| Index: ui/gfx/geometry/quad_f.cc
|
| diff --git a/ui/gfx/geometry/quad_f.cc b/ui/gfx/geometry/quad_f.cc
|
| index ff3e0363025b1247c769b64845c5cfda7376213d..dbc50458b3fa1e04aedfdee3c51d5ae00351b46a 100644
|
| --- a/ui/gfx/geometry/quad_f.cc
|
| +++ b/ui/gfx/geometry/quad_f.cc
|
| @@ -62,20 +62,24 @@
|
| const PointF& r1,
|
| const PointF& r2,
|
| const PointF& r3) {
|
| - // Translate point and triangle so that point lies at origin.
|
| - // Then checking if the origin is contained in the translated triangle.
|
| - // The origin O lies inside ABC if and only if the triangles OAB, OBC,
|
| - // and OCA are all either clockwise or counterclockwise.
|
| - // This algorithm is from Real-Time Collision Detection (Chaper 5.4.2).
|
| + // Compute the barycentric coordinates (u, v, w) of |point| relative to the
|
| + // triangle (r1, r2, r3) by the solving the system of equations:
|
| + // 1) point = u * r1 + v * r2 + w * r3
|
| + // 2) u + v + w = 1
|
| + // This algorithm comes from Christer Ericson's Real-Time Collision Detection.
|
|
|
| - Vector2dF a = r1 - point;
|
| - Vector2dF b = r2 - point;
|
| - Vector2dF c = r3 - point;
|
| + Vector2dF r31 = r1 - r3;
|
| + Vector2dF r32 = r2 - r3;
|
| + Vector2dF r3p = point - r3;
|
|
|
| - double u = CrossProduct(b, c);
|
| - double v = CrossProduct(c, a);
|
| - double w = CrossProduct(a, b);
|
| - return ((u * v < 0) || ((u * w) < 0) || ((v * w) < 0)) ? false : true;
|
| + float denom = r32.y() * r31.x() - r32.x() * r31.y();
|
| + float u = (r32.y() * r3p.x() - r32.x() * r3p.y()) / denom;
|
| + float v = (r31.x() * r3p.y() - r31.y() * r3p.x()) / denom;
|
| + float w = 1.f - u - v;
|
| +
|
| + // Use the barycentric coordinates to test if |point| is inside the
|
| + // triangle (r1, r2, r2).
|
| + return (u >= 0) && (v >= 0) && (w >= 0);
|
| }
|
|
|
| bool QuadF::Contains(const PointF& point) const {
|
|
|