Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(268)

Side by Side Diff: runtime/vm/regexp.h

Issue 683433003: Integrate the Irregexp Regular Expression Engine. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: rebase, enable tests, remove *CodeUnitsAt Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 #ifndef VM_REGEXP_H_
6 #define VM_REGEXP_H_
7
8 #include "vm/assembler.h"
9 #include "vm/intermediate_language.h"
10 #include "vm/object.h"
11 #include "vm/regexp_assembler.h"
12
13 namespace dart {
14
15 class NodeVisitor;
16 class RegExpCompiler;
17 class RegExpMacroAssembler;
18 class RegExpNode;
19 class RegExpTree;
20 class BoyerMooreLookahead;
21
22
23 // Represents code units in the range from from_ to to_, both ends are
24 // inclusive.
25 class CharacterRange {
26 public:
27 CharacterRange() : from_(0), to_(0) { }
28 CharacterRange(uint16_t from, uint16_t to) : from_(from), to_(to) { }
29
30 static void AddClassEscape(uint16_t type,
31 ZoneGrowableArray<CharacterRange>* ranges);
32 static GrowableArray<const intptr_t> GetWordBounds();
33 static inline CharacterRange Singleton(uint16_t value) {
34 return CharacterRange(value, value);
35 }
36 static inline CharacterRange Range(uint16_t from, uint16_t to) {
37 ASSERT(from <= to);
38 return CharacterRange(from, to);
39 }
40 static inline CharacterRange Everything() {
41 return CharacterRange(0, 0xFFFF);
42 }
43 bool Contains(uint16_t i) const { return from_ <= i && i <= to_; }
44 uint16_t from() const { return from_; }
45 void set_from(uint16_t value) { from_ = value; }
46 uint16_t to() const { return to_; }
47 void set_to(uint16_t value) { to_ = value; }
48 bool is_valid() const { return from_ <= to_; }
49 bool IsEverything(uint16_t max) const { return from_ == 0 && to_ >= max; }
50 bool IsSingleton() const { return (from_ == to_); }
51 void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges,
52 bool is_one_byte,
53 Isolate* isolate);
54 static void Split(ZoneGrowableArray<CharacterRange>* base,
55 GrowableArray<const intptr_t> overlay,
56 ZoneGrowableArray<CharacterRange>** included,
57 ZoneGrowableArray<CharacterRange>** excluded,
58 Isolate* isolate);
59 // Whether a range list is in canonical form: Ranges ordered by from value,
60 // and ranges non-overlapping and non-adjacent.
61 static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges);
62 // Convert range list to canonical form. The characters covered by the ranges
63 // will still be the same, but no character is in more than one range, and
64 // adjacent ranges are merged. The resulting list may be shorter than the
65 // original, but cannot be longer.
66 static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges);
67 // Negate the contents of a character range in canonical form.
68 static void Negate(ZoneGrowableArray<CharacterRange>* src,
69 ZoneGrowableArray<CharacterRange>* dst);
70 static const intptr_t kStartMarker = (1 << 24);
71 static const intptr_t kPayloadMask = (1 << 24) - 1;
72
73 private:
74 uint16_t from_;
75 uint16_t to_;
76
77 DISALLOW_ALLOCATION();
78 };
79
80
81 // A set of unsigned integers that behaves especially well on small
82 // integers (< 32). May do zone-allocation.
83 class OutSet: public ZoneAllocated {
84 public:
85 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
86 OutSet* Extend(unsigned value, Isolate* isolate);
87 bool Get(unsigned value) const;
88 static const unsigned kFirstLimit = 32;
89
90 private:
91 // Destructively set a value in this set. In most cases you want
92 // to use Extend instead to ensure that only one instance exists
93 // that contains the same values.
94 void Set(unsigned value, Isolate* isolate);
95
96 // The successors are a list of sets that contain the same values
97 // as this set and the one more value that is not present in this
98 // set.
99 ZoneGrowableArray<OutSet*>* successors() { return successors_; }
100
101 OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining)
102 : first_(first), remaining_(remaining), successors_(NULL) { }
103 uint32_t first_;
104 ZoneGrowableArray<unsigned>* remaining_;
105 ZoneGrowableArray<OutSet*>* successors_;
106 friend class Trace;
107 };
108
109
110 #define FOR_EACH_NODE_TYPE(VISIT) \
111 VISIT(End) \
112 VISIT(Action) \
113 VISIT(Choice) \
114 VISIT(BackReference) \
115 VISIT(Assertion) \
116 VISIT(Text)
117
118
119 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
120 VISIT(Disjunction) \
121 VISIT(Alternative) \
122 VISIT(Assertion) \
123 VISIT(CharacterClass) \
124 VISIT(Atom) \
125 VISIT(Quantifier) \
126 VISIT(Capture) \
127 VISIT(Lookahead) \
128 VISIT(BackReference) \
129 VISIT(Empty) \
130 VISIT(Text)
131
132
133 #define FORWARD_DECLARE(Name) class RegExp##Name;
134 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
135 #undef FORWARD_DECLARE
136
137
138 class TextElement {
139 public:
140 enum TextType {
141 ATOM,
142 CHAR_CLASS
143 };
144
145 static TextElement Atom(RegExpAtom* atom);
146 static TextElement CharClass(RegExpCharacterClass* char_class);
147
148 intptr_t cp_offset() const { return cp_offset_; }
149 void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
150 intptr_t length() const;
151
152 TextType text_type() const { return text_type_; }
153
154 RegExpTree* tree() const { return tree_; }
155
156 RegExpAtom* atom() const {
157 ASSERT(text_type() == ATOM);
158 return reinterpret_cast<RegExpAtom*>(tree());
159 }
160
161 RegExpCharacterClass* char_class() const {
162 ASSERT(text_type() == CHAR_CLASS);
163 return reinterpret_cast<RegExpCharacterClass*>(tree());
164 }
165
166 private:
167 TextElement(TextType text_type, RegExpTree* tree)
168 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
169
170 intptr_t cp_offset_;
171 TextType text_type_;
172 RegExpTree* tree_;
173
174 DISALLOW_ALLOCATION();
175 };
176
177
178 class Trace;
179 struct PreloadState;
180 class GreedyLoopState;
181 class AlternativeGenerationList;
182
183 struct NodeInfo {
184 NodeInfo()
185 : being_analyzed(false),
186 been_analyzed(false),
187 follows_word_interest(false),
188 follows_newline_interest(false),
189 follows_start_interest(false),
190 at_end(false),
191 visited(false),
192 replacement_calculated(false) { }
193
194 // Returns true if the interests and assumptions of this node
195 // matches the given one.
196 bool Matches(NodeInfo* that) {
197 return (at_end == that->at_end) &&
198 (follows_word_interest == that->follows_word_interest) &&
199 (follows_newline_interest == that->follows_newline_interest) &&
200 (follows_start_interest == that->follows_start_interest);
201 }
202
203 // Updates the interests of this node given the interests of the
204 // node preceding it.
205 void AddFromPreceding(NodeInfo* that) {
206 at_end |= that->at_end;
207 follows_word_interest |= that->follows_word_interest;
208 follows_newline_interest |= that->follows_newline_interest;
209 follows_start_interest |= that->follows_start_interest;
210 }
211
212 bool HasLookbehind() {
213 return follows_word_interest ||
214 follows_newline_interest ||
215 follows_start_interest;
216 }
217
218 // Sets the interests of this node to include the interests of the
219 // following node.
220 void AddFromFollowing(NodeInfo* that) {
221 follows_word_interest |= that->follows_word_interest;
222 follows_newline_interest |= that->follows_newline_interest;
223 follows_start_interest |= that->follows_start_interest;
224 }
225
226 void ResetCompilationState() {
227 being_analyzed = false;
228 been_analyzed = false;
229 }
230
231 bool being_analyzed: 1;
232 bool been_analyzed: 1;
233
234 // These bits are set of this node has to know what the preceding
235 // character was.
236 bool follows_word_interest: 1;
237 bool follows_newline_interest: 1;
238 bool follows_start_interest: 1;
239
240 bool at_end: 1;
241 bool visited: 1;
242 bool replacement_calculated: 1;
243 };
244
245
246 // Details of a quick mask-compare check that can look ahead in the
247 // input stream.
248 class QuickCheckDetails {
249 public:
250 QuickCheckDetails()
251 : characters_(0),
252 mask_(0),
253 value_(0),
254 cannot_match_(false) { }
255 explicit QuickCheckDetails(intptr_t characters)
256 : characters_(characters),
257 mask_(0),
258 value_(0),
259 cannot_match_(false) { }
260 bool Rationalize(bool one_byte);
261 // Merge in the information from another branch of an alternation.
262 void Merge(QuickCheckDetails* other, intptr_t from_index);
263 // Advance the current position by some amount.
264 void Advance(intptr_t by, bool one_byte);
265 void Clear();
266 bool cannot_match() { return cannot_match_; }
267 void set_cannot_match() { cannot_match_ = true; }
268 struct Position {
269 Position() : mask(0), value(0), determines_perfectly(false) { }
270 uint16_t mask;
271 uint16_t value;
272 bool determines_perfectly;
273 };
274 intptr_t characters() { return characters_; }
275 void set_characters(intptr_t characters) { characters_ = characters; }
276 Position* positions(intptr_t index) {
277 ASSERT(index >= 0);
278 ASSERT(index < characters_);
279 return positions_ + index;
280 }
281 uint32_t mask() { return mask_; }
282 uint32_t value() { return value_; }
283
284 private:
285 // How many characters do we have quick check information from. This is
286 // the same for all branches of a choice node.
287 intptr_t characters_;
288 Position positions_[4];
289 // These values are the condensate of the above array after Rationalize().
290 uint32_t mask_;
291 uint32_t value_;
292 // If set to true, there is no way this quick check can match at all.
293 // E.g., if it requires to be at the start of the input, and isn't.
294 bool cannot_match_;
295
296 DISALLOW_ALLOCATION();
297 };
298
299
300 class RegExpNode: public ZoneAllocated {
301 public:
302 explicit RegExpNode(Isolate* isolate)
303 : replacement_(NULL), trace_count_(0), isolate_(isolate) {
304 bm_info_[0] = bm_info_[1] = NULL;
305 }
306 virtual ~RegExpNode();
307 virtual void Accept(NodeVisitor* visitor) = 0;
308 // Generates a goto to this node or actually generates the code at this point.
309 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
310 // How many characters must this node consume at a minimum in order to
311 // succeed. If we have found at least 'still_to_find' characters that
312 // must be consumed there is no need to ask any following nodes whether
313 // they are sure to eat any more characters. The not_at_start argument is
314 // used to indicate that we know we are not at the start of the input. In
315 // this case anchored branches will always fail and can be ignored when
316 // determining how many characters are consumed on success.
317 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
318 bool not_at_start) = 0;
319 // Emits some quick code that checks whether the preloaded characters match.
320 // Falls through on certain failure, jumps to the label on possible success.
321 // If the node cannot make a quick check it does nothing and returns false.
322 bool EmitQuickCheck(RegExpCompiler* compiler,
323 Trace* bounds_check_trace,
324 Trace* trace,
325 bool preload_has_checked_bounds,
326 BlockLabel* on_possible_success,
327 QuickCheckDetails* details_return,
328 bool fall_through_on_failure);
329 // For a given number of characters this returns a mask and a value. The
330 // next n characters are anded with the mask and compared with the value.
331 // A comparison failure indicates the node cannot match the next n characters.
332 // A comparison success indicates the node may match.
333 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
334 RegExpCompiler* compiler,
335 intptr_t characters_filled_in,
336 bool not_at_start) = 0;
337 static const intptr_t kNodeIsTooComplexForGreedyLoops = -1;
338 virtual intptr_t GreedyLoopTextLength() {
339 return kNodeIsTooComplexForGreedyLoops;
340 }
341 // Only returns the successor for a text node of length 1 that matches any
342 // character and that has no guards on it.
343 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
344 RegExpCompiler* compiler) {
345 return NULL;
346 }
347
348 // Collects information on the possible code units (mod 128) that can match if
349 // we look forward. This is used for a Boyer-Moore-like string searching
350 // implementation. TODO(erikcorry): This should share more code with
351 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
352 // the number of nodes we are willing to look at in order to create this data.
353 static const intptr_t kRecursionBudget = 200;
354 virtual void FillInBMInfo(intptr_t offset,
355 intptr_t budget,
356 BoyerMooreLookahead* bm,
357 bool not_at_start) {
358 UNREACHABLE();
359 }
360
361 // If we know that the input is one-byte then there are some nodes that can
362 // never match. This method returns a node that can be substituted for
363 // itself, or NULL if the node can never match.
364 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case) {
365 return this;
366 }
367 // Helper for FilterOneByte.
368 RegExpNode* replacement() {
369 ASSERT(info()->replacement_calculated);
370 return replacement_;
371 }
372 RegExpNode* set_replacement(RegExpNode* replacement) {
373 info()->replacement_calculated = true;
374 replacement_ = replacement;
375 return replacement; // For convenience.
376 }
377
378 // We want to avoid recalculating the lookahead info, so we store it on the
379 // node. Only info that is for this node is stored. We can tell that the
380 // info is for this node when offset == 0, so the information is calculated
381 // relative to this node.
382 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) {
383 if (offset == 0) set_bm_info(not_at_start, bm);
384 }
385
386 BlockLabel* label() { return &label_; }
387 // If non-generic code is generated for a node (i.e. the node is not at the
388 // start of the trace) then it cannot be reused. This variable sets a limit
389 // on how often we allow that to happen before we insist on starting a new
390 // trace and generating generic code for a node that can be reused by flushing
391 // the deferred actions in the current trace and generating a goto.
392 static const intptr_t kMaxCopiesCodeGenerated = 10;
393
394 NodeInfo* info() { return &info_; }
395
396 BoyerMooreLookahead* bm_info(bool not_at_start) {
397 return bm_info_[not_at_start ? 1 : 0];
398 }
399
400 Isolate* isolate() const { return isolate_; }
401
402 protected:
403 enum LimitResult { DONE, CONTINUE };
404 RegExpNode* replacement_;
405
406 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
407
408 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
409 bm_info_[not_at_start ? 1 : 0] = bm;
410 }
411
412 private:
413 static const intptr_t kFirstCharBudget = 10;
414 BlockLabel label_;
415 NodeInfo info_;
416 // This variable keeps track of how many times code has been generated for
417 // this node (in different traces). We don't keep track of where the
418 // generated code is located unless the code is generated at the start of
419 // a trace, in which case it is generic and can be reused by flushing the
420 // deferred operations in the current trace and generating a goto.
421 intptr_t trace_count_;
422 BoyerMooreLookahead* bm_info_[2];
423 Isolate* isolate_;
424 };
425
426
427 // A simple closed interval.
428 class Interval {
429 public:
430 Interval() : from_(kNone), to_(kNone) { }
431 Interval(intptr_t from, intptr_t to) : from_(from), to_(to) { }
432
433 Interval Union(Interval that) {
434 if (that.from_ == kNone)
435 return *this;
436 else if (from_ == kNone)
437 return that;
438 else
439 return Interval(Utils::Minimum(from_, that.from_),
440 Utils::Maximum(to_, that.to_));
441 }
442 bool Contains(intptr_t value) const {
443 return (from_ <= value) && (value <= to_);
444 }
445 bool is_empty() const { return from_ == kNone; }
446 intptr_t from() const { return from_; }
447 intptr_t to() const { return to_; }
448 static Interval Empty() { return Interval(); }
449 static const intptr_t kNone = -1;
450
451 private:
452 intptr_t from_;
453 intptr_t to_;
454
455 DISALLOW_ALLOCATION();
456 };
457
458
459 class SeqRegExpNode: public RegExpNode {
460 public:
461 explicit SeqRegExpNode(RegExpNode* on_success)
462 : RegExpNode(on_success->isolate()), on_success_(on_success) { }
463 RegExpNode* on_success() { return on_success_; }
464 void set_on_success(RegExpNode* node) { on_success_ = node; }
465 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
466 virtual void FillInBMInfo(intptr_t offset,
467 intptr_t budget,
468 BoyerMooreLookahead* bm,
469 bool not_at_start) {
470 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
471 if (offset == 0) set_bm_info(not_at_start, bm);
472 }
473
474 protected:
475 RegExpNode* FilterSuccessor(intptr_t depth, bool ignore_case);
476
477 private:
478 RegExpNode* on_success_;
479 };
480
481
482 class ActionNode: public SeqRegExpNode {
483 public:
484 enum ActionType {
485 SET_REGISTER,
486 INCREMENT_REGISTER,
487 STORE_POSITION,
488 BEGIN_SUBMATCH,
489 POSITIVE_SUBMATCH_SUCCESS,
490 EMPTY_MATCH_CHECK,
491 CLEAR_CAPTURES
492 };
493 static ActionNode* SetRegister(intptr_t reg, intptr_t val,
494 RegExpNode* on_success);
495 static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success);
496 static ActionNode* StorePosition(intptr_t reg,
497 bool is_capture,
498 RegExpNode* on_success);
499 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
500 static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg,
501 intptr_t position_reg,
502 RegExpNode* on_success);
503 static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg,
504 intptr_t restore_reg,
505 intptr_t clear_capture_count,
506 intptr_t clear_capture_from,
507 RegExpNode* on_success);
508 static ActionNode* EmptyMatchCheck(intptr_t start_register,
509 intptr_t repetition_register,
510 intptr_t repetition_limit,
511 RegExpNode* on_success);
512 virtual void Accept(NodeVisitor* visitor);
513 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
514 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
515 bool not_at_start);
516 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
517 RegExpCompiler* compiler,
518 intptr_t filled_in,
519 bool not_at_start) {
520 return on_success()->GetQuickCheckDetails(
521 details, compiler, filled_in, not_at_start);
522 }
523 virtual void FillInBMInfo(intptr_t offset,
524 intptr_t budget,
525 BoyerMooreLookahead* bm,
526 bool not_at_start);
527 ActionType action_type() { return action_type_; }
528 // TODO(erikcorry): We should allow some action nodes in greedy loops.
529 virtual intptr_t GreedyLoopTextLength() {
530 return kNodeIsTooComplexForGreedyLoops;
531 }
532
533 private:
534 union {
535 struct {
536 intptr_t reg;
537 intptr_t value;
538 } u_store_register;
539 struct {
540 intptr_t reg;
541 } u_increment_register;
542 struct {
543 intptr_t reg;
544 bool is_capture;
545 } u_position_register;
546 struct {
547 intptr_t stack_pointer_register;
548 intptr_t current_position_register;
549 intptr_t clear_register_count;
550 intptr_t clear_register_from;
551 } u_submatch;
552 struct {
553 intptr_t start_register;
554 intptr_t repetition_register;
555 intptr_t repetition_limit;
556 } u_empty_match_check;
557 struct {
558 intptr_t range_from;
559 intptr_t range_to;
560 } u_clear_captures;
561 } data_;
562 ActionNode(ActionType action_type, RegExpNode* on_success)
563 : SeqRegExpNode(on_success),
564 action_type_(action_type) { }
565 ActionType action_type_;
566 friend class DotPrinter;
567 };
568
569
570 class TextNode: public SeqRegExpNode {
571 public:
572 TextNode(ZoneGrowableArray<TextElement>* elms,
573 RegExpNode* on_success)
574 : SeqRegExpNode(on_success),
575 elms_(elms) { }
576 TextNode(RegExpCharacterClass* that,
577 RegExpNode* on_success)
578 : SeqRegExpNode(on_success),
579 elms_(new(isolate()) ZoneGrowableArray<TextElement>(1)) {
580 elms_->Add(TextElement::CharClass(that));
581 }
582 virtual void Accept(NodeVisitor* visitor);
583 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
584 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
585 bool not_at_start);
586 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
587 RegExpCompiler* compiler,
588 intptr_t characters_filled_in,
589 bool not_at_start);
590 ZoneGrowableArray<TextElement>* elements() { return elms_; }
591 void MakeCaseIndependent(bool is_one_byte);
592 virtual intptr_t GreedyLoopTextLength();
593 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
594 RegExpCompiler* compiler);
595 virtual void FillInBMInfo(intptr_t offset,
596 intptr_t budget,
597 BoyerMooreLookahead* bm,
598 bool not_at_start);
599 void CalculateOffsets();
600 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
601
602 private:
603 enum TextEmitPassType {
604 NON_LATIN1_MATCH, // Check for characters that can't match.
605 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
606 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
607 CASE_CHARACTER_MATCH, // Case-independent single character check.
608 CHARACTER_CLASS_MATCH // Character class.
609 };
610 static bool SkipPass(intptr_t pass, bool ignore_case);
611 static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH;
612 static const intptr_t kLastPass = CHARACTER_CLASS_MATCH;
613 void TextEmitPass(RegExpCompiler* compiler,
614 TextEmitPassType pass,
615 bool preloaded,
616 Trace* trace,
617 bool first_element_checked,
618 intptr_t* checked_up_to);
619 intptr_t Length();
620 ZoneGrowableArray<TextElement>* elms_;
621 };
622
623
624 class AssertionNode: public SeqRegExpNode {
625 public:
626 enum AssertionType {
627 AT_END,
628 AT_START,
629 AT_BOUNDARY,
630 AT_NON_BOUNDARY,
631 AFTER_NEWLINE
632 };
633 static AssertionNode* AtEnd(RegExpNode* on_success) {
634 return new(on_success->isolate()) AssertionNode(AT_END, on_success);
635 }
636 static AssertionNode* AtStart(RegExpNode* on_success) {
637 return new(on_success->isolate()) AssertionNode(AT_START, on_success);
638 }
639 static AssertionNode* AtBoundary(RegExpNode* on_success) {
640 return new(on_success->isolate()) AssertionNode(AT_BOUNDARY, on_success);
641 }
642 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
643 return new(on_success->isolate()) AssertionNode(AT_NON_BOUNDARY,
644 on_success);
645 }
646 static AssertionNode* AfterNewline(RegExpNode* on_success) {
647 return new(on_success->isolate()) AssertionNode(AFTER_NEWLINE, on_success);
648 }
649 virtual void Accept(NodeVisitor* visitor);
650 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
651 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
652 bool not_at_start);
653 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
654 RegExpCompiler* compiler,
655 intptr_t filled_in,
656 bool not_at_start);
657 virtual void FillInBMInfo(intptr_t offset,
658 intptr_t budget,
659 BoyerMooreLookahead* bm,
660 bool not_at_start);
661 AssertionType assertion_type() { return assertion_type_; }
662
663 private:
664 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
665 enum IfPrevious { kIsNonWord, kIsWord };
666 void BacktrackIfPrevious(RegExpCompiler* compiler,
667 Trace* trace,
668 IfPrevious backtrack_if_previous);
669 AssertionNode(AssertionType t, RegExpNode* on_success)
670 : SeqRegExpNode(on_success), assertion_type_(t) { }
671 AssertionType assertion_type_;
672 };
673
674
675 class BackReferenceNode: public SeqRegExpNode {
676 public:
677 BackReferenceNode(intptr_t start_reg,
678 intptr_t end_reg,
679 RegExpNode* on_success)
680 : SeqRegExpNode(on_success),
681 start_reg_(start_reg),
682 end_reg_(end_reg) { }
683 virtual void Accept(NodeVisitor* visitor);
684 intptr_t start_register() { return start_reg_; }
685 intptr_t end_register() { return end_reg_; }
686 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
687 virtual intptr_t EatsAtLeast(intptr_t still_to_find,
688 intptr_t recursion_depth,
689 bool not_at_start);
690 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
691 RegExpCompiler* compiler,
692 intptr_t characters_filled_in,
693 bool not_at_start) {
694 return;
695 }
696 virtual void FillInBMInfo(intptr_t offset,
697 intptr_t budget,
698 BoyerMooreLookahead* bm,
699 bool not_at_start);
700
701 private:
702 intptr_t start_reg_;
703 intptr_t end_reg_;
704 };
705
706
707 class EndNode: public RegExpNode {
708 public:
709 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
710 explicit EndNode(Action action, Isolate* isolate)
711 : RegExpNode(isolate), action_(action) { }
712 virtual void Accept(NodeVisitor* visitor);
713 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
714 virtual intptr_t EatsAtLeast(intptr_t still_to_find,
715 intptr_t recursion_depth,
716 bool not_at_start) { return 0; }
717 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
718 RegExpCompiler* compiler,
719 intptr_t characters_filled_in,
720 bool not_at_start) {
721 // Returning 0 from EatsAtLeast should ensure we never get here.
722 UNREACHABLE();
723 }
724 virtual void FillInBMInfo(intptr_t offset,
725 intptr_t budget,
726 BoyerMooreLookahead* bm,
727 bool not_at_start) {
728 // Returning 0 from EatsAtLeast should ensure we never get here.
729 UNREACHABLE();
730 }
731
732 private:
733 Action action_;
734 };
735
736
737 class NegativeSubmatchSuccess: public EndNode {
738 public:
739 NegativeSubmatchSuccess(intptr_t stack_pointer_reg,
740 intptr_t position_reg,
741 intptr_t clear_capture_count,
742 intptr_t clear_capture_start,
743 Isolate* isolate)
744 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, isolate),
745 stack_pointer_register_(stack_pointer_reg),
746 current_position_register_(position_reg),
747 clear_capture_count_(clear_capture_count),
748 clear_capture_start_(clear_capture_start) { }
749 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
750
751 private:
752 intptr_t stack_pointer_register_;
753 intptr_t current_position_register_;
754 intptr_t clear_capture_count_;
755 intptr_t clear_capture_start_;
756 };
757
758
759 class Guard: public ZoneAllocated {
760 public:
761 enum Relation { LT, GEQ };
762 Guard(intptr_t reg, Relation op, intptr_t value)
763 : reg_(reg),
764 op_(op),
765 value_(value) { }
766 intptr_t reg() { return reg_; }
767 Relation op() { return op_; }
768 intptr_t value() { return value_; }
769
770 private:
771 intptr_t reg_;
772 Relation op_;
773 intptr_t value_;
774 };
775
776
777 class GuardedAlternative {
778 public:
779 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
780 void AddGuard(Guard* guard, Isolate* isolate);
781 RegExpNode* node() { return node_; }
782 void set_node(RegExpNode* node) { node_ = node; }
783 ZoneGrowableArray<Guard*>* guards() { return guards_; }
784
785 private:
786 RegExpNode* node_;
787 ZoneGrowableArray<Guard*>* guards_;
788
789 DISALLOW_ALLOCATION();
790 };
791
792
793 class AlternativeGeneration;
794
795
796 class ChoiceNode: public RegExpNode {
797 public:
798 explicit ChoiceNode(intptr_t expected_size, Isolate* isolate)
799 : RegExpNode(isolate),
800 alternatives_(new(isolate)
801 ZoneGrowableArray<GuardedAlternative>(expected_size)),
802 not_at_start_(false),
803 being_calculated_(false) { }
804 virtual void Accept(NodeVisitor* visitor);
805 void AddAlternative(GuardedAlternative node) {
806 alternatives()->Add(node);
807 }
808 ZoneGrowableArray<GuardedAlternative>* alternatives() {
809 return alternatives_;
810 }
811 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
812 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
813 bool not_at_start);
814 intptr_t EatsAtLeastHelper(intptr_t still_to_find,
815 intptr_t budget,
816 RegExpNode* ignore_this_node,
817 bool not_at_start);
818 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
819 RegExpCompiler* compiler,
820 intptr_t characters_filled_in,
821 bool not_at_start);
822 virtual void FillInBMInfo(intptr_t offset,
823 intptr_t budget,
824 BoyerMooreLookahead* bm,
825 bool not_at_start);
826
827 bool being_calculated() { return being_calculated_; }
828 bool not_at_start() { return not_at_start_; }
829 void set_not_at_start() { not_at_start_ = true; }
830 void set_being_calculated(bool b) { being_calculated_ = b; }
831 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
832 return true;
833 }
834 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
835
836 protected:
837 intptr_t GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
838 ZoneGrowableArray<GuardedAlternative>* alternatives_;
839
840 private:
841 friend class Analysis;
842 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
843 Guard* guard,
844 Trace* trace);
845 intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler,
846 intptr_t eats_at_least);
847 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
848 Trace* trace,
849 GuardedAlternative alternative,
850 AlternativeGeneration* alt_gen,
851 intptr_t preload_characters,
852 bool next_expects_preload);
853 void SetUpPreLoad(RegExpCompiler* compiler,
854 Trace* current_trace,
855 PreloadState* preloads);
856 void AssertGuardsMentionRegisters(Trace* trace);
857 intptr_t EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
858 Trace* trace);
859 Trace* EmitGreedyLoop(RegExpCompiler* compiler,
860 Trace* trace,
861 AlternativeGenerationList* alt_gens,
862 PreloadState* preloads,
863 GreedyLoopState* greedy_loop_state,
864 intptr_t text_length);
865 void EmitChoices(RegExpCompiler* compiler,
866 AlternativeGenerationList* alt_gens,
867 intptr_t first_choice,
868 Trace* trace,
869 PreloadState* preloads);
870 // If true, this node is never checked at the start of the input.
871 // Allows a new trace to start with at_start() set to false.
872 bool not_at_start_;
873 bool being_calculated_;
874 };
875
876
877 class NegativeLookaheadChoiceNode: public ChoiceNode {
878 public:
879 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
880 GuardedAlternative then_do_this,
881 Isolate* isolate)
882 : ChoiceNode(2, isolate) {
883 AddAlternative(this_must_fail);
884 AddAlternative(then_do_this);
885 }
886 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
887 bool not_at_start);
888 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
889 RegExpCompiler* compiler,
890 intptr_t characters_filled_in,
891 bool not_at_start);
892 virtual void FillInBMInfo(intptr_t offset,
893 intptr_t budget,
894 BoyerMooreLookahead* bm,
895 bool not_at_start) {
896 (*alternatives_)[1].node()->FillInBMInfo(
897 offset, budget - 1, bm, not_at_start);
898 if (offset == 0) set_bm_info(not_at_start, bm);
899 }
900 // For a negative lookahead we don't emit the quick check for the
901 // alternative that is expected to fail. This is because quick check code
902 // starts by loading enough characters for the alternative that takes fewest
903 // characters, but on a negative lookahead the negative branch did not take
904 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
905 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
906 return !is_first;
907 }
908 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
909 };
910
911
912 class LoopChoiceNode: public ChoiceNode {
913 public:
914 explicit LoopChoiceNode(bool body_can_be_zero_length, Isolate* isolate)
915 : ChoiceNode(2, isolate),
916 loop_node_(NULL),
917 continue_node_(NULL),
918 body_can_be_zero_length_(body_can_be_zero_length) { }
919 void AddLoopAlternative(GuardedAlternative alt);
920 void AddContinueAlternative(GuardedAlternative alt);
921 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
922 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
923 bool not_at_start);
924 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
925 RegExpCompiler* compiler,
926 intptr_t characters_filled_in,
927 bool not_at_start);
928 virtual void FillInBMInfo(intptr_t offset,
929 intptr_t budget,
930 BoyerMooreLookahead* bm,
931 bool not_at_start);
932 RegExpNode* loop_node() { return loop_node_; }
933 RegExpNode* continue_node() { return continue_node_; }
934 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
935 virtual void Accept(NodeVisitor* visitor);
936 virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
937
938 private:
939 // AddAlternative is made private for loop nodes because alternatives
940 // should not be added freely, we need to keep track of which node
941 // goes back to the node itself.
942 void AddAlternative(GuardedAlternative node) {
943 ChoiceNode::AddAlternative(node);
944 }
945
946 RegExpNode* loop_node_;
947 RegExpNode* continue_node_;
948 bool body_can_be_zero_length_;
949 };
950
951
952 // Improve the speed that we scan for an initial point where a non-anchored
953 // regexp can match by using a Boyer-Moore-like table. This is done by
954 // identifying non-greedy non-capturing loops in the nodes that eat any
955 // character one at a time. For example in the middle of the regexp
956 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
957 // inserted at the start of any non-anchored regexp.
958 //
959 // When we have found such a loop we look ahead in the nodes to find the set of
960 // characters that can come at given distances. For example for the regexp
961 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
962 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
963 // the lookahead info where the set of characters is reasonably constrained. In
964 // our example this is from index 1 to 2 (0 is not constrained). We can now
965 // look 3 characters ahead and if we don't find one of [f, o] (the union of
966 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
967 //
968 // For Unicode input strings we do the same, but modulo 128.
969 //
970 // We also look at the first string fed to the regexp and use that to get a hint
971 // of the character frequencies in the inputs. This affects the assessment of
972 // whether the set of characters is 'reasonably constrained'.
973 //
974 // We also have another lookahead mechanism (called quick check in the code),
975 // which uses a wide load of multiple characters followed by a mask and compare
976 // to determine whether a match is possible at this point.
977 enum ContainedInLattice {
978 kNotYet = 0,
979 kLatticeIn = 1,
980 kLatticeOut = 2,
981 kLatticeUnknown = 3 // Can also mean both in and out.
982 };
983
984
985 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
986 return static_cast<ContainedInLattice>(a | b);
987 }
988
989
990 ContainedInLattice AddRange(ContainedInLattice a,
991 const intptr_t* ranges,
992 intptr_t ranges_size,
993 Interval new_range);
994
995
996 class BoyerMoorePositionInfo : public ZoneAllocated {
997 public:
998 explicit BoyerMoorePositionInfo(Isolate* isolate)
999 : map_(new(isolate) ZoneGrowableArray<bool>(kMapSize)),
1000 map_count_(0),
1001 w_(kNotYet),
1002 s_(kNotYet),
1003 d_(kNotYet),
1004 surrogate_(kNotYet) {
1005 for (intptr_t i = 0; i < kMapSize; i++) {
1006 map_->Add(false);
1007 }
1008 }
1009
1010 bool& at(intptr_t i) { return (*map_)[i]; }
1011
1012 static const intptr_t kMapSize = 128;
1013 static const intptr_t kMask = kMapSize - 1;
1014
1015 intptr_t map_count() const { return map_count_; }
1016
1017 void Set(intptr_t character);
1018 void SetInterval(const Interval& interval);
1019 void SetAll();
1020 bool is_non_word() { return w_ == kLatticeOut; }
1021 bool is_word() { return w_ == kLatticeIn; }
1022
1023 private:
1024 ZoneGrowableArray<bool>* map_;
1025 intptr_t map_count_; // Number of set bits in the map.
1026 ContainedInLattice w_; // The \w character class.
1027 ContainedInLattice s_; // The \s character class.
1028 ContainedInLattice d_; // The \d character class.
1029 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1030 };
1031
1032
1033 class BoyerMooreLookahead : public ZoneAllocated{
1034 public:
1035 BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler,
1036 Isolate* Isolate);
1037
1038 intptr_t length() { return length_; }
1039 intptr_t max_char() { return max_char_; }
1040 RegExpCompiler* compiler() { return compiler_; }
1041
1042 intptr_t Count(intptr_t map_number) {
1043 return bitmaps_->At(map_number)->map_count();
1044 }
1045
1046 BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); }
1047
1048 void Set(intptr_t map_number, intptr_t character) {
1049 if (character > max_char_) return;
1050 BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
1051 info->Set(character);
1052 }
1053
1054 void SetInterval(intptr_t map_number, const Interval& interval) {
1055 if (interval.from() > max_char_) return;
1056 BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
1057 if (interval.to() > max_char_) {
1058 info->SetInterval(Interval(interval.from(), max_char_));
1059 } else {
1060 info->SetInterval(interval);
1061 }
1062 }
1063
1064 void SetAll(intptr_t map_number) {
1065 bitmaps_->At(map_number)->SetAll();
1066 }
1067
1068 void SetRest(intptr_t from_map) {
1069 for (intptr_t i = from_map; i < length_; i++) SetAll(i);
1070 }
1071 void EmitSkipInstructions(RegExpMacroAssembler* masm);
1072
1073 private:
1074 // This is the value obtained by EatsAtLeast. If we do not have at least this
1075 // many characters left in the sample string then the match is bound to fail.
1076 // Therefore it is OK to read a character this far ahead of the current match
1077 // point.
1078 intptr_t length_;
1079 RegExpCompiler* compiler_;
1080 // 0xff for Latin1, 0xffff for UTF-16.
1081 intptr_t max_char_;
1082 ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_;
1083
1084 intptr_t GetSkipTable(intptr_t min_lookahead,
1085 intptr_t max_lookahead,
1086 const TypedData& boolean_skip_table);
1087 bool FindWorthwhileInterval(intptr_t* from, intptr_t* to);
1088 intptr_t FindBestInterval(
1089 intptr_t max_number_of_chars,
1090 intptr_t old_biggest_points,
1091 intptr_t* from, intptr_t* to);
1092 };
1093
1094
1095 // There are many ways to generate code for a node. This class encapsulates
1096 // the current way we should be generating. In other words it encapsulates
1097 // the current state of the code generator. The effect of this is that we
1098 // generate code for paths that the matcher can take through the regular
1099 // expression. A given node in the regexp can be code-generated several times
1100 // as it can be part of several traces. For example for the regexp:
1101 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1102 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1103 // to match foo is generated only once (the traces have a common prefix). The
1104 // code to store the capture is deferred and generated (twice) after the places
1105 // where baz has been matched.
1106 class Trace {
1107 public:
1108 // A value for a property that is either known to be true, know to be false,
1109 // or not known.
1110 enum TriBool {
1111 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1112 };
1113
1114 class DeferredAction {
1115 public:
1116 DeferredAction(ActionNode::ActionType action_type, intptr_t reg)
1117 : action_type_(action_type), reg_(reg), next_(NULL) { }
1118 DeferredAction* next() { return next_; }
1119 bool Mentions(intptr_t reg);
1120 intptr_t reg() { return reg_; }
1121 ActionNode::ActionType action_type() { return action_type_; }
1122 private:
1123 ActionNode::ActionType action_type_;
1124 intptr_t reg_;
1125 DeferredAction* next_;
1126 friend class Trace;
1127
1128 DISALLOW_ALLOCATION();
1129 };
1130
1131 class DeferredCapture : public DeferredAction {
1132 public:
1133 DeferredCapture(intptr_t reg, bool is_capture, Trace* trace)
1134 : DeferredAction(ActionNode::STORE_POSITION, reg),
1135 cp_offset_(trace->cp_offset()),
1136 is_capture_(is_capture) { }
1137 intptr_t cp_offset() { return cp_offset_; }
1138 bool is_capture() { return is_capture_; }
1139 private:
1140 intptr_t cp_offset_;
1141 bool is_capture_;
1142 void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
1143 };
1144
1145 class DeferredSetRegister : public DeferredAction {
1146 public:
1147 DeferredSetRegister(intptr_t reg, intptr_t value)
1148 : DeferredAction(ActionNode::SET_REGISTER, reg),
1149 value_(value) { }
1150 intptr_t value() { return value_; }
1151 private:
1152 intptr_t value_;
1153 };
1154
1155 class DeferredClearCaptures : public DeferredAction {
1156 public:
1157 explicit DeferredClearCaptures(Interval range)
1158 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1159 range_(range) { }
1160 Interval range() { return range_; }
1161 private:
1162 Interval range_;
1163 };
1164
1165 class DeferredIncrementRegister : public DeferredAction {
1166 public:
1167 explicit DeferredIncrementRegister(intptr_t reg)
1168 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1169 };
1170
1171 Trace()
1172 : cp_offset_(0),
1173 actions_(NULL),
1174 backtrack_(NULL),
1175 stop_node_(NULL),
1176 loop_label_(NULL),
1177 characters_preloaded_(0),
1178 bound_checked_up_to_(0),
1179 flush_budget_(100),
1180 at_start_(UNKNOWN) { }
1181
1182 // End the trace. This involves flushing the deferred actions in the trace
1183 // and pushing a backtrack location onto the backtrack stack. Once this is
1184 // done we can start a new trace or go to one that has already been
1185 // generated.
1186 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1187 intptr_t cp_offset() { return cp_offset_; }
1188 DeferredAction* actions() { return actions_; }
1189 // A trivial trace is one that has no deferred actions or other state that
1190 // affects the assumptions used when generating code. There is no recorded
1191 // backtrack location in a trivial trace, so with a trivial trace we will
1192 // generate code that, on a failure to match, gets the backtrack location
1193 // from the backtrack stack rather than using a direct jump instruction. We
1194 // always start code generation with a trivial trace and non-trivial traces
1195 // are created as we emit code for nodes or add to the list of deferred
1196 // actions in the trace. The location of the code generated for a node using
1197 // a trivial trace is recorded in a label in the node so that gotos can be
1198 // generated to that code.
1199 bool is_trivial() {
1200 return backtrack_ == NULL &&
1201 actions_ == NULL &&
1202 cp_offset_ == 0 &&
1203 characters_preloaded_ == 0 &&
1204 bound_checked_up_to_ == 0 &&
1205 quick_check_performed_.characters() == 0 &&
1206 at_start_ == UNKNOWN;
1207 }
1208 TriBool at_start() { return at_start_; }
1209 void set_at_start(bool at_start) {
1210 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1211 }
1212 BlockLabel* backtrack() { return backtrack_; }
1213 BlockLabel* loop_label() { return loop_label_; }
1214 RegExpNode* stop_node() { return stop_node_; }
1215 intptr_t characters_preloaded() { return characters_preloaded_; }
1216 intptr_t bound_checked_up_to() { return bound_checked_up_to_; }
1217 intptr_t flush_budget() { return flush_budget_; }
1218 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1219 bool mentions_reg(intptr_t reg);
1220 // Returns true if a deferred position store exists to the specified
1221 // register and stores the offset in the out-parameter. Otherwise
1222 // returns false.
1223 bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset);
1224 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1225 // new traces - the intention is that traces are immutable after creation.
1226 void add_action(DeferredAction* new_action) {
1227 ASSERT(new_action->next_ == NULL);
1228 new_action->next_ = actions_;
1229 actions_ = new_action;
1230 }
1231 void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; }
1232 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1233 void set_loop_label(BlockLabel* label) { loop_label_ = label; }
1234 void set_characters_preloaded(intptr_t count) {
1235 characters_preloaded_ = count;
1236 }
1237 void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; }
1238 void set_flush_budget(intptr_t to) { flush_budget_ = to; }
1239 void set_quick_check_performed(QuickCheckDetails* d) {
1240 quick_check_performed_ = *d;
1241 }
1242 void InvalidateCurrentCharacter();
1243 void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler);
1244
1245 private:
1246 intptr_t FindAffectedRegisters(OutSet* affected_registers, Isolate* isolate);
1247 void PerformDeferredActions(RegExpMacroAssembler* macro,
1248 intptr_t max_register,
1249 const OutSet& affected_registers,
1250 OutSet* registers_to_pop,
1251 OutSet* registers_to_clear,
1252 Isolate* isolate);
1253 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1254 intptr_t max_register,
1255 const OutSet& registers_to_pop,
1256 const OutSet& registers_to_clear);
1257 intptr_t cp_offset_;
1258 DeferredAction* actions_;
1259 BlockLabel* backtrack_;
1260 RegExpNode* stop_node_;
1261 BlockLabel* loop_label_;
1262 intptr_t characters_preloaded_;
1263 intptr_t bound_checked_up_to_;
1264 QuickCheckDetails quick_check_performed_;
1265 intptr_t flush_budget_;
1266 TriBool at_start_;
1267
1268 DISALLOW_ALLOCATION();
1269 };
1270
1271
1272 class GreedyLoopState {
1273 public:
1274 explicit GreedyLoopState(bool not_at_start);
1275
1276 BlockLabel* label() { return &label_; }
1277 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1278
1279 private:
1280 BlockLabel label_;
1281 Trace counter_backtrack_trace_;
1282 };
1283
1284
1285 struct PreloadState {
1286 static const intptr_t kEatsAtLeastNotYetInitialized = -1;
1287 bool preload_is_current_;
1288 bool preload_has_checked_bounds_;
1289 intptr_t preload_characters_;
1290 intptr_t eats_at_least_;
1291 void init() {
1292 eats_at_least_ = kEatsAtLeastNotYetInitialized;
1293 }
1294
1295 DISALLOW_ALLOCATION();
1296 };
1297
1298
1299 class NodeVisitor : public ValueObject {
1300 public:
1301 virtual ~NodeVisitor() { }
1302 #define DECLARE_VISIT(Type) \
1303 virtual void Visit##Type(Type##Node* that) = 0;
1304 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1305 #undef DECLARE_VISIT
1306 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1307 };
1308
1309
1310 // Assertion propagation moves information about assertions such as
1311 // \b to the affected nodes. For instance, in /.\b./ information must
1312 // be propagated to the first '.' that whatever follows needs to know
1313 // if it matched a word or a non-word, and to the second '.' that it
1314 // has to check if it succeeds a word or non-word. In this case the
1315 // result will be something like:
1316 //
1317 // +-------+ +------------+
1318 // | . | | . |
1319 // +-------+ ---> +------------+
1320 // | word? | | check word |
1321 // +-------+ +------------+
1322 class Analysis: public NodeVisitor {
1323 public:
1324 Analysis(bool ignore_case, bool is_one_byte)
1325 : ignore_case_(ignore_case),
1326 is_one_byte_(is_one_byte),
1327 error_message_(NULL) { }
1328 void EnsureAnalyzed(RegExpNode* node);
1329
1330 #define DECLARE_VISIT(Type) \
1331 virtual void Visit##Type(Type##Node* that);
1332 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1333 #undef DECLARE_VISIT
1334 virtual void VisitLoopChoice(LoopChoiceNode* that);
1335
1336 bool has_failed() { return error_message_ != NULL; }
1337 const char* error_message() {
1338 ASSERT(error_message_ != NULL);
1339 return error_message_;
1340 }
1341 void fail(const char* error_message) {
1342 error_message_ = error_message;
1343 }
1344
1345 private:
1346 bool ignore_case_;
1347 bool is_one_byte_;
1348 const char* error_message_;
1349
1350 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1351 };
1352
1353
1354 struct RegExpCompileData : public ZoneAllocated {
1355 RegExpCompileData()
1356 : tree(NULL),
1357 node(NULL),
1358 simple(true),
1359 contains_anchor(false),
1360 error(String::Handle(String::null())),
1361 capture_count(0) { }
1362 RegExpTree* tree;
1363 RegExpNode* node;
1364 bool simple;
1365 bool contains_anchor;
1366 String& error;
1367 intptr_t capture_count;
1368 };
1369
1370
1371 class RegExpEngine: public AllStatic {
1372 public:
1373 struct CompilationResult {
1374 explicit CompilationResult(const char* error_message)
1375 : macro_assembler(NULL),
1376 graph_entry(NULL),
1377 num_blocks(-1),
1378 num_stack_locals(-1),
1379 error_message(error_message) {}
1380 CompilationResult(IRRegExpMacroAssembler* macro_assembler,
1381 GraphEntryInstr* graph_entry,
1382 intptr_t num_blocks,
1383 intptr_t num_stack_locals)
1384 : macro_assembler(macro_assembler),
1385 graph_entry(graph_entry),
1386 num_blocks(num_blocks),
1387 num_stack_locals(num_stack_locals),
1388 error_message(NULL) {}
1389
1390 IRRegExpMacroAssembler* macro_assembler;
1391 GraphEntryInstr* graph_entry;
1392 const intptr_t num_blocks;
1393 const intptr_t num_stack_locals;
1394
1395 const char* error_message;
1396 };
1397
1398 static CompilationResult Compile(
1399 RegExpCompileData* input,
1400 const ParsedFunction* parsed_function,
1401 const ZoneGrowableArray<const ICData*>& ic_data_array);
1402
1403 static RawJSRegExp* CreateJSRegExp(Isolate* isolate,
1404 const String& pattern,
1405 bool multi_line,
1406 bool ignore_case);
1407
1408 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1409 };
1410
1411 } // namespace dart
1412
1413 #endif // VM_REGEXP_H_
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698