| Index: sandbox/linux/seccomp-bpf/syscall.cc
|
| diff --git a/sandbox/linux/seccomp-bpf/syscall.cc b/sandbox/linux/seccomp-bpf/syscall.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..57f6bafb9d8936ee7c494dd235fd729e7ac42c16
|
| --- /dev/null
|
| +++ b/sandbox/linux/seccomp-bpf/syscall.cc
|
| @@ -0,0 +1,413 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "sandbox/linux/seccomp-bpf/syscall.h"
|
| +
|
| +#include <asm/unistd.h>
|
| +#include <errno.h>
|
| +
|
| +#include "base/basictypes.h"
|
| +#include "base/logging.h"
|
| +#include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
|
| +
|
| +namespace sandbox {
|
| +
|
| +namespace {
|
| +
|
| +#if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
|
| + defined(ARCH_CPU_MIPS_FAMILY)
|
| +// Number that's not currently used by any Linux kernel ABIs.
|
| +const int kInvalidSyscallNumber = 0x351d3;
|
| +#else
|
| +#error Unrecognized architecture
|
| +#endif
|
| +
|
| +asm(// We need to be able to tell the kernel exactly where we made a
|
| + // system call. The C++ compiler likes to sometimes clone or
|
| + // inline code, which would inadvertently end up duplicating
|
| + // the entry point.
|
| + // "gcc" can suppress code duplication with suitable function
|
| + // attributes, but "clang" doesn't have this ability.
|
| + // The "clang" developer mailing list suggested that the correct
|
| + // and portable solution is a file-scope assembly block.
|
| + // N.B. We do mark our code as a proper function so that backtraces
|
| + // work correctly. But we make absolutely no attempt to use the
|
| + // ABI's calling conventions for passing arguments. We will only
|
| + // ever be called from assembly code and thus can pick more
|
| + // suitable calling conventions.
|
| +#if defined(__i386__)
|
| + ".text\n"
|
| + ".align 16, 0x90\n"
|
| + ".type SyscallAsm, @function\n"
|
| + "SyscallAsm:.cfi_startproc\n"
|
| + // Check if "%eax" is negative. If so, do not attempt to make a
|
| + // system call. Instead, compute the return address that is visible
|
| + // to the kernel after we execute "int $0x80". This address can be
|
| + // used as a marker that BPF code inspects.
|
| + "test %eax, %eax\n"
|
| + "jge 1f\n"
|
| + // Always, make sure that our code is position-independent, or
|
| + // address space randomization might not work on i386. This means,
|
| + // we can't use "lea", but instead have to rely on "call/pop".
|
| + "call 0f; .cfi_adjust_cfa_offset 4\n"
|
| + "0:pop %eax; .cfi_adjust_cfa_offset -4\n"
|
| + "addl $2f-0b, %eax\n"
|
| + "ret\n"
|
| + // Save register that we don't want to clobber. On i386, we need to
|
| + // save relatively aggressively, as there are a couple or registers
|
| + // that are used internally (e.g. %ebx for position-independent
|
| + // code, and %ebp for the frame pointer), and as we need to keep at
|
| + // least a few registers available for the register allocator.
|
| + "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n"
|
| + "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n"
|
| + "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n"
|
| + "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n"
|
| + // Copy entries from the array holding the arguments into the
|
| + // correct CPU registers.
|
| + "movl 0(%edi), %ebx\n"
|
| + "movl 4(%edi), %ecx\n"
|
| + "movl 8(%edi), %edx\n"
|
| + "movl 12(%edi), %esi\n"
|
| + "movl 20(%edi), %ebp\n"
|
| + "movl 16(%edi), %edi\n"
|
| + // Enter the kernel.
|
| + "int $0x80\n"
|
| + // This is our "magic" return address that the BPF filter sees.
|
| + "2:"
|
| + // Restore any clobbered registers that we didn't declare to the
|
| + // compiler.
|
| + "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n"
|
| + "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n"
|
| + "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n"
|
| + "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n"
|
| + "ret\n"
|
| + ".cfi_endproc\n"
|
| + "9:.size SyscallAsm, 9b-SyscallAsm\n"
|
| +#elif defined(__x86_64__)
|
| + ".text\n"
|
| + ".align 16, 0x90\n"
|
| + ".type SyscallAsm, @function\n"
|
| + "SyscallAsm:.cfi_startproc\n"
|
| + // Check if "%rdi" is negative. If so, do not attempt to make a
|
| + // system call. Instead, compute the return address that is visible
|
| + // to the kernel after we execute "syscall". This address can be
|
| + // used as a marker that BPF code inspects.
|
| + "test %rdi, %rdi\n"
|
| + "jge 1f\n"
|
| + // Always make sure that our code is position-independent, or the
|
| + // linker will throw a hissy fit on x86-64.
|
| + "lea 2f(%rip), %rax\n"
|
| + "ret\n"
|
| + // Now we load the registers used to pass arguments to the system
|
| + // call: system call number in %rax, and arguments in %rdi, %rsi,
|
| + // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers
|
| + // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no
|
| + // need to worry here about spilling registers or CFI directives.
|
| + "1:movq %rdi, %rax\n"
|
| + "movq 0(%rsi), %rdi\n"
|
| + "movq 16(%rsi), %rdx\n"
|
| + "movq 24(%rsi), %r10\n"
|
| + "movq 32(%rsi), %r8\n"
|
| + "movq 40(%rsi), %r9\n"
|
| + "movq 8(%rsi), %rsi\n"
|
| + // Enter the kernel.
|
| + "syscall\n"
|
| + // This is our "magic" return address that the BPF filter sees.
|
| + "2:ret\n"
|
| + ".cfi_endproc\n"
|
| + "9:.size SyscallAsm, 9b-SyscallAsm\n"
|
| +#elif defined(__arm__)
|
| + // Throughout this file, we use the same mode (ARM vs. thumb)
|
| + // that the C++ compiler uses. This means, when transfering control
|
| + // from C++ to assembly code, we do not need to switch modes (e.g.
|
| + // by using the "bx" instruction). It also means that our assembly
|
| + // code should not be invoked directly from code that lives in
|
| + // other compilation units, as we don't bother implementing thumb
|
| + // interworking. That's OK, as we don't make any of the assembly
|
| + // symbols public. They are all local to this file.
|
| + ".text\n"
|
| + ".align 2\n"
|
| + ".type SyscallAsm, %function\n"
|
| +#if defined(__thumb__)
|
| + ".thumb_func\n"
|
| +#else
|
| + ".arm\n"
|
| +#endif
|
| + "SyscallAsm:.fnstart\n"
|
| + "@ args = 0, pretend = 0, frame = 8\n"
|
| + "@ frame_needed = 1, uses_anonymous_args = 0\n"
|
| +#if defined(__thumb__)
|
| + ".cfi_startproc\n"
|
| + "push {r7, lr}\n"
|
| + ".cfi_offset 14, -4\n"
|
| + ".cfi_offset 7, -8\n"
|
| + "mov r7, sp\n"
|
| + ".cfi_def_cfa_register 7\n"
|
| + ".cfi_def_cfa_offset 8\n"
|
| +#else
|
| + "stmfd sp!, {fp, lr}\n"
|
| + "add fp, sp, #4\n"
|
| +#endif
|
| + // Check if "r0" is negative. If so, do not attempt to make a
|
| + // system call. Instead, compute the return address that is visible
|
| + // to the kernel after we execute "swi 0". This address can be
|
| + // used as a marker that BPF code inspects.
|
| + "cmp r0, #0\n"
|
| + "bge 1f\n"
|
| + "adr r0, 2f\n"
|
| + "b 2f\n"
|
| + // We declared (almost) all clobbered registers to the compiler. On
|
| + // ARM there is no particular register pressure. So, we can go
|
| + // ahead and directly copy the entries from the arguments array
|
| + // into the appropriate CPU registers.
|
| + "1:ldr r5, [r6, #20]\n"
|
| + "ldr r4, [r6, #16]\n"
|
| + "ldr r3, [r6, #12]\n"
|
| + "ldr r2, [r6, #8]\n"
|
| + "ldr r1, [r6, #4]\n"
|
| + "mov r7, r0\n"
|
| + "ldr r0, [r6, #0]\n"
|
| + // Enter the kernel
|
| + "swi 0\n"
|
| +// Restore the frame pointer. Also restore the program counter from
|
| +// the link register; this makes us return to the caller.
|
| +#if defined(__thumb__)
|
| + "2:pop {r7, pc}\n"
|
| + ".cfi_endproc\n"
|
| +#else
|
| + "2:ldmfd sp!, {fp, pc}\n"
|
| +#endif
|
| + ".fnend\n"
|
| + "9:.size SyscallAsm, 9b-SyscallAsm\n"
|
| +#elif defined(__mips__)
|
| + ".text\n"
|
| + ".align 4\n"
|
| + ".type SyscallAsm, @function\n"
|
| + "SyscallAsm:.ent SyscallAsm\n"
|
| + ".frame $sp, 40, $ra\n"
|
| + ".set push\n"
|
| + ".set noreorder\n"
|
| + "addiu $sp, $sp, -40\n"
|
| + "sw $ra, 36($sp)\n"
|
| + // Check if "v0" is negative. If so, do not attempt to make a
|
| + // system call. Instead, compute the return address that is visible
|
| + // to the kernel after we execute "syscall". This address can be
|
| + // used as a marker that BPF code inspects.
|
| + "bgez $v0, 1f\n"
|
| + " nop\n"
|
| + "la $v0, 2f\n"
|
| + "b 2f\n"
|
| + " nop\n"
|
| + // On MIPS first four arguments go to registers a0 - a3 and any
|
| + // argument after that goes to stack. We can go ahead and directly
|
| + // copy the entries from the arguments array into the appropriate
|
| + // CPU registers and on the stack.
|
| + "1:lw $a3, 28($a0)\n"
|
| + "lw $a2, 24($a0)\n"
|
| + "lw $a1, 20($a0)\n"
|
| + "lw $t0, 16($a0)\n"
|
| + "sw $a3, 28($sp)\n"
|
| + "sw $a2, 24($sp)\n"
|
| + "sw $a1, 20($sp)\n"
|
| + "sw $t0, 16($sp)\n"
|
| + "lw $a3, 12($a0)\n"
|
| + "lw $a2, 8($a0)\n"
|
| + "lw $a1, 4($a0)\n"
|
| + "lw $a0, 0($a0)\n"
|
| + // Enter the kernel
|
| + "syscall\n"
|
| + // This is our "magic" return address that the BPF filter sees.
|
| + // Restore the return address from the stack.
|
| + "2:lw $ra, 36($sp)\n"
|
| + "jr $ra\n"
|
| + " addiu $sp, $sp, 40\n"
|
| + ".set pop\n"
|
| + ".end SyscallAsm\n"
|
| + ".size SyscallAsm,.-SyscallAsm\n"
|
| +#elif defined(__aarch64__)
|
| + ".text\n"
|
| + ".align 2\n"
|
| + ".type SyscallAsm, %function\n"
|
| + "SyscallAsm:\n"
|
| + ".cfi_startproc\n"
|
| + "cmp x0, #0\n"
|
| + "b.ge 1f\n"
|
| + "adr x0,2f\n"
|
| + "b 2f\n"
|
| + "1:ldr x5, [x6, #40]\n"
|
| + "ldr x4, [x6, #32]\n"
|
| + "ldr x3, [x6, #24]\n"
|
| + "ldr x2, [x6, #16]\n"
|
| + "ldr x1, [x6, #8]\n"
|
| + "mov x8, x0\n"
|
| + "ldr x0, [x6, #0]\n"
|
| + // Enter the kernel
|
| + "svc 0\n"
|
| + "2:ret\n"
|
| + ".cfi_endproc\n"
|
| + ".size SyscallAsm, .-SyscallAsm\n"
|
| +#endif
|
| + ); // asm
|
| +
|
| +#if defined(__x86_64__)
|
| +extern "C" {
|
| +intptr_t SyscallAsm(intptr_t nr, const intptr_t args[6]);
|
| +}
|
| +#endif
|
| +
|
| +} // namespace
|
| +
|
| +intptr_t Syscall::InvalidCall() {
|
| + // Explicitly pass eight zero arguments just in case.
|
| + return Call(kInvalidSyscallNumber, 0, 0, 0, 0, 0, 0, 0, 0);
|
| +}
|
| +
|
| +intptr_t Syscall::Call(int nr,
|
| + intptr_t p0,
|
| + intptr_t p1,
|
| + intptr_t p2,
|
| + intptr_t p3,
|
| + intptr_t p4,
|
| + intptr_t p5,
|
| + intptr_t p6,
|
| + intptr_t p7) {
|
| + // We rely on "intptr_t" to be the exact size as a "void *". This is
|
| + // typically true, but just in case, we add a check. The language
|
| + // specification allows platforms some leeway in cases, where
|
| + // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect
|
| + // that this would only be an issue for IA64, which we are currently not
|
| + // planning on supporting. And it is even possible that this would work
|
| + // on IA64, but for lack of actual hardware, I cannot test.
|
| + COMPILE_ASSERT(sizeof(void*) == sizeof(intptr_t),
|
| + pointer_types_and_intptr_must_be_exactly_the_same_size);
|
| +
|
| + // TODO(nedeljko): Enable use of more than six parameters on architectures
|
| + // where that makes sense.
|
| +#if defined(__mips__)
|
| + const intptr_t args[8] = {p0, p1, p2, p3, p4, p5, p6, p7};
|
| +#else
|
| + DCHECK_EQ(p6, 0) << " Support for syscalls with more than six arguments not "
|
| + "added for this architecture";
|
| + DCHECK_EQ(p7, 0) << " Support for syscalls with more than six arguments not "
|
| + "added for this architecture";
|
| + const intptr_t args[6] = {p0, p1, p2, p3, p4, p5};
|
| +#endif // defined(__mips__)
|
| +
|
| +// Invoke our file-scope assembly code. The constraints have been picked
|
| +// carefully to match what the rest of the assembly code expects in input,
|
| +// output, and clobbered registers.
|
| +#if defined(__i386__)
|
| + intptr_t ret = nr;
|
| + asm volatile(
|
| + "call SyscallAsm\n"
|
| + // N.B. These are not the calling conventions normally used by the ABI.
|
| + : "=a"(ret)
|
| + : "0"(ret), "D"(args)
|
| + : "cc", "esp", "memory", "ecx", "edx");
|
| +#elif defined(__x86_64__)
|
| + intptr_t ret = SyscallAsm(nr, args);
|
| +#elif defined(__arm__)
|
| + intptr_t ret;
|
| + {
|
| + register intptr_t inout __asm__("r0") = nr;
|
| + register const intptr_t* data __asm__("r6") = args;
|
| + asm volatile(
|
| + "bl SyscallAsm\n"
|
| + // N.B. These are not the calling conventions normally used by the ABI.
|
| + : "=r"(inout)
|
| + : "0"(inout), "r"(data)
|
| + : "cc",
|
| + "lr",
|
| + "memory",
|
| + "r1",
|
| + "r2",
|
| + "r3",
|
| + "r4",
|
| + "r5"
|
| +#if !defined(__thumb__)
|
| + // In thumb mode, we cannot use "r7" as a general purpose register, as
|
| + // it is our frame pointer. We have to manually manage and preserve
|
| + // it.
|
| + // In ARM mode, we have a dedicated frame pointer register and "r7" is
|
| + // thus available as a general purpose register. We don't preserve it,
|
| + // but instead mark it as clobbered.
|
| + ,
|
| + "r7"
|
| +#endif // !defined(__thumb__)
|
| + );
|
| + ret = inout;
|
| + }
|
| +#elif defined(__mips__)
|
| + int err_status;
|
| + intptr_t ret = Syscall::SandboxSyscallRaw(nr, args, &err_status);
|
| +
|
| + if (err_status) {
|
| + // On error, MIPS returns errno from syscall instead of -errno.
|
| + // The purpose of this negation is for SandboxSyscall() to behave
|
| + // more like it would on other architectures.
|
| + ret = -ret;
|
| + }
|
| +#elif defined(__aarch64__)
|
| + intptr_t ret;
|
| + {
|
| + register intptr_t inout __asm__("x0") = nr;
|
| + register const intptr_t* data __asm__("x6") = args;
|
| + asm volatile("bl SyscallAsm\n"
|
| + : "=r"(inout)
|
| + : "0"(inout), "r"(data)
|
| + : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30");
|
| + ret = inout;
|
| + }
|
| +
|
| +#else
|
| +#error "Unimplemented architecture"
|
| +#endif
|
| + return ret;
|
| +}
|
| +
|
| +void Syscall::PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx) {
|
| +#if defined(__mips__)
|
| + // Mips ABI states that on error a3 CPU register has non zero value and if
|
| + // there is no error, it should be zero.
|
| + if (ret_val <= -1 && ret_val >= -4095) {
|
| + // |ret_val| followes the Syscall::Call() convention of being -errno on
|
| + // errors. In order to write correct value to return register this sign
|
| + // needs to be changed back.
|
| + ret_val = -ret_val;
|
| + SECCOMP_PARM4(ctx) = 1;
|
| + } else
|
| + SECCOMP_PARM4(ctx) = 0;
|
| +#endif
|
| + SECCOMP_RESULT(ctx) = static_cast<greg_t>(ret_val);
|
| +}
|
| +
|
| +#if defined(__mips__)
|
| +intptr_t Syscall::SandboxSyscallRaw(int nr,
|
| + const intptr_t* args,
|
| + intptr_t* err_ret) {
|
| + register intptr_t ret __asm__("v0") = nr;
|
| + // a3 register becomes non zero on error.
|
| + register intptr_t err_stat __asm__("a3") = 0;
|
| + {
|
| + register const intptr_t* data __asm__("a0") = args;
|
| + asm volatile(
|
| + "la $t9, SyscallAsm\n"
|
| + "jalr $t9\n"
|
| + " nop\n"
|
| + : "=r"(ret), "=r"(err_stat)
|
| + : "0"(ret),
|
| + "r"(data)
|
| + // a2 is in the clober list so inline assembly can not change its
|
| + // value.
|
| + : "memory", "ra", "t9", "a2");
|
| + }
|
| +
|
| + // Set an error status so it can be used outside of this function
|
| + *err_ret = err_stat;
|
| +
|
| + return ret;
|
| +}
|
| +#endif // defined(__mips__)
|
| +
|
| +} // namespace sandbox
|
|
|