OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 #include "vm/regexp_parser.h" |
| 6 |
| 7 // SNIP |
| 8 |
| 9 namespace dart { |
| 10 |
| 11 RegExpBuilder::RegExpBuilder(Zone* zone) |
| 12 : zone_(zone), |
| 13 pending_empty_(false), |
| 14 characters_(NULL), |
| 15 terms_(), |
| 16 alternatives_() |
| 17 #ifdef DEBUG |
| 18 , last_added_(ADD_NONE) |
| 19 #endif |
| 20 {} |
| 21 |
| 22 |
| 23 void RegExpBuilder::FlushCharacters() { |
| 24 pending_empty_ = false; |
| 25 if (characters_ != NULL) { |
| 26 RegExpTree* atom = new(zone()) RegExpAtom(characters_->ToConstVector()); |
| 27 characters_ = NULL; |
| 28 text_.Add(atom, zone()); |
| 29 LAST(ADD_ATOM); |
| 30 } |
| 31 } |
| 32 |
| 33 |
| 34 void RegExpBuilder::FlushText() { |
| 35 FlushCharacters(); |
| 36 int num_text = text_.length(); |
| 37 if (num_text == 0) { |
| 38 return; |
| 39 } else if (num_text == 1) { |
| 40 terms_.Add(text_.last(), zone()); |
| 41 } else { |
| 42 RegExpText* text = new(zone()) RegExpText(zone()); |
| 43 for (int i = 0; i < num_text; i++) |
| 44 text_.Get(i)->AppendToText(text, zone()); |
| 45 terms_.Add(text, zone()); |
| 46 } |
| 47 text_.Clear(); |
| 48 } |
| 49 |
| 50 |
| 51 void RegExpBuilder::AddCharacter(uc16 c) { |
| 52 pending_empty_ = false; |
| 53 if (characters_ == NULL) { |
| 54 characters_ = new(zone()) ZoneList<uc16>(4, zone()); |
| 55 } |
| 56 characters_->Add(c, zone()); |
| 57 LAST(ADD_CHAR); |
| 58 } |
| 59 |
| 60 |
| 61 void RegExpBuilder::AddEmpty() { |
| 62 pending_empty_ = true; |
| 63 } |
| 64 |
| 65 |
| 66 void RegExpBuilder::AddAtom(RegExpTree* term) { |
| 67 if (term->IsEmpty()) { |
| 68 AddEmpty(); |
| 69 return; |
| 70 } |
| 71 if (term->IsTextElement()) { |
| 72 FlushCharacters(); |
| 73 text_.Add(term, zone()); |
| 74 } else { |
| 75 FlushText(); |
| 76 terms_.Add(term, zone()); |
| 77 } |
| 78 LAST(ADD_ATOM); |
| 79 } |
| 80 |
| 81 |
| 82 void RegExpBuilder::AddAssertion(RegExpTree* assert) { |
| 83 FlushText(); |
| 84 terms_.Add(assert, zone()); |
| 85 LAST(ADD_ASSERT); |
| 86 } |
| 87 |
| 88 |
| 89 void RegExpBuilder::NewAlternative() { |
| 90 FlushTerms(); |
| 91 } |
| 92 |
| 93 |
| 94 void RegExpBuilder::FlushTerms() { |
| 95 FlushText(); |
| 96 int num_terms = terms_.length(); |
| 97 RegExpTree* alternative; |
| 98 if (num_terms == 0) { |
| 99 alternative = RegExpEmpty::GetInstance(); |
| 100 } else if (num_terms == 1) { |
| 101 alternative = terms_.last(); |
| 102 } else { |
| 103 alternative = new(zone()) RegExpAlternative(terms_.GetList(zone())); |
| 104 } |
| 105 alternatives_.Add(alternative, zone()); |
| 106 terms_.Clear(); |
| 107 LAST(ADD_NONE); |
| 108 } |
| 109 |
| 110 |
| 111 RegExpTree* RegExpBuilder::ToRegExp() { |
| 112 FlushTerms(); |
| 113 int num_alternatives = alternatives_.length(); |
| 114 if (num_alternatives == 0) { |
| 115 return RegExpEmpty::GetInstance(); |
| 116 } |
| 117 if (num_alternatives == 1) { |
| 118 return alternatives_.last(); |
| 119 } |
| 120 return new(zone()) RegExpDisjunction(alternatives_.GetList(zone())); |
| 121 } |
| 122 |
| 123 |
| 124 void RegExpBuilder::AddQuantifierToAtom( |
| 125 int min, int max, RegExpQuantifier::QuantifierType quantifier_type) { |
| 126 if (pending_empty_) { |
| 127 pending_empty_ = false; |
| 128 return; |
| 129 } |
| 130 RegExpTree* atom; |
| 131 if (characters_ != NULL) { |
| 132 DCHECK(last_added_ == ADD_CHAR); |
| 133 // Last atom was character. |
| 134 Vector<const uc16> char_vector = characters_->ToConstVector(); |
| 135 int num_chars = char_vector.length(); |
| 136 if (num_chars > 1) { |
| 137 Vector<const uc16> prefix = char_vector.SubVector(0, num_chars - 1); |
| 138 text_.Add(new(zone()) RegExpAtom(prefix), zone()); |
| 139 char_vector = char_vector.SubVector(num_chars - 1, num_chars); |
| 140 } |
| 141 characters_ = NULL; |
| 142 atom = new(zone()) RegExpAtom(char_vector); |
| 143 FlushText(); |
| 144 } else if (text_.length() > 0) { |
| 145 DCHECK(last_added_ == ADD_ATOM); |
| 146 atom = text_.RemoveLast(); |
| 147 FlushText(); |
| 148 } else if (terms_.length() > 0) { |
| 149 DCHECK(last_added_ == ADD_ATOM); |
| 150 atom = terms_.RemoveLast(); |
| 151 if (atom->max_match() == 0) { |
| 152 // Guaranteed to only match an empty string. |
| 153 LAST(ADD_TERM); |
| 154 if (min == 0) { |
| 155 return; |
| 156 } |
| 157 terms_.Add(atom, zone()); |
| 158 return; |
| 159 } |
| 160 } else { |
| 161 // Only call immediately after adding an atom or character! |
| 162 UNREACHABLE(); |
| 163 return; |
| 164 } |
| 165 terms_.Add( |
| 166 new(zone()) RegExpQuantifier(min, max, quantifier_type, atom), zone()); |
| 167 LAST(ADD_TERM); |
| 168 } |
| 169 |
| 170 // SNIP |
| 171 |
| 172 // ---------------------------------------------------------------------------- |
| 173 // Regular expressions |
| 174 |
| 175 RegExpParser::RegExpParser(FlatStringReader* in, |
| 176 Handle<String>* error, |
| 177 bool multiline, |
| 178 Zone* zone) |
| 179 : isolate_(zone->isolate()), |
| 180 zone_(zone), |
| 181 error_(error), |
| 182 captures_(NULL), |
| 183 in_(in), |
| 184 current_(kEndMarker), |
| 185 next_pos_(0), |
| 186 capture_count_(0), |
| 187 has_more_(true), |
| 188 multiline_(multiline), |
| 189 simple_(false), |
| 190 contains_anchor_(false), |
| 191 is_scanned_for_captures_(false), |
| 192 failed_(false) { |
| 193 Advance(); |
| 194 } |
| 195 |
| 196 |
| 197 uc32 RegExpParser::Next() { |
| 198 if (has_next()) { |
| 199 return in()->Get(next_pos_); |
| 200 } else { |
| 201 return kEndMarker; |
| 202 } |
| 203 } |
| 204 |
| 205 |
| 206 void RegExpParser::Advance() { |
| 207 if (next_pos_ < in()->length()) { |
| 208 StackLimitCheck check(isolate()); |
| 209 if (check.HasOverflowed()) { |
| 210 ReportError(CStrVector(Isolate::kStackOverflowMessage)); |
| 211 } else if (zone()->excess_allocation()) { |
| 212 ReportError(CStrVector("Regular expression too large")); |
| 213 } else { |
| 214 current_ = in()->Get(next_pos_); |
| 215 next_pos_++; |
| 216 } |
| 217 } else { |
| 218 current_ = kEndMarker; |
| 219 has_more_ = false; |
| 220 } |
| 221 } |
| 222 |
| 223 |
| 224 void RegExpParser::Reset(int pos) { |
| 225 next_pos_ = pos; |
| 226 has_more_ = (pos < in()->length()); |
| 227 Advance(); |
| 228 } |
| 229 |
| 230 |
| 231 void RegExpParser::Advance(int dist) { |
| 232 next_pos_ += dist - 1; |
| 233 Advance(); |
| 234 } |
| 235 |
| 236 |
| 237 bool RegExpParser::simple() { |
| 238 return simple_; |
| 239 } |
| 240 |
| 241 |
| 242 RegExpTree* RegExpParser::ReportError(Vector<const char> message) { |
| 243 failed_ = true; |
| 244 *error_ = isolate()->factory()->NewStringFromAscii(message).ToHandleChecked(); |
| 245 // Zip to the end to make sure the no more input is read. |
| 246 current_ = kEndMarker; |
| 247 next_pos_ = in()->length(); |
| 248 return NULL; |
| 249 } |
| 250 |
| 251 |
| 252 // Pattern :: |
| 253 // Disjunction |
| 254 RegExpTree* RegExpParser::ParsePattern() { |
| 255 RegExpTree* result = ParseDisjunction(CHECK_FAILED); |
| 256 DCHECK(!has_more()); |
| 257 // If the result of parsing is a literal string atom, and it has the |
| 258 // same length as the input, then the atom is identical to the input. |
| 259 if (result->IsAtom() && result->AsAtom()->length() == in()->length()) { |
| 260 simple_ = true; |
| 261 } |
| 262 return result; |
| 263 } |
| 264 |
| 265 |
| 266 // Disjunction :: |
| 267 // Alternative |
| 268 // Alternative | Disjunction |
| 269 // Alternative :: |
| 270 // [empty] |
| 271 // Term Alternative |
| 272 // Term :: |
| 273 // Assertion |
| 274 // Atom |
| 275 // Atom Quantifier |
| 276 RegExpTree* RegExpParser::ParseDisjunction() { |
| 277 // Used to store current state while parsing subexpressions. |
| 278 RegExpParserState initial_state(NULL, INITIAL, 0, zone()); |
| 279 RegExpParserState* stored_state = &initial_state; |
| 280 // Cache the builder in a local variable for quick access. |
| 281 RegExpBuilder* builder = initial_state.builder(); |
| 282 while (true) { |
| 283 switch (current()) { |
| 284 case kEndMarker: |
| 285 if (stored_state->IsSubexpression()) { |
| 286 // Inside a parenthesized group when hitting end of input. |
| 287 ReportError(CStrVector("Unterminated group") CHECK_FAILED); |
| 288 } |
| 289 DCHECK_EQ(INITIAL, stored_state->group_type()); |
| 290 // Parsing completed successfully. |
| 291 return builder->ToRegExp(); |
| 292 case ')': { |
| 293 if (!stored_state->IsSubexpression()) { |
| 294 ReportError(CStrVector("Unmatched ')'") CHECK_FAILED); |
| 295 } |
| 296 DCHECK_NE(INITIAL, stored_state->group_type()); |
| 297 |
| 298 Advance(); |
| 299 // End disjunction parsing and convert builder content to new single |
| 300 // regexp atom. |
| 301 RegExpTree* body = builder->ToRegExp(); |
| 302 |
| 303 int end_capture_index = captures_started(); |
| 304 |
| 305 int capture_index = stored_state->capture_index(); |
| 306 SubexpressionType group_type = stored_state->group_type(); |
| 307 |
| 308 // Restore previous state. |
| 309 stored_state = stored_state->previous_state(); |
| 310 builder = stored_state->builder(); |
| 311 |
| 312 // Build result of subexpression. |
| 313 if (group_type == CAPTURE) { |
| 314 RegExpCapture* capture = new(zone()) RegExpCapture(body, capture_index); |
| 315 captures_->at(capture_index - 1) = capture; |
| 316 body = capture; |
| 317 } else if (group_type != GROUPING) { |
| 318 DCHECK(group_type == POSITIVE_LOOKAHEAD || |
| 319 group_type == NEGATIVE_LOOKAHEAD); |
| 320 bool is_positive = (group_type == POSITIVE_LOOKAHEAD); |
| 321 body = new(zone()) RegExpLookahead(body, |
| 322 is_positive, |
| 323 end_capture_index - capture_index, |
| 324 capture_index); |
| 325 } |
| 326 builder->AddAtom(body); |
| 327 // For compatability with JSC and ES3, we allow quantifiers after |
| 328 // lookaheads, and break in all cases. |
| 329 break; |
| 330 } |
| 331 case '|': { |
| 332 Advance(); |
| 333 builder->NewAlternative(); |
| 334 continue; |
| 335 } |
| 336 case '*': |
| 337 case '+': |
| 338 case '?': |
| 339 return ReportError(CStrVector("Nothing to repeat")); |
| 340 case '^': { |
| 341 Advance(); |
| 342 if (multiline_) { |
| 343 builder->AddAssertion( |
| 344 new(zone()) RegExpAssertion(RegExpAssertion::START_OF_LINE)); |
| 345 } else { |
| 346 builder->AddAssertion( |
| 347 new(zone()) RegExpAssertion(RegExpAssertion::START_OF_INPUT)); |
| 348 set_contains_anchor(); |
| 349 } |
| 350 continue; |
| 351 } |
| 352 case '$': { |
| 353 Advance(); |
| 354 RegExpAssertion::AssertionType assertion_type = |
| 355 multiline_ ? RegExpAssertion::END_OF_LINE : |
| 356 RegExpAssertion::END_OF_INPUT; |
| 357 builder->AddAssertion(new(zone()) RegExpAssertion(assertion_type)); |
| 358 continue; |
| 359 } |
| 360 case '.': { |
| 361 Advance(); |
| 362 // everything except \x0a, \x0d, \u2028 and \u2029 |
| 363 ZoneList<CharacterRange>* ranges = |
| 364 new(zone()) ZoneList<CharacterRange>(2, zone()); |
| 365 CharacterRange::AddClassEscape('.', ranges, zone()); |
| 366 RegExpTree* atom = new(zone()) RegExpCharacterClass(ranges, false); |
| 367 builder->AddAtom(atom); |
| 368 break; |
| 369 } |
| 370 case '(': { |
| 371 SubexpressionType subexpr_type = CAPTURE; |
| 372 Advance(); |
| 373 if (current() == '?') { |
| 374 switch (Next()) { |
| 375 case ':': |
| 376 subexpr_type = GROUPING; |
| 377 break; |
| 378 case '=': |
| 379 subexpr_type = POSITIVE_LOOKAHEAD; |
| 380 break; |
| 381 case '!': |
| 382 subexpr_type = NEGATIVE_LOOKAHEAD; |
| 383 break; |
| 384 default: |
| 385 ReportError(CStrVector("Invalid group") CHECK_FAILED); |
| 386 break; |
| 387 } |
| 388 Advance(2); |
| 389 } else { |
| 390 if (captures_ == NULL) { |
| 391 captures_ = new(zone()) ZoneList<RegExpCapture*>(2, zone()); |
| 392 } |
| 393 if (captures_started() >= kMaxCaptures) { |
| 394 ReportError(CStrVector("Too many captures") CHECK_FAILED); |
| 395 } |
| 396 captures_->Add(NULL, zone()); |
| 397 } |
| 398 // Store current state and begin new disjunction parsing. |
| 399 stored_state = new(zone()) RegExpParserState(stored_state, subexpr_type, |
| 400 captures_started(), zone()); |
| 401 builder = stored_state->builder(); |
| 402 continue; |
| 403 } |
| 404 case '[': { |
| 405 RegExpTree* atom = ParseCharacterClass(CHECK_FAILED); |
| 406 builder->AddAtom(atom); |
| 407 break; |
| 408 } |
| 409 // Atom :: |
| 410 // \ AtomEscape |
| 411 case '\\': |
| 412 switch (Next()) { |
| 413 case kEndMarker: |
| 414 return ReportError(CStrVector("\\ at end of pattern")); |
| 415 case 'b': |
| 416 Advance(2); |
| 417 builder->AddAssertion( |
| 418 new(zone()) RegExpAssertion(RegExpAssertion::BOUNDARY)); |
| 419 continue; |
| 420 case 'B': |
| 421 Advance(2); |
| 422 builder->AddAssertion( |
| 423 new(zone()) RegExpAssertion(RegExpAssertion::NON_BOUNDARY)); |
| 424 continue; |
| 425 // AtomEscape :: |
| 426 // CharacterClassEscape |
| 427 // |
| 428 // CharacterClassEscape :: one of |
| 429 // d D s S w W |
| 430 case 'd': case 'D': case 's': case 'S': case 'w': case 'W': { |
| 431 uc32 c = Next(); |
| 432 Advance(2); |
| 433 ZoneList<CharacterRange>* ranges = |
| 434 new(zone()) ZoneList<CharacterRange>(2, zone()); |
| 435 CharacterRange::AddClassEscape(c, ranges, zone()); |
| 436 RegExpTree* atom = new(zone()) RegExpCharacterClass(ranges, false); |
| 437 builder->AddAtom(atom); |
| 438 break; |
| 439 } |
| 440 case '1': case '2': case '3': case '4': case '5': case '6': |
| 441 case '7': case '8': case '9': { |
| 442 int index = 0; |
| 443 if (ParseBackReferenceIndex(&index)) { |
| 444 RegExpCapture* capture = NULL; |
| 445 if (captures_ != NULL && index <= captures_->length()) { |
| 446 capture = captures_->at(index - 1); |
| 447 } |
| 448 if (capture == NULL) { |
| 449 builder->AddEmpty(); |
| 450 break; |
| 451 } |
| 452 RegExpTree* atom = new(zone()) RegExpBackReference(capture); |
| 453 builder->AddAtom(atom); |
| 454 break; |
| 455 } |
| 456 uc32 first_digit = Next(); |
| 457 if (first_digit == '8' || first_digit == '9') { |
| 458 // Treat as identity escape |
| 459 builder->AddCharacter(first_digit); |
| 460 Advance(2); |
| 461 break; |
| 462 } |
| 463 } |
| 464 // FALLTHROUGH |
| 465 case '0': { |
| 466 Advance(); |
| 467 uc32 octal = ParseOctalLiteral(); |
| 468 builder->AddCharacter(octal); |
| 469 break; |
| 470 } |
| 471 // ControlEscape :: one of |
| 472 // f n r t v |
| 473 case 'f': |
| 474 Advance(2); |
| 475 builder->AddCharacter('\f'); |
| 476 break; |
| 477 case 'n': |
| 478 Advance(2); |
| 479 builder->AddCharacter('\n'); |
| 480 break; |
| 481 case 'r': |
| 482 Advance(2); |
| 483 builder->AddCharacter('\r'); |
| 484 break; |
| 485 case 't': |
| 486 Advance(2); |
| 487 builder->AddCharacter('\t'); |
| 488 break; |
| 489 case 'v': |
| 490 Advance(2); |
| 491 builder->AddCharacter('\v'); |
| 492 break; |
| 493 case 'c': { |
| 494 Advance(); |
| 495 uc32 controlLetter = Next(); |
| 496 // Special case if it is an ASCII letter. |
| 497 // Convert lower case letters to uppercase. |
| 498 uc32 letter = controlLetter & ~('a' ^ 'A'); |
| 499 if (letter < 'A' || 'Z' < letter) { |
| 500 // controlLetter is not in range 'A'-'Z' or 'a'-'z'. |
| 501 // This is outside the specification. We match JSC in |
| 502 // reading the backslash as a literal character instead |
| 503 // of as starting an escape. |
| 504 builder->AddCharacter('\\'); |
| 505 } else { |
| 506 Advance(2); |
| 507 builder->AddCharacter(controlLetter & 0x1f); |
| 508 } |
| 509 break; |
| 510 } |
| 511 case 'x': { |
| 512 Advance(2); |
| 513 uc32 value; |
| 514 if (ParseHexEscape(2, &value)) { |
| 515 builder->AddCharacter(value); |
| 516 } else { |
| 517 builder->AddCharacter('x'); |
| 518 } |
| 519 break; |
| 520 } |
| 521 case 'u': { |
| 522 Advance(2); |
| 523 uc32 value; |
| 524 if (ParseHexEscape(4, &value)) { |
| 525 builder->AddCharacter(value); |
| 526 } else { |
| 527 builder->AddCharacter('u'); |
| 528 } |
| 529 break; |
| 530 } |
| 531 default: |
| 532 // Identity escape. |
| 533 builder->AddCharacter(Next()); |
| 534 Advance(2); |
| 535 break; |
| 536 } |
| 537 break; |
| 538 case '{': { |
| 539 int dummy; |
| 540 if (ParseIntervalQuantifier(&dummy, &dummy)) { |
| 541 ReportError(CStrVector("Nothing to repeat") CHECK_FAILED); |
| 542 } |
| 543 // fallthrough |
| 544 } |
| 545 default: |
| 546 builder->AddCharacter(current()); |
| 547 Advance(); |
| 548 break; |
| 549 } // end switch(current()) |
| 550 |
| 551 int min; |
| 552 int max; |
| 553 switch (current()) { |
| 554 // QuantifierPrefix :: |
| 555 // * |
| 556 // + |
| 557 // ? |
| 558 // { |
| 559 case '*': |
| 560 min = 0; |
| 561 max = RegExpTree::kInfinity; |
| 562 Advance(); |
| 563 break; |
| 564 case '+': |
| 565 min = 1; |
| 566 max = RegExpTree::kInfinity; |
| 567 Advance(); |
| 568 break; |
| 569 case '?': |
| 570 min = 0; |
| 571 max = 1; |
| 572 Advance(); |
| 573 break; |
| 574 case '{': |
| 575 if (ParseIntervalQuantifier(&min, &max)) { |
| 576 if (max < min) { |
| 577 ReportError(CStrVector("numbers out of order in {} quantifier.") |
| 578 CHECK_FAILED); |
| 579 } |
| 580 break; |
| 581 } else { |
| 582 continue; |
| 583 } |
| 584 default: |
| 585 continue; |
| 586 } |
| 587 RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY; |
| 588 if (current() == '?') { |
| 589 quantifier_type = RegExpQuantifier::NON_GREEDY; |
| 590 Advance(); |
| 591 } else if (FLAG_regexp_possessive_quantifier && current() == '+') { |
| 592 // FLAG_regexp_possessive_quantifier is a debug-only flag. |
| 593 quantifier_type = RegExpQuantifier::POSSESSIVE; |
| 594 Advance(); |
| 595 } |
| 596 builder->AddQuantifierToAtom(min, max, quantifier_type); |
| 597 } |
| 598 } |
| 599 |
| 600 |
| 601 #ifdef DEBUG |
| 602 // Currently only used in an DCHECK. |
| 603 static bool IsSpecialClassEscape(uc32 c) { |
| 604 switch (c) { |
| 605 case 'd': case 'D': |
| 606 case 's': case 'S': |
| 607 case 'w': case 'W': |
| 608 return true; |
| 609 default: |
| 610 return false; |
| 611 } |
| 612 } |
| 613 #endif |
| 614 |
| 615 |
| 616 // In order to know whether an escape is a backreference or not we have to scan |
| 617 // the entire regexp and find the number of capturing parentheses. However we |
| 618 // don't want to scan the regexp twice unless it is necessary. This mini-parser |
| 619 // is called when needed. It can see the difference between capturing and |
| 620 // noncapturing parentheses and can skip character classes and backslash-escaped |
| 621 // characters. |
| 622 void RegExpParser::ScanForCaptures() { |
| 623 // Start with captures started previous to current position |
| 624 int capture_count = captures_started(); |
| 625 // Add count of captures after this position. |
| 626 int n; |
| 627 while ((n = current()) != kEndMarker) { |
| 628 Advance(); |
| 629 switch (n) { |
| 630 case '\\': |
| 631 Advance(); |
| 632 break; |
| 633 case '[': { |
| 634 int c; |
| 635 while ((c = current()) != kEndMarker) { |
| 636 Advance(); |
| 637 if (c == '\\') { |
| 638 Advance(); |
| 639 } else { |
| 640 if (c == ']') break; |
| 641 } |
| 642 } |
| 643 break; |
| 644 } |
| 645 case '(': |
| 646 if (current() != '?') capture_count++; |
| 647 break; |
| 648 } |
| 649 } |
| 650 capture_count_ = capture_count; |
| 651 is_scanned_for_captures_ = true; |
| 652 } |
| 653 |
| 654 |
| 655 bool RegExpParser::ParseBackReferenceIndex(int* index_out) { |
| 656 DCHECK_EQ('\\', current()); |
| 657 DCHECK('1' <= Next() && Next() <= '9'); |
| 658 // Try to parse a decimal literal that is no greater than the total number |
| 659 // of left capturing parentheses in the input. |
| 660 int start = position(); |
| 661 int value = Next() - '0'; |
| 662 Advance(2); |
| 663 while (true) { |
| 664 uc32 c = current(); |
| 665 if (IsDecimalDigit(c)) { |
| 666 value = 10 * value + (c - '0'); |
| 667 if (value > kMaxCaptures) { |
| 668 Reset(start); |
| 669 return false; |
| 670 } |
| 671 Advance(); |
| 672 } else { |
| 673 break; |
| 674 } |
| 675 } |
| 676 if (value > captures_started()) { |
| 677 if (!is_scanned_for_captures_) { |
| 678 int saved_position = position(); |
| 679 ScanForCaptures(); |
| 680 Reset(saved_position); |
| 681 } |
| 682 if (value > capture_count_) { |
| 683 Reset(start); |
| 684 return false; |
| 685 } |
| 686 } |
| 687 *index_out = value; |
| 688 return true; |
| 689 } |
| 690 |
| 691 |
| 692 // QuantifierPrefix :: |
| 693 // { DecimalDigits } |
| 694 // { DecimalDigits , } |
| 695 // { DecimalDigits , DecimalDigits } |
| 696 // |
| 697 // Returns true if parsing succeeds, and set the min_out and max_out |
| 698 // values. Values are truncated to RegExpTree::kInfinity if they overflow. |
| 699 bool RegExpParser::ParseIntervalQuantifier(int* min_out, int* max_out) { |
| 700 DCHECK_EQ(current(), '{'); |
| 701 int start = position(); |
| 702 Advance(); |
| 703 int min = 0; |
| 704 if (!IsDecimalDigit(current())) { |
| 705 Reset(start); |
| 706 return false; |
| 707 } |
| 708 while (IsDecimalDigit(current())) { |
| 709 int next = current() - '0'; |
| 710 if (min > (RegExpTree::kInfinity - next) / 10) { |
| 711 // Overflow. Skip past remaining decimal digits and return -1. |
| 712 do { |
| 713 Advance(); |
| 714 } while (IsDecimalDigit(current())); |
| 715 min = RegExpTree::kInfinity; |
| 716 break; |
| 717 } |
| 718 min = 10 * min + next; |
| 719 Advance(); |
| 720 } |
| 721 int max = 0; |
| 722 if (current() == '}') { |
| 723 max = min; |
| 724 Advance(); |
| 725 } else if (current() == ',') { |
| 726 Advance(); |
| 727 if (current() == '}') { |
| 728 max = RegExpTree::kInfinity; |
| 729 Advance(); |
| 730 } else { |
| 731 while (IsDecimalDigit(current())) { |
| 732 int next = current() - '0'; |
| 733 if (max > (RegExpTree::kInfinity - next) / 10) { |
| 734 do { |
| 735 Advance(); |
| 736 } while (IsDecimalDigit(current())); |
| 737 max = RegExpTree::kInfinity; |
| 738 break; |
| 739 } |
| 740 max = 10 * max + next; |
| 741 Advance(); |
| 742 } |
| 743 if (current() != '}') { |
| 744 Reset(start); |
| 745 return false; |
| 746 } |
| 747 Advance(); |
| 748 } |
| 749 } else { |
| 750 Reset(start); |
| 751 return false; |
| 752 } |
| 753 *min_out = min; |
| 754 *max_out = max; |
| 755 return true; |
| 756 } |
| 757 |
| 758 |
| 759 uc32 RegExpParser::ParseOctalLiteral() { |
| 760 DCHECK(('0' <= current() && current() <= '7') || current() == kEndMarker); |
| 761 // For compatibility with some other browsers (not all), we parse |
| 762 // up to three octal digits with a value below 256. |
| 763 uc32 value = current() - '0'; |
| 764 Advance(); |
| 765 if ('0' <= current() && current() <= '7') { |
| 766 value = value * 8 + current() - '0'; |
| 767 Advance(); |
| 768 if (value < 32 && '0' <= current() && current() <= '7') { |
| 769 value = value * 8 + current() - '0'; |
| 770 Advance(); |
| 771 } |
| 772 } |
| 773 return value; |
| 774 } |
| 775 |
| 776 |
| 777 bool RegExpParser::ParseHexEscape(int length, uc32 *value) { |
| 778 int start = position(); |
| 779 uc32 val = 0; |
| 780 bool done = false; |
| 781 for (int i = 0; !done; i++) { |
| 782 uc32 c = current(); |
| 783 int d = HexValue(c); |
| 784 if (d < 0) { |
| 785 Reset(start); |
| 786 return false; |
| 787 } |
| 788 val = val * 16 + d; |
| 789 Advance(); |
| 790 if (i == length - 1) { |
| 791 done = true; |
| 792 } |
| 793 } |
| 794 *value = val; |
| 795 return true; |
| 796 } |
| 797 |
| 798 |
| 799 uc32 RegExpParser::ParseClassCharacterEscape() { |
| 800 DCHECK(current() == '\\'); |
| 801 DCHECK(has_next() && !IsSpecialClassEscape(Next())); |
| 802 Advance(); |
| 803 switch (current()) { |
| 804 case 'b': |
| 805 Advance(); |
| 806 return '\b'; |
| 807 // ControlEscape :: one of |
| 808 // f n r t v |
| 809 case 'f': |
| 810 Advance(); |
| 811 return '\f'; |
| 812 case 'n': |
| 813 Advance(); |
| 814 return '\n'; |
| 815 case 'r': |
| 816 Advance(); |
| 817 return '\r'; |
| 818 case 't': |
| 819 Advance(); |
| 820 return '\t'; |
| 821 case 'v': |
| 822 Advance(); |
| 823 return '\v'; |
| 824 case 'c': { |
| 825 uc32 controlLetter = Next(); |
| 826 uc32 letter = controlLetter & ~('A' ^ 'a'); |
| 827 // For compatibility with JSC, inside a character class |
| 828 // we also accept digits and underscore as control characters. |
| 829 if ((controlLetter >= '0' && controlLetter <= '9') || |
| 830 controlLetter == '_' || |
| 831 (letter >= 'A' && letter <= 'Z')) { |
| 832 Advance(2); |
| 833 // Control letters mapped to ASCII control characters in the range |
| 834 // 0x00-0x1f. |
| 835 return controlLetter & 0x1f; |
| 836 } |
| 837 // We match JSC in reading the backslash as a literal |
| 838 // character instead of as starting an escape. |
| 839 return '\\'; |
| 840 } |
| 841 case '0': case '1': case '2': case '3': case '4': case '5': |
| 842 case '6': case '7': |
| 843 // For compatibility, we interpret a decimal escape that isn't |
| 844 // a back reference (and therefore either \0 or not valid according |
| 845 // to the specification) as a 1..3 digit octal character code. |
| 846 return ParseOctalLiteral(); |
| 847 case 'x': { |
| 848 Advance(); |
| 849 uc32 value; |
| 850 if (ParseHexEscape(2, &value)) { |
| 851 return value; |
| 852 } |
| 853 // If \x is not followed by a two-digit hexadecimal, treat it |
| 854 // as an identity escape. |
| 855 return 'x'; |
| 856 } |
| 857 case 'u': { |
| 858 Advance(); |
| 859 uc32 value; |
| 860 if (ParseHexEscape(4, &value)) { |
| 861 return value; |
| 862 } |
| 863 // If \u is not followed by a four-digit hexadecimal, treat it |
| 864 // as an identity escape. |
| 865 return 'u'; |
| 866 } |
| 867 default: { |
| 868 // Extended identity escape. We accept any character that hasn't |
| 869 // been matched by a more specific case, not just the subset required |
| 870 // by the ECMAScript specification. |
| 871 uc32 result = current(); |
| 872 Advance(); |
| 873 return result; |
| 874 } |
| 875 } |
| 876 return 0; |
| 877 } |
| 878 |
| 879 |
| 880 CharacterRange RegExpParser::ParseClassAtom(uc16* char_class) { |
| 881 DCHECK_EQ(0, *char_class); |
| 882 uc32 first = current(); |
| 883 if (first == '\\') { |
| 884 switch (Next()) { |
| 885 case 'w': case 'W': case 'd': case 'D': case 's': case 'S': { |
| 886 *char_class = Next(); |
| 887 Advance(2); |
| 888 return CharacterRange::Singleton(0); // Return dummy value. |
| 889 } |
| 890 case kEndMarker: |
| 891 return ReportError(CStrVector("\\ at end of pattern")); |
| 892 default: |
| 893 uc32 c = ParseClassCharacterEscape(CHECK_FAILED); |
| 894 return CharacterRange::Singleton(c); |
| 895 } |
| 896 } else { |
| 897 Advance(); |
| 898 return CharacterRange::Singleton(first); |
| 899 } |
| 900 } |
| 901 |
| 902 |
| 903 static const uc16 kNoCharClass = 0; |
| 904 |
| 905 // Adds range or pre-defined character class to character ranges. |
| 906 // If char_class is not kInvalidClass, it's interpreted as a class |
| 907 // escape (i.e., 's' means whitespace, from '\s'). |
| 908 static inline void AddRangeOrEscape(ZoneList<CharacterRange>* ranges, |
| 909 uc16 char_class, |
| 910 CharacterRange range, |
| 911 Zone* zone) { |
| 912 if (char_class != kNoCharClass) { |
| 913 CharacterRange::AddClassEscape(char_class, ranges, zone); |
| 914 } else { |
| 915 ranges->Add(range, zone); |
| 916 } |
| 917 } |
| 918 |
| 919 |
| 920 RegExpTree* RegExpParser::ParseCharacterClass() { |
| 921 static const char* kUnterminated = "Unterminated character class"; |
| 922 static const char* kRangeOutOfOrder = "Range out of order in character class"; |
| 923 |
| 924 DCHECK_EQ(current(), '['); |
| 925 Advance(); |
| 926 bool is_negated = false; |
| 927 if (current() == '^') { |
| 928 is_negated = true; |
| 929 Advance(); |
| 930 } |
| 931 ZoneList<CharacterRange>* ranges = |
| 932 new(zone()) ZoneList<CharacterRange>(2, zone()); |
| 933 while (has_more() && current() != ']') { |
| 934 uc16 char_class = kNoCharClass; |
| 935 CharacterRange first = ParseClassAtom(&char_class CHECK_FAILED); |
| 936 if (current() == '-') { |
| 937 Advance(); |
| 938 if (current() == kEndMarker) { |
| 939 // If we reach the end we break out of the loop and let the |
| 940 // following code report an error. |
| 941 break; |
| 942 } else if (current() == ']') { |
| 943 AddRangeOrEscape(ranges, char_class, first, zone()); |
| 944 ranges->Add(CharacterRange::Singleton('-'), zone()); |
| 945 break; |
| 946 } |
| 947 uc16 char_class_2 = kNoCharClass; |
| 948 CharacterRange next = ParseClassAtom(&char_class_2 CHECK_FAILED); |
| 949 if (char_class != kNoCharClass || char_class_2 != kNoCharClass) { |
| 950 // Either end is an escaped character class. Treat the '-' verbatim. |
| 951 AddRangeOrEscape(ranges, char_class, first, zone()); |
| 952 ranges->Add(CharacterRange::Singleton('-'), zone()); |
| 953 AddRangeOrEscape(ranges, char_class_2, next, zone()); |
| 954 continue; |
| 955 } |
| 956 if (first.from() > next.to()) { |
| 957 return ReportError(CStrVector(kRangeOutOfOrder) CHECK_FAILED); |
| 958 } |
| 959 ranges->Add(CharacterRange::Range(first.from(), next.to()), zone()); |
| 960 } else { |
| 961 AddRangeOrEscape(ranges, char_class, first, zone()); |
| 962 } |
| 963 } |
| 964 if (!has_more()) { |
| 965 return ReportError(CStrVector(kUnterminated) CHECK_FAILED); |
| 966 } |
| 967 Advance(); |
| 968 if (ranges->length() == 0) { |
| 969 ranges->Add(CharacterRange::Everything(), zone()); |
| 970 is_negated = !is_negated; |
| 971 } |
| 972 return new(zone()) RegExpCharacterClass(ranges, is_negated); |
| 973 } |
| 974 |
| 975 |
| 976 // ---------------------------------------------------------------------------- |
| 977 // The Parser interface. |
| 978 |
| 979 bool RegExpParser::ParseRegExp(FlatStringReader* input, |
| 980 bool multiline, |
| 981 RegExpCompileData* result, |
| 982 Zone* zone) { |
| 983 DCHECK(result != NULL); |
| 984 RegExpParser parser(input, &result->error, multiline, zone); |
| 985 RegExpTree* tree = parser.ParsePattern(); |
| 986 if (parser.failed()) { |
| 987 DCHECK(tree == NULL); |
| 988 DCHECK(!result->error.is_null()); |
| 989 } else { |
| 990 DCHECK(tree != NULL); |
| 991 DCHECK(result->error.is_null()); |
| 992 result->tree = tree; |
| 993 int capture_count = parser.captures_started(); |
| 994 result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; |
| 995 result->contains_anchor = parser.contains_anchor(); |
| 996 result->capture_count = capture_count; |
| 997 } |
| 998 return !parser.failed(); |
| 999 } |
| 1000 |
| 1001 // SNIP |
| 1002 |
| 1003 } // namespace dart |
OLD | NEW |