| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2014 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #ifndef SkLazyPtr_DEFINED | |
| 9 #define SkLazyPtr_DEFINED | |
| 10 | |
| 11 /** Declare a lazily-chosen static pointer (or array of pointers) of type T. | |
| 12 * | |
| 13 * Example usage: | |
| 14 * | |
| 15 * Foo* GetSingletonFoo() { | |
| 16 * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton); // Created with SkNEW, dest
royed with SkDELETE. | |
| 17 * return singleton.get(); | |
| 18 * } | |
| 19 * | |
| 20 * These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the
end. | |
| 21 * If not given, we'll use SkNEW and SkDELETE. | |
| 22 * These options are most useful when T doesn't have a public constructor or de
structor. | |
| 23 * Create comes first, so you may use a custom Create with a default Destroy, b
ut not vice versa. | |
| 24 * | |
| 25 * Foo* CustomCreate() { return ...; } | |
| 26 * void CustomDestroy(Foo* ptr) { ... } | |
| 27 * Foo* GetSingletonFooWithCustomCleanup() { | |
| 28 * SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy); | |
| 29 * return singleton.get(); | |
| 30 * } | |
| 31 * | |
| 32 * If you have a bunch of related static pointers of the same type, you can | |
| 33 * declare an array of lazy pointers together, and we'll pass the index to Crea
te(). | |
| 34 * | |
| 35 * Foo* CreateFoo(int i) { return ...; } | |
| 36 * Foo* GetCachedFoo(Foo::Enum enumVal) { | |
| 37 * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, Creat
eFoo); | |
| 38 * return cachedFoos[enumVal]; | |
| 39 * } | |
| 40 * | |
| 41 * | |
| 42 * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of | |
| 43 * SkOnce. There is no mutex or extra storage used past the pointer itself. | |
| 44 * | |
| 45 * We may call Create more than once, but all threads will see the same pointer | |
| 46 * returned from get(). Any extra calls to Create will be cleaned up. | |
| 47 * | |
| 48 * These macros must be used in a global scope, not in function scope or as a c
lass member. | |
| 49 */ | |
| 50 | |
| 51 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ | |
| 52 namespace {} static Private::SkStaticLazyPtr<T, ##__VA_ARGS__> name | |
| 53 | |
| 54 #define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \ | |
| 55 namespace {} static Private::SkStaticLazyPtrArray<T, N, ##__VA_ARGS__> name | |
| 56 | |
| 57 // namespace {} forces these macros to only be legal in global scopes. Chrome h
as thread-safety | |
| 58 // problems with them in function-local statics because it uses -fno-threadsafe-
statics, and even | |
| 59 // in builds with threadsafe statics, those threadsafe statics are just unnecess
ary overhead. | |
| 60 | |
| 61 // Everything below here is private implementation details. Don't touch, don't
even look. | |
| 62 | |
| 63 #include "SkDynamicAnnotations.h" | |
| 64 #include "SkThread.h" | |
| 65 #include "SkThreadPriv.h" | |
| 66 | |
| 67 // See FIXME below. | |
| 68 class SkFontConfigInterfaceDirect; | |
| 69 | |
| 70 namespace Private { | |
| 71 | |
| 72 // Set *dst to ptr if *dst is NULL. Returns value of *dst, destroying ptr if no
t swapped in. | |
| 73 // Issues the same memory barriers as sk_atomic_cas: acquire on failure, release
on success. | |
| 74 template <typename P, void (*Destroy)(P)> | |
| 75 static P try_cas(void** dst, P ptr) { | |
| 76 P prev = (P)sk_atomic_cas(dst, NULL, ptr); | |
| 77 | |
| 78 if (prev) { | |
| 79 // We need an acquire barrier before returning prev, which sk_atomic_cas
provided. | |
| 80 Destroy(ptr); | |
| 81 return prev; | |
| 82 } else { | |
| 83 // We need a release barrier before returning ptr, which sk_atomic_cas p
rovided. | |
| 84 return ptr; | |
| 85 } | |
| 86 } | |
| 87 | |
| 88 template <typename T> T* sk_new() { return SkNEW(T); } | |
| 89 template <typename T> void sk_delete(T* ptr) { SkDELETE(ptr); } | |
| 90 | |
| 91 // We're basing these implementations here on this article: | |
| 92 // http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/ | |
| 93 // | |
| 94 // Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers | |
| 95 // _through_ our atomically set pointer, there is a data dependency between our | |
| 96 // atomic and the guarded data, and so we only need writer-releases / | |
| 97 // reader-consumes memory pairing rather than the more general write-releases / | |
| 98 // reader-acquires convention. | |
| 99 // | |
| 100 // This is nice, because a sk_consume_load is free on all our platforms: x86, | |
| 101 // ARM, MIPS. In contrast, sk_acquire_load issues a memory barrier on non-x86. | |
| 102 | |
| 103 // This has no constructor and must be zero-initalized (the macro above does thi
s). | |
| 104 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delet
e<T> > | |
| 105 class SkStaticLazyPtr { | |
| 106 public: | |
| 107 T* get() { | |
| 108 // If fPtr has already been filled, we need a consume barrier when loadi
ng it. | |
| 109 // If not, we need a release barrier when setting it. try_cas will do t
hat. | |
| 110 T* ptr = (T*)sk_consume_load(&fPtr); | |
| 111 return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create()); | |
| 112 } | |
| 113 | |
| 114 private: | |
| 115 void* fPtr; | |
| 116 }; | |
| 117 | |
| 118 template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); } | |
| 119 | |
| 120 // This has no constructor and must be zero-initalized (the macro above does thi
s). | |
| 121 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(
T*) = sk_delete<T> > | |
| 122 class SkStaticLazyPtrArray { | |
| 123 public: | |
| 124 T* operator[](int i) { | |
| 125 SkASSERT(i >= 0 && i < N); | |
| 126 // If fPtr has already been filled, we need an consume barrier when load
ing it. | |
| 127 // If not, we need a release barrier when setting it. try_cas will do t
hat. | |
| 128 T* ptr = (T*)sk_consume_load(&fArray[i]); | |
| 129 return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i)); | |
| 130 } | |
| 131 | |
| 132 private: | |
| 133 void* fArray[N]; | |
| 134 }; | |
| 135 | |
| 136 } // namespace Private | |
| 137 | |
| 138 // This version is suitable for use as a class member. | |
| 139 // It's much the same as above except: | |
| 140 // - it has a constructor to zero itself; | |
| 141 // - it has a destructor to clean up; | |
| 142 // - get() calls SkNew(T) to create the pointer; | |
| 143 // - get(functor) calls functor to create the pointer. | |
| 144 template <typename T, void (*Destroy)(T*) = Private::sk_delete<T> > | |
| 145 class SkLazyPtr : SkNoncopyable { | |
| 146 public: | |
| 147 SkLazyPtr() : fPtr(NULL) {} | |
| 148 ~SkLazyPtr() { if (fPtr) { Destroy((T*)fPtr); } } | |
| 149 | |
| 150 T* get() { | |
| 151 T* ptr = (T*)sk_consume_load(&fPtr); | |
| 152 return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, SkNEW(T)); | |
| 153 } | |
| 154 | |
| 155 template <typename Create> | |
| 156 T* get(const Create& create) { | |
| 157 T* ptr = (T*)sk_consume_load(&fPtr); | |
| 158 return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, create()); | |
| 159 } | |
| 160 | |
| 161 private: | |
| 162 void* fPtr; | |
| 163 }; | |
| 164 | |
| 165 | |
| 166 #endif//SkLazyPtr_DEFINED | |
| OLD | NEW |