Index: third_party/sqlite/src/src/util.c |
diff --git a/third_party/sqlite/src/src/util.c b/third_party/sqlite/src/src/util.c |
index 81e42b4ae500a786c0a19b3424509a42ea49695d..d12bcd53603b81a45933b6038915831765ceae89 100644 |
--- a/third_party/sqlite/src/src/util.c |
+++ b/third_party/sqlite/src/src/util.c |
@@ -1,1094 +1,1094 @@ |
-/* |
-** 2001 September 15 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** Utility functions used throughout sqlite. |
-** |
-** This file contains functions for allocating memory, comparing |
-** strings, and stuff like that. |
-** |
-*/ |
-#include "sqliteInt.h" |
-#include <stdarg.h> |
-#ifdef SQLITE_HAVE_ISNAN |
-# include <math.h> |
-#endif |
- |
-/* |
-** Routine needed to support the testcase() macro. |
-*/ |
-#ifdef SQLITE_COVERAGE_TEST |
-void sqlite3Coverage(int x){ |
- static int dummy = 0; |
- dummy += x; |
-} |
-#endif |
- |
-/* |
-** Return true if the floating point value is Not a Number (NaN). |
-** |
-** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
-** Otherwise, we have our own implementation that works on most systems. |
-*/ |
-int sqlite3IsNaN(double x){ |
- int rc; /* The value return */ |
-#if !defined(SQLITE_HAVE_ISNAN) |
- /* |
- ** Systems that support the isnan() library function should probably |
- ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have |
- ** found that many systems do not have a working isnan() function so |
- ** this implementation is provided as an alternative. |
- ** |
- ** This NaN test sometimes fails if compiled on GCC with -ffast-math. |
- ** On the other hand, the use of -ffast-math comes with the following |
- ** warning: |
- ** |
- ** This option [-ffast-math] should never be turned on by any |
- ** -O option since it can result in incorrect output for programs |
- ** which depend on an exact implementation of IEEE or ISO |
- ** rules/specifications for math functions. |
- ** |
- ** Under MSVC, this NaN test may fail if compiled with a floating- |
- ** point precision mode other than /fp:precise. From the MSDN |
- ** documentation: |
- ** |
- ** The compiler [with /fp:precise] will properly handle comparisons |
- ** involving NaN. For example, x != x evaluates to true if x is NaN |
- ** ... |
- */ |
-#ifdef __FAST_MATH__ |
-# error SQLite will not work correctly with the -ffast-math option of GCC. |
-#endif |
- volatile double y = x; |
- volatile double z = y; |
- rc = (y!=z); |
-#else /* if defined(SQLITE_HAVE_ISNAN) */ |
- rc = isnan(x); |
-#endif /* SQLITE_HAVE_ISNAN */ |
- testcase( rc ); |
- return rc; |
-} |
- |
-/* |
-** Compute a string length that is limited to what can be stored in |
-** lower 30 bits of a 32-bit signed integer. |
-** |
-** The value returned will never be negative. Nor will it ever be greater |
-** than the actual length of the string. For very long strings (greater |
-** than 1GiB) the value returned might be less than the true string length. |
-*/ |
-int sqlite3Strlen30(const char *z){ |
- const char *z2 = z; |
- if( z==0 ) return 0; |
- while( *z2 ){ z2++; } |
- return 0x3fffffff & (int)(z2 - z); |
-} |
- |
-/* |
-** Set the most recent error code and error string for the sqlite |
-** handle "db". The error code is set to "err_code". |
-** |
-** If it is not NULL, string zFormat specifies the format of the |
-** error string in the style of the printf functions: The following |
-** format characters are allowed: |
-** |
-** %s Insert a string |
-** %z A string that should be freed after use |
-** %d Insert an integer |
-** %T Insert a token |
-** %S Insert the first element of a SrcList |
-** |
-** zFormat and any string tokens that follow it are assumed to be |
-** encoded in UTF-8. |
-** |
-** To clear the most recent error for sqlite handle "db", sqlite3Error |
-** should be called with err_code set to SQLITE_OK and zFormat set |
-** to NULL. |
-*/ |
-void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
- if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
- db->errCode = err_code; |
- if( zFormat ){ |
- char *z; |
- va_list ap; |
- va_start(ap, zFormat); |
- z = sqlite3VMPrintf(db, zFormat, ap); |
- va_end(ap); |
- sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
- }else{ |
- sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
- } |
- } |
-} |
- |
-/* |
-** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
-** The following formatting characters are allowed: |
-** |
-** %s Insert a string |
-** %z A string that should be freed after use |
-** %d Insert an integer |
-** %T Insert a token |
-** %S Insert the first element of a SrcList |
-** |
-** This function should be used to report any error that occurs whilst |
-** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
-** last thing the sqlite3_prepare() function does is copy the error |
-** stored by this function into the database handle using sqlite3Error(). |
-** Function sqlite3Error() should be used during statement execution |
-** (sqlite3_step() etc.). |
-*/ |
-void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
- va_list ap; |
- sqlite3 *db = pParse->db; |
- pParse->nErr++; |
- sqlite3DbFree(db, pParse->zErrMsg); |
- va_start(ap, zFormat); |
- pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); |
- va_end(ap); |
- pParse->rc = SQLITE_ERROR; |
-} |
- |
-/* |
-** Clear the error message in pParse, if any |
-*/ |
-void sqlite3ErrorClear(Parse *pParse){ |
- sqlite3DbFree(pParse->db, pParse->zErrMsg); |
- pParse->zErrMsg = 0; |
- pParse->nErr = 0; |
-} |
- |
-/* |
-** Convert an SQL-style quoted string into a normal string by removing |
-** the quote characters. The conversion is done in-place. If the |
-** input does not begin with a quote character, then this routine |
-** is a no-op. |
-** |
-** The input string must be zero-terminated. A new zero-terminator |
-** is added to the dequoted string. |
-** |
-** The return value is -1 if no dequoting occurs or the length of the |
-** dequoted string, exclusive of the zero terminator, if dequoting does |
-** occur. |
-** |
-** 2002-Feb-14: This routine is extended to remove MS-Access style |
-** brackets from around identifers. For example: "[a-b-c]" becomes |
-** "a-b-c". |
-*/ |
-int sqlite3Dequote(char *z){ |
- char quote; |
- int i, j; |
- if( z==0 ) return -1; |
- quote = z[0]; |
- switch( quote ){ |
- case '\'': break; |
- case '"': break; |
- case '`': break; /* For MySQL compatibility */ |
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
- default: return -1; |
- } |
- for(i=1, j=0; ALWAYS(z[i]); i++){ |
- if( z[i]==quote ){ |
- if( z[i+1]==quote ){ |
- z[j++] = quote; |
- i++; |
- }else{ |
- break; |
- } |
- }else{ |
- z[j++] = z[i]; |
- } |
- } |
- z[j] = 0; |
- return j; |
-} |
- |
-/* Convenient short-hand */ |
-#define UpperToLower sqlite3UpperToLower |
- |
-/* |
-** Some systems have stricmp(). Others have strcasecmp(). Because |
-** there is no consistency, we will define our own. |
-*/ |
-int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
- register unsigned char *a, *b; |
- a = (unsigned char *)zLeft; |
- b = (unsigned char *)zRight; |
- while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
- return UpperToLower[*a] - UpperToLower[*b]; |
-} |
-int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
- register unsigned char *a, *b; |
- a = (unsigned char *)zLeft; |
- b = (unsigned char *)zRight; |
- while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
- return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
-} |
- |
-/* |
-** Return TRUE if z is a pure numeric string. Return FALSE and leave |
-** *realnum unchanged if the string contains any character which is not |
-** part of a number. |
-** |
-** If the string is pure numeric, set *realnum to TRUE if the string |
-** contains the '.' character or an "E+000" style exponentiation suffix. |
-** Otherwise set *realnum to FALSE. Note that just becaue *realnum is |
-** false does not mean that the number can be successfully converted into |
-** an integer - it might be too big. |
-** |
-** An empty string is considered non-numeric. |
-*/ |
-int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
- int incr = (enc==SQLITE_UTF8?1:2); |
- if( enc==SQLITE_UTF16BE ) z++; |
- if( *z=='-' || *z=='+' ) z += incr; |
- if( !sqlite3Isdigit(*z) ){ |
- return 0; |
- } |
- z += incr; |
- *realnum = 0; |
- while( sqlite3Isdigit(*z) ){ z += incr; } |
- if( *z=='.' ){ |
- z += incr; |
- if( !sqlite3Isdigit(*z) ) return 0; |
- while( sqlite3Isdigit(*z) ){ z += incr; } |
- *realnum = 1; |
- } |
- if( *z=='e' || *z=='E' ){ |
- z += incr; |
- if( *z=='+' || *z=='-' ) z += incr; |
- if( !sqlite3Isdigit(*z) ) return 0; |
- while( sqlite3Isdigit(*z) ){ z += incr; } |
- *realnum = 1; |
- } |
- return *z==0; |
-} |
- |
-/* |
-** The string z[] is an ASCII representation of a real number. |
-** Convert this string to a double. |
-** |
-** This routine assumes that z[] really is a valid number. If it |
-** is not, the result is undefined. |
-** |
-** This routine is used instead of the library atof() function because |
-** the library atof() might want to use "," as the decimal point instead |
-** of "." depending on how locale is set. But that would cause problems |
-** for SQL. So this routine always uses "." regardless of locale. |
-*/ |
-int sqlite3AtoF(const char *z, double *pResult){ |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- const char *zBegin = z; |
- /* sign * significand * (10 ^ (esign * exponent)) */ |
- int sign = 1; /* sign of significand */ |
- i64 s = 0; /* significand */ |
- int d = 0; /* adjust exponent for shifting decimal point */ |
- int esign = 1; /* sign of exponent */ |
- int e = 0; /* exponent */ |
- double result; |
- int nDigits = 0; |
- |
- /* skip leading spaces */ |
- while( sqlite3Isspace(*z) ) z++; |
- /* get sign of significand */ |
- if( *z=='-' ){ |
- sign = -1; |
- z++; |
- }else if( *z=='+' ){ |
- z++; |
- } |
- /* skip leading zeroes */ |
- while( z[0]=='0' ) z++, nDigits++; |
- |
- /* copy max significant digits to significand */ |
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z++, nDigits++; |
- } |
- /* skip non-significant significand digits |
- ** (increase exponent by d to shift decimal left) */ |
- while( sqlite3Isdigit(*z) ) z++, nDigits++, d++; |
- |
- /* if decimal point is present */ |
- if( *z=='.' ){ |
- z++; |
- /* copy digits from after decimal to significand |
- ** (decrease exponent by d to shift decimal right) */ |
- while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z++, nDigits++, d--; |
- } |
- /* skip non-significant digits */ |
- while( sqlite3Isdigit(*z) ) z++, nDigits++; |
- } |
- |
- /* if exponent is present */ |
- if( *z=='e' || *z=='E' ){ |
- z++; |
- /* get sign of exponent */ |
- if( *z=='-' ){ |
- esign = -1; |
- z++; |
- }else if( *z=='+' ){ |
- z++; |
- } |
- /* copy digits to exponent */ |
- while( sqlite3Isdigit(*z) ){ |
- e = e*10 + (*z - '0'); |
- z++; |
- } |
- } |
- |
- /* adjust exponent by d, and update sign */ |
- e = (e*esign) + d; |
- if( e<0 ) { |
- esign = -1; |
- e *= -1; |
- } else { |
- esign = 1; |
- } |
- |
- /* if 0 significand */ |
- if( !s ) { |
- /* In the IEEE 754 standard, zero is signed. |
- ** Add the sign if we've seen at least one digit */ |
- result = (sign<0 && nDigits) ? -(double)0 : (double)0; |
- } else { |
- /* attempt to reduce exponent */ |
- if( esign>0 ){ |
- while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; |
- }else{ |
- while( !(s%10) && e>0 ) e--,s/=10; |
- } |
- |
- /* adjust the sign of significand */ |
- s = sign<0 ? -s : s; |
- |
- /* if exponent, scale significand as appropriate |
- ** and store in result. */ |
- if( e ){ |
- double scale = 1.0; |
- /* attempt to handle extremely small/large numbers better */ |
- if( e>307 && e<342 ){ |
- while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
- if( esign<0 ){ |
- result = s / scale; |
- result /= 1.0e+308; |
- }else{ |
- result = s * scale; |
- result *= 1.0e+308; |
- } |
- }else{ |
- /* 1.0e+22 is the largest power of 10 than can be |
- ** represented exactly. */ |
- while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
- while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
- if( esign<0 ){ |
- result = s / scale; |
- }else{ |
- result = s * scale; |
- } |
- } |
- } else { |
- result = (double)s; |
- } |
- } |
- |
- /* store the result */ |
- *pResult = result; |
- |
- /* return number of characters used */ |
- return (int)(z - zBegin); |
-#else |
- return sqlite3Atoi64(z, pResult); |
-#endif /* SQLITE_OMIT_FLOATING_POINT */ |
-} |
- |
-/* |
-** Compare the 19-character string zNum against the text representation |
-** value 2^63: 9223372036854775808. Return negative, zero, or positive |
-** if zNum is less than, equal to, or greater than the string. |
-** |
-** Unlike memcmp() this routine is guaranteed to return the difference |
-** in the values of the last digit if the only difference is in the |
-** last digit. So, for example, |
-** |
-** compare2pow63("9223372036854775800") |
-** |
-** will return -8. |
-*/ |
-static int compare2pow63(const char *zNum){ |
- int c; |
- c = memcmp(zNum,"922337203685477580",18)*10; |
- if( c==0 ){ |
- c = zNum[18] - '8'; |
- } |
- return c; |
-} |
- |
- |
-/* |
-** Return TRUE if zNum is a 64-bit signed integer and write |
-** the value of the integer into *pNum. If zNum is not an integer |
-** or is an integer that is too large to be expressed with 64 bits, |
-** then return false. |
-** |
-** When this routine was originally written it dealt with only |
-** 32-bit numbers. At that time, it was much faster than the |
-** atoi() library routine in RedHat 7.2. |
-*/ |
-int sqlite3Atoi64(const char *zNum, i64 *pNum){ |
- i64 v = 0; |
- int neg; |
- int i, c; |
- const char *zStart; |
- while( sqlite3Isspace(*zNum) ) zNum++; |
- if( *zNum=='-' ){ |
- neg = 1; |
- zNum++; |
- }else if( *zNum=='+' ){ |
- neg = 0; |
- zNum++; |
- }else{ |
- neg = 0; |
- } |
- zStart = zNum; |
- while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ |
- for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
- v = v*10 + c - '0'; |
- } |
- *pNum = neg ? -v : v; |
- if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ |
- /* zNum is empty or contains non-numeric text or is longer |
- ** than 19 digits (thus guaranting that it is too large) */ |
- return 0; |
- }else if( i<19 ){ |
- /* Less than 19 digits, so we know that it fits in 64 bits */ |
- return 1; |
- }else{ |
- /* 19-digit numbers must be no larger than 9223372036854775807 if positive |
- ** or 9223372036854775808 if negative. Note that 9223372036854665808 |
- ** is 2^63. */ |
- return compare2pow63(zNum)<neg; |
- } |
-} |
- |
-/* |
-** The string zNum represents an unsigned integer. The zNum string |
-** consists of one or more digit characters and is terminated by |
-** a zero character. Any stray characters in zNum result in undefined |
-** behavior. |
-** |
-** If the unsigned integer that zNum represents will fit in a |
-** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
-** |
-** If the negFlag parameter is true, that means that zNum really represents |
-** a negative number. (The leading "-" is omitted from zNum.) This |
-** parameter is needed to determine a boundary case. A string |
-** of "9223373036854775808" returns false if negFlag is false or true |
-** if negFlag is true. |
-** |
-** Leading zeros are ignored. |
-*/ |
-int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ |
- int i; |
- int neg = 0; |
- |
- assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ |
- |
- if( negFlag ) neg = 1-neg; |
- while( *zNum=='0' ){ |
- zNum++; /* Skip leading zeros. Ticket #2454 */ |
- } |
- for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); } |
- if( i<19 ){ |
- /* Guaranteed to fit if less than 19 digits */ |
- return 1; |
- }else if( i>19 ){ |
- /* Guaranteed to be too big if greater than 19 digits */ |
- return 0; |
- }else{ |
- /* Compare against 2^63. */ |
- return compare2pow63(zNum)<neg; |
- } |
-} |
- |
-/* |
-** If zNum represents an integer that will fit in 32-bits, then set |
-** *pValue to that integer and return true. Otherwise return false. |
-** |
-** Any non-numeric characters that following zNum are ignored. |
-** This is different from sqlite3Atoi64() which requires the |
-** input number to be zero-terminated. |
-*/ |
-int sqlite3GetInt32(const char *zNum, int *pValue){ |
- sqlite_int64 v = 0; |
- int i, c; |
- int neg = 0; |
- if( zNum[0]=='-' ){ |
- neg = 1; |
- zNum++; |
- }else if( zNum[0]=='+' ){ |
- zNum++; |
- } |
- while( zNum[0]=='0' ) zNum++; |
- for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
- v = v*10 + c; |
- } |
- |
- /* The longest decimal representation of a 32 bit integer is 10 digits: |
- ** |
- ** 1234567890 |
- ** 2^31 -> 2147483648 |
- */ |
- if( i>10 ){ |
- return 0; |
- } |
- if( v-neg>2147483647 ){ |
- return 0; |
- } |
- if( neg ){ |
- v = -v; |
- } |
- *pValue = (int)v; |
- return 1; |
-} |
- |
-/* |
-** The variable-length integer encoding is as follows: |
-** |
-** KEY: |
-** A = 0xxxxxxx 7 bits of data and one flag bit |
-** B = 1xxxxxxx 7 bits of data and one flag bit |
-** C = xxxxxxxx 8 bits of data |
-** |
-** 7 bits - A |
-** 14 bits - BA |
-** 21 bits - BBA |
-** 28 bits - BBBA |
-** 35 bits - BBBBA |
-** 42 bits - BBBBBA |
-** 49 bits - BBBBBBA |
-** 56 bits - BBBBBBBA |
-** 64 bits - BBBBBBBBC |
-*/ |
- |
-/* |
-** Write a 64-bit variable-length integer to memory starting at p[0]. |
-** The length of data write will be between 1 and 9 bytes. The number |
-** of bytes written is returned. |
-** |
-** A variable-length integer consists of the lower 7 bits of each byte |
-** for all bytes that have the 8th bit set and one byte with the 8th |
-** bit clear. Except, if we get to the 9th byte, it stores the full |
-** 8 bits and is the last byte. |
-*/ |
-int sqlite3PutVarint(unsigned char *p, u64 v){ |
- int i, j, n; |
- u8 buf[10]; |
- if( v & (((u64)0xff000000)<<32) ){ |
- p[8] = (u8)v; |
- v >>= 8; |
- for(i=7; i>=0; i--){ |
- p[i] = (u8)((v & 0x7f) | 0x80); |
- v >>= 7; |
- } |
- return 9; |
- } |
- n = 0; |
- do{ |
- buf[n++] = (u8)((v & 0x7f) | 0x80); |
- v >>= 7; |
- }while( v!=0 ); |
- buf[0] &= 0x7f; |
- assert( n<=9 ); |
- for(i=0, j=n-1; j>=0; j--, i++){ |
- p[i] = buf[j]; |
- } |
- return n; |
-} |
- |
-/* |
-** This routine is a faster version of sqlite3PutVarint() that only |
-** works for 32-bit positive integers and which is optimized for |
-** the common case of small integers. A MACRO version, putVarint32, |
-** is provided which inlines the single-byte case. All code should use |
-** the MACRO version as this function assumes the single-byte case has |
-** already been handled. |
-*/ |
-int sqlite3PutVarint32(unsigned char *p, u32 v){ |
-#ifndef putVarint32 |
- if( (v & ~0x7f)==0 ){ |
- p[0] = v; |
- return 1; |
- } |
-#endif |
- if( (v & ~0x3fff)==0 ){ |
- p[0] = (u8)((v>>7) | 0x80); |
- p[1] = (u8)(v & 0x7f); |
- return 2; |
- } |
- return sqlite3PutVarint(p, v); |
-} |
- |
-/* |
-** Read a 64-bit variable-length integer from memory starting at p[0]. |
-** Return the number of bytes read. The value is stored in *v. |
-*/ |
-u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
- u32 a,b,s; |
- |
- a = *p; |
- /* a: p0 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- *v = a; |
- return 1; |
- } |
- |
- p++; |
- b = *p; |
- /* b: p1 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- a &= 0x7f; |
- a = a<<7; |
- a |= b; |
- *v = a; |
- return 2; |
- } |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<14 | p2 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- a &= (0x7f<<14)|(0x7f); |
- b &= 0x7f; |
- b = b<<7; |
- a |= b; |
- *v = a; |
- return 3; |
- } |
- |
- /* CSE1 from below */ |
- a &= (0x7f<<14)|(0x7f); |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<14 | p3 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- b &= (0x7f<<14)|(0x7f); |
- /* moved CSE1 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- a = a<<7; |
- a |= b; |
- *v = a; |
- return 4; |
- } |
- |
- /* a: p0<<14 | p2 (masked) */ |
- /* b: p1<<14 | p3 (unmasked) */ |
- /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- /* moved CSE1 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- b &= (0x7f<<14)|(0x7f); |
- s = a; |
- /* s: p0<<14 | p2 (masked) */ |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* we can skip these cause they were (effectively) done above in calc'ing s */ |
- /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
- /* b &= (0x7f<<14)|(0x7f); */ |
- b = b<<7; |
- a |= b; |
- s = s>>18; |
- *v = ((u64)s)<<32 | a; |
- return 5; |
- } |
- |
- /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- s = s<<7; |
- s |= b; |
- /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
- |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* we can skip this cause it was (effectively) done above in calc'ing s */ |
- /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
- a &= (0x7f<<14)|(0x7f); |
- a = a<<7; |
- a |= b; |
- s = s>>18; |
- *v = ((u64)s)<<32 | a; |
- return 6; |
- } |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- a &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
- b &= (0x7f<<14)|(0x7f); |
- b = b<<7; |
- a |= b; |
- s = s>>11; |
- *v = ((u64)s)<<32 | a; |
- return 7; |
- } |
- |
- /* CSE2 from below */ |
- a &= (0x7f<<14)|(0x7f); |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- b &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
- /* moved CSE2 up */ |
- /* a &= (0x7f<<14)|(0x7f); */ |
- a = a<<7; |
- a |= b; |
- s = s>>4; |
- *v = ((u64)s)<<32 | a; |
- return 8; |
- } |
- |
- p++; |
- a = a<<15; |
- a |= *p; |
- /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
- |
- /* moved CSE2 up */ |
- /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
- b &= (0x7f<<14)|(0x7f); |
- b = b<<8; |
- a |= b; |
- |
- s = s<<4; |
- b = p[-4]; |
- b &= 0x7f; |
- b = b>>3; |
- s |= b; |
- |
- *v = ((u64)s)<<32 | a; |
- |
- return 9; |
-} |
- |
-/* |
-** Read a 32-bit variable-length integer from memory starting at p[0]. |
-** Return the number of bytes read. The value is stored in *v. |
-** |
-** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
-** integer, then set *v to 0xffffffff. |
-** |
-** A MACRO version, getVarint32, is provided which inlines the |
-** single-byte case. All code should use the MACRO version as |
-** this function assumes the single-byte case has already been handled. |
-*/ |
-u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
- u32 a,b; |
- |
- /* The 1-byte case. Overwhelmingly the most common. Handled inline |
- ** by the getVarin32() macro */ |
- a = *p; |
- /* a: p0 (unmasked) */ |
-#ifndef getVarint32 |
- if (!(a&0x80)) |
- { |
- /* Values between 0 and 127 */ |
- *v = a; |
- return 1; |
- } |
-#endif |
- |
- /* The 2-byte case */ |
- p++; |
- b = *p; |
- /* b: p1 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* Values between 128 and 16383 */ |
- a &= 0x7f; |
- a = a<<7; |
- *v = a | b; |
- return 2; |
- } |
- |
- /* The 3-byte case */ |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<14 | p2 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* Values between 16384 and 2097151 */ |
- a &= (0x7f<<14)|(0x7f); |
- b &= 0x7f; |
- b = b<<7; |
- *v = a | b; |
- return 3; |
- } |
- |
- /* A 32-bit varint is used to store size information in btrees. |
- ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
- ** A 3-byte varint is sufficient, for example, to record the size |
- ** of a 1048569-byte BLOB or string. |
- ** |
- ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
- ** rare larger cases can be handled by the slower 64-bit varint |
- ** routine. |
- */ |
-#if 1 |
- { |
- u64 v64; |
- u8 n; |
- |
- p -= 2; |
- n = sqlite3GetVarint(p, &v64); |
- assert( n>3 && n<=9 ); |
- if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
- *v = 0xffffffff; |
- }else{ |
- *v = (u32)v64; |
- } |
- return n; |
- } |
- |
-#else |
- /* For following code (kept for historical record only) shows an |
- ** unrolling for the 3- and 4-byte varint cases. This code is |
- ** slightly faster, but it is also larger and much harder to test. |
- */ |
- p++; |
- b = b<<14; |
- b |= *p; |
- /* b: p1<<14 | p3 (unmasked) */ |
- if (!(b&0x80)) |
- { |
- /* Values between 2097152 and 268435455 */ |
- b &= (0x7f<<14)|(0x7f); |
- a &= (0x7f<<14)|(0x7f); |
- a = a<<7; |
- *v = a | b; |
- return 4; |
- } |
- |
- p++; |
- a = a<<14; |
- a |= *p; |
- /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
- if (!(a&0x80)) |
- { |
- /* Walues between 268435456 and 34359738367 */ |
- a &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
- b &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
- b = b<<7; |
- *v = a | b; |
- return 5; |
- } |
- |
- /* We can only reach this point when reading a corrupt database |
- ** file. In that case we are not in any hurry. Use the (relatively |
- ** slow) general-purpose sqlite3GetVarint() routine to extract the |
- ** value. */ |
- { |
- u64 v64; |
- u8 n; |
- |
- p -= 4; |
- n = sqlite3GetVarint(p, &v64); |
- assert( n>5 && n<=9 ); |
- *v = (u32)v64; |
- return n; |
- } |
-#endif |
-} |
- |
-/* |
-** Return the number of bytes that will be needed to store the given |
-** 64-bit integer. |
-*/ |
-int sqlite3VarintLen(u64 v){ |
- int i = 0; |
- do{ |
- i++; |
- v >>= 7; |
- }while( v!=0 && ALWAYS(i<9) ); |
- return i; |
-} |
- |
- |
-/* |
-** Read or write a four-byte big-endian integer value. |
-*/ |
-u32 sqlite3Get4byte(const u8 *p){ |
- return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
-} |
-void sqlite3Put4byte(unsigned char *p, u32 v){ |
- p[0] = (u8)(v>>24); |
- p[1] = (u8)(v>>16); |
- p[2] = (u8)(v>>8); |
- p[3] = (u8)v; |
-} |
- |
- |
- |
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
-/* |
-** Translate a single byte of Hex into an integer. |
-** This routine only works if h really is a valid hexadecimal |
-** character: 0..9a..fA..F |
-*/ |
-static u8 hexToInt(int h){ |
- assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
-#ifdef SQLITE_ASCII |
- h += 9*(1&(h>>6)); |
-#endif |
-#ifdef SQLITE_EBCDIC |
- h += 9*(1&~(h>>4)); |
-#endif |
- return (u8)(h & 0xf); |
-} |
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
- |
-#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
-/* |
-** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
-** value. Return a pointer to its binary value. Space to hold the |
-** binary value has been obtained from malloc and must be freed by |
-** the calling routine. |
-*/ |
-void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
- char *zBlob; |
- int i; |
- |
- zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
- n--; |
- if( zBlob ){ |
- for(i=0; i<n; i+=2){ |
- zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
- } |
- zBlob[i/2] = 0; |
- } |
- return zBlob; |
-} |
-#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
- |
- |
-/* |
-** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
-** when this routine is called. |
-** |
-** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN |
-** value indicates that the database connection passed into the API is |
-** open and is not being used by another thread. By changing the value |
-** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. |
-** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN |
-** when the API exits. |
-** |
-** This routine is a attempt to detect if two threads use the |
-** same sqlite* pointer at the same time. There is a race |
-** condition so it is possible that the error is not detected. |
-** But usually the problem will be seen. The result will be an |
-** error which can be used to debug the application that is |
-** using SQLite incorrectly. |
-** |
-** Ticket #202: If db->magic is not a valid open value, take care not |
-** to modify the db structure at all. It could be that db is a stale |
-** pointer. In other words, it could be that there has been a prior |
-** call to sqlite3_close(db) and db has been deallocated. And we do |
-** not want to write into deallocated memory. |
-*/ |
-#ifdef SQLITE_DEBUG |
-int sqlite3SafetyOn(sqlite3 *db){ |
- if( db->magic==SQLITE_MAGIC_OPEN ){ |
- db->magic = SQLITE_MAGIC_BUSY; |
- assert( sqlite3_mutex_held(db->mutex) ); |
- return 0; |
- }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
- db->magic = SQLITE_MAGIC_ERROR; |
- db->u1.isInterrupted = 1; |
- } |
- return 1; |
-} |
-#endif |
- |
-/* |
-** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
-** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
-** when this routine is called. |
-*/ |
-#ifdef SQLITE_DEBUG |
-int sqlite3SafetyOff(sqlite3 *db){ |
- if( db->magic==SQLITE_MAGIC_BUSY ){ |
- db->magic = SQLITE_MAGIC_OPEN; |
- assert( sqlite3_mutex_held(db->mutex) ); |
- return 0; |
- }else{ |
- db->magic = SQLITE_MAGIC_ERROR; |
- db->u1.isInterrupted = 1; |
- return 1; |
- } |
-} |
-#endif |
- |
-/* |
-** Check to make sure we have a valid db pointer. This test is not |
-** foolproof but it does provide some measure of protection against |
-** misuse of the interface such as passing in db pointers that are |
-** NULL or which have been previously closed. If this routine returns |
-** 1 it means that the db pointer is valid and 0 if it should not be |
-** dereferenced for any reason. The calling function should invoke |
-** SQLITE_MISUSE immediately. |
-** |
-** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
-** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
-** open properly and is not fit for general use but which can be |
-** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
-*/ |
-int sqlite3SafetyCheckOk(sqlite3 *db){ |
- u32 magic; |
- if( db==0 ) return 0; |
- magic = db->magic; |
- if( magic!=SQLITE_MAGIC_OPEN |
-#ifdef SQLITE_DEBUG |
- && magic!=SQLITE_MAGIC_BUSY |
-#endif |
- ){ |
- return 0; |
- }else{ |
- return 1; |
- } |
-} |
-int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
- u32 magic; |
- magic = db->magic; |
- if( magic!=SQLITE_MAGIC_SICK && |
- magic!=SQLITE_MAGIC_OPEN && |
- magic!=SQLITE_MAGIC_BUSY ) return 0; |
- return 1; |
-} |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** Utility functions used throughout sqlite. |
+** |
+** This file contains functions for allocating memory, comparing |
+** strings, and stuff like that. |
+** |
+*/ |
+#include "sqliteInt.h" |
+#include <stdarg.h> |
+#ifdef SQLITE_HAVE_ISNAN |
+# include <math.h> |
+#endif |
+ |
+/* |
+** Routine needed to support the testcase() macro. |
+*/ |
+#ifdef SQLITE_COVERAGE_TEST |
+void sqlite3Coverage(int x){ |
+ static int dummy = 0; |
+ dummy += x; |
+} |
+#endif |
+ |
+/* |
+** Return true if the floating point value is Not a Number (NaN). |
+** |
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
+** Otherwise, we have our own implementation that works on most systems. |
+*/ |
+int sqlite3IsNaN(double x){ |
+ int rc; /* The value return */ |
+#if !defined(SQLITE_HAVE_ISNAN) |
+ /* |
+ ** Systems that support the isnan() library function should probably |
+ ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have |
+ ** found that many systems do not have a working isnan() function so |
+ ** this implementation is provided as an alternative. |
+ ** |
+ ** This NaN test sometimes fails if compiled on GCC with -ffast-math. |
+ ** On the other hand, the use of -ffast-math comes with the following |
+ ** warning: |
+ ** |
+ ** This option [-ffast-math] should never be turned on by any |
+ ** -O option since it can result in incorrect output for programs |
+ ** which depend on an exact implementation of IEEE or ISO |
+ ** rules/specifications for math functions. |
+ ** |
+ ** Under MSVC, this NaN test may fail if compiled with a floating- |
+ ** point precision mode other than /fp:precise. From the MSDN |
+ ** documentation: |
+ ** |
+ ** The compiler [with /fp:precise] will properly handle comparisons |
+ ** involving NaN. For example, x != x evaluates to true if x is NaN |
+ ** ... |
+ */ |
+#ifdef __FAST_MATH__ |
+# error SQLite will not work correctly with the -ffast-math option of GCC. |
+#endif |
+ volatile double y = x; |
+ volatile double z = y; |
+ rc = (y!=z); |
+#else /* if defined(SQLITE_HAVE_ISNAN) */ |
+ rc = isnan(x); |
+#endif /* SQLITE_HAVE_ISNAN */ |
+ testcase( rc ); |
+ return rc; |
+} |
+ |
+/* |
+** Compute a string length that is limited to what can be stored in |
+** lower 30 bits of a 32-bit signed integer. |
+** |
+** The value returned will never be negative. Nor will it ever be greater |
+** than the actual length of the string. For very long strings (greater |
+** than 1GiB) the value returned might be less than the true string length. |
+*/ |
+int sqlite3Strlen30(const char *z){ |
+ const char *z2 = z; |
+ if( z==0 ) return 0; |
+ while( *z2 ){ z2++; } |
+ return 0x3fffffff & (int)(z2 - z); |
+} |
+ |
+/* |
+** Set the most recent error code and error string for the sqlite |
+** handle "db". The error code is set to "err_code". |
+** |
+** If it is not NULL, string zFormat specifies the format of the |
+** error string in the style of the printf functions: The following |
+** format characters are allowed: |
+** |
+** %s Insert a string |
+** %z A string that should be freed after use |
+** %d Insert an integer |
+** %T Insert a token |
+** %S Insert the first element of a SrcList |
+** |
+** zFormat and any string tokens that follow it are assumed to be |
+** encoded in UTF-8. |
+** |
+** To clear the most recent error for sqlite handle "db", sqlite3Error |
+** should be called with err_code set to SQLITE_OK and zFormat set |
+** to NULL. |
+*/ |
+void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
+ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
+ db->errCode = err_code; |
+ if( zFormat ){ |
+ char *z; |
+ va_list ap; |
+ va_start(ap, zFormat); |
+ z = sqlite3VMPrintf(db, zFormat, ap); |
+ va_end(ap); |
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
+ }else{ |
+ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
+ } |
+ } |
+} |
+ |
+/* |
+** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
+** The following formatting characters are allowed: |
+** |
+** %s Insert a string |
+** %z A string that should be freed after use |
+** %d Insert an integer |
+** %T Insert a token |
+** %S Insert the first element of a SrcList |
+** |
+** This function should be used to report any error that occurs whilst |
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
+** last thing the sqlite3_prepare() function does is copy the error |
+** stored by this function into the database handle using sqlite3Error(). |
+** Function sqlite3Error() should be used during statement execution |
+** (sqlite3_step() etc.). |
+*/ |
+void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
+ va_list ap; |
+ sqlite3 *db = pParse->db; |
+ pParse->nErr++; |
+ sqlite3DbFree(db, pParse->zErrMsg); |
+ va_start(ap, zFormat); |
+ pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); |
+ va_end(ap); |
+ pParse->rc = SQLITE_ERROR; |
+} |
+ |
+/* |
+** Clear the error message in pParse, if any |
+*/ |
+void sqlite3ErrorClear(Parse *pParse){ |
+ sqlite3DbFree(pParse->db, pParse->zErrMsg); |
+ pParse->zErrMsg = 0; |
+ pParse->nErr = 0; |
+} |
+ |
+/* |
+** Convert an SQL-style quoted string into a normal string by removing |
+** the quote characters. The conversion is done in-place. If the |
+** input does not begin with a quote character, then this routine |
+** is a no-op. |
+** |
+** The input string must be zero-terminated. A new zero-terminator |
+** is added to the dequoted string. |
+** |
+** The return value is -1 if no dequoting occurs or the length of the |
+** dequoted string, exclusive of the zero terminator, if dequoting does |
+** occur. |
+** |
+** 2002-Feb-14: This routine is extended to remove MS-Access style |
+** brackets from around identifers. For example: "[a-b-c]" becomes |
+** "a-b-c". |
+*/ |
+int sqlite3Dequote(char *z){ |
+ char quote; |
+ int i, j; |
+ if( z==0 ) return -1; |
+ quote = z[0]; |
+ switch( quote ){ |
+ case '\'': break; |
+ case '"': break; |
+ case '`': break; /* For MySQL compatibility */ |
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
+ default: return -1; |
+ } |
+ for(i=1, j=0; ALWAYS(z[i]); i++){ |
+ if( z[i]==quote ){ |
+ if( z[i+1]==quote ){ |
+ z[j++] = quote; |
+ i++; |
+ }else{ |
+ break; |
+ } |
+ }else{ |
+ z[j++] = z[i]; |
+ } |
+ } |
+ z[j] = 0; |
+ return j; |
+} |
+ |
+/* Convenient short-hand */ |
+#define UpperToLower sqlite3UpperToLower |
+ |
+/* |
+** Some systems have stricmp(). Others have strcasecmp(). Because |
+** there is no consistency, we will define our own. |
+*/ |
+int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
+ register unsigned char *a, *b; |
+ a = (unsigned char *)zLeft; |
+ b = (unsigned char *)zRight; |
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
+ return UpperToLower[*a] - UpperToLower[*b]; |
+} |
+int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
+ register unsigned char *a, *b; |
+ a = (unsigned char *)zLeft; |
+ b = (unsigned char *)zRight; |
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
+} |
+ |
+/* |
+** Return TRUE if z is a pure numeric string. Return FALSE and leave |
+** *realnum unchanged if the string contains any character which is not |
+** part of a number. |
+** |
+** If the string is pure numeric, set *realnum to TRUE if the string |
+** contains the '.' character or an "E+000" style exponentiation suffix. |
+** Otherwise set *realnum to FALSE. Note that just becaue *realnum is |
+** false does not mean that the number can be successfully converted into |
+** an integer - it might be too big. |
+** |
+** An empty string is considered non-numeric. |
+*/ |
+int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
+ int incr = (enc==SQLITE_UTF8?1:2); |
+ if( enc==SQLITE_UTF16BE ) z++; |
+ if( *z=='-' || *z=='+' ) z += incr; |
+ if( !sqlite3Isdigit(*z) ){ |
+ return 0; |
+ } |
+ z += incr; |
+ *realnum = 0; |
+ while( sqlite3Isdigit(*z) ){ z += incr; } |
+ if( *z=='.' ){ |
+ z += incr; |
+ if( !sqlite3Isdigit(*z) ) return 0; |
+ while( sqlite3Isdigit(*z) ){ z += incr; } |
+ *realnum = 1; |
+ } |
+ if( *z=='e' || *z=='E' ){ |
+ z += incr; |
+ if( *z=='+' || *z=='-' ) z += incr; |
+ if( !sqlite3Isdigit(*z) ) return 0; |
+ while( sqlite3Isdigit(*z) ){ z += incr; } |
+ *realnum = 1; |
+ } |
+ return *z==0; |
+} |
+ |
+/* |
+** The string z[] is an ASCII representation of a real number. |
+** Convert this string to a double. |
+** |
+** This routine assumes that z[] really is a valid number. If it |
+** is not, the result is undefined. |
+** |
+** This routine is used instead of the library atof() function because |
+** the library atof() might want to use "," as the decimal point instead |
+** of "." depending on how locale is set. But that would cause problems |
+** for SQL. So this routine always uses "." regardless of locale. |
+*/ |
+int sqlite3AtoF(const char *z, double *pResult){ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ const char *zBegin = z; |
+ /* sign * significand * (10 ^ (esign * exponent)) */ |
+ int sign = 1; /* sign of significand */ |
+ i64 s = 0; /* significand */ |
+ int d = 0; /* adjust exponent for shifting decimal point */ |
+ int esign = 1; /* sign of exponent */ |
+ int e = 0; /* exponent */ |
+ double result; |
+ int nDigits = 0; |
+ |
+ /* skip leading spaces */ |
+ while( sqlite3Isspace(*z) ) z++; |
+ /* get sign of significand */ |
+ if( *z=='-' ){ |
+ sign = -1; |
+ z++; |
+ }else if( *z=='+' ){ |
+ z++; |
+ } |
+ /* skip leading zeroes */ |
+ while( z[0]=='0' ) z++, nDigits++; |
+ |
+ /* copy max significant digits to significand */ |
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
+ s = s*10 + (*z - '0'); |
+ z++, nDigits++; |
+ } |
+ /* skip non-significant significand digits |
+ ** (increase exponent by d to shift decimal left) */ |
+ while( sqlite3Isdigit(*z) ) z++, nDigits++, d++; |
+ |
+ /* if decimal point is present */ |
+ if( *z=='.' ){ |
+ z++; |
+ /* copy digits from after decimal to significand |
+ ** (decrease exponent by d to shift decimal right) */ |
+ while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
+ s = s*10 + (*z - '0'); |
+ z++, nDigits++, d--; |
+ } |
+ /* skip non-significant digits */ |
+ while( sqlite3Isdigit(*z) ) z++, nDigits++; |
+ } |
+ |
+ /* if exponent is present */ |
+ if( *z=='e' || *z=='E' ){ |
+ z++; |
+ /* get sign of exponent */ |
+ if( *z=='-' ){ |
+ esign = -1; |
+ z++; |
+ }else if( *z=='+' ){ |
+ z++; |
+ } |
+ /* copy digits to exponent */ |
+ while( sqlite3Isdigit(*z) ){ |
+ e = e*10 + (*z - '0'); |
+ z++; |
+ } |
+ } |
+ |
+ /* adjust exponent by d, and update sign */ |
+ e = (e*esign) + d; |
+ if( e<0 ) { |
+ esign = -1; |
+ e *= -1; |
+ } else { |
+ esign = 1; |
+ } |
+ |
+ /* if 0 significand */ |
+ if( !s ) { |
+ /* In the IEEE 754 standard, zero is signed. |
+ ** Add the sign if we've seen at least one digit */ |
+ result = (sign<0 && nDigits) ? -(double)0 : (double)0; |
+ } else { |
+ /* attempt to reduce exponent */ |
+ if( esign>0 ){ |
+ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; |
+ }else{ |
+ while( !(s%10) && e>0 ) e--,s/=10; |
+ } |
+ |
+ /* adjust the sign of significand */ |
+ s = sign<0 ? -s : s; |
+ |
+ /* if exponent, scale significand as appropriate |
+ ** and store in result. */ |
+ if( e ){ |
+ double scale = 1.0; |
+ /* attempt to handle extremely small/large numbers better */ |
+ if( e>307 && e<342 ){ |
+ while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
+ if( esign<0 ){ |
+ result = s / scale; |
+ result /= 1.0e+308; |
+ }else{ |
+ result = s * scale; |
+ result *= 1.0e+308; |
+ } |
+ }else{ |
+ /* 1.0e+22 is the largest power of 10 than can be |
+ ** represented exactly. */ |
+ while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
+ while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
+ if( esign<0 ){ |
+ result = s / scale; |
+ }else{ |
+ result = s * scale; |
+ } |
+ } |
+ } else { |
+ result = (double)s; |
+ } |
+ } |
+ |
+ /* store the result */ |
+ *pResult = result; |
+ |
+ /* return number of characters used */ |
+ return (int)(z - zBegin); |
+#else |
+ return sqlite3Atoi64(z, pResult); |
+#endif /* SQLITE_OMIT_FLOATING_POINT */ |
+} |
+ |
+/* |
+** Compare the 19-character string zNum against the text representation |
+** value 2^63: 9223372036854775808. Return negative, zero, or positive |
+** if zNum is less than, equal to, or greater than the string. |
+** |
+** Unlike memcmp() this routine is guaranteed to return the difference |
+** in the values of the last digit if the only difference is in the |
+** last digit. So, for example, |
+** |
+** compare2pow63("9223372036854775800") |
+** |
+** will return -8. |
+*/ |
+static int compare2pow63(const char *zNum){ |
+ int c; |
+ c = memcmp(zNum,"922337203685477580",18)*10; |
+ if( c==0 ){ |
+ c = zNum[18] - '8'; |
+ } |
+ return c; |
+} |
+ |
+ |
+/* |
+** Return TRUE if zNum is a 64-bit signed integer and write |
+** the value of the integer into *pNum. If zNum is not an integer |
+** or is an integer that is too large to be expressed with 64 bits, |
+** then return false. |
+** |
+** When this routine was originally written it dealt with only |
+** 32-bit numbers. At that time, it was much faster than the |
+** atoi() library routine in RedHat 7.2. |
+*/ |
+int sqlite3Atoi64(const char *zNum, i64 *pNum){ |
+ i64 v = 0; |
+ int neg; |
+ int i, c; |
+ const char *zStart; |
+ while( sqlite3Isspace(*zNum) ) zNum++; |
+ if( *zNum=='-' ){ |
+ neg = 1; |
+ zNum++; |
+ }else if( *zNum=='+' ){ |
+ neg = 0; |
+ zNum++; |
+ }else{ |
+ neg = 0; |
+ } |
+ zStart = zNum; |
+ while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ |
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
+ v = v*10 + c - '0'; |
+ } |
+ *pNum = neg ? -v : v; |
+ if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ |
+ /* zNum is empty or contains non-numeric text or is longer |
+ ** than 19 digits (thus guaranting that it is too large) */ |
+ return 0; |
+ }else if( i<19 ){ |
+ /* Less than 19 digits, so we know that it fits in 64 bits */ |
+ return 1; |
+ }else{ |
+ /* 19-digit numbers must be no larger than 9223372036854775807 if positive |
+ ** or 9223372036854775808 if negative. Note that 9223372036854665808 |
+ ** is 2^63. */ |
+ return compare2pow63(zNum)<neg; |
+ } |
+} |
+ |
+/* |
+** The string zNum represents an unsigned integer. The zNum string |
+** consists of one or more digit characters and is terminated by |
+** a zero character. Any stray characters in zNum result in undefined |
+** behavior. |
+** |
+** If the unsigned integer that zNum represents will fit in a |
+** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
+** |
+** If the negFlag parameter is true, that means that zNum really represents |
+** a negative number. (The leading "-" is omitted from zNum.) This |
+** parameter is needed to determine a boundary case. A string |
+** of "9223373036854775808" returns false if negFlag is false or true |
+** if negFlag is true. |
+** |
+** Leading zeros are ignored. |
+*/ |
+int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ |
+ int i; |
+ int neg = 0; |
+ |
+ assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ |
+ |
+ if( negFlag ) neg = 1-neg; |
+ while( *zNum=='0' ){ |
+ zNum++; /* Skip leading zeros. Ticket #2454 */ |
+ } |
+ for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); } |
+ if( i<19 ){ |
+ /* Guaranteed to fit if less than 19 digits */ |
+ return 1; |
+ }else if( i>19 ){ |
+ /* Guaranteed to be too big if greater than 19 digits */ |
+ return 0; |
+ }else{ |
+ /* Compare against 2^63. */ |
+ return compare2pow63(zNum)<neg; |
+ } |
+} |
+ |
+/* |
+** If zNum represents an integer that will fit in 32-bits, then set |
+** *pValue to that integer and return true. Otherwise return false. |
+** |
+** Any non-numeric characters that following zNum are ignored. |
+** This is different from sqlite3Atoi64() which requires the |
+** input number to be zero-terminated. |
+*/ |
+int sqlite3GetInt32(const char *zNum, int *pValue){ |
+ sqlite_int64 v = 0; |
+ int i, c; |
+ int neg = 0; |
+ if( zNum[0]=='-' ){ |
+ neg = 1; |
+ zNum++; |
+ }else if( zNum[0]=='+' ){ |
+ zNum++; |
+ } |
+ while( zNum[0]=='0' ) zNum++; |
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
+ v = v*10 + c; |
+ } |
+ |
+ /* The longest decimal representation of a 32 bit integer is 10 digits: |
+ ** |
+ ** 1234567890 |
+ ** 2^31 -> 2147483648 |
+ */ |
+ if( i>10 ){ |
+ return 0; |
+ } |
+ if( v-neg>2147483647 ){ |
+ return 0; |
+ } |
+ if( neg ){ |
+ v = -v; |
+ } |
+ *pValue = (int)v; |
+ return 1; |
+} |
+ |
+/* |
+** The variable-length integer encoding is as follows: |
+** |
+** KEY: |
+** A = 0xxxxxxx 7 bits of data and one flag bit |
+** B = 1xxxxxxx 7 bits of data and one flag bit |
+** C = xxxxxxxx 8 bits of data |
+** |
+** 7 bits - A |
+** 14 bits - BA |
+** 21 bits - BBA |
+** 28 bits - BBBA |
+** 35 bits - BBBBA |
+** 42 bits - BBBBBA |
+** 49 bits - BBBBBBA |
+** 56 bits - BBBBBBBA |
+** 64 bits - BBBBBBBBC |
+*/ |
+ |
+/* |
+** Write a 64-bit variable-length integer to memory starting at p[0]. |
+** The length of data write will be between 1 and 9 bytes. The number |
+** of bytes written is returned. |
+** |
+** A variable-length integer consists of the lower 7 bits of each byte |
+** for all bytes that have the 8th bit set and one byte with the 8th |
+** bit clear. Except, if we get to the 9th byte, it stores the full |
+** 8 bits and is the last byte. |
+*/ |
+int sqlite3PutVarint(unsigned char *p, u64 v){ |
+ int i, j, n; |
+ u8 buf[10]; |
+ if( v & (((u64)0xff000000)<<32) ){ |
+ p[8] = (u8)v; |
+ v >>= 8; |
+ for(i=7; i>=0; i--){ |
+ p[i] = (u8)((v & 0x7f) | 0x80); |
+ v >>= 7; |
+ } |
+ return 9; |
+ } |
+ n = 0; |
+ do{ |
+ buf[n++] = (u8)((v & 0x7f) | 0x80); |
+ v >>= 7; |
+ }while( v!=0 ); |
+ buf[0] &= 0x7f; |
+ assert( n<=9 ); |
+ for(i=0, j=n-1; j>=0; j--, i++){ |
+ p[i] = buf[j]; |
+ } |
+ return n; |
+} |
+ |
+/* |
+** This routine is a faster version of sqlite3PutVarint() that only |
+** works for 32-bit positive integers and which is optimized for |
+** the common case of small integers. A MACRO version, putVarint32, |
+** is provided which inlines the single-byte case. All code should use |
+** the MACRO version as this function assumes the single-byte case has |
+** already been handled. |
+*/ |
+int sqlite3PutVarint32(unsigned char *p, u32 v){ |
+#ifndef putVarint32 |
+ if( (v & ~0x7f)==0 ){ |
+ p[0] = v; |
+ return 1; |
+ } |
+#endif |
+ if( (v & ~0x3fff)==0 ){ |
+ p[0] = (u8)((v>>7) | 0x80); |
+ p[1] = (u8)(v & 0x7f); |
+ return 2; |
+ } |
+ return sqlite3PutVarint(p, v); |
+} |
+ |
+/* |
+** Read a 64-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read. The value is stored in *v. |
+*/ |
+u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
+ u32 a,b,s; |
+ |
+ a = *p; |
+ /* a: p0 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ *v = a; |
+ return 1; |
+ } |
+ |
+ p++; |
+ b = *p; |
+ /* b: p1 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ a &= 0x7f; |
+ a = a<<7; |
+ a |= b; |
+ *v = a; |
+ return 2; |
+ } |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<14 | p2 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ a &= (0x7f<<14)|(0x7f); |
+ b &= 0x7f; |
+ b = b<<7; |
+ a |= b; |
+ *v = a; |
+ return 3; |
+ } |
+ |
+ /* CSE1 from below */ |
+ a &= (0x7f<<14)|(0x7f); |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ b &= (0x7f<<14)|(0x7f); |
+ /* moved CSE1 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ a = a<<7; |
+ a |= b; |
+ *v = a; |
+ return 4; |
+ } |
+ |
+ /* a: p0<<14 | p2 (masked) */ |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ /* moved CSE1 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ b &= (0x7f<<14)|(0x7f); |
+ s = a; |
+ /* s: p0<<14 | p2 (masked) */ |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* we can skip these cause they were (effectively) done above in calc'ing s */ |
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
+ /* b &= (0x7f<<14)|(0x7f); */ |
+ b = b<<7; |
+ a |= b; |
+ s = s>>18; |
+ *v = ((u64)s)<<32 | a; |
+ return 5; |
+ } |
+ |
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ s = s<<7; |
+ s |= b; |
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* we can skip this cause it was (effectively) done above in calc'ing s */ |
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
+ a &= (0x7f<<14)|(0x7f); |
+ a = a<<7; |
+ a |= b; |
+ s = s>>18; |
+ *v = ((u64)s)<<32 | a; |
+ return 6; |
+ } |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
+ b &= (0x7f<<14)|(0x7f); |
+ b = b<<7; |
+ a |= b; |
+ s = s>>11; |
+ *v = ((u64)s)<<32 | a; |
+ return 7; |
+ } |
+ |
+ /* CSE2 from below */ |
+ a &= (0x7f<<14)|(0x7f); |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
+ /* moved CSE2 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ a = a<<7; |
+ a |= b; |
+ s = s>>4; |
+ *v = ((u64)s)<<32 | a; |
+ return 8; |
+ } |
+ |
+ p++; |
+ a = a<<15; |
+ a |= *p; |
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
+ |
+ /* moved CSE2 up */ |
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
+ b &= (0x7f<<14)|(0x7f); |
+ b = b<<8; |
+ a |= b; |
+ |
+ s = s<<4; |
+ b = p[-4]; |
+ b &= 0x7f; |
+ b = b>>3; |
+ s |= b; |
+ |
+ *v = ((u64)s)<<32 | a; |
+ |
+ return 9; |
+} |
+ |
+/* |
+** Read a 32-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read. The value is stored in *v. |
+** |
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
+** integer, then set *v to 0xffffffff. |
+** |
+** A MACRO version, getVarint32, is provided which inlines the |
+** single-byte case. All code should use the MACRO version as |
+** this function assumes the single-byte case has already been handled. |
+*/ |
+u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
+ u32 a,b; |
+ |
+ /* The 1-byte case. Overwhelmingly the most common. Handled inline |
+ ** by the getVarin32() macro */ |
+ a = *p; |
+ /* a: p0 (unmasked) */ |
+#ifndef getVarint32 |
+ if (!(a&0x80)) |
+ { |
+ /* Values between 0 and 127 */ |
+ *v = a; |
+ return 1; |
+ } |
+#endif |
+ |
+ /* The 2-byte case */ |
+ p++; |
+ b = *p; |
+ /* b: p1 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* Values between 128 and 16383 */ |
+ a &= 0x7f; |
+ a = a<<7; |
+ *v = a | b; |
+ return 2; |
+ } |
+ |
+ /* The 3-byte case */ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<14 | p2 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* Values between 16384 and 2097151 */ |
+ a &= (0x7f<<14)|(0x7f); |
+ b &= 0x7f; |
+ b = b<<7; |
+ *v = a | b; |
+ return 3; |
+ } |
+ |
+ /* A 32-bit varint is used to store size information in btrees. |
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
+ ** A 3-byte varint is sufficient, for example, to record the size |
+ ** of a 1048569-byte BLOB or string. |
+ ** |
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
+ ** rare larger cases can be handled by the slower 64-bit varint |
+ ** routine. |
+ */ |
+#if 1 |
+ { |
+ u64 v64; |
+ u8 n; |
+ |
+ p -= 2; |
+ n = sqlite3GetVarint(p, &v64); |
+ assert( n>3 && n<=9 ); |
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
+ *v = 0xffffffff; |
+ }else{ |
+ *v = (u32)v64; |
+ } |
+ return n; |
+ } |
+ |
+#else |
+ /* For following code (kept for historical record only) shows an |
+ ** unrolling for the 3- and 4-byte varint cases. This code is |
+ ** slightly faster, but it is also larger and much harder to test. |
+ */ |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* Values between 2097152 and 268435455 */ |
+ b &= (0x7f<<14)|(0x7f); |
+ a &= (0x7f<<14)|(0x7f); |
+ a = a<<7; |
+ *v = a | b; |
+ return 4; |
+ } |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* Walues between 268435456 and 34359738367 */ |
+ a &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
+ b &= (0x1f<<28)|(0x7f<<14)|(0x7f); |
+ b = b<<7; |
+ *v = a | b; |
+ return 5; |
+ } |
+ |
+ /* We can only reach this point when reading a corrupt database |
+ ** file. In that case we are not in any hurry. Use the (relatively |
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the |
+ ** value. */ |
+ { |
+ u64 v64; |
+ u8 n; |
+ |
+ p -= 4; |
+ n = sqlite3GetVarint(p, &v64); |
+ assert( n>5 && n<=9 ); |
+ *v = (u32)v64; |
+ return n; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Return the number of bytes that will be needed to store the given |
+** 64-bit integer. |
+*/ |
+int sqlite3VarintLen(u64 v){ |
+ int i = 0; |
+ do{ |
+ i++; |
+ v >>= 7; |
+ }while( v!=0 && ALWAYS(i<9) ); |
+ return i; |
+} |
+ |
+ |
+/* |
+** Read or write a four-byte big-endian integer value. |
+*/ |
+u32 sqlite3Get4byte(const u8 *p){ |
+ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
+} |
+void sqlite3Put4byte(unsigned char *p, u32 v){ |
+ p[0] = (u8)(v>>24); |
+ p[1] = (u8)(v>>16); |
+ p[2] = (u8)(v>>8); |
+ p[3] = (u8)v; |
+} |
+ |
+ |
+ |
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
+/* |
+** Translate a single byte of Hex into an integer. |
+** This routine only works if h really is a valid hexadecimal |
+** character: 0..9a..fA..F |
+*/ |
+static u8 hexToInt(int h){ |
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
+#ifdef SQLITE_ASCII |
+ h += 9*(1&(h>>6)); |
+#endif |
+#ifdef SQLITE_EBCDIC |
+ h += 9*(1&~(h>>4)); |
+#endif |
+ return (u8)(h & 0xf); |
+} |
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
+ |
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
+/* |
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
+** value. Return a pointer to its binary value. Space to hold the |
+** binary value has been obtained from malloc and must be freed by |
+** the calling routine. |
+*/ |
+void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
+ char *zBlob; |
+ int i; |
+ |
+ zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
+ n--; |
+ if( zBlob ){ |
+ for(i=0; i<n; i+=2){ |
+ zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
+ } |
+ zBlob[i/2] = 0; |
+ } |
+ return zBlob; |
+} |
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
+ |
+ |
+/* |
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
+** when this routine is called. |
+** |
+** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN |
+** value indicates that the database connection passed into the API is |
+** open and is not being used by another thread. By changing the value |
+** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. |
+** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN |
+** when the API exits. |
+** |
+** This routine is a attempt to detect if two threads use the |
+** same sqlite* pointer at the same time. There is a race |
+** condition so it is possible that the error is not detected. |
+** But usually the problem will be seen. The result will be an |
+** error which can be used to debug the application that is |
+** using SQLite incorrectly. |
+** |
+** Ticket #202: If db->magic is not a valid open value, take care not |
+** to modify the db structure at all. It could be that db is a stale |
+** pointer. In other words, it could be that there has been a prior |
+** call to sqlite3_close(db) and db has been deallocated. And we do |
+** not want to write into deallocated memory. |
+*/ |
+#ifdef SQLITE_DEBUG |
+int sqlite3SafetyOn(sqlite3 *db){ |
+ if( db->magic==SQLITE_MAGIC_OPEN ){ |
+ db->magic = SQLITE_MAGIC_BUSY; |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ return 0; |
+ }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
+ db->magic = SQLITE_MAGIC_ERROR; |
+ db->u1.isInterrupted = 1; |
+ } |
+ return 1; |
+} |
+#endif |
+ |
+/* |
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
+** when this routine is called. |
+*/ |
+#ifdef SQLITE_DEBUG |
+int sqlite3SafetyOff(sqlite3 *db){ |
+ if( db->magic==SQLITE_MAGIC_BUSY ){ |
+ db->magic = SQLITE_MAGIC_OPEN; |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ return 0; |
+ }else{ |
+ db->magic = SQLITE_MAGIC_ERROR; |
+ db->u1.isInterrupted = 1; |
+ return 1; |
+ } |
+} |
+#endif |
+ |
+/* |
+** Check to make sure we have a valid db pointer. This test is not |
+** foolproof but it does provide some measure of protection against |
+** misuse of the interface such as passing in db pointers that are |
+** NULL or which have been previously closed. If this routine returns |
+** 1 it means that the db pointer is valid and 0 if it should not be |
+** dereferenced for any reason. The calling function should invoke |
+** SQLITE_MISUSE immediately. |
+** |
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
+** open properly and is not fit for general use but which can be |
+** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
+*/ |
+int sqlite3SafetyCheckOk(sqlite3 *db){ |
+ u32 magic; |
+ if( db==0 ) return 0; |
+ magic = db->magic; |
+ if( magic!=SQLITE_MAGIC_OPEN |
+#ifdef SQLITE_DEBUG |
+ && magic!=SQLITE_MAGIC_BUSY |
+#endif |
+ ){ |
+ return 0; |
+ }else{ |
+ return 1; |
+ } |
+} |
+int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
+ u32 magic; |
+ magic = db->magic; |
+ if( magic!=SQLITE_MAGIC_SICK && |
+ magic!=SQLITE_MAGIC_OPEN && |
+ magic!=SQLITE_MAGIC_BUSY ) return 0; |
+ return 1; |
+} |