Index: sandbox/linux/bpf_dsl/bpf_dsl_more_unittest.cc |
diff --git a/sandbox/linux/bpf_dsl/bpf_dsl_more_unittest.cc b/sandbox/linux/bpf_dsl/bpf_dsl_more_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..90e83c6338142a49d475006b763cd743c734ecb5 |
--- /dev/null |
+++ b/sandbox/linux/bpf_dsl/bpf_dsl_more_unittest.cc |
@@ -0,0 +1,2400 @@ |
+// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "sandbox/linux/bpf_dsl/bpf_dsl.h" |
+ |
+#include <errno.h> |
+#include <fcntl.h> |
+#include <pthread.h> |
+#include <sched.h> |
+#include <signal.h> |
+#include <sys/prctl.h> |
+#include <sys/ptrace.h> |
+#include <sys/syscall.h> |
+#include <sys/time.h> |
+#include <sys/types.h> |
+#include <sys/utsname.h> |
+#include <unistd.h> |
+#include <sys/socket.h> |
+ |
+#if defined(ANDROID) |
+// Work-around for buggy headers in Android's NDK |
+#define __user |
+#endif |
+#include <linux/futex.h> |
+ |
+#include "base/bind.h" |
+#include "base/logging.h" |
+#include "base/macros.h" |
+#include "base/memory/scoped_ptr.h" |
+#include "base/posix/eintr_wrapper.h" |
+#include "base/synchronization/waitable_event.h" |
+#include "base/threading/thread.h" |
+#include "build/build_config.h" |
+#include "sandbox/linux/seccomp-bpf/bpf_tests.h" |
+#include "sandbox/linux/seccomp-bpf/die.h" |
+#include "sandbox/linux/seccomp-bpf/errorcode.h" |
+#include "sandbox/linux/seccomp-bpf/linux_seccomp.h" |
+#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" |
+#include "sandbox/linux/seccomp-bpf/syscall.h" |
+#include "sandbox/linux/seccomp-bpf/trap.h" |
+#include "sandbox/linux/services/broker_process.h" |
+#include "sandbox/linux/services/linux_syscalls.h" |
+#include "sandbox/linux/tests/scoped_temporary_file.h" |
+#include "sandbox/linux/tests/unit_tests.h" |
+#include "testing/gtest/include/gtest/gtest.h" |
+ |
+// Workaround for Android's prctl.h file. |
+#ifndef PR_GET_ENDIAN |
+#define PR_GET_ENDIAN 19 |
+#endif |
+#ifndef PR_CAPBSET_READ |
+#define PR_CAPBSET_READ 23 |
+#define PR_CAPBSET_DROP 24 |
+#endif |
+ |
+namespace sandbox { |
+namespace bpf_dsl { |
+ |
+namespace { |
+ |
+const int kExpectedReturnValue = 42; |
+const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING"; |
+ |
+// Set the global environment to allow the use of UnsafeTrap() policies. |
+void EnableUnsafeTraps() { |
+ // The use of UnsafeTrap() causes us to print a warning message. This is |
+ // generally desirable, but it results in the unittest failing, as it doesn't |
+ // expect any messages on "stderr". So, temporarily disable messages. The |
+ // BPF_TEST() is guaranteed to turn messages back on, after the policy |
+ // function has completed. |
+ setenv(kSandboxDebuggingEnv, "t", 0); |
+ Die::SuppressInfoMessages(true); |
+} |
+ |
+// This test should execute no matter whether we have kernel support. So, |
+// we make it a TEST() instead of a BPF_TEST(). |
+TEST(SandboxBPF, DISABLE_ON_TSAN(CallSupports)) { |
+ // We check that we don't crash, but it's ok if the kernel doesn't |
+ // support it. |
+ bool seccomp_bpf_supported = |
+ SandboxBPF::SupportsSeccompSandbox(-1) == SandboxBPF::STATUS_AVAILABLE; |
+ // We want to log whether or not seccomp BPF is actually supported |
+ // since actual test coverage depends on it. |
+ RecordProperty("SeccompBPFSupported", |
+ seccomp_bpf_supported ? "true." : "false."); |
+ std::cout << "Seccomp BPF supported: " |
+ << (seccomp_bpf_supported ? "true." : "false.") << "\n"; |
+ RecordProperty("PointerSize", sizeof(void*)); |
+ std::cout << "Pointer size: " << sizeof(void*) << "\n"; |
+} |
+ |
+SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(CallSupportsTwice)) { |
+ SandboxBPF::SupportsSeccompSandbox(-1); |
+ SandboxBPF::SupportsSeccompSandbox(-1); |
+} |
+ |
+// BPF_TEST does a lot of the boiler-plate code around setting up a |
+// policy and optional passing data between the caller, the policy and |
+// any Trap() handlers. This is great for writing short and concise tests, |
+// and it helps us accidentally forgetting any of the crucial steps in |
+// setting up the sandbox. But it wouldn't hurt to have at least one test |
+// that explicitly walks through all these steps. |
+ |
+intptr_t IncreaseCounter(const struct arch_seccomp_data& args, void* aux) { |
+ BPF_ASSERT(aux); |
+ int* counter = static_cast<int*>(aux); |
+ return (*counter)++; |
+} |
+ |
+class VerboseAPITestingPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ explicit VerboseAPITestingPolicy(int* counter_ptr) |
+ : counter_ptr_(counter_ptr) {} |
+ virtual ~VerboseAPITestingPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ if (sysno == __NR_uname) { |
+ return Trap(IncreaseCounter, counter_ptr_); |
+ } |
+ return Allow(); |
+ } |
+ |
+ private: |
+ int* counter_ptr_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy); |
+}; |
+ |
+SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(VerboseAPITesting)) { |
+ if (SandboxBPF::SupportsSeccompSandbox(-1) == |
+ sandbox::SandboxBPF::STATUS_AVAILABLE) { |
+ static int counter = 0; |
+ |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new VerboseAPITestingPolicy(&counter)); |
+ BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED)); |
+ |
+ BPF_ASSERT_EQ(0, counter); |
+ BPF_ASSERT_EQ(0, syscall(__NR_uname, 0)); |
+ BPF_ASSERT_EQ(1, counter); |
+ BPF_ASSERT_EQ(1, syscall(__NR_uname, 0)); |
+ BPF_ASSERT_EQ(2, counter); |
+ } |
+} |
+ |
+// A simple blacklist test |
+ |
+class BlacklistNanosleepPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ BlacklistNanosleepPolicy() {} |
+ virtual ~BlacklistNanosleepPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_nanosleep: |
+ return Error(EACCES); |
+ default: |
+ return Allow(); |
+ } |
+ } |
+ |
+ static void AssertNanosleepFails() { |
+ const struct timespec ts = {0, 0}; |
+ errno = 0; |
+ BPF_ASSERT_EQ(-1, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); |
+ BPF_ASSERT_EQ(EACCES, errno); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, ApplyBasicBlacklistPolicy, BlacklistNanosleepPolicy) { |
+ BlacklistNanosleepPolicy::AssertNanosleepFails(); |
+} |
+ |
+// Now do a simple whitelist test |
+ |
+class WhitelistGetpidPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ WhitelistGetpidPolicy() {} |
+ virtual ~WhitelistGetpidPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_getpid: |
+ case __NR_exit_group: |
+ return Allow(); |
+ default: |
+ return Error(ENOMEM); |
+ } |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(WhitelistGetpidPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, ApplyBasicWhitelistPolicy, WhitelistGetpidPolicy) { |
+ // getpid() should be allowed |
+ errno = 0; |
+ BPF_ASSERT(syscall(__NR_getpid) > 0); |
+ BPF_ASSERT(errno == 0); |
+ |
+ // getpgid() should be denied |
+ BPF_ASSERT(getpgid(0) == -1); |
+ BPF_ASSERT(errno == ENOMEM); |
+} |
+ |
+// A simple blacklist policy, with a SIGSYS handler |
+intptr_t EnomemHandler(const struct arch_seccomp_data& args, void* aux) { |
+ // We also check that the auxiliary data is correct |
+ SANDBOX_ASSERT(aux); |
+ *(static_cast<int*>(aux)) = kExpectedReturnValue; |
+ return -ENOMEM; |
+} |
+ |
+class BlacklistNanosleepTrapPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ explicit BlacklistNanosleepTrapPolicy(int* aux) : aux_(aux) {} |
+ virtual ~BlacklistNanosleepTrapPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_nanosleep: |
+ return Trap(EnomemHandler, aux_); |
+ default: |
+ return Allow(); |
+ } |
+ } |
+ |
+ private: |
+ int* aux_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepTrapPolicy); |
+}; |
+ |
+BPF_TEST(SandboxBPF, |
+ BasicBlacklistWithSigsys, |
+ BlacklistNanosleepTrapPolicy, |
+ int /* (*BPF_AUX) */) { |
+ // getpid() should work properly |
+ errno = 0; |
+ BPF_ASSERT(syscall(__NR_getpid) > 0); |
+ BPF_ASSERT(errno == 0); |
+ |
+ // Our Auxiliary Data, should be reset by the signal handler |
+ *BPF_AUX = -1; |
+ const struct timespec ts = {0, 0}; |
+ BPF_ASSERT(syscall(__NR_nanosleep, &ts, NULL) == -1); |
+ BPF_ASSERT(errno == ENOMEM); |
+ |
+ // We expect the signal handler to modify AuxData |
+ BPF_ASSERT(*BPF_AUX == kExpectedReturnValue); |
+} |
+ |
+// A simple test that verifies we can return arbitrary errno values. |
+ |
+class ErrnoTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ ErrnoTestPolicy() {} |
+ virtual ~ErrnoTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(ErrnoTestPolicy); |
+}; |
+ |
+ResultExpr ErrnoTestPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_dup3: // dup2 is a wrapper of dup3 in android |
+#if defined(__NR_dup2) |
+ case __NR_dup2: |
+#endif |
+ // Pretend that dup2() worked, but don't actually do anything. |
+ return Error(0); |
+ case __NR_setuid: |
+#if defined(__NR_setuid32) |
+ case __NR_setuid32: |
+#endif |
+ // Return errno = 1. |
+ return Error(1); |
+ case __NR_setgid: |
+#if defined(__NR_setgid32) |
+ case __NR_setgid32: |
+#endif |
+ // Return maximum errno value (typically 4095). |
+ return Error(ErrorCode::ERR_MAX_ERRNO); |
+ case __NR_uname: |
+ // Return errno = 42; |
+ return Error(42); |
+ default: |
+ return Allow(); |
+ } |
+} |
+ |
+BPF_TEST_C(SandboxBPF, ErrnoTest, ErrnoTestPolicy) { |
+ // Verify that dup2() returns success, but doesn't actually run. |
+ int fds[4]; |
+ BPF_ASSERT(pipe(fds) == 0); |
+ BPF_ASSERT(pipe(fds + 2) == 0); |
+ BPF_ASSERT(dup2(fds[2], fds[0]) == 0); |
+ char buf[1] = {}; |
+ BPF_ASSERT(write(fds[1], "\x55", 1) == 1); |
+ BPF_ASSERT(write(fds[3], "\xAA", 1) == 1); |
+ BPF_ASSERT(read(fds[0], buf, 1) == 1); |
+ |
+ // If dup2() executed, we will read \xAA, but it dup2() has been turned |
+ // into a no-op by our policy, then we will read \x55. |
+ BPF_ASSERT(buf[0] == '\x55'); |
+ |
+ // Verify that we can return the minimum and maximum errno values. |
+ errno = 0; |
+ BPF_ASSERT(setuid(0) == -1); |
+ BPF_ASSERT(errno == 1); |
+ |
+ // On Android, errno is only supported up to 255, otherwise errno |
+ // processing is skipped. |
+ // We work around this (crbug.com/181647). |
+ if (sandbox::IsAndroid() && setgid(0) != -1) { |
+ errno = 0; |
+ BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO); |
+ BPF_ASSERT(errno == 0); |
+ } else { |
+ errno = 0; |
+ BPF_ASSERT(setgid(0) == -1); |
+ BPF_ASSERT(errno == ErrorCode::ERR_MAX_ERRNO); |
+ } |
+ |
+ // Finally, test an errno in between the minimum and maximum. |
+ errno = 0; |
+ struct utsname uts_buf; |
+ BPF_ASSERT(uname(&uts_buf) == -1); |
+ BPF_ASSERT(errno == 42); |
+} |
+ |
+// Testing the stacking of two sandboxes |
+ |
+class StackingPolicyPartOne : public SandboxBPFDSLPolicy { |
+ public: |
+ StackingPolicyPartOne() {} |
+ virtual ~StackingPolicyPartOne() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_getppid: { |
+ const Arg<int> arg(0); |
+ return If(arg == 0, Allow()).Else(Error(EPERM)); |
+ } |
+ default: |
+ return Allow(); |
+ } |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne); |
+}; |
+ |
+class StackingPolicyPartTwo : public SandboxBPFDSLPolicy { |
+ public: |
+ StackingPolicyPartTwo() {} |
+ virtual ~StackingPolicyPartTwo() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ switch (sysno) { |
+ case __NR_getppid: { |
+ const Arg<int> arg(0); |
+ return If(arg == 0, Error(EINVAL)).Else(Allow()); |
+ } |
+ default: |
+ return Allow(); |
+ } |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, StackingPolicy, StackingPolicyPartOne) { |
+ errno = 0; |
+ BPF_ASSERT(syscall(__NR_getppid, 0) > 0); |
+ BPF_ASSERT(errno == 0); |
+ |
+ BPF_ASSERT(syscall(__NR_getppid, 1) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+ |
+ // Stack a second sandbox with its own policy. Verify that we can further |
+ // restrict filters, but we cannot relax existing filters. |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new StackingPolicyPartTwo()); |
+ BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED)); |
+ |
+ errno = 0; |
+ BPF_ASSERT(syscall(__NR_getppid, 0) == -1); |
+ BPF_ASSERT(errno == EINVAL); |
+ |
+ BPF_ASSERT(syscall(__NR_getppid, 1) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+} |
+ |
+// A more complex, but synthetic policy. This tests the correctness of the BPF |
+// program by iterating through all syscalls and checking for an errno that |
+// depends on the syscall number. Unlike the Verifier, this exercises the BPF |
+// interpreter in the kernel. |
+ |
+// We try to make sure we exercise optimizations in the BPF compiler. We make |
+// sure that the compiler can have an opportunity to coalesce syscalls with |
+// contiguous numbers and we also make sure that disjoint sets can return the |
+// same errno. |
+int SysnoToRandomErrno(int sysno) { |
+ // Small contiguous sets of 3 system calls return an errno equal to the |
+ // index of that set + 1 (so that we never return a NUL errno). |
+ return ((sysno & ~3) >> 2) % 29 + 1; |
+} |
+ |
+class SyntheticPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ SyntheticPolicy() {} |
+ virtual ~SyntheticPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ if (sysno == __NR_exit_group || sysno == __NR_write) { |
+ // exit_group() is special, we really need it to work. |
+ // write() is needed for BPF_ASSERT() to report a useful error message. |
+ return Allow(); |
+ } |
+ return Error(SysnoToRandomErrno(sysno)); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(SyntheticPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, SyntheticPolicy, SyntheticPolicy) { |
+ // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int |
+ // overflow. |
+ BPF_ASSERT(std::numeric_limits<int>::max() - kExpectedReturnValue - 1 >= |
+ static_cast<int>(MAX_PUBLIC_SYSCALL)); |
+ |
+ for (int syscall_number = static_cast<int>(MIN_SYSCALL); |
+ syscall_number <= static_cast<int>(MAX_PUBLIC_SYSCALL); |
+ ++syscall_number) { |
+ if (syscall_number == __NR_exit_group || syscall_number == __NR_write) { |
+ // exit_group() is special |
+ continue; |
+ } |
+ errno = 0; |
+ BPF_ASSERT(syscall(syscall_number) == -1); |
+ BPF_ASSERT(errno == SysnoToRandomErrno(syscall_number)); |
+ } |
+} |
+ |
+#if defined(__arm__) |
+// A simple policy that tests whether ARM private system calls are supported |
+// by our BPF compiler and by the BPF interpreter in the kernel. |
+ |
+// For ARM private system calls, return an errno equal to their offset from |
+// MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno). |
+int ArmPrivateSysnoToErrno(int sysno) { |
+ if (sysno >= static_cast<int>(MIN_PRIVATE_SYSCALL) && |
+ sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { |
+ return (sysno - MIN_PRIVATE_SYSCALL) + 1; |
+ } else { |
+ return ENOSYS; |
+ } |
+} |
+ |
+class ArmPrivatePolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ ArmPrivatePolicy() {} |
+ virtual ~ArmPrivatePolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual |
+ // ARM private system calls. |
+ if (sysno >= static_cast<int>(__ARM_NR_set_tls + 1) && |
+ sysno <= static_cast<int>(MAX_PRIVATE_SYSCALL)) { |
+ return Error(ArmPrivateSysnoToErrno(sysno)); |
+ } |
+ return Allow(); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(ArmPrivatePolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, ArmPrivatePolicy, ArmPrivatePolicy) { |
+ for (int syscall_number = static_cast<int>(__ARM_NR_set_tls + 1); |
+ syscall_number <= static_cast<int>(MAX_PRIVATE_SYSCALL); |
+ ++syscall_number) { |
+ errno = 0; |
+ BPF_ASSERT(syscall(syscall_number) == -1); |
+ BPF_ASSERT(errno == ArmPrivateSysnoToErrno(syscall_number)); |
+ } |
+} |
+#endif // defined(__arm__) |
+ |
+intptr_t CountSyscalls(const struct arch_seccomp_data& args, void* aux) { |
+ // Count all invocations of our callback function. |
+ ++*reinterpret_cast<int*>(aux); |
+ |
+ // Verify that within the callback function all filtering is temporarily |
+ // disabled. |
+ BPF_ASSERT(syscall(__NR_getpid) > 1); |
+ |
+ // Verify that we can now call the underlying system call without causing |
+ // infinite recursion. |
+ return SandboxBPF::ForwardSyscall(args); |
+} |
+ |
+class GreyListedPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ explicit GreyListedPolicy(int* aux) : aux_(aux) { |
+ // Set the global environment for unsafe traps once. |
+ EnableUnsafeTraps(); |
+ } |
+ virtual ~GreyListedPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // Some system calls must always be allowed, if our policy wants to make |
+ // use of UnsafeTrap() |
+ if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) { |
+ return Allow(); |
+ } else if (sysno == __NR_getpid) { |
+ // Disallow getpid() |
+ return Error(EPERM); |
+ } else { |
+ // Allow (and count) all other system calls. |
+ return UnsafeTrap(CountSyscalls, aux_); |
+ } |
+ } |
+ |
+ private: |
+ int* aux_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(GreyListedPolicy); |
+}; |
+ |
+BPF_TEST(SandboxBPF, GreyListedPolicy, GreyListedPolicy, int /* (*BPF_AUX) */) { |
+ BPF_ASSERT(syscall(__NR_getpid) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+ BPF_ASSERT(*BPF_AUX == 0); |
+ BPF_ASSERT(syscall(__NR_geteuid) == syscall(__NR_getuid)); |
+ BPF_ASSERT(*BPF_AUX == 2); |
+ char name[17] = {}; |
+ BPF_ASSERT(!syscall(__NR_prctl, |
+ PR_GET_NAME, |
+ name, |
+ (void*)NULL, |
+ (void*)NULL, |
+ (void*)NULL)); |
+ BPF_ASSERT(*BPF_AUX == 3); |
+ BPF_ASSERT(*name); |
+} |
+ |
+SANDBOX_TEST(SandboxBPF, EnableUnsafeTrapsInSigSysHandler) { |
+ // Disabling warning messages that could confuse our test framework. |
+ setenv(kSandboxDebuggingEnv, "t", 0); |
+ Die::SuppressInfoMessages(true); |
+ |
+ unsetenv(kSandboxDebuggingEnv); |
+ SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false); |
+ setenv(kSandboxDebuggingEnv, "", 1); |
+ SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false); |
+ setenv(kSandboxDebuggingEnv, "t", 1); |
+ SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == true); |
+} |
+ |
+intptr_t PrctlHandler(const struct arch_seccomp_data& args, void*) { |
+ if (args.args[0] == PR_CAPBSET_DROP && static_cast<int>(args.args[1]) == -1) { |
+ // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always |
+ // return an error. But our handler allows this call. |
+ return 0; |
+ } else { |
+ return SandboxBPF::ForwardSyscall(args); |
+ } |
+} |
+ |
+class PrctlPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ PrctlPolicy() {} |
+ virtual ~PrctlPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ setenv(kSandboxDebuggingEnv, "t", 0); |
+ Die::SuppressInfoMessages(true); |
+ |
+ if (sysno == __NR_prctl) { |
+ // Handle prctl() inside an UnsafeTrap() |
+ return UnsafeTrap(PrctlHandler, NULL); |
+ } |
+ |
+ // Allow all other system calls. |
+ return Allow(); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(PrctlPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, ForwardSyscall, PrctlPolicy) { |
+ // This call should never be allowed. But our policy will intercept it and |
+ // let it pass successfully. |
+ BPF_ASSERT( |
+ !prctl(PR_CAPBSET_DROP, -1, (void*)NULL, (void*)NULL, (void*)NULL)); |
+ |
+ // Verify that the call will fail, if it makes it all the way to the kernel. |
+ BPF_ASSERT( |
+ prctl(PR_CAPBSET_DROP, -2, (void*)NULL, (void*)NULL, (void*)NULL) == -1); |
+ |
+ // And verify that other uses of prctl() work just fine. |
+ char name[17] = {}; |
+ BPF_ASSERT(!syscall(__NR_prctl, |
+ PR_GET_NAME, |
+ name, |
+ (void*)NULL, |
+ (void*)NULL, |
+ (void*)NULL)); |
+ BPF_ASSERT(*name); |
+ |
+ // Finally, verify that system calls other than prctl() are completely |
+ // unaffected by our policy. |
+ struct utsname uts = {}; |
+ BPF_ASSERT(!uname(&uts)); |
+ BPF_ASSERT(!strcmp(uts.sysname, "Linux")); |
+} |
+ |
+intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data& args, void*) { |
+ return SandboxBPF::ForwardSyscall(args); |
+} |
+ |
+class RedirectAllSyscallsPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ RedirectAllSyscallsPolicy() {} |
+ virtual ~RedirectAllSyscallsPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(RedirectAllSyscallsPolicy); |
+}; |
+ |
+ResultExpr RedirectAllSyscallsPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ setenv(kSandboxDebuggingEnv, "t", 0); |
+ Die::SuppressInfoMessages(true); |
+ |
+ // Some system calls must always be allowed, if our policy wants to make |
+ // use of UnsafeTrap() |
+ if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) |
+ return Allow(); |
+ return UnsafeTrap(AllowRedirectedSyscall, NULL); |
+} |
+ |
+int bus_handler_fd_ = -1; |
+ |
+void SigBusHandler(int, siginfo_t* info, void* void_context) { |
+ BPF_ASSERT(write(bus_handler_fd_, "\x55", 1) == 1); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, SigBus, RedirectAllSyscallsPolicy) { |
+ // We use the SIGBUS bit in the signal mask as a thread-local boolean |
+ // value in the implementation of UnsafeTrap(). This is obviously a bit |
+ // of a hack that could conceivably interfere with code that uses SIGBUS |
+ // in more traditional ways. This test verifies that basic functionality |
+ // of SIGBUS is not impacted, but it is certainly possibly to construe |
+ // more complex uses of signals where our use of the SIGBUS mask is not |
+ // 100% transparent. This is expected behavior. |
+ int fds[2]; |
+ BPF_ASSERT(socketpair(AF_UNIX, SOCK_STREAM, 0, fds) == 0); |
+ bus_handler_fd_ = fds[1]; |
+ struct sigaction sa = {}; |
+ sa.sa_sigaction = SigBusHandler; |
+ sa.sa_flags = SA_SIGINFO; |
+ BPF_ASSERT(sigaction(SIGBUS, &sa, NULL) == 0); |
+ raise(SIGBUS); |
+ char c = '\000'; |
+ BPF_ASSERT(read(fds[0], &c, 1) == 1); |
+ BPF_ASSERT(close(fds[0]) == 0); |
+ BPF_ASSERT(close(fds[1]) == 0); |
+ BPF_ASSERT(c == 0x55); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, SigMask, RedirectAllSyscallsPolicy) { |
+ // Signal masks are potentially tricky to handle. For instance, if we |
+ // ever tried to update them from inside a Trap() or UnsafeTrap() handler, |
+ // the call to sigreturn() at the end of the signal handler would undo |
+ // all of our efforts. So, it makes sense to test that sigprocmask() |
+ // works, even if we have a policy in place that makes use of UnsafeTrap(). |
+ // In practice, this works because we force sigprocmask() to be handled |
+ // entirely in the kernel. |
+ sigset_t mask0, mask1, mask2; |
+ |
+ // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't |
+ // change the mask (it shouldn't have been, as it isn't blocked by default |
+ // in POSIX). |
+ // |
+ // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose. |
+ sigemptyset(&mask0); |
+ BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, &mask1)); |
+ BPF_ASSERT(!sigismember(&mask1, SIGUSR2)); |
+ |
+ // Try again, and this time we verify that we can block it. This |
+ // requires a second call to sigprocmask(). |
+ sigaddset(&mask0, SIGUSR2); |
+ BPF_ASSERT(!sigprocmask(SIG_BLOCK, &mask0, NULL)); |
+ BPF_ASSERT(!sigprocmask(SIG_BLOCK, NULL, &mask2)); |
+ BPF_ASSERT(sigismember(&mask2, SIGUSR2)); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, UnsafeTrapWithErrno, RedirectAllSyscallsPolicy) { |
+ // An UnsafeTrap() (or for that matter, a Trap()) has to report error |
+ // conditions by returning an exit code in the range -1..-4096. This |
+ // should happen automatically if using ForwardSyscall(). If the TrapFnc() |
+ // uses some other method to make system calls, then it is responsible |
+ // for computing the correct return code. |
+ // This test verifies that ForwardSyscall() does the correct thing. |
+ |
+ // The glibc system wrapper will ultimately set errno for us. So, from normal |
+ // userspace, all of this should be completely transparent. |
+ errno = 0; |
+ BPF_ASSERT(close(-1) == -1); |
+ BPF_ASSERT(errno == EBADF); |
+ |
+ // Explicitly avoid the glibc wrapper. This is not normally the way anybody |
+ // would make system calls, but it allows us to verify that we don't |
+ // accidentally mess with errno, when we shouldn't. |
+ errno = 0; |
+ struct arch_seccomp_data args = {}; |
+ args.nr = __NR_close; |
+ args.args[0] = -1; |
+ BPF_ASSERT(SandboxBPF::ForwardSyscall(args) == -EBADF); |
+ BPF_ASSERT(errno == 0); |
+} |
+ |
+bool NoOpCallback() { |
+ return true; |
+} |
+ |
+// Test a trap handler that makes use of a broker process to open(). |
+ |
+class InitializedOpenBroker { |
+ public: |
+ InitializedOpenBroker() : initialized_(false) { |
+ std::vector<std::string> allowed_files; |
+ allowed_files.push_back("/proc/allowed"); |
+ allowed_files.push_back("/proc/cpuinfo"); |
+ |
+ broker_process_.reset( |
+ new BrokerProcess(EPERM, allowed_files, std::vector<std::string>())); |
+ BPF_ASSERT(broker_process() != NULL); |
+ BPF_ASSERT(broker_process_->Init(base::Bind(&NoOpCallback))); |
+ |
+ initialized_ = true; |
+ } |
+ bool initialized() { return initialized_; } |
+ class BrokerProcess* broker_process() { return broker_process_.get(); } |
+ |
+ private: |
+ bool initialized_; |
+ scoped_ptr<class BrokerProcess> broker_process_; |
+ DISALLOW_COPY_AND_ASSIGN(InitializedOpenBroker); |
+}; |
+ |
+intptr_t BrokerOpenTrapHandler(const struct arch_seccomp_data& args, |
+ void* aux) { |
+ BPF_ASSERT(aux); |
+ BrokerProcess* broker_process = static_cast<BrokerProcess*>(aux); |
+ switch (args.nr) { |
+ case __NR_faccessat: // access is a wrapper of faccessat in android |
+ BPF_ASSERT(static_cast<int>(args.args[0]) == AT_FDCWD); |
+ return broker_process->Access(reinterpret_cast<const char*>(args.args[1]), |
+ static_cast<int>(args.args[2])); |
+#if defined(__NR_access) |
+ case __NR_access: |
+ return broker_process->Access(reinterpret_cast<const char*>(args.args[0]), |
+ static_cast<int>(args.args[1])); |
+#endif |
+#if defined(__NR_open) |
+ case __NR_open: |
+ return broker_process->Open(reinterpret_cast<const char*>(args.args[0]), |
+ static_cast<int>(args.args[1])); |
+#endif |
+ case __NR_openat: |
+ // We only call open() so if we arrive here, it's because glibc uses |
+ // the openat() system call. |
+ BPF_ASSERT(static_cast<int>(args.args[0]) == AT_FDCWD); |
+ return broker_process->Open(reinterpret_cast<const char*>(args.args[1]), |
+ static_cast<int>(args.args[2])); |
+ default: |
+ BPF_ASSERT(false); |
+ return -ENOSYS; |
+ } |
+} |
+ |
+class DenyOpenPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ explicit DenyOpenPolicy(InitializedOpenBroker* iob) : iob_(iob) {} |
+ virtual ~DenyOpenPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ |
+ switch (sysno) { |
+ case __NR_faccessat: |
+#if defined(__NR_access) |
+ case __NR_access: |
+#endif |
+#if defined(__NR_open) |
+ case __NR_open: |
+#endif |
+ case __NR_openat: |
+ // We get a InitializedOpenBroker class, but our trap handler wants |
+ // the BrokerProcess object. |
+ return Trap(BrokerOpenTrapHandler, iob_->broker_process()); |
+ default: |
+ return Allow(); |
+ } |
+ } |
+ |
+ private: |
+ InitializedOpenBroker* iob_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(DenyOpenPolicy); |
+}; |
+ |
+// We use a InitializedOpenBroker class, so that we can run unsandboxed |
+// code in its constructor, which is the only way to do so in a BPF_TEST. |
+BPF_TEST(SandboxBPF, |
+ UseOpenBroker, |
+ DenyOpenPolicy, |
+ InitializedOpenBroker /* (*BPF_AUX) */) { |
+ BPF_ASSERT(BPF_AUX->initialized()); |
+ BrokerProcess* broker_process = BPF_AUX->broker_process(); |
+ BPF_ASSERT(broker_process != NULL); |
+ |
+ // First, use the broker "manually" |
+ BPF_ASSERT(broker_process->Open("/proc/denied", O_RDONLY) == -EPERM); |
+ BPF_ASSERT(broker_process->Access("/proc/denied", R_OK) == -EPERM); |
+ BPF_ASSERT(broker_process->Open("/proc/allowed", O_RDONLY) == -ENOENT); |
+ BPF_ASSERT(broker_process->Access("/proc/allowed", R_OK) == -ENOENT); |
+ |
+ // Now use glibc's open() as an external library would. |
+ BPF_ASSERT(open("/proc/denied", O_RDONLY) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+ |
+ BPF_ASSERT(open("/proc/allowed", O_RDONLY) == -1); |
+ BPF_ASSERT(errno == ENOENT); |
+ |
+ // Also test glibc's openat(), some versions of libc use it transparently |
+ // instead of open(). |
+ BPF_ASSERT(openat(AT_FDCWD, "/proc/denied", O_RDONLY) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+ |
+ BPF_ASSERT(openat(AT_FDCWD, "/proc/allowed", O_RDONLY) == -1); |
+ BPF_ASSERT(errno == ENOENT); |
+ |
+ // And test glibc's access(). |
+ BPF_ASSERT(access("/proc/denied", R_OK) == -1); |
+ BPF_ASSERT(errno == EPERM); |
+ |
+ BPF_ASSERT(access("/proc/allowed", R_OK) == -1); |
+ BPF_ASSERT(errno == ENOENT); |
+ |
+ // This is also white listed and does exist. |
+ int cpu_info_access = access("/proc/cpuinfo", R_OK); |
+ BPF_ASSERT(cpu_info_access == 0); |
+ int cpu_info_fd = open("/proc/cpuinfo", O_RDONLY); |
+ BPF_ASSERT(cpu_info_fd >= 0); |
+ char buf[1024]; |
+ BPF_ASSERT(read(cpu_info_fd, buf, sizeof(buf)) > 0); |
+} |
+ |
+// Simple test demonstrating how to use SandboxBPF::Cond() |
+ |
+class SimpleCondTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ SimpleCondTestPolicy() {} |
+ virtual ~SimpleCondTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(SimpleCondTestPolicy); |
+}; |
+ |
+ResultExpr SimpleCondTestPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ |
+ // We deliberately return unusual errno values upon failure, so that we |
+ // can uniquely test for these values. In a "real" policy, you would want |
+ // to return more traditional values. |
+ int flags_argument_position = -1; |
+ switch (sysno) { |
+#if defined(__NR_open) |
+ case __NR_open: |
+ flags_argument_position = 1; |
+#endif |
+ case __NR_openat: { // open can be a wrapper for openat(2). |
+ if (sysno == __NR_openat) |
+ flags_argument_position = 2; |
+ |
+ // Allow opening files for reading, but don't allow writing. |
+ COMPILE_ASSERT(O_RDONLY == 0, O_RDONLY_must_be_all_zero_bits); |
+ const Arg<int> flags(flags_argument_position); |
+ return If((flags & O_ACCMODE) != 0, Error(EROFS)).Else(Allow()); |
+ } |
+ case __NR_prctl: { |
+ // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but |
+ // disallow everything else. |
+ const Arg<int> option(0); |
+ return If(option == PR_SET_DUMPABLE || option == PR_GET_DUMPABLE, Allow()) |
+ .Else(Error(ENOMEM)); |
+ } |
+ default: |
+ return Allow(); |
+ } |
+} |
+ |
+BPF_TEST_C(SandboxBPF, SimpleCondTest, SimpleCondTestPolicy) { |
+ int fd; |
+ BPF_ASSERT((fd = open("/proc/self/comm", O_RDWR)) == -1); |
+ BPF_ASSERT(errno == EROFS); |
+ BPF_ASSERT((fd = open("/proc/self/comm", O_RDONLY)) >= 0); |
+ close(fd); |
+ |
+ int ret; |
+ BPF_ASSERT((ret = prctl(PR_GET_DUMPABLE)) >= 0); |
+ BPF_ASSERT(prctl(PR_SET_DUMPABLE, 1 - ret) == 0); |
+ BPF_ASSERT(prctl(PR_GET_ENDIAN, &ret) == -1); |
+ BPF_ASSERT(errno == ENOMEM); |
+} |
+ |
+// This test exercises the SandboxBPF::Cond() method by building a complex |
+// tree of conditional equality operations. It then makes system calls and |
+// verifies that they return the values that we expected from our BPF |
+// program. |
+class EqualityStressTest { |
+ public: |
+ EqualityStressTest() { |
+ // We want a deterministic test |
+ srand(0); |
+ |
+ // Iterates over system call numbers and builds a random tree of |
+ // equality tests. |
+ // We are actually constructing a graph of ArgValue objects. This |
+ // graph will later be used to a) compute our sandbox policy, and |
+ // b) drive the code that verifies the output from the BPF program. |
+ COMPILE_ASSERT( |
+ kNumTestCases < (int)(MAX_PUBLIC_SYSCALL - MIN_SYSCALL - 10), |
+ num_test_cases_must_be_significantly_smaller_than_num_system_calls); |
+ for (int sysno = MIN_SYSCALL, end = kNumTestCases; sysno < end; ++sysno) { |
+ if (IsReservedSyscall(sysno)) { |
+ // Skip reserved system calls. This ensures that our test frame |
+ // work isn't impacted by the fact that we are overriding |
+ // a lot of different system calls. |
+ ++end; |
+ arg_values_.push_back(NULL); |
+ } else { |
+ arg_values_.push_back( |
+ RandomArgValue(rand() % kMaxArgs, 0, rand() % kMaxArgs)); |
+ } |
+ } |
+ } |
+ |
+ ~EqualityStressTest() { |
+ for (std::vector<ArgValue*>::iterator iter = arg_values_.begin(); |
+ iter != arg_values_.end(); |
+ ++iter) { |
+ DeleteArgValue(*iter); |
+ } |
+ } |
+ |
+ ResultExpr Policy(int sysno) { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ if (sysno < 0 || sysno >= (int)arg_values_.size() || |
+ IsReservedSyscall(sysno)) { |
+ // We only return ErrorCode values for the system calls that |
+ // are part of our test data. Every other system call remains |
+ // allowed. |
+ return Allow(); |
+ } else { |
+ // ToErrorCode() turns an ArgValue object into an ErrorCode that is |
+ // suitable for use by a sandbox policy. |
+ return ToErrorCode(arg_values_[sysno]); |
+ } |
+ } |
+ |
+ void VerifyFilter() { |
+ // Iterate over all system calls. Skip the system calls that have |
+ // previously been determined as being reserved. |
+ for (int sysno = 0; sysno < (int)arg_values_.size(); ++sysno) { |
+ if (!arg_values_[sysno]) { |
+ // Skip reserved system calls. |
+ continue; |
+ } |
+ // Verify that system calls return the values that we expect them to |
+ // return. This involves passing different combinations of system call |
+ // parameters in order to exercise all possible code paths through the |
+ // BPF filter program. |
+ // We arbitrarily start by setting all six system call arguments to |
+ // zero. And we then recursive traverse our tree of ArgValues to |
+ // determine the necessary combinations of parameters. |
+ intptr_t args[6] = {}; |
+ Verify(sysno, args, *arg_values_[sysno]); |
+ } |
+ } |
+ |
+ private: |
+ struct ArgValue { |
+ int argno; // Argument number to inspect. |
+ int size; // Number of test cases (must be > 0). |
+ struct Tests { |
+ uint32_t k_value; // Value to compare syscall arg against. |
+ int err; // If non-zero, errno value to return. |
+ struct ArgValue* arg_value; // Otherwise, more args needs inspecting. |
+ }* tests; |
+ int err; // If none of the tests passed, this is what |
+ struct ArgValue* arg_value; // we'll return (this is the "else" branch). |
+ }; |
+ |
+ bool IsReservedSyscall(int sysno) { |
+ // There are a handful of system calls that we should never use in our |
+ // test cases. These system calls are needed to allow the test framework |
+ // to run properly. |
+ // If we wanted to write fully generic code, there are more system calls |
+ // that could be listed here, and it is quite difficult to come up with a |
+ // truly comprehensive list. After all, we are deliberately making system |
+ // calls unavailable. In practice, we have a pretty good idea of the system |
+ // calls that will be made by this particular test. So, this small list is |
+ // sufficient. But if anybody copy'n'pasted this code for other uses, they |
+ // would have to review that the list. |
+ return sysno == __NR_read || sysno == __NR_write || sysno == __NR_exit || |
+ sysno == __NR_exit_group || sysno == __NR_restart_syscall; |
+ } |
+ |
+ ArgValue* RandomArgValue(int argno, int args_mask, int remaining_args) { |
+ // Create a new ArgValue and fill it with random data. We use as bit mask |
+ // to keep track of the system call parameters that have previously been |
+ // set; this ensures that we won't accidentally define a contradictory |
+ // set of equality tests. |
+ struct ArgValue* arg_value = new ArgValue(); |
+ args_mask |= 1 << argno; |
+ arg_value->argno = argno; |
+ |
+ // Apply some restrictions on just how complex our tests can be. |
+ // Otherwise, we end up with a BPF program that is too complicated for |
+ // the kernel to load. |
+ int fan_out = kMaxFanOut; |
+ if (remaining_args > 3) { |
+ fan_out = 1; |
+ } else if (remaining_args > 2) { |
+ fan_out = 2; |
+ } |
+ |
+ // Create a couple of different test cases with randomized values that |
+ // we want to use when comparing system call parameter number "argno". |
+ arg_value->size = rand() % fan_out + 1; |
+ arg_value->tests = new ArgValue::Tests[arg_value->size]; |
+ |
+ uint32_t k_value = rand(); |
+ for (int n = 0; n < arg_value->size; ++n) { |
+ // Ensure that we have unique values |
+ k_value += rand() % (RAND_MAX / (kMaxFanOut + 1)) + 1; |
+ |
+ // There are two possible types of nodes. Either this is a leaf node; |
+ // in that case, we have completed all the equality tests that we |
+ // wanted to perform, and we can now compute a random "errno" value that |
+ // we should return. Or this is part of a more complex boolean |
+ // expression; in that case, we have to recursively add tests for some |
+ // of system call parameters that we have not yet included in our |
+ // tests. |
+ arg_value->tests[n].k_value = k_value; |
+ if (!remaining_args || (rand() & 1)) { |
+ arg_value->tests[n].err = (rand() % 1000) + 1; |
+ arg_value->tests[n].arg_value = NULL; |
+ } else { |
+ arg_value->tests[n].err = 0; |
+ arg_value->tests[n].arg_value = |
+ RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); |
+ } |
+ } |
+ // Finally, we have to define what we should return if none of the |
+ // previous equality tests pass. Again, we can either deal with a leaf |
+ // node, or we can randomly add another couple of tests. |
+ if (!remaining_args || (rand() & 1)) { |
+ arg_value->err = (rand() % 1000) + 1; |
+ arg_value->arg_value = NULL; |
+ } else { |
+ arg_value->err = 0; |
+ arg_value->arg_value = |
+ RandomArgValue(RandomArg(args_mask), args_mask, remaining_args - 1); |
+ } |
+ // We have now built a new (sub-)tree of ArgValues defining a set of |
+ // boolean expressions for testing random system call arguments against |
+ // random values. Return this tree to our caller. |
+ return arg_value; |
+ } |
+ |
+ int RandomArg(int args_mask) { |
+ // Compute a random system call parameter number. |
+ int argno = rand() % kMaxArgs; |
+ |
+ // Make sure that this same parameter number has not previously been |
+ // used. Otherwise, we could end up with a test that is impossible to |
+ // satisfy (e.g. args[0] == 1 && args[0] == 2). |
+ while (args_mask & (1 << argno)) { |
+ argno = (argno + 1) % kMaxArgs; |
+ } |
+ return argno; |
+ } |
+ |
+ void DeleteArgValue(ArgValue* arg_value) { |
+ // Delete an ArgValue and all of its child nodes. This requires |
+ // recursively descending into the tree. |
+ if (arg_value) { |
+ if (arg_value->size) { |
+ for (int n = 0; n < arg_value->size; ++n) { |
+ if (!arg_value->tests[n].err) { |
+ DeleteArgValue(arg_value->tests[n].arg_value); |
+ } |
+ } |
+ delete[] arg_value->tests; |
+ } |
+ if (!arg_value->err) { |
+ DeleteArgValue(arg_value->arg_value); |
+ } |
+ delete arg_value; |
+ } |
+ } |
+ |
+ ResultExpr ToErrorCode(ArgValue* arg_value) { |
+ // Compute the ResultExpr that should be returned, if none of our |
+ // tests succeed (i.e. the system call parameter doesn't match any |
+ // of the values in arg_value->tests[].k_value). |
+ ResultExpr err; |
+ if (arg_value->err) { |
+ // If this was a leaf node, return the errno value that we expect to |
+ // return from the BPF filter program. |
+ err = Error(arg_value->err); |
+ } else { |
+ // If this wasn't a leaf node yet, recursively descend into the rest |
+ // of the tree. This will end up adding a few more SandboxBPF::Cond() |
+ // tests to our ErrorCode. |
+ err = ToErrorCode(arg_value->arg_value); |
+ } |
+ |
+ // Now, iterate over all the test cases that we want to compare against. |
+ // This builds a chain of SandboxBPF::Cond() tests |
+ // (aka "if ... elif ... elif ... elif ... fi") |
+ for (int n = arg_value->size; n-- > 0;) { |
+ ResultExpr matched; |
+ // Again, we distinguish between leaf nodes and subtrees. |
+ if (arg_value->tests[n].err) { |
+ matched = Error(arg_value->tests[n].err); |
+ } else { |
+ matched = ToErrorCode(arg_value->tests[n].arg_value); |
+ } |
+ // For now, all of our tests are limited to 32bit. |
+ // We have separate tests that check the behavior of 32bit vs. 64bit |
+ // conditional expressions. |
+ const Arg<uint32_t> arg(arg_value->argno); |
+ err = If(arg == arg_value->tests[n].k_value, matched).Else(err); |
+ } |
+ return err; |
+ } |
+ |
+ void Verify(int sysno, intptr_t* args, const ArgValue& arg_value) { |
+ uint32_t mismatched = 0; |
+ // Iterate over all the k_values in arg_value.tests[] and verify that |
+ // we see the expected return values from system calls, when we pass |
+ // the k_value as a parameter in a system call. |
+ for (int n = arg_value.size; n-- > 0;) { |
+ mismatched += arg_value.tests[n].k_value; |
+ args[arg_value.argno] = arg_value.tests[n].k_value; |
+ if (arg_value.tests[n].err) { |
+ VerifyErrno(sysno, args, arg_value.tests[n].err); |
+ } else { |
+ Verify(sysno, args, *arg_value.tests[n].arg_value); |
+ } |
+ } |
+ // Find a k_value that doesn't match any of the k_values in |
+ // arg_value.tests[]. In most cases, the current value of "mismatched" |
+ // would fit this requirement. But on the off-chance that it happens |
+ // to collide, we double-check. |
+ try_again: |
+ for (int n = arg_value.size; n-- > 0;) { |
+ if (mismatched == arg_value.tests[n].k_value) { |
+ ++mismatched; |
+ goto try_again; |
+ } |
+ } |
+ // Now verify that we see the expected return value from system calls, |
+ // if we pass a value that doesn't match any of the conditions (i.e. this |
+ // is testing the "else" clause of the conditions). |
+ args[arg_value.argno] = mismatched; |
+ if (arg_value.err) { |
+ VerifyErrno(sysno, args, arg_value.err); |
+ } else { |
+ Verify(sysno, args, *arg_value.arg_value); |
+ } |
+ // Reset args[arg_value.argno]. This is not technically needed, but it |
+ // makes it easier to reason about the correctness of our tests. |
+ args[arg_value.argno] = 0; |
+ } |
+ |
+ void VerifyErrno(int sysno, intptr_t* args, int err) { |
+ // We installed BPF filters that return different errno values |
+ // based on the system call number and the parameters that we decided |
+ // to pass in. Verify that this condition holds true. |
+ BPF_ASSERT( |
+ Syscall::Call( |
+ sysno, args[0], args[1], args[2], args[3], args[4], args[5]) == |
+ -err); |
+ } |
+ |
+ // Vector of ArgValue trees. These trees define all the possible boolean |
+ // expressions that we want to turn into a BPF filter program. |
+ std::vector<ArgValue*> arg_values_; |
+ |
+ // Don't increase these values. We are pushing the limits of the maximum |
+ // BPF program that the kernel will allow us to load. If the values are |
+ // increased too much, the test will start failing. |
+#if defined(__aarch64__) |
+ static const int kNumTestCases = 30; |
+#else |
+ static const int kNumTestCases = 40; |
+#endif |
+ static const int kMaxFanOut = 3; |
+ static const int kMaxArgs = 6; |
+}; |
+ |
+class EqualityStressTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ explicit EqualityStressTestPolicy(EqualityStressTest* aux) : aux_(aux) {} |
+ virtual ~EqualityStressTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ return aux_->Policy(sysno); |
+ } |
+ |
+ private: |
+ EqualityStressTest* aux_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(EqualityStressTestPolicy); |
+}; |
+ |
+BPF_TEST(SandboxBPF, |
+ EqualityTests, |
+ EqualityStressTestPolicy, |
+ EqualityStressTest /* (*BPF_AUX) */) { |
+ BPF_AUX->VerifyFilter(); |
+} |
+ |
+class EqualityArgumentWidthPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ EqualityArgumentWidthPolicy() {} |
+ virtual ~EqualityArgumentWidthPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(EqualityArgumentWidthPolicy); |
+}; |
+ |
+ResultExpr EqualityArgumentWidthPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ if (sysno == __NR_uname) { |
+ const Arg<int> option(0); |
+ const Arg<uint32_t> arg32(1); |
+ const Arg<uint64_t> arg64(1); |
+ return Switch(option) |
+ .Case(0, If(arg32 == 0x55555555, Error(1)).Else(Error(2))) |
+#if __SIZEOF_POINTER__ > 4 |
+ .Case(1, If(arg64 == 0x55555555AAAAAAAAULL, Error(1)).Else(Error(2))) |
+#endif |
+ .Default(Error(3)); |
+ } |
+ return Allow(); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, EqualityArgumentWidth, EqualityArgumentWidthPolicy) { |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0x55555555) == -1); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 0, 0xAAAAAAAA) == -2); |
+#if __SIZEOF_POINTER__ > 4 |
+ // On 32bit machines, there is no way to pass a 64bit argument through the |
+ // syscall interface. So, we have to skip the part of the test that requires |
+ // 64bit arguments. |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x55555555AAAAAAAAULL) == -1); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555500000000ULL) == -2); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x5555555511111111ULL) == -2); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 1, 0x11111111AAAAAAAAULL) == -2); |
+#endif |
+} |
+ |
+#if __SIZEOF_POINTER__ > 4 |
+// On 32bit machines, there is no way to pass a 64bit argument through the |
+// syscall interface. So, we have to skip the part of the test that requires |
+// 64bit arguments. |
+BPF_DEATH_TEST_C(SandboxBPF, |
+ EqualityArgumentUnallowed64bit, |
+ DEATH_MESSAGE("Unexpected 64bit argument detected"), |
+ EqualityArgumentWidthPolicy) { |
+ Syscall::Call(__NR_uname, 0, 0x5555555555555555ULL); |
+} |
+#endif |
+ |
+class EqualityWithNegativeArgumentsPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ EqualityWithNegativeArgumentsPolicy() {} |
+ virtual ~EqualityWithNegativeArgumentsPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ if (sysno == __NR_uname) { |
+ // TODO(mdempsky): This currently can't be Arg<int> because then |
+ // 0xFFFFFFFF will be treated as a (signed) int, and then when |
+ // Arg::EqualTo casts it to uint64_t, it will be sign extended. |
+ const Arg<unsigned> arg(0); |
+ return If(arg == 0xFFFFFFFF, Error(1)).Else(Error(2)); |
+ } |
+ return Allow(); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(EqualityWithNegativeArgumentsPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, |
+ EqualityWithNegativeArguments, |
+ EqualityWithNegativeArgumentsPolicy) { |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF) == -1); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, -1) == -1); |
+ BPF_ASSERT(Syscall::Call(__NR_uname, -1LL) == -1); |
+} |
+ |
+#if __SIZEOF_POINTER__ > 4 |
+BPF_DEATH_TEST_C(SandboxBPF, |
+ EqualityWithNegative64bitArguments, |
+ DEATH_MESSAGE("Unexpected 64bit argument detected"), |
+ EqualityWithNegativeArgumentsPolicy) { |
+ // When expecting a 32bit system call argument, we look at the MSB of the |
+ // 64bit value and allow both "0" and "-1". But the latter is allowed only |
+ // iff the LSB was negative. So, this death test should error out. |
+ BPF_ASSERT(Syscall::Call(__NR_uname, 0xFFFFFFFF00000000LL) == -1); |
+} |
+#endif |
+ |
+class AllBitTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ AllBitTestPolicy() {} |
+ virtual ~AllBitTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ static ResultExpr HasAllBits32(uint32_t bits); |
+ static ResultExpr HasAllBits64(uint64_t bits); |
+ |
+ DISALLOW_COPY_AND_ASSIGN(AllBitTestPolicy); |
+}; |
+ |
+ResultExpr AllBitTestPolicy::HasAllBits32(uint32_t bits) { |
+ if (bits == 0) { |
+ return Error(1); |
+ } |
+ const Arg<uint32_t> arg(1); |
+ return If((arg & bits) == bits, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr AllBitTestPolicy::HasAllBits64(uint64_t bits) { |
+ if (bits == 0) { |
+ return Error(1); |
+ } |
+ const Arg<uint64_t> arg(1); |
+ return If((arg & bits) == bits, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr AllBitTestPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // Test masked-equality cases that should trigger the "has all bits" |
+ // peephole optimizations. We try to find bitmasks that could conceivably |
+ // touch corner cases. |
+ // For all of these tests, we override the uname(). We can make use with |
+ // a single system call number, as we use the first system call argument to |
+ // select the different bit masks that we want to test against. |
+ if (sysno == __NR_uname) { |
+ const Arg<int> option(0); |
+ return Switch(option) |
+ .Case(0, HasAllBits32(0x0)) |
+ .Case(1, HasAllBits32(0x1)) |
+ .Case(2, HasAllBits32(0x3)) |
+ .Case(3, HasAllBits32(0x80000000)) |
+#if __SIZEOF_POINTER__ > 4 |
+ .Case(4, HasAllBits64(0x0)) |
+ .Case(5, HasAllBits64(0x1)) |
+ .Case(6, HasAllBits64(0x3)) |
+ .Case(7, HasAllBits64(0x80000000)) |
+ .Case(8, HasAllBits64(0x100000000ULL)) |
+ .Case(9, HasAllBits64(0x300000000ULL)) |
+ .Case(10, HasAllBits64(0x100000001ULL)) |
+#endif |
+ .Default(Kill("Invalid test case number")); |
+ } |
+ return Allow(); |
+} |
+ |
+// Define a macro that performs tests using our test policy. |
+// NOTE: Not all of the arguments in this macro are actually used! |
+// They are here just to serve as documentation of the conditions |
+// implemented in the test policy. |
+// Most notably, "op" and "mask" are unused by the macro. If you want |
+// to make changes to these values, you will have to edit the |
+// test policy instead. |
+#define BITMASK_TEST(testcase, arg, op, mask, expected_value) \ |
+ BPF_ASSERT(Syscall::Call(__NR_uname, (testcase), (arg)) == (expected_value)) |
+ |
+// Our uname() system call returns ErrorCode(1) for success and |
+// ErrorCode(0) for failure. Syscall::Call() turns this into an |
+// exit code of -1 or 0. |
+#define EXPECT_FAILURE 0 |
+#define EXPECT_SUCCESS -1 |
+ |
+// A couple of our tests behave differently on 32bit and 64bit systems, as |
+// there is no way for a 32bit system call to pass in a 64bit system call |
+// argument "arg". |
+// We expect these tests to succeed on 64bit systems, but to tail on 32bit |
+// systems. |
+#define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE) |
+BPF_TEST_C(SandboxBPF, AllBitTests, AllBitTestPolicy) { |
+ // 32bit test: all of 0x0 (should always be true) |
+ BITMASK_TEST( 0, 0, ALLBITS32, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 0, 1, ALLBITS32, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 0, 3, ALLBITS32, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 0, 0xFFFFFFFFU, ALLBITS32, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 0, -1LL, ALLBITS32, 0, EXPECT_SUCCESS); |
+ |
+ // 32bit test: all of 0x1 |
+ BITMASK_TEST( 1, 0, ALLBITS32, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 1, 1, ALLBITS32, 0x1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 1, 2, ALLBITS32, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 1, 3, ALLBITS32, 0x1, EXPECT_SUCCESS); |
+ |
+ // 32bit test: all of 0x3 |
+ BITMASK_TEST( 2, 0, ALLBITS32, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 2, 1, ALLBITS32, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 2, 2, ALLBITS32, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 2, 3, ALLBITS32, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 2, 7, ALLBITS32, 0x3, EXPECT_SUCCESS); |
+ |
+ // 32bit test: all of 0x80000000 |
+ BITMASK_TEST( 3, 0, ALLBITS32, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 3, 0x40000000U, ALLBITS32, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 3, 0x80000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 3, 0xC0000000U, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 3, -0x80000000LL, ALLBITS32, 0x80000000, EXPECT_SUCCESS); |
+ |
+#if __SIZEOF_POINTER__ > 4 |
+ // 64bit test: all of 0x0 (should always be true) |
+ BITMASK_TEST( 4, 0, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, 1, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, 3, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, 0xFFFFFFFFU, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, 0x100000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, 0x300000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4,0x8000000000000000LL, ALLBITS64, 0, EXPECT_SUCCESS); |
+ BITMASK_TEST( 4, -1LL, ALLBITS64, 0, EXPECT_SUCCESS); |
+ |
+ // 64bit test: all of 0x1 |
+ BITMASK_TEST( 5, 0, ALLBITS64, 1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 1, ALLBITS64, 1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 2, ALLBITS64, 1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 3, ALLBITS64, 1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 0x100000000LL, ALLBITS64, 1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 0x100000001LL, ALLBITS64, 1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 0x100000002LL, ALLBITS64, 1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 0x100000003LL, ALLBITS64, 1, EXPECT_SUCCESS); |
+ |
+ // 64bit test: all of 0x3 |
+ BITMASK_TEST( 6, 0, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 1, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 2, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 3, ALLBITS64, 3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 7, ALLBITS64, 3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000000LL, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 0x100000001LL, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 0x100000002LL, ALLBITS64, 3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 0x100000003LL, ALLBITS64, 3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000007LL, ALLBITS64, 3, EXPECT_SUCCESS); |
+ |
+ // 64bit test: all of 0x80000000 |
+ BITMASK_TEST( 7, 0, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x40000000U, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x80000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0xC0000000U, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, -0x80000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0x100000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x140000000LL, ALLBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0x1C0000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, -0x180000000LL, ALLBITS64, 0x80000000, EXPECT_SUCCESS); |
+ |
+ // 64bit test: all of 0x100000000 |
+ BITMASK_TEST( 8, 0x000000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x100000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x200000000LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x300000000LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x000000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x100000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x200000001LL, ALLBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x300000001LL, ALLBITS64,0x100000000, EXPT64_SUCCESS); |
+ |
+ // 64bit test: all of 0x300000000 |
+ BITMASK_TEST( 9, 0x000000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x100000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x200000000LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x300000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x700000000LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x000000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x100000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x200000001LL, ALLBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x300000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x700000001LL, ALLBITS64,0x300000000, EXPT64_SUCCESS); |
+ |
+ // 64bit test: all of 0x100000001 |
+ BITMASK_TEST(10, 0x000000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
+ BITMASK_TEST(10, 0x000000001LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
+ BITMASK_TEST(10, 0x100000000LL, ALLBITS64,0x100000001, EXPECT_FAILURE); |
+ BITMASK_TEST(10, 0x100000001LL, ALLBITS64,0x100000001, EXPT64_SUCCESS); |
+ BITMASK_TEST(10, 0xFFFFFFFFU, ALLBITS64,0x100000001, EXPECT_FAILURE); |
+ BITMASK_TEST(10, -1L, ALLBITS64,0x100000001, EXPT64_SUCCESS); |
+#endif |
+} |
+ |
+class AnyBitTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ AnyBitTestPolicy() {} |
+ virtual ~AnyBitTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ static ResultExpr HasAnyBits32(uint32_t); |
+ static ResultExpr HasAnyBits64(uint64_t); |
+ |
+ DISALLOW_COPY_AND_ASSIGN(AnyBitTestPolicy); |
+}; |
+ |
+ResultExpr AnyBitTestPolicy::HasAnyBits32(uint32_t bits) { |
+ if (bits == 0) { |
+ return Error(0); |
+ } |
+ const Arg<uint32_t> arg(1); |
+ return If((arg & bits) != 0, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr AnyBitTestPolicy::HasAnyBits64(uint64_t bits) { |
+ if (bits == 0) { |
+ return Error(0); |
+ } |
+ const Arg<uint64_t> arg(1); |
+ return If((arg & bits) != 0, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr AnyBitTestPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // Test masked-equality cases that should trigger the "has any bits" |
+ // peephole optimizations. We try to find bitmasks that could conceivably |
+ // touch corner cases. |
+ // For all of these tests, we override the uname(). We can make use with |
+ // a single system call number, as we use the first system call argument to |
+ // select the different bit masks that we want to test against. |
+ if (sysno == __NR_uname) { |
+ const Arg<int> option(0); |
+ return Switch(option) |
+ .Case(0, HasAnyBits32(0x0)) |
+ .Case(1, HasAnyBits32(0x1)) |
+ .Case(2, HasAnyBits32(0x3)) |
+ .Case(3, HasAnyBits32(0x80000000)) |
+#if __SIZEOF_POINTER__ > 4 |
+ .Case(4, HasAnyBits64(0x0)) |
+ .Case(5, HasAnyBits64(0x1)) |
+ .Case(6, HasAnyBits64(0x3)) |
+ .Case(7, HasAnyBits64(0x80000000)) |
+ .Case(8, HasAnyBits64(0x100000000ULL)) |
+ .Case(9, HasAnyBits64(0x300000000ULL)) |
+ .Case(10, HasAnyBits64(0x100000001ULL)) |
+#endif |
+ .Default(Kill("Invalid test case number")); |
+ } |
+ return Allow(); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, AnyBitTests, AnyBitTestPolicy) { |
+ // 32bit test: any of 0x0 (should always be false) |
+ BITMASK_TEST( 0, 0, ANYBITS32, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 0, 1, ANYBITS32, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 0, 3, ANYBITS32, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 0, 0xFFFFFFFFU, ANYBITS32, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 0, -1LL, ANYBITS32, 0x0, EXPECT_FAILURE); |
+ |
+ // 32bit test: any of 0x1 |
+ BITMASK_TEST( 1, 0, ANYBITS32, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 1, 1, ANYBITS32, 0x1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 1, 2, ANYBITS32, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 1, 3, ANYBITS32, 0x1, EXPECT_SUCCESS); |
+ |
+ // 32bit test: any of 0x3 |
+ BITMASK_TEST( 2, 0, ANYBITS32, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 2, 1, ANYBITS32, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 2, 2, ANYBITS32, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 2, 3, ANYBITS32, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 2, 7, ANYBITS32, 0x3, EXPECT_SUCCESS); |
+ |
+ // 32bit test: any of 0x80000000 |
+ BITMASK_TEST( 3, 0, ANYBITS32, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 3, 0x40000000U, ANYBITS32, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 3, 0x80000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 3, 0xC0000000U, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 3, -0x80000000LL, ANYBITS32, 0x80000000, EXPECT_SUCCESS); |
+ |
+#if __SIZEOF_POINTER__ > 4 |
+ // 64bit test: any of 0x0 (should always be false) |
+ BITMASK_TEST( 4, 0, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, 1, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, 3, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, 0xFFFFFFFFU, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, 0x100000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, 0x300000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4,0x8000000000000000LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ BITMASK_TEST( 4, -1LL, ANYBITS64, 0x0, EXPECT_FAILURE); |
+ |
+ // 64bit test: any of 0x1 |
+ BITMASK_TEST( 5, 0, ANYBITS64, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 1, ANYBITS64, 0x1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 2, ANYBITS64, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 3, ANYBITS64, 0x1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 0x100000001LL, ANYBITS64, 0x1, EXPECT_SUCCESS); |
+ BITMASK_TEST( 5, 0x100000000LL, ANYBITS64, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 0x100000002LL, ANYBITS64, 0x1, EXPECT_FAILURE); |
+ BITMASK_TEST( 5, 0x100000003LL, ANYBITS64, 0x1, EXPECT_SUCCESS); |
+ |
+ // 64bit test: any of 0x3 |
+ BITMASK_TEST( 6, 0, ANYBITS64, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 1, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 2, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 3, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 7, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000000LL, ANYBITS64, 0x3, EXPECT_FAILURE); |
+ BITMASK_TEST( 6, 0x100000001LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000002LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000003LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ BITMASK_TEST( 6, 0x100000007LL, ANYBITS64, 0x3, EXPECT_SUCCESS); |
+ |
+ // 64bit test: any of 0x80000000 |
+ BITMASK_TEST( 7, 0, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x40000000U, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x80000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0xC0000000U, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, -0x80000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0x100000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x140000000LL, ANYBITS64, 0x80000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 7, 0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, 0x1C0000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ BITMASK_TEST( 7, -0x180000000LL, ANYBITS64, 0x80000000, EXPECT_SUCCESS); |
+ |
+ // 64bit test: any of 0x100000000 |
+ BITMASK_TEST( 8, 0x000000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x100000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x200000000LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x300000000LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x000000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x100000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 8, 0x200000001LL, ANYBITS64,0x100000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 8, 0x300000001LL, ANYBITS64,0x100000000, EXPT64_SUCCESS); |
+ |
+ // 64bit test: any of 0x300000000 |
+ BITMASK_TEST( 9, 0x000000000LL, ANYBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x100000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x200000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x300000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x700000000LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x000000001LL, ANYBITS64,0x300000000, EXPECT_FAILURE); |
+ BITMASK_TEST( 9, 0x100000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x200000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x300000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ BITMASK_TEST( 9, 0x700000001LL, ANYBITS64,0x300000000, EXPT64_SUCCESS); |
+ |
+ // 64bit test: any of 0x100000001 |
+ BITMASK_TEST( 10, 0x000000000LL, ANYBITS64,0x100000001, EXPECT_FAILURE); |
+ BITMASK_TEST( 10, 0x000000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
+ BITMASK_TEST( 10, 0x100000000LL, ANYBITS64,0x100000001, EXPT64_SUCCESS); |
+ BITMASK_TEST( 10, 0x100000001LL, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
+ BITMASK_TEST( 10, 0xFFFFFFFFU, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
+ BITMASK_TEST( 10, -1L, ANYBITS64,0x100000001, EXPECT_SUCCESS); |
+#endif |
+} |
+ |
+class MaskedEqualTestPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ MaskedEqualTestPolicy() {} |
+ virtual ~MaskedEqualTestPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ static ResultExpr MaskedEqual32(uint32_t mask, uint32_t value); |
+ static ResultExpr MaskedEqual64(uint64_t mask, uint64_t value); |
+ |
+ DISALLOW_COPY_AND_ASSIGN(MaskedEqualTestPolicy); |
+}; |
+ |
+ResultExpr MaskedEqualTestPolicy::MaskedEqual32(uint32_t mask, uint32_t value) { |
+ const Arg<uint32_t> arg(1); |
+ return If((arg & mask) == value, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr MaskedEqualTestPolicy::MaskedEqual64(uint64_t mask, uint64_t value) { |
+ const Arg<uint64_t> arg(1); |
+ return If((arg & mask) == value, Error(1)).Else(Error(0)); |
+} |
+ |
+ResultExpr MaskedEqualTestPolicy::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ |
+ if (sysno == __NR_uname) { |
+ const Arg<int> option(0); |
+ return Switch(option) |
+ .Case(0, MaskedEqual32(0x00ff00ff, 0x005500aa)) |
+#if __SIZEOF_POINTER__ > 4 |
+ .Case(1, MaskedEqual64(0x00ff00ff00000000, 0x005500aa00000000)) |
+ .Case(2, MaskedEqual64(0x00ff00ff00ff00ff, 0x005500aa005500aa)) |
+#endif |
+ .Default(Kill("Invalid test case number")); |
+ } |
+ |
+ return Allow(); |
+} |
+ |
+#define MASKEQ_TEST(rulenum, arg, expected_result) \ |
+ BPF_ASSERT(Syscall::Call(__NR_uname, (rulenum), (arg)) == (expected_result)) |
+ |
+BPF_TEST_C(SandboxBPF, MaskedEqualTests, MaskedEqualTestPolicy) { |
+ // Allowed: 0x__55__aa |
+ MASKEQ_TEST(0, 0x00000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x00000001, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x00000003, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x00000100, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x00000300, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x005500aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(0, 0x005500ab, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x005600aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(0, 0x005501aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(0, 0x005503aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(0, 0x555500aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(0, 0xaa5500aa, EXPECT_SUCCESS); |
+ |
+#if __SIZEOF_POINTER__ > 4 |
+ // Allowed: 0x__55__aa________ |
+ MASKEQ_TEST(1, 0x0000000000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000000000000010, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000000000000050, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000000100000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000000300000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000010000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x0000030000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x005500aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0x005500ab00000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x005600aa00000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(1, 0x005501aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0x005503aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0x555500aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS); |
+ MASKEQ_TEST(1, 0xaa5500aa0000cafe, EXPECT_SUCCESS); |
+ |
+ // Allowed: 0x__55__aa__55__aa |
+ MASKEQ_TEST(2, 0x0000000000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000000000000010, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000000000000050, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000000100000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000000300000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000010000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x0000030000000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x00000000005500aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x005500aa00000000, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x005500aa005500aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(2, 0x005500aa005700aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x005700aa005500aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x005500aa004500aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x004500aa005500aa, EXPECT_FAILURE); |
+ MASKEQ_TEST(2, 0x005512aa005500aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(2, 0x005500aa005534aa, EXPECT_SUCCESS); |
+ MASKEQ_TEST(2, 0xff5500aa0055ffaa, EXPECT_SUCCESS); |
+#endif |
+} |
+ |
+intptr_t PthreadTrapHandler(const struct arch_seccomp_data& args, void* aux) { |
+ if (args.args[0] != (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD)) { |
+ // We expect to get called for an attempt to fork(). No need to log that |
+ // call. But if we ever get called for anything else, we want to verbosely |
+ // print as much information as possible. |
+ const char* msg = (const char*)aux; |
+ printf( |
+ "Clone() was called with unexpected arguments\n" |
+ " nr: %d\n" |
+ " 1: 0x%llX\n" |
+ " 2: 0x%llX\n" |
+ " 3: 0x%llX\n" |
+ " 4: 0x%llX\n" |
+ " 5: 0x%llX\n" |
+ " 6: 0x%llX\n" |
+ "%s\n", |
+ args.nr, |
+ (long long)args.args[0], |
+ (long long)args.args[1], |
+ (long long)args.args[2], |
+ (long long)args.args[3], |
+ (long long)args.args[4], |
+ (long long)args.args[5], |
+ msg); |
+ } |
+ return -EPERM; |
+} |
+ |
+class PthreadPolicyEquality : public SandboxBPFDSLPolicy { |
+ public: |
+ PthreadPolicyEquality() {} |
+ virtual ~PthreadPolicyEquality() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(PthreadPolicyEquality); |
+}; |
+ |
+ResultExpr PthreadPolicyEquality::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // This policy allows creating threads with pthread_create(). But it |
+ // doesn't allow any other uses of clone(). Most notably, it does not |
+ // allow callers to implement fork() or vfork() by passing suitable flags |
+ // to the clone() system call. |
+ if (sysno == __NR_clone) { |
+ // We have seen two different valid combinations of flags. Glibc |
+ // uses the more modern flags, sets the TLS from the call to clone(), and |
+ // uses futexes to monitor threads. Android's C run-time library, doesn't |
+ // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. |
+ // More recent versions of Android don't set CLONE_DETACHED anymore, so |
+ // the last case accounts for that. |
+ // The following policy is very strict. It only allows the exact masks |
+ // that we have seen in known implementations. It is probably somewhat |
+ // stricter than what we would want to do. |
+ const uint64_t kGlibcCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | |
+ CLONE_SIGHAND | CLONE_THREAD | |
+ CLONE_SYSVSEM | CLONE_SETTLS | |
+ CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; |
+ const uint64_t kBaseAndroidCloneMask = CLONE_VM | CLONE_FS | CLONE_FILES | |
+ CLONE_SIGHAND | CLONE_THREAD | |
+ CLONE_SYSVSEM; |
+ const Arg<unsigned long> flags(0); |
+ return If(flags == kGlibcCloneMask || |
+ flags == (kBaseAndroidCloneMask | CLONE_DETACHED) || |
+ flags == kBaseAndroidCloneMask, |
+ Allow()).Else(Trap(PthreadTrapHandler, "Unknown mask")); |
+ } |
+ |
+ return Allow(); |
+} |
+ |
+class PthreadPolicyBitMask : public SandboxBPFDSLPolicy { |
+ public: |
+ PthreadPolicyBitMask() {} |
+ virtual ~PthreadPolicyBitMask() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override; |
+ |
+ private: |
+ static BoolExpr HasAnyBits(const Arg<unsigned long>& arg, unsigned long bits); |
+ static BoolExpr HasAllBits(const Arg<unsigned long>& arg, unsigned long bits); |
+ |
+ DISALLOW_COPY_AND_ASSIGN(PthreadPolicyBitMask); |
+}; |
+ |
+BoolExpr PthreadPolicyBitMask::HasAnyBits(const Arg<unsigned long>& arg, |
+ unsigned long bits) { |
+ return (arg & bits) != 0; |
+} |
+ |
+BoolExpr PthreadPolicyBitMask::HasAllBits(const Arg<unsigned long>& arg, |
+ unsigned long bits) { |
+ return (arg & bits) == bits; |
+} |
+ |
+ResultExpr PthreadPolicyBitMask::EvaluateSyscall(int sysno) const { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ // This policy allows creating threads with pthread_create(). But it |
+ // doesn't allow any other uses of clone(). Most notably, it does not |
+ // allow callers to implement fork() or vfork() by passing suitable flags |
+ // to the clone() system call. |
+ if (sysno == __NR_clone) { |
+ // We have seen two different valid combinations of flags. Glibc |
+ // uses the more modern flags, sets the TLS from the call to clone(), and |
+ // uses futexes to monitor threads. Android's C run-time library, doesn't |
+ // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED. |
+ // The following policy allows for either combination of flags, but it |
+ // is generally a little more conservative than strictly necessary. We |
+ // err on the side of rather safe than sorry. |
+ // Very noticeably though, we disallow fork() (which is often just a |
+ // wrapper around clone()). |
+ const unsigned long kMandatoryFlags = CLONE_VM | CLONE_FS | CLONE_FILES | |
+ CLONE_SIGHAND | CLONE_THREAD | |
+ CLONE_SYSVSEM; |
+ const unsigned long kFutexFlags = |
+ CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; |
+ const unsigned long kNoopFlags = CLONE_DETACHED; |
+ const unsigned long kKnownFlags = |
+ kMandatoryFlags | kFutexFlags | kNoopFlags; |
+ |
+ const Arg<unsigned long> flags(0); |
+ return If(HasAnyBits(flags, ~kKnownFlags), |
+ Trap(PthreadTrapHandler, "Unexpected CLONE_XXX flag found")) |
+ .ElseIf(!HasAllBits(flags, kMandatoryFlags), |
+ Trap(PthreadTrapHandler, |
+ "Missing mandatory CLONE_XXX flags " |
+ "when creating new thread")) |
+ .ElseIf( |
+ !HasAllBits(flags, kFutexFlags) && HasAnyBits(flags, kFutexFlags), |
+ Trap(PthreadTrapHandler, |
+ "Must set either all or none of the TLS and futex bits in " |
+ "call to clone()")) |
+ .Else(Allow()); |
+ } |
+ |
+ return Allow(); |
+} |
+ |
+static void* ThreadFnc(void* arg) { |
+ ++*reinterpret_cast<int*>(arg); |
+ Syscall::Call(__NR_futex, arg, FUTEX_WAKE, 1, 0, 0, 0); |
+ return NULL; |
+} |
+ |
+static void PthreadTest() { |
+ // Attempt to start a joinable thread. This should succeed. |
+ pthread_t thread; |
+ int thread_ran = 0; |
+ BPF_ASSERT(!pthread_create(&thread, NULL, ThreadFnc, &thread_ran)); |
+ BPF_ASSERT(!pthread_join(thread, NULL)); |
+ BPF_ASSERT(thread_ran); |
+ |
+ // Attempt to start a detached thread. This should succeed. |
+ thread_ran = 0; |
+ pthread_attr_t attr; |
+ BPF_ASSERT(!pthread_attr_init(&attr)); |
+ BPF_ASSERT(!pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); |
+ BPF_ASSERT(!pthread_create(&thread, &attr, ThreadFnc, &thread_ran)); |
+ BPF_ASSERT(!pthread_attr_destroy(&attr)); |
+ while (Syscall::Call(__NR_futex, &thread_ran, FUTEX_WAIT, 0, 0, 0, 0) == |
+ -EINTR) { |
+ } |
+ BPF_ASSERT(thread_ran); |
+ |
+ // Attempt to fork() a process using clone(). This should fail. We use the |
+ // same flags that glibc uses when calling fork(). But we don't actually |
+ // try calling the fork() implementation in the C run-time library, as |
+ // run-time libraries other than glibc might call __NR_fork instead of |
+ // __NR_clone, and that would introduce a bogus test failure. |
+ int pid; |
+ BPF_ASSERT(Syscall::Call(__NR_clone, |
+ CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | SIGCHLD, |
+ 0, |
+ 0, |
+ &pid) == -EPERM); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, PthreadEquality, PthreadPolicyEquality) { |
+ PthreadTest(); |
+} |
+ |
+BPF_TEST_C(SandboxBPF, PthreadBitMask, PthreadPolicyBitMask) { |
+ PthreadTest(); |
+} |
+ |
+// libc might not define these even though the kernel supports it. |
+#ifndef PTRACE_O_TRACESECCOMP |
+#define PTRACE_O_TRACESECCOMP 0x00000080 |
+#endif |
+ |
+#ifdef PTRACE_EVENT_SECCOMP |
+#define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP) |
+#else |
+// When Debian/Ubuntu backported seccomp-bpf support into earlier kernels, they |
+// changed the value of PTRACE_EVENT_SECCOMP from 7 to 8, since 7 was taken by |
+// PTRACE_EVENT_STOP (upstream chose to renumber PTRACE_EVENT_STOP to 128). If |
+// PTRACE_EVENT_SECCOMP isn't defined, we have no choice but to consider both |
+// values here. |
+#define IS_SECCOMP_EVENT(status) ((status >> 16) == 7 || (status >> 16) == 8) |
+#endif |
+ |
+#if defined(__arm__) |
+#ifndef PTRACE_SET_SYSCALL |
+#define PTRACE_SET_SYSCALL 23 |
+#endif |
+#endif |
+ |
+#if defined(__aarch64__) |
+#ifndef PTRACE_GETREGS |
+#define PTRACE_GETREGS 12 |
+#endif |
+#endif |
+ |
+#if defined(__aarch64__) |
+#ifndef PTRACE_SETREGS |
+#define PTRACE_SETREGS 13 |
+#endif |
+#endif |
+ |
+// Changes the syscall to run for a child being sandboxed using seccomp-bpf with |
+// PTRACE_O_TRACESECCOMP. Should only be called when the child is stopped on |
+// PTRACE_EVENT_SECCOMP. |
+// |
+// regs should contain the current set of registers of the child, obtained using |
+// PTRACE_GETREGS. |
+// |
+// Depending on the architecture, this may modify regs, so the caller is |
+// responsible for committing these changes using PTRACE_SETREGS. |
+long SetSyscall(pid_t pid, regs_struct* regs, int syscall_number) { |
+#if defined(__arm__) |
+ // On ARM, the syscall is changed using PTRACE_SET_SYSCALL. We cannot use the |
+ // libc ptrace call as the request parameter is an enum, and |
+ // PTRACE_SET_SYSCALL may not be in the enum. |
+ return syscall(__NR_ptrace, PTRACE_SET_SYSCALL, pid, NULL, syscall_number); |
+#endif |
+ |
+ SECCOMP_PT_SYSCALL(*regs) = syscall_number; |
+ return 0; |
+} |
+ |
+const uint16_t kTraceData = 0xcc; |
+ |
+class TraceAllPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ TraceAllPolicy() {} |
+ virtual ~TraceAllPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int system_call_number) const override { |
+ return Trace(kTraceData); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(TraceAllPolicy); |
+}; |
+ |
+SANDBOX_TEST(SandboxBPF, DISABLE_ON_TSAN(SeccompRetTrace)) { |
+ if (SandboxBPF::SupportsSeccompSandbox(-1) != |
+ sandbox::SandboxBPF::STATUS_AVAILABLE) { |
+ return; |
+ } |
+ |
+// This test is disabled on arm due to a kernel bug. |
+// See https://code.google.com/p/chromium/issues/detail?id=383977 |
+#if defined(__arm__) || defined(__aarch64__) |
+ printf("This test is currently disabled on ARM32/64 due to a kernel bug."); |
+ return; |
+#endif |
+ |
+#if defined(__mips__) |
+ // TODO: Figure out how to support specificity of handling indirect syscalls |
+ // in this test and enable it. |
+ printf("This test is currently disabled on MIPS."); |
+ return; |
+#endif |
+ |
+ pid_t pid = fork(); |
+ BPF_ASSERT_NE(-1, pid); |
+ if (pid == 0) { |
+ pid_t my_pid = getpid(); |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_TRACEME, -1, NULL, NULL)); |
+ BPF_ASSERT_EQ(0, raise(SIGSTOP)); |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new TraceAllPolicy); |
+ BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED)); |
+ |
+ // getpid is allowed. |
+ BPF_ASSERT_EQ(my_pid, syscall(__NR_getpid)); |
+ |
+ // write to stdout is skipped and returns a fake value. |
+ BPF_ASSERT_EQ(kExpectedReturnValue, |
+ syscall(__NR_write, STDOUT_FILENO, "A", 1)); |
+ |
+ // kill is rewritten to exit(kExpectedReturnValue). |
+ syscall(__NR_kill, my_pid, SIGKILL); |
+ |
+ // Should not be reached. |
+ BPF_ASSERT(false); |
+ } |
+ |
+ int status; |
+ BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, WUNTRACED)) != -1); |
+ BPF_ASSERT(WIFSTOPPED(status)); |
+ |
+ BPF_ASSERT_NE(-1, |
+ ptrace(PTRACE_SETOPTIONS, |
+ pid, |
+ NULL, |
+ reinterpret_cast<void*>(PTRACE_O_TRACESECCOMP))); |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
+ while (true) { |
+ BPF_ASSERT(HANDLE_EINTR(waitpid(pid, &status, 0)) != -1); |
+ if (WIFEXITED(status) || WIFSIGNALED(status)) { |
+ BPF_ASSERT(WIFEXITED(status)); |
+ BPF_ASSERT_EQ(kExpectedReturnValue, WEXITSTATUS(status)); |
+ break; |
+ } |
+ |
+ if (!WIFSTOPPED(status) || WSTOPSIG(status) != SIGTRAP || |
+ !IS_SECCOMP_EVENT(status)) { |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
+ continue; |
+ } |
+ |
+ unsigned long data; |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_GETEVENTMSG, pid, NULL, &data)); |
+ BPF_ASSERT_EQ(kTraceData, data); |
+ |
+ regs_struct regs; |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_GETREGS, pid, NULL, ®s)); |
+ switch (SECCOMP_PT_SYSCALL(regs)) { |
+ case __NR_write: |
+ // Skip writes to stdout, make it return kExpectedReturnValue. Allow |
+ // writes to stderr so that BPF_ASSERT messages show up. |
+ if (SECCOMP_PT_PARM1(regs) == STDOUT_FILENO) { |
+ BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, -1)); |
+ SECCOMP_PT_RESULT(regs) = kExpectedReturnValue; |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); |
+ } |
+ break; |
+ |
+ case __NR_kill: |
+ // Rewrite to exit(kExpectedReturnValue). |
+ BPF_ASSERT_NE(-1, SetSyscall(pid, ®s, __NR_exit)); |
+ SECCOMP_PT_PARM1(regs) = kExpectedReturnValue; |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS, pid, NULL, ®s)); |
+ break; |
+ |
+ default: |
+ // Allow all other syscalls. |
+ break; |
+ } |
+ |
+ BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT, pid, NULL, NULL)); |
+ } |
+} |
+ |
+// Android does not expose pread64 nor pwrite64. |
+#if !defined(OS_ANDROID) |
+ |
+bool FullPwrite64(int fd, const char* buffer, size_t count, off64_t offset) { |
+ while (count > 0) { |
+ const ssize_t transfered = |
+ HANDLE_EINTR(pwrite64(fd, buffer, count, offset)); |
+ if (transfered <= 0 || static_cast<size_t>(transfered) > count) { |
+ return false; |
+ } |
+ count -= transfered; |
+ buffer += transfered; |
+ offset += transfered; |
+ } |
+ return true; |
+} |
+ |
+bool FullPread64(int fd, char* buffer, size_t count, off64_t offset) { |
+ while (count > 0) { |
+ const ssize_t transfered = HANDLE_EINTR(pread64(fd, buffer, count, offset)); |
+ if (transfered <= 0 || static_cast<size_t>(transfered) > count) { |
+ return false; |
+ } |
+ count -= transfered; |
+ buffer += transfered; |
+ offset += transfered; |
+ } |
+ return true; |
+} |
+ |
+bool pread_64_was_forwarded = false; |
+ |
+class TrapPread64Policy : public SandboxBPFDSLPolicy { |
+ public: |
+ TrapPread64Policy() {} |
+ virtual ~TrapPread64Policy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int system_call_number) const override { |
+ // Set the global environment for unsafe traps once. |
+ if (system_call_number == MIN_SYSCALL) { |
+ EnableUnsafeTraps(); |
+ } |
+ |
+ if (system_call_number == __NR_pread64) { |
+ return UnsafeTrap(ForwardPreadHandler, NULL); |
+ } |
+ return Allow(); |
+ } |
+ |
+ private: |
+ static intptr_t ForwardPreadHandler(const struct arch_seccomp_data& args, |
+ void* aux) { |
+ BPF_ASSERT(args.nr == __NR_pread64); |
+ pread_64_was_forwarded = true; |
+ |
+ return SandboxBPF::ForwardSyscall(args); |
+ } |
+ |
+ DISALLOW_COPY_AND_ASSIGN(TrapPread64Policy); |
+}; |
+ |
+// pread(2) takes a 64 bits offset. On 32 bits systems, it will be split |
+// between two arguments. In this test, we make sure that ForwardSyscall() can |
+// forward it properly. |
+BPF_TEST_C(SandboxBPF, Pread64, TrapPread64Policy) { |
+ ScopedTemporaryFile temp_file; |
+ const uint64_t kLargeOffset = (static_cast<uint64_t>(1) << 32) | 0xBEEF; |
+ const char kTestString[] = "This is a test!"; |
+ BPF_ASSERT(FullPwrite64( |
+ temp_file.fd(), kTestString, sizeof(kTestString), kLargeOffset)); |
+ |
+ char read_test_string[sizeof(kTestString)] = {0}; |
+ BPF_ASSERT(FullPread64(temp_file.fd(), |
+ read_test_string, |
+ sizeof(read_test_string), |
+ kLargeOffset)); |
+ BPF_ASSERT_EQ(0, memcmp(kTestString, read_test_string, sizeof(kTestString))); |
+ BPF_ASSERT(pread_64_was_forwarded); |
+} |
+ |
+#endif // !defined(OS_ANDROID) |
+ |
+void* TsyncApplyToTwoThreadsFunc(void* cond_ptr) { |
+ base::WaitableEvent* event = static_cast<base::WaitableEvent*>(cond_ptr); |
+ |
+ // Wait for the main thread to signal that the filter has been applied. |
+ if (!event->IsSignaled()) { |
+ event->Wait(); |
+ } |
+ |
+ BPF_ASSERT(event->IsSignaled()); |
+ |
+ BlacklistNanosleepPolicy::AssertNanosleepFails(); |
+ |
+ return NULL; |
+} |
+ |
+SANDBOX_TEST(SandboxBPF, Tsync) { |
+ if (SandboxBPF::SupportsSeccompThreadFilterSynchronization() != |
+ SandboxBPF::STATUS_AVAILABLE) { |
+ return; |
+ } |
+ |
+ base::WaitableEvent event(true, false); |
+ |
+ // Create a thread on which to invoke the blocked syscall. |
+ pthread_t thread; |
+ BPF_ASSERT_EQ( |
+ 0, pthread_create(&thread, NULL, &TsyncApplyToTwoThreadsFunc, &event)); |
+ |
+ // Test that nanoseelp success. |
+ const struct timespec ts = {0, 0}; |
+ BPF_ASSERT_EQ(0, HANDLE_EINTR(syscall(__NR_nanosleep, &ts, NULL))); |
+ |
+ // Engage the sandbox. |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new BlacklistNanosleepPolicy()); |
+ BPF_ASSERT(sandbox.StartSandbox(SandboxBPF::PROCESS_MULTI_THREADED)); |
+ |
+ // This thread should have the filter applied as well. |
+ BlacklistNanosleepPolicy::AssertNanosleepFails(); |
+ |
+ // Signal the condition to invoke the system call. |
+ event.Signal(); |
+ |
+ // Wait for the thread to finish. |
+ BPF_ASSERT_EQ(0, pthread_join(thread, NULL)); |
+} |
+ |
+class AllowAllPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ AllowAllPolicy() {} |
+ virtual ~AllowAllPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ return Allow(); |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy); |
+}; |
+ |
+SANDBOX_DEATH_TEST( |
+ SandboxBPF, |
+ StartMultiThreadedAsSingleThreaded, |
+ DEATH_MESSAGE("Cannot start sandbox; process is already multi-threaded")) { |
+ base::Thread thread("sandbox.linux.StartMultiThreadedAsSingleThreaded"); |
+ BPF_ASSERT(thread.Start()); |
+ |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new AllowAllPolicy()); |
+ BPF_ASSERT(!sandbox.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED)); |
+} |
+ |
+// http://crbug.com/407357 |
+#if !defined(THREAD_SANITIZER) |
+SANDBOX_DEATH_TEST( |
+ SandboxBPF, |
+ StartSingleThreadedAsMultiThreaded, |
+ DEATH_MESSAGE( |
+ "Cannot start sandbox; process may be single-threaded when " |
+ "reported as not")) { |
+ SandboxBPF sandbox; |
+ sandbox.SetSandboxPolicy(new AllowAllPolicy()); |
+ BPF_ASSERT(!sandbox.StartSandbox(SandboxBPF::PROCESS_MULTI_THREADED)); |
+} |
+#endif // !defined(THREAD_SANITIZER) |
+ |
+// A stub handler for the UnsafeTrap. Never called. |
+intptr_t NoOpHandler(const struct arch_seccomp_data& args, void*) { |
+ return -1; |
+} |
+ |
+class UnsafeTrapWithCondPolicy : public SandboxBPFDSLPolicy { |
+ public: |
+ UnsafeTrapWithCondPolicy() {} |
+ virtual ~UnsafeTrapWithCondPolicy() {} |
+ |
+ virtual ResultExpr EvaluateSyscall(int sysno) const override { |
+ DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); |
+ setenv(kSandboxDebuggingEnv, "t", 0); |
+ Die::SuppressInfoMessages(true); |
+ |
+ if (SandboxBPF::IsRequiredForUnsafeTrap(sysno)) |
+ return Allow(); |
+ |
+ switch (sysno) { |
+ case __NR_uname: { |
+ const Arg<uint32_t> arg(0); |
+ return If(arg == 0, Allow()).Else(Error(EPERM)); |
+ } |
+ case __NR_setgid: { |
+ const Arg<uint32_t> arg(0); |
+ return Switch(arg) |
+ .Case(100, Error(ENOMEM)) |
+ .Case(200, Error(ENOSYS)) |
+ .Default(Error(EPERM)); |
+ } |
+ case __NR_close: |
+ case __NR_exit_group: |
+ case __NR_write: |
+ return Allow(); |
+ case __NR_getppid: |
+ return UnsafeTrap(NoOpHandler, NULL); |
+ default: |
+ return Error(EPERM); |
+ } |
+ } |
+ |
+ private: |
+ DISALLOW_COPY_AND_ASSIGN(UnsafeTrapWithCondPolicy); |
+}; |
+ |
+BPF_TEST_C(SandboxBPF, UnsafeTrapWithCond, UnsafeTrapWithCondPolicy) { |
+ BPF_ASSERT_EQ(-1, syscall(__NR_uname, 0)); |
+ BPF_ASSERT_EQ(EFAULT, errno); |
+ |
+ BPF_ASSERT_EQ(-1, syscall(__NR_uname, 1)); |
+ BPF_ASSERT_EQ(EPERM, errno); |
+ |
+ BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 100)); |
+ BPF_ASSERT_EQ(ENOMEM, errno); |
+ |
+ BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 200)); |
+ BPF_ASSERT_EQ(ENOSYS, errno); |
+ |
+ BPF_ASSERT_EQ(-1, syscall(__NR_setgid, 300)); |
+ BPF_ASSERT_EQ(EPERM, errno); |
+} |
+ |
+} // namespace |
+ |
+} // namespace bpf_dsl |
+} // namespace sandbox |