |
| + new(isolate) Guard(reg_ctr, Guard::LT, max); |
| + body_alt.AddGuard(body_guard, isolate); |
| } |
| GuardedAlternative rest_alt(on_success); |
| if (has_min) { |
| - Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); |
| - rest_alt.AddGuard(rest_guard, zone); |
| + Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min); |
| + rest_alt.AddGuard(rest_guard, isolate); |
| } |
| if (is_greedy) { |
| center->AddLoopAlternative(body_alt); |
| @@ -4316,9 +4274,6 @@ RegExpNode* RegExpQuantifier::ToNode(int min, |
| RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - NodeInfo info; |
| - Zone* zone = compiler->zone(); |
| - |
| switch (assertion_type()) { |
| case START_OF_LINE: |
| return AssertionNode::AfterNewline(on_success); |
| @@ -4334,16 +4289,16 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
| // Compile $ in multiline regexps as an alternation with a positive |
| // lookahead in one side and an end-of-input on the other side. |
| // We need two registers for the lookahead. |
| - int stack_pointer_register = compiler->AllocateRegister(); |
| - int position_register = compiler->AllocateRegister(); |
| + intptr_t stack_pointer_register = compiler->AllocateRegister(); |
| + intptr_t position_register = compiler->AllocateRegister(); |
| // The ChoiceNode to distinguish between a newline and end-of-input. |
| - ChoiceNode* result = new(zone) ChoiceNode(2, zone); |
| + ChoiceNode* result = new ChoiceNode(2, on_success->isolate()); |
| // Create a newline atom. |
| - ZoneList<CharacterRange>* newline_ranges = |
| - new(zone) ZoneList<CharacterRange>(3, zone); |
| - CharacterRange::AddClassEscape('n', newline_ranges, zone); |
| - RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n'); |
| - TextNode* newline_matcher = new(zone) TextNode( |
| + ZoneGrowableArray<CharacterRange>* newline_ranges = |
| + new ZoneGrowableArray<CharacterRange>(3); |
| + CharacterRange::AddClassEscape('n', newline_ranges); |
| + RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n'); |
| + TextNode* newline_matcher = new TextNode( |
| newline_atom, |
| ActionNode::PositiveSubmatchSuccess(stack_pointer_register, |
| position_register, |
| @@ -4371,7 +4326,7 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
| RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - return new(compiler->zone()) |
| + return new(CI) |
| BackReferenceNode(RegExpCapture::StartRegister(index()), |
| RegExpCapture::EndRegister(index()), |
| on_success); |
| @@ -4386,13 +4341,13 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, |
| RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - int stack_pointer_register = compiler->AllocateRegister(); |
| - int position_register = compiler->AllocateRegister(); |
| + intptr_t stack_pointer_register = compiler->AllocateRegister(); |
| + intptr_t position_register = compiler->AllocateRegister(); |
| - const int registers_per_capture = 2; |
| - const int register_of_first_capture = 2; |
| - int register_count = capture_count_ * registers_per_capture; |
| - int register_start = |
| + const intptr_t registers_per_capture = 2; |
| + const intptr_t register_of_first_capture = 2; |
| + intptr_t register_count = capture_count_ * registers_per_capture; |
| + intptr_t register_start = |
| register_of_first_capture + capture_from_ * registers_per_capture; |
| RegExpNode* success; |
| @@ -4419,20 +4374,19 @@ RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, |
| // for a negative lookahead. The NegativeLookaheadChoiceNode is a special |
| // ChoiceNode that knows to ignore the first exit when calculating quick |
| // checks. |
| - Zone* zone = compiler->zone(); |
| GuardedAlternative body_alt( |
| body()->ToNode( |
| compiler, |
| - success = new(zone) NegativeSubmatchSuccess(stack_pointer_register, |
| - position_register, |
| - register_count, |
| - register_start, |
| - zone))); |
| + success = new(CI) NegativeSubmatchSuccess(stack_pointer_register, |
| + position_register, |
| + register_count, |
| + register_start, |
| + CI))); |
| ChoiceNode* choice_node = |
| - new(zone) NegativeLookaheadChoiceNode(body_alt, |
| - GuardedAlternative(on_success), |
| - zone); |
| + new(CI) NegativeLookaheadChoiceNode(body_alt, |
| + GuardedAlternative(on_success), |
| + CI); |
| return ActionNode::BeginSubmatch(stack_pointer_register, |
| position_register, |
| choice_node); |
| @@ -4447,11 +4401,11 @@ RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, |
| RegExpNode* RegExpCapture::ToNode(RegExpTree* body, |
| - int index, |
| + intptr_t index, |
| RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - int start_reg = RegExpCapture::StartRegister(index); |
| - int end_reg = RegExpCapture::EndRegister(index); |
| + intptr_t start_reg = RegExpCapture::StartRegister(index); |
| + intptr_t end_reg = RegExpCapture::EndRegister(index); |
| RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); |
| RegExpNode* body_node = body->ToNode(compiler, store_end); |
| return ActionNode::StorePosition(start_reg, true, body_node); |
| @@ -4460,88 +4414,83 @@ RegExpNode* RegExpCapture::ToNode(RegExpTree* body, |
| RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, |
| RegExpNode* on_success) { |
| - ZoneList<RegExpTree*>* children = nodes(); |
| + ZoneGrowableArray<RegExpTree*>* children = nodes(); |
| RegExpNode* current = on_success; |
| - for (int i = children->length() - 1; i >= 0; i--) { |
| - current = children->at(i)->ToNode(compiler, current); |
| + for (intptr_t i = children->length() - 1; i >= 0; i--) { |
| + current = children->At(i)->ToNode(compiler, current); |
| } |
| return current; |
| } |
| -static void AddClass(const int* elmv, |
| - int elmc, |
| - ZoneList<CharacterRange>* ranges, |
| - Zone* zone) { |
| +static void AddClass(const intptr_t* elmv, |
| + intptr_t elmc, |
| + ZoneGrowableArray<CharacterRange>* ranges) { |
| elmc--; |
| - DCHECK(elmv[elmc] == 0x10000); |
| - for (int i = 0; i < elmc; i += 2) { |
| - DCHECK(elmv[i] < elmv[i + 1]); |
| - ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone); |
| + ASSERT(elmv[elmc] == 0x10000); |
| + for (intptr_t i = 0; i < elmc; i += 2) { |
| + ASSERT(elmv[i] < elmv[i + 1]); |
| + ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1)); |
| } |
| } |
| -static void AddClassNegated(const int *elmv, |
| - int elmc, |
| - ZoneList<CharacterRange>* ranges, |
| - Zone* zone) { |
| +static void AddClassNegated(const intptr_t *elmv, |
| + intptr_t elmc, |
| + ZoneGrowableArray<CharacterRange>* ranges) { |
| elmc--; |
| - DCHECK(elmv[elmc] == 0x10000); |
| - DCHECK(elmv[0] != 0x0000); |
| - DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit); |
| - uc16 last = 0x0000; |
| - for (int i = 0; i < elmc; i += 2) { |
| - DCHECK(last <= elmv[i] - 1); |
| - DCHECK(elmv[i] < elmv[i + 1]); |
| - ranges->Add(CharacterRange(last, elmv[i] - 1), zone); |
| + ASSERT(elmv[elmc] == 0x10000); |
| + ASSERT(elmv[0] != 0x0000); |
| + ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit); |
| + uint16_t last = 0x0000; |
| + for (intptr_t i = 0; i < elmc; i += 2) { |
| + ASSERT(last <= elmv[i] - 1); |
| + ASSERT(elmv[i] < elmv[i + 1]); |
| + ranges->Add(CharacterRange(last, elmv[i] - 1)); |
| last = elmv[i + 1]; |
| } |
| - ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone); |
| + ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit)); |
| } |
| -void CharacterRange::AddClassEscape(uc16 type, |
| - ZoneList<CharacterRange>* ranges, |
| - Zone* zone) { |
| +void CharacterRange::AddClassEscape(uint16_t type, |
| + ZoneGrowableArray<CharacterRange>* ranges) { |
| switch (type) { |
| case 's': |
| - AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); |
| + AddClass(kSpaceRanges, kSpaceRangeCount, ranges); |
| break; |
| case 'S': |
| - AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); |
| + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges); |
| break; |
| case 'w': |
| - AddClass(kWordRanges, kWordRangeCount, ranges, zone); |
| + AddClass(kWordRanges, kWordRangeCount, ranges); |
| break; |
| case 'W': |
| - AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); |
| + AddClassNegated(kWordRanges, kWordRangeCount, ranges); |
| break; |
| case 'd': |
| - AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); |
| + AddClass(kDigitRanges, kDigitRangeCount, ranges); |
| break; |
| case 'D': |
| - AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); |
| + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges); |
| break; |
| case '.': |
| AddClassNegated(kLineTerminatorRanges, |
| kLineTerminatorRangeCount, |
| - ranges, |
| - zone); |
| + ranges); |
| break; |
| // This is not a character range as defined by the spec but a |
| // convenient shorthand for a character class that matches any |
| // character. |
| case '*': |
| - ranges->Add(CharacterRange::Everything(), zone); |
| + ranges->Add(CharacterRange::Everything()); |
| break; |
| // This is the set of characters matched by the $ and ^ symbols |
| // in multiline mode. |
| case 'n': |
| AddClass(kLineTerminatorRanges, |
| kLineTerminatorRangeCount, |
| - ranges, |
| - zone); |
| + ranges); |
| break; |
| default: |
| UNREACHABLE(); |
| @@ -4549,77 +4498,29 @@ void CharacterRange::AddClassEscape(uc16 type, |
| } |
| -Vector<const int> CharacterRange::GetWordBounds() { |
| - return Vector<const int>(kWordRanges, kWordRangeCount - 1); |
| -} |
| - |
| - |
| -class CharacterRangeSplitter { |
| - public: |
| - CharacterRangeSplitter(ZoneList<CharacterRange>** included, |
| - ZoneList<CharacterRange>** excluded, |
| - Zone* zone) |
| - : included_(included), |
| - excluded_(excluded), |
| - zone_(zone) { } |
| - void Call(uc16 from, DispatchTable::Entry entry); |
| - |
| - static const int kInBase = 0; |
| - static const int kInOverlay = 1; |
| - |
| - private: |
| - ZoneList<CharacterRange>** included_; |
| - ZoneList<CharacterRange>** excluded_; |
| - Zone* zone_; |
| -}; |
| - |
| - |
| -void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) { |
| - if (!entry.out_set()->Get(kInBase)) return; |
| - ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay) |
| - ? included_ |
| - : excluded_; |
| - if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_); |
| - (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_); |
| -} |
| - |
| - |
| -void CharacterRange::Split(ZoneList<CharacterRange>* base, |
| - Vector<const int> overlay, |
| - ZoneList<CharacterRange>** included, |
| - ZoneList<CharacterRange>** excluded, |
| - Zone* zone) { |
| - DCHECK_EQ(NULL, *included); |
| - DCHECK_EQ(NULL, *excluded); |
| - DispatchTable table(zone); |
| - for (int i = 0; i < base->length(); i++) |
| - table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone); |
| - for (int i = 0; i < overlay.length(); i += 2) { |
| - table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1), |
| - CharacterRangeSplitter::kInOverlay, zone); |
| - } |
| - CharacterRangeSplitter callback(included, excluded, zone); |
| - table.ForEach(&callback); |
| -} |
| - |
| - |
| -void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges, |
| - bool is_one_byte, Zone* zone) { |
| - Isolate* isolate = zone->isolate(); |
| - uc16 bottom = from(); |
| - uc16 top = to(); |
| +void CharacterRange::AddCaseEquivalents( |
| + ZoneGrowableArray<CharacterRange>* ranges, |
| + bool is_one_byte, |
| + Isolate* isolate) { |
| + uint16_t bottom = from(); |
| + uint16_t top = to(); |
| if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) { |
| - if (bottom > String::kMaxOneByteCharCode) return; |
| - if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; |
| + if (bottom > Symbols::kMaxOneCharCodeSymbol) return; |
| + if (top > Symbols::kMaxOneCharCodeSymbol) { |
| + top = Symbols::kMaxOneCharCodeSymbol; |
| + } |
| } |
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + |
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
| + unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange; |
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| if (top == bottom) { |
| // If this is a singleton we just expand the one character. |
| - int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); |
| - for (int i = 0; i < length; i++) { |
| - uc32 chr = chars[i]; |
| + intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT |
| + for (intptr_t i = 0; i < length; i++) { |
| + uint32_t chr = chars[i]; |
| if (chr != bottom) { |
| - ranges->Add(CharacterRange::Singleton(chars[i]), zone); |
| + ranges->Add(CharacterRange::Singleton(chars[i])); |
| } |
| } |
| } else { |
| @@ -4641,25 +4542,25 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges, |
| // completely contained in a block we do this for all the blocks |
| // covered by the range (handling characters that is not in a block |
| // as a "singleton block"). |
| - unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| - int pos = bottom; |
| + int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + intptr_t pos = bottom; |
| while (pos <= top) { |
| - int length = isolate->jsregexp_canonrange()->get(pos, '\0', range); |
| - uc16 block_end; |
| + intptr_t length = jsregexp_canonrange.get(pos, '\0', range); |
| + uint16_t block_end; |
| if (length == 0) { |
| block_end = pos; |
| } else { |
| - DCHECK_EQ(1, length); |
| + ASSERT(length == 1); |
| block_end = range[0]; |
| } |
| - int end = (block_end > top) ? top : block_end; |
| - length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range); |
| - for (int i = 0; i < length; i++) { |
| - uc32 c = range[i]; |
| - uc16 range_from = c - (block_end - pos); |
| - uc16 range_to = c - (block_end - end); |
| + intptr_t end = (block_end > top) ? top : block_end; |
| + length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT |
| + for (intptr_t i = 0; i < length; i++) { |
| + uint32_t c = range[i]; |
| + uint16_t range_from = c - (block_end - pos); |
| + uint16_t range_to = c - (block_end - end); |
| if (!(bottom <= range_from && range_to <= top)) { |
| - ranges->Add(CharacterRange(range_from, range_to), zone); |
| + ranges->Add(CharacterRange(range_from, range_to)); |
| } |
| } |
| pos = end + 1; |
| @@ -4668,13 +4569,13 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges, |
| } |
| -bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { |
| - DCHECK_NOT_NULL(ranges); |
| - int n = ranges->length(); |
| +bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) { |
| + ASSERT(ranges != NULL); |
| + intptr_t n = ranges->length(); |
| if (n <= 1) return true; |
| - int max = ranges->at(0).to(); |
| - for (int i = 1; i < n; i++) { |
| - CharacterRange next_range = ranges->at(i); |
| + intptr_t max = ranges->At(0).to(); |
| + for (intptr_t i = 1; i < n; i++) { |
| + CharacterRange next_range = ranges->At(i); |
| if (next_range.from() <= max + 1) return false; |
| max = next_range.to(); |
| } |
| @@ -4682,48 +4583,49 @@ bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { |
| } |
| -ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { |
| +ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() { |
| if (ranges_ == NULL) { |
| - ranges_ = new(zone) ZoneList<CharacterRange>(2, zone); |
| - CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone); |
| + ranges_ = new ZoneGrowableArray<CharacterRange>(2); |
| + CharacterRange::AddClassEscape(standard_set_type_, ranges_); |
| } |
| return ranges_; |
| } |
| -// Move a number of elements in a zonelist to another position |
| -// in the same list. Handles overlapping source and target areas. |
| -static void MoveRanges(ZoneList<CharacterRange>* list, |
| - int from, |
| - int to, |
| - int count) { |
| +// Move a number of elements in a zone array to another position |
| +// in the same array. Handles overlapping source and target areas. |
| +static void MoveRanges(ZoneGrowableArray<CharacterRange>* list, |
| + intptr_t from, |
| + intptr_t to, |
| + intptr_t count) { |
| // Ranges are potentially overlapping. |
| if (from < to) { |
| - for (int i = count - 1; i >= 0; i--) { |
| - list->at(to + i) = list->at(from + i); |
| + for (intptr_t i = count - 1; i >= 0; i--) { |
| + (*list)[to + i] = list->At(from + i); |
| } |
| } else { |
| - for (int i = 0; i < count; i++) { |
| - list->at(to + i) = list->at(from + i); |
| + for (intptr_t i = 0; i < count; i++) { |
| + (*list)[to + i] = list->At(from + i); |
| } |
| } |
| } |
| -static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, |
| - int count, |
| - CharacterRange insert) { |
| +static intptr_t InsertRangeInCanonicalList( |
| + ZoneGrowableArray<CharacterRange>* list, |
| + intptr_t count, |
| + CharacterRange insert) { |
| // Inserts a range into list[0..count[, which must be sorted |
| // by from value and non-overlapping and non-adjacent, using at most |
| // list[0..count] for the result. Returns the number of resulting |
| // canonicalized ranges. Inserting a range may collapse existing ranges into |
| // fewer ranges, so the return value can be anything in the range 1..count+1. |
| - uc16 from = insert.from(); |
| - uc16 to = insert.to(); |
| - int start_pos = 0; |
| - int end_pos = count; |
| - for (int i = count - 1; i >= 0; i--) { |
| - CharacterRange current = list->at(i); |
| + uint16_t from = insert.from(); |
| + uint16_t to = insert.to(); |
| + intptr_t start_pos = 0; |
| + intptr_t end_pos = count; |
| + for (intptr_t i = count - 1; i >= 0; i--) { |
| + CharacterRange current = list->At(i); |
| if (current.from() > to + 1) { |
| end_pos = i; |
| } else if (current.to() + 1 < from) { |
| @@ -4744,26 +4646,26 @@ static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, |
| if (start_pos < count) { |
| MoveRanges(list, start_pos, start_pos + 1, count - start_pos); |
| } |
| - list->at(start_pos) = insert; |
| + (*list)[start_pos] = insert; |
| return count + 1; |
| } |
| if (start_pos + 1 == end_pos) { |
| // Replace single existing range at position start_pos. |
| - CharacterRange to_replace = list->at(start_pos); |
| - int new_from = Min(to_replace.from(), from); |
| - int new_to = Max(to_replace.to(), to); |
| - list->at(start_pos) = CharacterRange(new_from, new_to); |
| + CharacterRange to_replace = list->At(start_pos); |
| + intptr_t new_from = Utils::Minimum(to_replace.from(), from); |
| + intptr_t new_to = Utils::Maximum(to_replace.to(), to); |
| + (*list)[start_pos] = CharacterRange(new_from, new_to); |
| return count; |
| } |
| // Replace a number of existing ranges from start_pos to end_pos - 1. |
| // Move the remaining ranges down. |
| - int new_from = Min(list->at(start_pos).from(), from); |
| - int new_to = Max(list->at(end_pos - 1).to(), to); |
| + intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from); |
| + intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to); |
| if (end_pos < count) { |
| MoveRanges(list, end_pos, start_pos + 1, count - end_pos); |
| } |
| - list->at(start_pos) = CharacterRange(new_from, new_to); |
| + (*list)[start_pos] = CharacterRange(new_from, new_to); |
| return count - (end_pos - start_pos) + 1; |
| } |
| @@ -4776,15 +4678,16 @@ void CharacterSet::Canonicalize() { |
| } |
| -void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { |
| +void CharacterRange::Canonicalize( |
| + ZoneGrowableArray<CharacterRange>* character_ranges) { |
| if (character_ranges->length() <= 1) return; |
| // Check whether ranges are already canonical (increasing, non-overlapping, |
| // non-adjacent). |
| - int n = character_ranges->length(); |
| - int max = character_ranges->at(0).to(); |
| - int i = 1; |
| + intptr_t n = character_ranges->length(); |
| + intptr_t max = character_ranges->At(0).to(); |
| + intptr_t i = 1; |
| while (i < n) { |
| - CharacterRange current = character_ranges->at(i); |
| + CharacterRange current = character_ranges->At(i); |
| if (current.from() <= max + 1) { |
| break; |
| } |
| @@ -4799,41 +4702,39 @@ void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { |
| // list, in order). |
| // Notice that inserting a range can reduce the number of ranges in the |
| // result due to combining of adjacent and overlapping ranges. |
| - int read = i; // Range to insert. |
| - int num_canonical = i; // Length of canonicalized part of list. |
| + intptr_t read = i; // Range to insert. |
| + intptr_t num_canonical = i; // Length of canonicalized part of list. |
| do { |
| num_canonical = InsertRangeInCanonicalList(character_ranges, |
| num_canonical, |
| - character_ranges->at(read)); |
| + character_ranges->At(read)); |
| read++; |
| } while (read < n); |
| - character_ranges->Rewind(num_canonical); |
| + character_ranges->TruncateTo(num_canonical); |
| - DCHECK(CharacterRange::IsCanonical(character_ranges)); |
| + ASSERT(CharacterRange::IsCanonical(character_ranges)); |
| } |
| -void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, |
| - ZoneList<CharacterRange>* negated_ranges, |
| - Zone* zone) { |
| - DCHECK(CharacterRange::IsCanonical(ranges)); |
| - DCHECK_EQ(0, negated_ranges->length()); |
| - int range_count = ranges->length(); |
| - uc16 from = 0; |
| - int i = 0; |
| - if (range_count > 0 && ranges->at(0).from() == 0) { |
| - from = ranges->at(0).to(); |
| +void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges, |
| + ZoneGrowableArray<CharacterRange>* negated_ranges) { |
| + ASSERT(CharacterRange::IsCanonical(ranges)); |
| + ASSERT(negated_ranges->length() == 0); |
| + intptr_t range_count = ranges->length(); |
| + uint16_t from = 0; |
| + intptr_t i = 0; |
| + if (range_count > 0 && ranges->At(0).from() == 0) { |
| + from = ranges->At(0).to(); |
| i = 1; |
| } |
| while (i < range_count) { |
| - CharacterRange range = ranges->at(i); |
| - negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone); |
| + CharacterRange range = ranges->At(i); |
| + negated_ranges->Add(CharacterRange(from + 1, range.from() - 1)); |
| from = range.to(); |
| i++; |
| } |
| - if (from < String::kMaxUtf16CodeUnit) { |
| - negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit), |
| - zone); |
| + if (from < Utf16::kMaxCodeUnit) { |
| + negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit)); |
| } |
| } |
| @@ -4842,33 +4743,29 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, |
| // Splay tree |
| -OutSet* OutSet::Extend(unsigned value, Zone* zone) { |
| - if (Get(value)) |
| - return this; |
| - if (successors(zone) != NULL) { |
| - for (int i = 0; i < successors(zone)->length(); i++) { |
| - OutSet* successor = successors(zone)->at(i); |
| - if (successor->Get(value)) |
| - return successor; |
| +// Workaround for the fact that ZoneGrowableArray does not have contains(). |
| +static bool ArrayContains(ZoneGrowableArray<unsigned>* array, |
| + unsigned value) { |
| + for (intptr_t i = 0; i < array->length(); i++) { |
| + if (array->At(i) == value) { |
| + return true; |
| } |
| - } else { |
| - successors_ = new(zone) ZoneList<OutSet*>(2, zone); |
| } |
| - OutSet* result = new(zone) OutSet(first_, remaining_); |
| - result->Set(value, zone); |
| - successors(zone)->Add(result, zone); |
| - return result; |
| + return false; |
| } |
| -void OutSet::Set(unsigned value, Zone *zone) { |
| +void OutSet::Set(unsigned value, Isolate* isolate) { |
| if (value < kFirstLimit) { |
| first_ |= (1 << value); |
| } else { |
| if (remaining_ == NULL) |
| - remaining_ = new(zone) ZoneList<unsigned>(1, zone); |
| - if (remaining_->is_empty() || !remaining_->Contains(value)) |
| - remaining_->Add(value, zone); |
| + remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1); |
| + |
| + bool remaining_contains_value = ArrayContains(remaining_, value); |
| + if (remaining_->is_empty() || !remaining_contains_value) { |
| + remaining_->Add(value); |
| + } |
| } |
| } |
| @@ -4879,125 +4776,16 @@ bool OutSet::Get(unsigned value) const { |
| } else if (remaining_ == NULL) { |
| return false; |
| } else { |
| - return remaining_->Contains(value); |
| + return ArrayContains(remaining_, value); |
| } |
| } |
| -const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; |
| - |
| - |
| -void DispatchTable::AddRange(CharacterRange full_range, int value, |
| - Zone* zone) { |
| - CharacterRange current = full_range; |
| - if (tree()->is_empty()) { |
| - // If this is the first range we just insert into the table. |
| - ZoneSplayTree<Config>::Locator loc; |
| - DCHECK_RESULT(tree()->Insert(current.from(), &loc)); |
| - loc.set_value(Entry(current.from(), current.to(), |
| - empty()->Extend(value, zone))); |
| - return; |
| - } |
| - // First see if there is a range to the left of this one that |
| - // overlaps. |
| - ZoneSplayTree<Config>::Locator loc; |
| - if (tree()->FindGreatestLessThan(current.from(), &loc)) { |
| - Entry* entry = &loc.value(); |
| - // If we've found a range that overlaps with this one, and it |
| - // starts strictly to the left of this one, we have to fix it |
| - // because the following code only handles ranges that start on |
| - // or after the start point of the range we're adding. |
| - if (entry->from() < current.from() && entry->to() >= current.from()) { |
| - // Snap the overlapping range in half around the start point of |
| - // the range we're adding. |
| - CharacterRange left(entry->from(), current.from() - 1); |
| - CharacterRange right(current.from(), entry->to()); |
| - // The left part of the overlapping range doesn't overlap. |
| - // Truncate the whole entry to be just the left part. |
| - entry->set_to(left.to()); |
| - // The right part is the one that overlaps. We add this part |
| - // to the map and let the next step deal with merging it with |
| - // the range we're adding. |
| - ZoneSplayTree<Config>::Locator loc; |
| - DCHECK_RESULT(tree()->Insert(right.from(), &loc)); |
| - loc.set_value(Entry(right.from(), |
| - right.to(), |
| - entry->out_set())); |
| - } |
| - } |
| - while (current.is_valid()) { |
| - if (tree()->FindLeastGreaterThan(current.from(), &loc) && |
| - (loc.value().from() <= current.to()) && |
| - (loc.value().to() >= current.from())) { |
| - Entry* entry = &loc.value(); |
| - // We have overlap. If there is space between the start point of |
| - // the range we're adding and where the overlapping range starts |
| - // then we have to add a range covering just that space. |
| - if (current.from() < entry->from()) { |
| - ZoneSplayTree<Config>::Locator ins; |
| - DCHECK_RESULT(tree()->Insert(current.from(), &ins)); |
| - ins.set_value(Entry(current.from(), |
| - entry->from() - 1, |
| - empty()->Extend(value, zone))); |
| - current.set_from(entry->from()); |
| - } |
| - DCHECK_EQ(current.from(), entry->from()); |
| - // If the overlapping range extends beyond the one we want to add |
| - // we have to snap the right part off and add it separately. |
| - if (entry->to() > current.to()) { |
| - ZoneSplayTree<Config>::Locator ins; |
| - DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins)); |
| - ins.set_value(Entry(current.to() + 1, |
| - entry->to(), |
| - entry->out_set())); |
| - entry->set_to(current.to()); |
| - } |
| - DCHECK(entry->to() <= current.to()); |
| - // The overlapping range is now completely contained by the range |
| - // we're adding so we can just update it and move the start point |
| - // of the range we're adding just past it. |
| - entry->AddValue(value, zone); |
| - // Bail out if the last interval ended at 0xFFFF since otherwise |
| - // adding 1 will wrap around to 0. |
| - if (entry->to() == String::kMaxUtf16CodeUnit) |
| - break; |
| - DCHECK(entry->to() + 1 > current.from()); |
| - current.set_from(entry->to() + 1); |
| - } else { |
| - // There is no overlap so we can just add the range |
| - ZoneSplayTree<Config>::Locator ins; |
| - DCHECK_RESULT(tree()->Insert(current.from(), &ins)); |
| - ins.set_value(Entry(current.from(), |
| - current.to(), |
| - empty()->Extend(value, zone))); |
| - break; |
| - } |
| - } |
| -} |
| - |
| - |
| -OutSet* DispatchTable::Get(uc16 value) { |
| - ZoneSplayTree<Config>::Locator loc; |
| - if (!tree()->FindGreatestLessThan(value, &loc)) |
| - return empty(); |
| - Entry* entry = &loc.value(); |
| - if (value <= entry->to()) |
| - return entry->out_set(); |
| - else |
| - return empty(); |
| -} |
| - |
| - |
| // ------------------------------------------------------------------- |
| // Analysis |
| void Analysis::EnsureAnalyzed(RegExpNode* that) { |
| - StackLimitCheck check(that->zone()->isolate()); |
| - if (check.HasOverflowed()) { |
| - fail("Stack overflow"); |
| - return; |
| - } |
| if (that->info()->been_analyzed || that->info()->being_analyzed) |
| return; |
| that->info()->being_analyzed = true; |
| @@ -5013,12 +4801,12 @@ void Analysis::VisitEnd(EndNode* that) { |
| void TextNode::CalculateOffsets() { |
| - int element_count = elements()->length(); |
| + intptr_t element_count = elements()->length(); |
| // Set up the offsets of the elements relative to the start. This is a fixed |
| // quantity since a TextNode can only contain fixed-width things. |
| - int cp_offset = 0; |
| - for (int i = 0; i < element_count; i++) { |
| - TextElement& elm = elements()->at(i); |
| + intptr_t cp_offset = 0; |
| + for (intptr_t i = 0; i < element_count; i++) { |
| + TextElement& elm = (*elements())[i]; |
| elm.set_cp_offset(cp_offset); |
| cp_offset += elm.length(); |
| } |
| @@ -5049,8 +4837,8 @@ void Analysis::VisitAction(ActionNode* that) { |
| void Analysis::VisitChoice(ChoiceNode* that) { |
| NodeInfo* info = that->info(); |
| - for (int i = 0; i < that->alternatives()->length(); i++) { |
| - RegExpNode* node = that->alternatives()->at(i).node(); |
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
| + RegExpNode* node = (*that->alternatives())[i].node(); |
| EnsureAnalyzed(node); |
| if (has_failed()) return; |
| // Anything the following nodes need to know has to be known by |
| @@ -5062,8 +4850,8 @@ void Analysis::VisitChoice(ChoiceNode* that) { |
| void Analysis::VisitLoopChoice(LoopChoiceNode* that) { |
| NodeInfo* info = that->info(); |
| - for (int i = 0; i < that->alternatives()->length(); i++) { |
| - RegExpNode* node = that->alternatives()->at(i).node(); |
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
| + RegExpNode* node = (*that->alternatives())[i].node(); |
| if (node != that->loop_node()) { |
| EnsureAnalyzed(node); |
| if (has_failed()) return; |
| @@ -5089,8 +4877,8 @@ void Analysis::VisitAssertion(AssertionNode* that) { |
| } |
| -void BackReferenceNode::FillInBMInfo(int offset, |
| - int budget, |
| +void BackReferenceNode::FillInBMInfo(intptr_t offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| // Working out the set of characters that a backreference can match is too |
| @@ -5100,18 +4888,18 @@ void BackReferenceNode::FillInBMInfo(int offset, |
| } |
| -STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == |
| - RegExpMacroAssembler::kTableSize); |
| +COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize == |
| + RegExpMacroAssembler::kTableSize); |
| -void ChoiceNode::FillInBMInfo(int offset, |
| - int budget, |
| +void ChoiceNode::FillInBMInfo(intptr_t offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| - ZoneList<GuardedAlternative>* alts = alternatives(); |
| + ZoneGrowableArray<GuardedAlternative>* alts = alternatives(); |
| budget = (budget - 1) / alts->length(); |
| - for (int i = 0; i < alts->length(); i++) { |
| - GuardedAlternative& alt = alts->at(i); |
| + for (intptr_t i = 0; i < alts->length(); i++) { |
| + GuardedAlternative& alt = (*alts)[i]; |
| if (alt.guards() != NULL && alt.guards()->length() != 0) { |
| bm->SetRest(offset); // Give up trying to fill in info. |
| SaveBMInfo(bm, not_at_start, offset); |
| @@ -5123,35 +4911,34 @@ void ChoiceNode::FillInBMInfo(int offset, |
| } |
| -void TextNode::FillInBMInfo(int initial_offset, |
| - int budget, |
| +void TextNode::FillInBMInfo(intptr_t initial_offset, |
| + intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| if (initial_offset >= bm->length()) return; |
| - int offset = initial_offset; |
| - int max_char = bm->max_char(); |
| - for (int i = 0; i < elements()->length(); i++) { |
| + intptr_t offset = initial_offset; |
| + intptr_t max_char = bm->max_char(); |
| + for (intptr_t i = 0; i < elements()->length(); i++) { |
| if (offset >= bm->length()) { |
| if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| return; |
| } |
| - TextElement text = elements()->at(i); |
| + TextElement text = elements()->At(i); |
| if (text.text_type() == TextElement::ATOM) { |
| RegExpAtom* atom = text.atom(); |
| - for (int j = 0; j < atom->length(); j++, offset++) { |
| + for (intptr_t j = 0; j < atom->length(); j++, offset++) { |
| if (offset >= bm->length()) { |
| if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| return; |
| } |
| - uc16 character = atom->data()[j]; |
| + uint16_t character = atom->data()->At(j); |
| if (bm->compiler()->ignore_case()) { |
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| - int length = GetCaseIndependentLetters( |
| - Isolate::Current(), |
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| + intptr_t length = GetCaseIndependentLetters( |
| character, |
| - bm->max_char() == String::kMaxOneByteCharCode, |
| + bm->max_char() == Symbols::kMaxOneCharCodeSymbol, |
| chars); |
| - for (int j = 0; j < length; j++) { |
| + for (intptr_t j = 0; j < length; j++) { |
| bm->Set(offset, chars[j]); |
| } |
| } else { |
| @@ -5159,16 +4946,17 @@ void TextNode::FillInBMInfo(int initial_offset, |
| } |
| } |
| } else { |
| - DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); |
| + ASSERT(text.text_type() == TextElement::CHAR_CLASS); |
| RegExpCharacterClass* char_class = text.char_class(); |
| - ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); |
| + ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges(); |
| if (char_class->is_negated()) { |
| bm->SetAll(offset); |
| } else { |
| - for (int k = 0; k < ranges->length(); k++) { |
| - CharacterRange& range = ranges->at(k); |
| + for (intptr_t k = 0; k < ranges->length(); k++) { |
| + CharacterRange& range = (*ranges)[k]; |
| if (range.from() > max_char) continue; |
| - int to = Min(max_char, static_cast<int>(range.to())); |
| + intptr_t to = Utils::Minimum(max_char, |
| + static_cast<intptr_t>(range.to())); |
| bm->SetInterval(offset, Interval(range.from(), to)); |
| } |
| } |
| @@ -5187,159 +4975,54 @@ void TextNode::FillInBMInfo(int initial_offset, |
| } |
| -// ------------------------------------------------------------------- |
| -// Dispatch table construction |
| - |
| - |
| -void DispatchTableConstructor::VisitEnd(EndNode* that) { |
| - AddRange(CharacterRange::Everything()); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::BuildTable(ChoiceNode* node) { |
| - node->set_being_calculated(true); |
| - ZoneList<GuardedAlternative>* alternatives = node->alternatives(); |
| - for (int i = 0; i < alternatives->length(); i++) { |
| - set_choice_index(i); |
| - alternatives->at(i).node()->Accept(this); |
| - } |
| - node->set_being_calculated(false); |
| -} |
| - |
| - |
| -class AddDispatchRange { |
| - public: |
| - explicit AddDispatchRange(DispatchTableConstructor* constructor) |
| - : constructor_(constructor) { } |
| - void Call(uc32 from, DispatchTable::Entry entry); |
| - private: |
| - DispatchTableConstructor* constructor_; |
| -}; |
| - |
| - |
| -void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { |
| - CharacterRange range(from, entry.to()); |
| - constructor_->AddRange(range); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { |
| - if (node->being_calculated()) |
| - return; |
| - DispatchTable* table = node->GetTable(ignore_case_); |
| - AddDispatchRange adder(this); |
| - table->ForEach(&adder); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { |
| - // TODO(160): Find the node that we refer back to and propagate its start |
| - // set back to here. For now we just accept anything. |
| - AddRange(CharacterRange::Everything()); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { |
| - RegExpNode* target = that->on_success(); |
| - target->Accept(this); |
| -} |
| - |
| - |
| -static int CompareRangeByFrom(const CharacterRange* a, |
| - const CharacterRange* b) { |
| - return Compare<uc16>(a->from(), b->from()); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { |
| - ranges->Sort(CompareRangeByFrom); |
| - uc16 last = 0; |
| - for (int i = 0; i < ranges->length(); i++) { |
| - CharacterRange range = ranges->at(i); |
| - if (last < range.from()) |
| - AddRange(CharacterRange(last, range.from() - 1)); |
| - if (range.to() >= last) { |
| - if (range.to() == String::kMaxUtf16CodeUnit) { |
| - return; |
| - } else { |
| - last = range.to() + 1; |
| - } |
| - } |
| - } |
| - AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit)); |
| -} |
| - |
| - |
| -void DispatchTableConstructor::VisitText(TextNode* that) { |
| - TextElement elm = that->elements()->at(0); |
| - switch (elm.text_type()) { |
| - case TextElement::ATOM: { |
| - uc16 c = elm.atom()->data()[0]; |
| - AddRange(CharacterRange(c, c)); |
| - break; |
| - } |
| - case TextElement::CHAR_CLASS: { |
| - RegExpCharacterClass* tree = elm.char_class(); |
| - ZoneList<CharacterRange>* ranges = tree->ranges(that->zone()); |
| - if (tree->is_negated()) { |
| - AddInverse(ranges); |
| - } else { |
| - for (int i = 0; i < ranges->length(); i++) |
| - AddRange(ranges->at(i)); |
| - } |
| - break; |
| - } |
| - default: { |
| - UNIMPLEMENTED(); |
| - } |
| - } |
| -} |
| - |
| - |
| -void DispatchTableConstructor::VisitAction(ActionNode* that) { |
| - RegExpNode* target = that->on_success(); |
| - target->Accept(this); |
| -} |
| - |
| - |
| RegExpEngine::CompilationResult RegExpEngine::Compile( |
| - RegExpCompileData* data, bool ignore_case, bool is_global, |
| - bool is_multiline, bool is_sticky, Handle<String> pattern, |
| - Handle<String> sample_subject, bool is_one_byte, Zone* zone) { |
| - if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { |
| - return IrregexpRegExpTooBig(zone->isolate()); |
| - } |
| - RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone); |
| - |
| - // Sample some characters from the middle of the string. |
| - static const int kSampleSize = 128; |
| - |
| - sample_subject = String::Flatten(sample_subject); |
| - int chars_sampled = 0; |
| - int half_way = (sample_subject->length() - kSampleSize) / 2; |
| - for (int i = Max(0, half_way); |
| - i < sample_subject->length() && chars_sampled < kSampleSize; |
| - i++, chars_sampled++) { |
| - compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); |
| - } |
| + RegExpCompileData* data, |
| + const ParsedFunction* parsed_function, |
| + const ZoneGrowableArray<const ICData*>& ic_data_array) { |
| + Isolate* isolate = Isolate::Current(); |
| + |
| + const Function& function = parsed_function->function(); |
| + const intptr_t specialization_cid = function.regexp_cid(); |
| + const bool is_one_byte = (specialization_cid == kOneByteStringCid || |
| + specialization_cid == kExternalOneByteStringCid); |
| + JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp()); |
| + const String& pattern = String::Handle(isolate, regexp.pattern()); |
| + |
| + ASSERT(!regexp.IsNull()); |
| + ASSERT(!pattern.IsNull()); |
| + |
| + const bool ignore_case = regexp.is_ignore_case(); |
| + const bool is_global = regexp.is_global(); |
| + |
| + RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid); |
| + |
| + // TODO(zerny): Frequency sampling is currently disabled because of several |
| + // issues. We do not want to store subject strings in the regexp object since |
| + // they might be long and we should not prevent their garbage collection. |
| + // Passing them to this function explicitly does not help, since we must |
| + // generate exactly the same IR for both the unoptimizing and optimizing |
| + // pipelines (otherwise it gets confused when i.e. deopt id's differ). |
| + // An option would be to store sampling results in the regexp object, but |
| + // I'm not sure the performance gains are relevant enough. |
| // Wrap the body of the regexp in capture #0. |
| RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, |
| 0, |
| &compiler, |
| compiler.accept()); |
| + |
| RegExpNode* node = captured_body; |
| bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
| bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
| - int max_length = data->tree->max_match(); |
| - if (!is_start_anchored && !is_sticky) { |
| + intptr_t max_length = data->tree->max_match(); |
| + if (!is_start_anchored) { |
| // Add a .*? at the beginning, outside the body capture, unless |
| - // this expression is anchored at the beginning or sticky. |
| + // this expression is anchored at the beginning. |
| RegExpNode* loop_node = |
| RegExpQuantifier::ToNode(0, |
| RegExpTree::kInfinity, |
| false, |
| - new(zone) RegExpCharacterClass('*'), |
| + new(isolate) RegExpCharacterClass('*'), |
| &compiler, |
| captured_body, |
| data->contains_anchor); |
| @@ -5347,10 +5030,11 @@ RegExpEngine::CompilationResult RegExpEngine::Compile( |
| if (data->contains_anchor) { |
| // Unroll loop once, to take care of the case that might start |
| // at the start of input. |
| - ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone); |
| + ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate); |
| first_step_node->AddAlternative(GuardedAlternative(captured_body)); |
| first_step_node->AddAlternative(GuardedAlternative( |
| - new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node))); |
| + new(isolate) TextNode( |
| + new(isolate) RegExpCharacterClass('*'), loop_node))); |
| node = first_step_node; |
| } else { |
| node = loop_node; |
| @@ -5365,74 +5049,124 @@ RegExpEngine::CompilationResult RegExpEngine::Compile( |
| } |
| } |
| - if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone); |
| + if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate); |
| data->node = node; |
| Analysis analysis(ignore_case, is_one_byte); |
| analysis.EnsureAnalyzed(node); |
| if (analysis.has_failed()) { |
| const char* error_message = analysis.error_message(); |
| - return CompilationResult(zone->isolate(), error_message); |
| + return CompilationResult(error_message); |
| } |
| - // Create the correct assembler for the architecture. |
| -#ifndef V8_INTERPRETED_REGEXP |
| // Native regexp implementation. |
| - NativeRegExpMacroAssembler::Mode mode = |
| - is_one_byte ? NativeRegExpMacroAssembler::LATIN1 |
| - : NativeRegExpMacroAssembler::UC16; |
| - |
| -#if V8_TARGET_ARCH_IA32 |
| - RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_X64 |
| - RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_ARM |
| - RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_ARM64 |
| - RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_MIPS |
| - RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_MIPS64 |
| - RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#elif V8_TARGET_ARCH_X87 |
| - RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2, |
| - zone); |
| -#else |
| -#error "Unsupported architecture" |
| -#endif |
| - |
| -#else // V8_INTERPRETED_REGEXP |
| - // Interpreted regexp implementation. |
| - EmbeddedVector<byte, 1024> codes; |
| - RegExpMacroAssemblerIrregexp macro_assembler(codes, zone); |
| -#endif // V8_INTERPRETED_REGEXP |
| + IRRegExpMacroAssembler* macro_assembler = |
| + new(isolate) IRRegExpMacroAssembler(specialization_cid, |
| + data->capture_count, |
| + parsed_function, |
| + ic_data_array, |
| + isolate); |
| // Inserted here, instead of in Assembler, because it depends on information |
| // in the AST that isn't replicated in the Node structure. |
| - static const int kMaxBacksearchLimit = 1024; |
| + static const intptr_t kMaxBacksearchLimit = 1024; |
| if (is_end_anchored && |
| !is_start_anchored && |
| max_length < kMaxBacksearchLimit) { |
| - macro_assembler.SetCurrentPositionFromEnd(max_length); |
| + macro_assembler->SetCurrentPositionFromEnd(max_length); |
| } |
| if (is_global) { |
| - macro_assembler.set_global_mode( |
| + macro_assembler->set_global_mode( |
| (data->tree->min_match() > 0) |
| ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK |
| : RegExpMacroAssembler::GLOBAL); |
| } |
| - return compiler.Assemble(¯o_assembler, |
| - node, |
| - data->capture_count, |
| - pattern); |
| + RegExpEngine::CompilationResult result = |
| + compiler.Assemble(macro_assembler, |
| + node, |
| + data->capture_count, |
| + pattern); |
| + |
| + if (FLAG_trace_irregexp) { |
| + macro_assembler->PrintBlocks(); |
| + } |
| + |
| + return result; |
| } |
| + |
| +static void CreateSpecializedFunction(Isolate* isolate, |
| + const JSRegExp& regexp, |
| + intptr_t specialization_cid, |
| + const Object& owner) { |
| + const intptr_t kParamCount = RegExpMacroAssembler::kParamCount; |
| + |
| + Function& fn = Function::Handle(isolate, |
| + Function::New(String::Handle(isolate, Symbols::New("RegExp")), |
|
Ivan Posva
2014/11/05 07:55:09
Please predefine this symbol.
zerny-google
2014/11/05 11:52:00
Done.
Ivan Posva
2014/11/07 08:46:54
Actually looking at this a bit more "RegExp" is re
zerny-google
2014/11/10 09:10:42
Done.
|
| + RawFunction::kIrregexpFunction, |
| + true, // Static. |
| + false, // Not const. |
| + false, // Not abstract. |
| + false, // Not external. |
| + false, // Not native. |
| + owner, |
| + 0)); // Requires a non-negative token position. |
| + |
| + // TODO(zerny): Share these arrays between all irregexp functions. |
| + fn.set_num_fixed_parameters(kParamCount); |
| + fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount, |
| + Heap::kOld))); |
| + fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount, |
| + Heap::kOld))); |
| + fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType())); |
| + fn.SetParameterNameAt(0, Symbols::string_param_()); |
| + fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType())); |
| + fn.SetParameterNameAt(1, Symbols::start_index_param_()); |
| + fn.set_result_type(Type::Handle(isolate, Type::ArrayType())); |
| + |
| + // Cache the result. |
| + regexp.set_function(specialization_cid, fn); |
| + |
| + fn.set_regexp(regexp); |
| + fn.set_regexp_cid(specialization_cid); |
| + |
| + // The function is compiled lazily during the first call. |
| +} |
| + |
| + |
| +RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate, |
| + const String& pattern, |
| + bool multi_line, |
| + bool ignore_case) { |
| + const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0)); |
| + |
| + regexp.set_pattern(pattern); |
| + |
| + if (multi_line) { |
| + regexp.set_is_multi_line(); |
| + } |
| + if (ignore_case) { |
| + regexp.set_is_ignore_case(); |
| + } |
| + |
| + // TODO(zerny): We might want to use normal string searching algorithms |
| + // for simple patterns. |
| + regexp.set_is_complex(); |
| + regexp.set_is_global(); // All dart regexps are global. |
| + |
| + const Library& lib = Library::Handle(isolate, Library::CoreLibrary()); |
| + const Class& owner = Class::Handle(isolate, |
| + lib.LookupClass(String::Handle(isolate, Symbols::New("RegExp")))); |
|
Ivan Posva
2014/11/05 07:55:09
diito for the symbol
But the question is really w
zerny-google
2014/11/05 11:52:00
AFAIK we don't allow a non-existent owner, so sett
Ivan Posva
2014/11/07 08:46:54
I was considering whether it would simplify things
zerny-google
2014/11/10 09:10:42
Ok. In that case, I've left the RegExp class as th
|
| + |
| + CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner); |
| + CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner); |
| + CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner); |
| + CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner); |
| + |
| + return regexp.raw(); |
| +} |
| + |
| + |
| } // namespace dart |