Index: ui/gfx/geometry/quad_f.cc |
diff --git a/ui/gfx/geometry/quad_f.cc b/ui/gfx/geometry/quad_f.cc |
index ff3e0363025b1247c769b64845c5cfda7376213d..dbc50458b3fa1e04aedfdee3c51d5ae00351b46a 100644 |
--- a/ui/gfx/geometry/quad_f.cc |
+++ b/ui/gfx/geometry/quad_f.cc |
@@ -62,20 +62,24 @@ |
const PointF& r1, |
const PointF& r2, |
const PointF& r3) { |
- // Translate point and triangle so that point lies at origin. |
- // Then checking if the origin is contained in the translated triangle. |
- // The origin O lies inside ABC if and only if the triangles OAB, OBC, |
- // and OCA are all either clockwise or counterclockwise. |
- // This algorithm is from Real-Time Collision Detection (Chaper 5.4.2). |
+ // Compute the barycentric coordinates (u, v, w) of |point| relative to the |
+ // triangle (r1, r2, r3) by the solving the system of equations: |
+ // 1) point = u * r1 + v * r2 + w * r3 |
+ // 2) u + v + w = 1 |
+ // This algorithm comes from Christer Ericson's Real-Time Collision Detection. |
- Vector2dF a = r1 - point; |
- Vector2dF b = r2 - point; |
- Vector2dF c = r3 - point; |
+ Vector2dF r31 = r1 - r3; |
+ Vector2dF r32 = r2 - r3; |
+ Vector2dF r3p = point - r3; |
- double u = CrossProduct(b, c); |
- double v = CrossProduct(c, a); |
- double w = CrossProduct(a, b); |
- return ((u * v < 0) || ((u * w) < 0) || ((v * w) < 0)) ? false : true; |
+ float denom = r32.y() * r31.x() - r32.x() * r31.y(); |
+ float u = (r32.y() * r3p.x() - r32.x() * r3p.y()) / denom; |
+ float v = (r31.x() * r3p.y() - r31.y() * r3p.x()) / denom; |
+ float w = 1.f - u - v; |
+ |
+ // Use the barycentric coordinates to test if |point| is inside the |
+ // triangle (r1, r2, r2). |
+ return (u >= 0) && (v >= 0) && (w >= 0); |
} |
bool QuadF::Contains(const PointF& point) const { |