| Index: sandbox/linux/seccomp-bpf/codegen.cc
|
| diff --git a/sandbox/linux/seccomp-bpf/codegen.cc b/sandbox/linux/seccomp-bpf/codegen.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8169840a340310b9c26f75c534645209af926b5f
|
| --- /dev/null
|
| +++ b/sandbox/linux/seccomp-bpf/codegen.cc
|
| @@ -0,0 +1,698 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "sandbox/linux/seccomp-bpf/codegen.h"
|
| +
|
| +#include <stdio.h>
|
| +
|
| +#include <set>
|
| +
|
| +#include "base/logging.h"
|
| +#include "sandbox/linux/seccomp-bpf/basicblock.h"
|
| +#include "sandbox/linux/seccomp-bpf/die.h"
|
| +#include "sandbox/linux/seccomp-bpf/instruction.h"
|
| +#include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
|
| +#include "sandbox/linux/seccomp-bpf/trap.h"
|
| +
|
| +namespace sandbox {
|
| +
|
| +CodeGen::CodeGen() : compiled_(false) {}
|
| +
|
| +CodeGen::~CodeGen() {
|
| + for (Instructions::iterator iter = instructions_.begin();
|
| + iter != instructions_.end();
|
| + ++iter) {
|
| + delete *iter;
|
| + }
|
| + for (BasicBlocks::iterator iter = basic_blocks_.begin();
|
| + iter != basic_blocks_.end();
|
| + ++iter) {
|
| + delete *iter;
|
| + }
|
| +}
|
| +
|
| +void CodeGen::PrintProgram(const Program& program) {
|
| + for (Program::const_iterator iter = program.begin(); iter != program.end();
|
| + ++iter) {
|
| + int ip = (int)(iter - program.begin());
|
| + fprintf(stderr, "%3d) ", ip);
|
| + switch (BPF_CLASS(iter->code)) {
|
| + case BPF_LD:
|
| + if (iter->code == BPF_LD + BPF_W + BPF_ABS) {
|
| + fprintf(stderr, "LOAD %d // ", (int)iter->k);
|
| + if (iter->k == offsetof(struct arch_seccomp_data, nr)) {
|
| + fprintf(stderr, "System call number\n");
|
| + } else if (iter->k == offsetof(struct arch_seccomp_data, arch)) {
|
| + fprintf(stderr, "Architecture\n");
|
| + } else if (iter->k ==
|
| + offsetof(struct arch_seccomp_data, instruction_pointer)) {
|
| + fprintf(stderr, "Instruction pointer (LSB)\n");
|
| + } else if (iter->k ==
|
| + offsetof(struct arch_seccomp_data, instruction_pointer) +
|
| + 4) {
|
| + fprintf(stderr, "Instruction pointer (MSB)\n");
|
| + } else if (iter->k >= offsetof(struct arch_seccomp_data, args) &&
|
| + iter->k < offsetof(struct arch_seccomp_data, args) + 48 &&
|
| + (iter->k - offsetof(struct arch_seccomp_data, args)) % 4 ==
|
| + 0) {
|
| + fprintf(
|
| + stderr,
|
| + "Argument %d (%cSB)\n",
|
| + (int)(iter->k - offsetof(struct arch_seccomp_data, args)) / 8,
|
| + (iter->k - offsetof(struct arch_seccomp_data, args)) % 8 ? 'M'
|
| + : 'L');
|
| + } else {
|
| + fprintf(stderr, "???\n");
|
| + }
|
| + } else {
|
| + fprintf(stderr, "LOAD ???\n");
|
| + }
|
| + break;
|
| + case BPF_JMP:
|
| + if (BPF_OP(iter->code) == BPF_JA) {
|
| + fprintf(stderr, "JMP %d\n", ip + iter->k + 1);
|
| + } else {
|
| + fprintf(stderr, "if A %s 0x%x; then JMP %d else JMP %d\n",
|
| + BPF_OP(iter->code) == BPF_JSET ? "&" :
|
| + BPF_OP(iter->code) == BPF_JEQ ? "==" :
|
| + BPF_OP(iter->code) == BPF_JGE ? ">=" :
|
| + BPF_OP(iter->code) == BPF_JGT ? ">" : "???",
|
| + (int)iter->k,
|
| + ip + iter->jt + 1, ip + iter->jf + 1);
|
| + }
|
| + break;
|
| + case BPF_RET:
|
| + fprintf(stderr, "RET 0x%x // ", iter->k);
|
| + if ((iter->k & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP) {
|
| + fprintf(stderr, "Trap #%d\n", iter->k & SECCOMP_RET_DATA);
|
| + } else if ((iter->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
|
| + fprintf(stderr, "errno = %d\n", iter->k & SECCOMP_RET_DATA);
|
| + } else if ((iter->k & SECCOMP_RET_ACTION) == SECCOMP_RET_TRACE) {
|
| + fprintf(stderr, "Trace #%d\n", iter->k & SECCOMP_RET_DATA);
|
| + } else if (iter->k == SECCOMP_RET_ALLOW) {
|
| + fprintf(stderr, "Allowed\n");
|
| + } else {
|
| + fprintf(stderr, "???\n");
|
| + }
|
| + break;
|
| + case BPF_ALU:
|
| + fprintf(stderr, BPF_OP(iter->code) == BPF_NEG
|
| + ? "A := -A\n" : "A := A %s 0x%x\n",
|
| + BPF_OP(iter->code) == BPF_ADD ? "+" :
|
| + BPF_OP(iter->code) == BPF_SUB ? "-" :
|
| + BPF_OP(iter->code) == BPF_MUL ? "*" :
|
| + BPF_OP(iter->code) == BPF_DIV ? "/" :
|
| + BPF_OP(iter->code) == BPF_MOD ? "%" :
|
| + BPF_OP(iter->code) == BPF_OR ? "|" :
|
| + BPF_OP(iter->code) == BPF_XOR ? "^" :
|
| + BPF_OP(iter->code) == BPF_AND ? "&" :
|
| + BPF_OP(iter->code) == BPF_LSH ? "<<" :
|
| + BPF_OP(iter->code) == BPF_RSH ? ">>" : "???",
|
| + (int)iter->k);
|
| + break;
|
| + default:
|
| + fprintf(stderr, "???\n");
|
| + break;
|
| + }
|
| + }
|
| + return;
|
| +}
|
| +
|
| +Instruction* CodeGen::MakeInstruction(uint16_t code,
|
| + uint32_t k,
|
| + Instruction* next) {
|
| + // We can handle non-jumping instructions and "always" jumps. Both of
|
| + // them are followed by exactly one "next" instruction.
|
| + // We allow callers to defer specifying "next", but then they must call
|
| + // "joinInstructions" later.
|
| + if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_JA) {
|
| + SANDBOX_DIE(
|
| + "Must provide both \"true\" and \"false\" branch "
|
| + "for a BPF_JMP");
|
| + }
|
| + if (next && BPF_CLASS(code) == BPF_RET) {
|
| + SANDBOX_DIE("Cannot append instructions after a return statement");
|
| + }
|
| + if (BPF_CLASS(code) == BPF_JMP) {
|
| + // "Always" jumps use the "true" branch target, only.
|
| + Instruction* insn = new Instruction(code, 0, next, NULL);
|
| + instructions_.push_back(insn);
|
| + return insn;
|
| + } else {
|
| + // Non-jumping instructions do not use any of the branch targets.
|
| + Instruction* insn = new Instruction(code, k, next);
|
| + instructions_.push_back(insn);
|
| + return insn;
|
| + }
|
| +}
|
| +
|
| +Instruction* CodeGen::MakeInstruction(uint16_t code,
|
| + uint32_t k,
|
| + Instruction* jt,
|
| + Instruction* jf) {
|
| + // We can handle all conditional jumps. They are followed by both a
|
| + // "true" and a "false" branch.
|
| + if (BPF_CLASS(code) != BPF_JMP || BPF_OP(code) == BPF_JA) {
|
| + SANDBOX_DIE("Expected a BPF_JMP instruction");
|
| + }
|
| + if (!jt || !jf) {
|
| + SANDBOX_DIE("Branches must jump to a valid instruction");
|
| + }
|
| + Instruction* insn = new Instruction(code, k, jt, jf);
|
| + instructions_.push_back(insn);
|
| + return insn;
|
| +}
|
| +
|
| +void CodeGen::FindBranchTargets(const Instruction& instructions,
|
| + BranchTargets* branch_targets) {
|
| + // Follow all possible paths through the "instructions" graph and compute
|
| + // a list of branch targets. This will later be needed to compute the
|
| + // boundaries of basic blocks.
|
| + // We maintain a set of all instructions that we have previously seen. This
|
| + // set ultimately converges on all instructions in the program.
|
| + std::set<const Instruction*> seen_instructions;
|
| + Instructions stack;
|
| + for (const Instruction* insn = &instructions; insn;) {
|
| + seen_instructions.insert(insn);
|
| + if (BPF_CLASS(insn->code) == BPF_JMP) {
|
| + // Found a jump. Increase count of incoming edges for each of the jump
|
| + // targets.
|
| + ++(*branch_targets)[insn->jt_ptr];
|
| + if (BPF_OP(insn->code) != BPF_JA) {
|
| + ++(*branch_targets)[insn->jf_ptr];
|
| + stack.push_back(const_cast<Instruction*>(insn));
|
| + }
|
| + // Start a recursive decent for depth-first traversal.
|
| + if (seen_instructions.find(insn->jt_ptr) == seen_instructions.end()) {
|
| + // We haven't seen the "true" branch yet. Traverse it now. We have
|
| + // already remembered the "false" branch on the stack and will
|
| + // traverse it later.
|
| + insn = insn->jt_ptr;
|
| + continue;
|
| + } else {
|
| + // Now try traversing the "false" branch.
|
| + insn = NULL;
|
| + }
|
| + } else {
|
| + // This is a non-jump instruction, just continue to the next instruction
|
| + // (if any). It's OK if "insn" becomes NULL when reaching a return
|
| + // instruction.
|
| + if (!insn->next != (BPF_CLASS(insn->code) == BPF_RET)) {
|
| + SANDBOX_DIE(
|
| + "Internal compiler error; return instruction must be at "
|
| + "the end of the BPF program");
|
| + }
|
| + if (seen_instructions.find(insn->next) == seen_instructions.end()) {
|
| + insn = insn->next;
|
| + } else {
|
| + // We have seen this instruction before. That could happen if it is
|
| + // a branch target. No need to continue processing.
|
| + insn = NULL;
|
| + }
|
| + }
|
| + while (!insn && !stack.empty()) {
|
| + // We are done processing all the way to a leaf node, backtrack up the
|
| + // stack to any branches that we haven't processed yet. By definition,
|
| + // this has to be a "false" branch, as we always process the "true"
|
| + // branches right away.
|
| + insn = stack.back();
|
| + stack.pop_back();
|
| + if (seen_instructions.find(insn->jf_ptr) == seen_instructions.end()) {
|
| + // We haven't seen the "false" branch yet. So, that's where we'll
|
| + // go now.
|
| + insn = insn->jf_ptr;
|
| + } else {
|
| + // We have seen both the "true" and the "false" branch, continue
|
| + // up the stack.
|
| + if (seen_instructions.find(insn->jt_ptr) == seen_instructions.end()) {
|
| + SANDBOX_DIE(
|
| + "Internal compiler error; cannot find all "
|
| + "branch targets");
|
| + }
|
| + insn = NULL;
|
| + }
|
| + }
|
| + }
|
| + return;
|
| +}
|
| +
|
| +BasicBlock* CodeGen::MakeBasicBlock(Instruction* head, Instruction* tail) {
|
| + // Iterate over all the instructions between "head" and "tail" and
|
| + // insert them into a new basic block.
|
| + BasicBlock* bb = new BasicBlock;
|
| + for (;; head = head->next) {
|
| + bb->instructions.push_back(head);
|
| + if (head == tail) {
|
| + break;
|
| + }
|
| + if (BPF_CLASS(head->code) == BPF_JMP) {
|
| + SANDBOX_DIE("Found a jump inside of a basic block");
|
| + }
|
| + }
|
| + basic_blocks_.push_back(bb);
|
| + return bb;
|
| +}
|
| +
|
| +void CodeGen::AddBasicBlock(Instruction* head,
|
| + Instruction* tail,
|
| + const BranchTargets& branch_targets,
|
| + TargetsToBlocks* basic_blocks,
|
| + BasicBlock** firstBlock) {
|
| + // Add a new basic block to "basic_blocks". Also set "firstBlock", if it
|
| + // has not been set before.
|
| + BranchTargets::const_iterator iter = branch_targets.find(head);
|
| + if ((iter == branch_targets.end()) != !*firstBlock ||
|
| + !*firstBlock != basic_blocks->empty()) {
|
| + SANDBOX_DIE(
|
| + "Only the very first basic block should have no "
|
| + "incoming jumps");
|
| + }
|
| + BasicBlock* bb = MakeBasicBlock(head, tail);
|
| + if (!*firstBlock) {
|
| + *firstBlock = bb;
|
| + }
|
| + (*basic_blocks)[head] = bb;
|
| + return;
|
| +}
|
| +
|
| +BasicBlock* CodeGen::CutGraphIntoBasicBlocks(
|
| + Instruction* instructions,
|
| + const BranchTargets& branch_targets,
|
| + TargetsToBlocks* basic_blocks) {
|
| + // Textbook implementation of a basic block generator. All basic blocks
|
| + // start with a branch target and end with either a return statement or
|
| + // a jump (or are followed by an instruction that forms the beginning of a
|
| + // new block). Both conditional and "always" jumps are supported.
|
| + BasicBlock* first_block = NULL;
|
| + std::set<const Instruction*> seen_instructions;
|
| + Instructions stack;
|
| + Instruction* tail = NULL;
|
| + Instruction* head = instructions;
|
| + for (Instruction* insn = head; insn;) {
|
| + if (seen_instructions.find(insn) != seen_instructions.end()) {
|
| + // We somehow went in a circle. This should never be possible. Not even
|
| + // cyclic graphs are supposed to confuse us this much.
|
| + SANDBOX_DIE("Internal compiler error; cannot compute basic blocks");
|
| + }
|
| + seen_instructions.insert(insn);
|
| + if (tail && branch_targets.find(insn) != branch_targets.end()) {
|
| + // We reached a branch target. Start a new basic block (this means,
|
| + // flushing the previous basic block first).
|
| + AddBasicBlock(head, tail, branch_targets, basic_blocks, &first_block);
|
| + head = insn;
|
| + }
|
| + if (BPF_CLASS(insn->code) == BPF_JMP) {
|
| + // We reached a jump instruction, this completes our current basic
|
| + // block. Flush it and continue by traversing both the true and the
|
| + // false branch of the jump. We need to maintain a stack to do so.
|
| + AddBasicBlock(head, insn, branch_targets, basic_blocks, &first_block);
|
| + if (BPF_OP(insn->code) != BPF_JA) {
|
| + stack.push_back(insn->jf_ptr);
|
| + }
|
| + insn = insn->jt_ptr;
|
| +
|
| + // If we are jumping to an instruction that we have previously
|
| + // processed, we are done with this branch. Continue by backtracking
|
| + // up the stack.
|
| + while (seen_instructions.find(insn) != seen_instructions.end()) {
|
| + backtracking:
|
| + if (stack.empty()) {
|
| + // We successfully traversed all reachable instructions.
|
| + return first_block;
|
| + } else {
|
| + // Going up the stack.
|
| + insn = stack.back();
|
| + stack.pop_back();
|
| + }
|
| + }
|
| + // Starting a new basic block.
|
| + tail = NULL;
|
| + head = insn;
|
| + } else {
|
| + // We found a non-jumping instruction, append it to current basic
|
| + // block.
|
| + tail = insn;
|
| + insn = insn->next;
|
| + if (!insn) {
|
| + // We reached a return statement, flush the current basic block and
|
| + // backtrack up the stack.
|
| + AddBasicBlock(head, tail, branch_targets, basic_blocks, &first_block);
|
| + goto backtracking;
|
| + }
|
| + }
|
| + }
|
| + return first_block;
|
| +}
|
| +
|
| +// We define a comparator that inspects the sequence of instructions in our
|
| +// basic block and any blocks referenced by this block. This function can be
|
| +// used in a "less" comparator for the purpose of storing pointers to basic
|
| +// blocks in STL containers; this gives an easy option to use STL to find
|
| +// shared tail sequences of basic blocks.
|
| +static int PointerCompare(const BasicBlock* block1,
|
| + const BasicBlock* block2,
|
| + const TargetsToBlocks& blocks) {
|
| + // Return <0, 0, or >0 depending on the ordering of "block1" and "block2".
|
| + // If we are looking at the exact same block, this is trivial and we don't
|
| + // need to do a full comparison.
|
| + if (block1 == block2) {
|
| + return 0;
|
| + }
|
| +
|
| + // We compare the sequence of instructions in both basic blocks.
|
| + const Instructions& insns1 = block1->instructions;
|
| + const Instructions& insns2 = block2->instructions;
|
| + // Basic blocks should never be empty.
|
| + CHECK(!insns1.empty());
|
| + CHECK(!insns2.empty());
|
| +
|
| + Instructions::const_iterator iter1 = insns1.begin();
|
| + Instructions::const_iterator iter2 = insns2.begin();
|
| + for (;; ++iter1, ++iter2) {
|
| + // If we have reached the end of the sequence of instructions in one or
|
| + // both basic blocks, we know the relative ordering between the two blocks
|
| + // and can return.
|
| + if (iter1 == insns1.end() || iter2 == insns2.end()) {
|
| + if (iter1 != insns1.end()) {
|
| + return 1;
|
| + }
|
| + if (iter2 != insns2.end()) {
|
| + return -1;
|
| + }
|
| +
|
| + // If the two blocks are the same length (and have elementwise-equal code
|
| + // and k fields) and their last instructions are neither a JMP nor a RET
|
| + // (which is the only way we can reach this point), then we must compare
|
| + // their successors.
|
| + Instruction* const insns1_last = insns1.back();
|
| + Instruction* const insns2_last = insns2.back();
|
| + CHECK(BPF_CLASS(insns1_last->code) != BPF_JMP &&
|
| + BPF_CLASS(insns1_last->code) != BPF_RET);
|
| +
|
| + // Non jumping instructions will always have a valid next instruction.
|
| + CHECK(insns1_last->next);
|
| + CHECK(insns2_last->next);
|
| + return PointerCompare(blocks.find(insns1_last->next)->second,
|
| + blocks.find(insns2_last->next)->second,
|
| + blocks);
|
| + }
|
| +
|
| + // Compare the individual fields for both instructions.
|
| + const Instruction& insn1 = **iter1;
|
| + const Instruction& insn2 = **iter2;
|
| + if (insn1.code != insn2.code) {
|
| + return insn1.code - insn2.code;
|
| + }
|
| + if (insn1.k != insn2.k) {
|
| + return insn1.k - insn2.k;
|
| + }
|
| +
|
| + // Sanity check: If we're looking at a JMP or RET instruction, by definition
|
| + // it should be the last instruction of the basic block.
|
| + if (BPF_CLASS(insn1.code) == BPF_JMP || BPF_CLASS(insn1.code) == BPF_RET) {
|
| + CHECK_EQ(insns1.back(), &insn1);
|
| + CHECK_EQ(insns2.back(), &insn2);
|
| + }
|
| +
|
| + // RET instructions terminate execution, and only JMP instructions use the
|
| + // jt_ptr and jf_ptr fields. Anything else can continue to the next
|
| + // instruction in the basic block.
|
| + if (BPF_CLASS(insn1.code) == BPF_RET) {
|
| + return 0;
|
| + } else if (BPF_CLASS(insn1.code) != BPF_JMP) {
|
| + continue;
|
| + }
|
| +
|
| + // Recursively compare the "true" and "false" branches.
|
| + // A well-formed BPF program can't have any cycles, so we know
|
| + // that our recursive algorithm will ultimately terminate.
|
| + // In the unlikely event that the programmer made a mistake and
|
| + // went out of the way to give us a cyclic program, we will crash
|
| + // with a stack overflow. We are OK with that.
|
| + if (BPF_OP(insn1.code) != BPF_JA) {
|
| + int c = PointerCompare(blocks.find(insn1.jf_ptr)->second,
|
| + blocks.find(insn2.jf_ptr)->second,
|
| + blocks);
|
| + if (c != 0) {
|
| + return c;
|
| + }
|
| + }
|
| + return PointerCompare(blocks.find(insn1.jt_ptr)->second,
|
| + blocks.find(insn2.jt_ptr)->second,
|
| + blocks);
|
| + }
|
| +}
|
| +
|
| +void CodeGen::MergeTails(TargetsToBlocks* blocks) {
|
| + // We enter all of our basic blocks into a set using the BasicBlock::Less()
|
| + // comparator. This naturally results in blocks with identical tails of
|
| + // instructions to map to the same entry in the set. Whenever we discover
|
| + // that a particular chain of instructions is already in the set, we merge
|
| + // the basic blocks and update the pointer in the "blocks" map.
|
| + // Returns the number of unique basic blocks.
|
| + // N.B. We don't merge instructions on a granularity that is finer than
|
| + // a basic block. In practice, this is sufficiently rare that we don't
|
| + // incur a big cost.
|
| + // Similarly, we currently don't merge anything other than tails. In
|
| + // the future, we might decide to revisit this decision and attempt to
|
| + // merge arbitrary sub-sequences of instructions.
|
| + BasicBlock::Less<TargetsToBlocks> less(*blocks, PointerCompare);
|
| + typedef std::set<BasicBlock*, BasicBlock::Less<TargetsToBlocks> > Set;
|
| + Set seen_basic_blocks(less);
|
| + for (TargetsToBlocks::iterator iter = blocks->begin(); iter != blocks->end();
|
| + ++iter) {
|
| + BasicBlock* bb = iter->second;
|
| + Set::const_iterator entry = seen_basic_blocks.find(bb);
|
| + if (entry == seen_basic_blocks.end()) {
|
| + // This is the first time we see this particular sequence of
|
| + // instructions. Enter the basic block into the set of known
|
| + // basic blocks.
|
| + seen_basic_blocks.insert(bb);
|
| + } else {
|
| + // We have previously seen another basic block that defines the same
|
| + // sequence of instructions. Merge the two blocks and update the
|
| + // pointer in the "blocks" map.
|
| + iter->second = *entry;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void CodeGen::ComputeIncomingBranches(BasicBlock* block,
|
| + const TargetsToBlocks& targets_to_blocks,
|
| + IncomingBranches* incoming_branches) {
|
| + // We increment the number of incoming branches each time we encounter a
|
| + // basic block. But we only traverse recursively the very first time we
|
| + // encounter a new block. This is necessary to make topological sorting
|
| + // work correctly.
|
| + if (++(*incoming_branches)[block] == 1) {
|
| + Instruction* last_insn = block->instructions.back();
|
| + if (BPF_CLASS(last_insn->code) == BPF_JMP) {
|
| + ComputeIncomingBranches(targets_to_blocks.find(last_insn->jt_ptr)->second,
|
| + targets_to_blocks,
|
| + incoming_branches);
|
| + if (BPF_OP(last_insn->code) != BPF_JA) {
|
| + ComputeIncomingBranches(
|
| + targets_to_blocks.find(last_insn->jf_ptr)->second,
|
| + targets_to_blocks,
|
| + incoming_branches);
|
| + }
|
| + } else if (BPF_CLASS(last_insn->code) != BPF_RET) {
|
| + ComputeIncomingBranches(targets_to_blocks.find(last_insn->next)->second,
|
| + targets_to_blocks,
|
| + incoming_branches);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void CodeGen::TopoSortBasicBlocks(BasicBlock* first_block,
|
| + const TargetsToBlocks& blocks,
|
| + BasicBlocks* basic_blocks) {
|
| + // Textbook implementation of a toposort. We keep looking for basic blocks
|
| + // that don't have any incoming branches (initially, this is just the
|
| + // "first_block") and add them to the topologically sorted list of
|
| + // "basic_blocks". As we do so, we remove outgoing branches. This potentially
|
| + // ends up making our descendants eligible for the sorted list. The
|
| + // sorting algorithm terminates when there are no more basic blocks that have
|
| + // no incoming branches. If we didn't move all blocks from the set of
|
| + // "unordered_blocks" to the sorted list of "basic_blocks", there must have
|
| + // been a cyclic dependency. This should never happen in a BPF program, as
|
| + // well-formed BPF programs only ever have forward branches.
|
| + IncomingBranches unordered_blocks;
|
| + ComputeIncomingBranches(first_block, blocks, &unordered_blocks);
|
| +
|
| + std::set<BasicBlock*> heads;
|
| + for (;;) {
|
| + // Move block from "unordered_blocks" to "basic_blocks".
|
| + basic_blocks->push_back(first_block);
|
| +
|
| + // Inspect last instruction in the basic block. This is typically either a
|
| + // jump or a return statement. But it could also be a "normal" instruction
|
| + // that is followed by a jump target.
|
| + Instruction* last_insn = first_block->instructions.back();
|
| + if (BPF_CLASS(last_insn->code) == BPF_JMP) {
|
| + // Remove outgoing branches. This might end up moving our descendants
|
| + // into set of "head" nodes that no longer have any incoming branches.
|
| + TargetsToBlocks::const_iterator iter;
|
| + if (BPF_OP(last_insn->code) != BPF_JA) {
|
| + iter = blocks.find(last_insn->jf_ptr);
|
| + if (!--unordered_blocks[iter->second]) {
|
| + heads.insert(iter->second);
|
| + }
|
| + }
|
| + iter = blocks.find(last_insn->jt_ptr);
|
| + if (!--unordered_blocks[iter->second]) {
|
| + first_block = iter->second;
|
| + continue;
|
| + }
|
| + } else if (BPF_CLASS(last_insn->code) != BPF_RET) {
|
| + // We encountered an instruction that doesn't change code flow. Try to
|
| + // pick the next "first_block" from "last_insn->next", if possible.
|
| + TargetsToBlocks::const_iterator iter;
|
| + iter = blocks.find(last_insn->next);
|
| + if (!--unordered_blocks[iter->second]) {
|
| + first_block = iter->second;
|
| + continue;
|
| + } else {
|
| + // Our basic block is supposed to be followed by "last_insn->next",
|
| + // but dependencies prevent this from happening. Insert a BPF_JA
|
| + // instruction to correct the code flow.
|
| + Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, last_insn->next);
|
| + first_block->instructions.push_back(ja);
|
| + last_insn->next = ja;
|
| + }
|
| + }
|
| + if (heads.empty()) {
|
| + if (unordered_blocks.size() != basic_blocks->size()) {
|
| + SANDBOX_DIE("Internal compiler error; cyclic graph detected");
|
| + }
|
| + return;
|
| + }
|
| + // Proceed by picking an arbitrary node from the set of basic blocks that
|
| + // do not have any incoming branches.
|
| + first_block = *heads.begin();
|
| + heads.erase(heads.begin());
|
| + }
|
| +}
|
| +
|
| +void CodeGen::ComputeRelativeJumps(BasicBlocks* basic_blocks,
|
| + const TargetsToBlocks& targets_to_blocks) {
|
| + // While we previously used pointers in jt_ptr and jf_ptr to link jump
|
| + // instructions to their targets, we now convert these jumps to relative
|
| + // jumps that are suitable for loading the BPF program into the kernel.
|
| + int offset = 0;
|
| +
|
| + // Since we just completed a toposort, all jump targets are guaranteed to
|
| + // go forward. This means, iterating over the basic blocks in reverse makes
|
| + // it trivial to compute the correct offsets.
|
| + BasicBlock* bb = NULL;
|
| + BasicBlock* last_bb = NULL;
|
| + for (BasicBlocks::reverse_iterator iter = basic_blocks->rbegin();
|
| + iter != basic_blocks->rend();
|
| + ++iter) {
|
| + last_bb = bb;
|
| + bb = *iter;
|
| + Instruction* insn = bb->instructions.back();
|
| + if (BPF_CLASS(insn->code) == BPF_JMP) {
|
| + // Basic block ended in a jump instruction. We can now compute the
|
| + // appropriate offsets.
|
| + if (BPF_OP(insn->code) == BPF_JA) {
|
| + // "Always" jumps use the 32bit "k" field for the offset, instead
|
| + // of the 8bit "jt" and "jf" fields.
|
| + int jmp = offset - targets_to_blocks.find(insn->jt_ptr)->second->offset;
|
| + insn->k = jmp;
|
| + insn->jt = insn->jf = 0;
|
| + } else {
|
| + // The offset computations for conditional jumps are just the same
|
| + // as for "always" jumps.
|
| + int jt = offset - targets_to_blocks.find(insn->jt_ptr)->second->offset;
|
| + int jf = offset - targets_to_blocks.find(insn->jf_ptr)->second->offset;
|
| +
|
| + // There is an added complication, because conditional relative jumps
|
| + // can only jump at most 255 instructions forward. If we have to jump
|
| + // further, insert an extra "always" jump.
|
| + Instructions::size_type jmp = bb->instructions.size();
|
| + if (jt > 255 || (jt == 255 && jf > 255)) {
|
| + Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, insn->jt_ptr);
|
| + bb->instructions.push_back(ja);
|
| + ja->k = jt;
|
| + ja->jt = ja->jf = 0;
|
| +
|
| + // The newly inserted "always" jump, of course, requires us to adjust
|
| + // the jump targets in the original conditional jump.
|
| + jt = 0;
|
| + ++jf;
|
| + }
|
| + if (jf > 255) {
|
| + Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, insn->jf_ptr);
|
| + bb->instructions.insert(bb->instructions.begin() + jmp, ja);
|
| + ja->k = jf;
|
| + ja->jt = ja->jf = 0;
|
| +
|
| + // Again, we have to adjust the jump targets in the original
|
| + // conditional jump.
|
| + ++jt;
|
| + jf = 0;
|
| + }
|
| +
|
| + // Now we can finally set the relative jump targets in the conditional
|
| + // jump instruction. Afterwards, we must no longer access the jt_ptr
|
| + // and jf_ptr fields.
|
| + insn->jt = jt;
|
| + insn->jf = jf;
|
| + }
|
| + } else if (BPF_CLASS(insn->code) != BPF_RET &&
|
| + targets_to_blocks.find(insn->next)->second != last_bb) {
|
| + SANDBOX_DIE("Internal compiler error; invalid basic block encountered");
|
| + }
|
| +
|
| + // Proceed to next basic block.
|
| + offset += bb->instructions.size();
|
| + bb->offset = offset;
|
| + }
|
| + return;
|
| +}
|
| +
|
| +void CodeGen::ConcatenateBasicBlocks(const BasicBlocks& basic_blocks,
|
| + Program* program) {
|
| + // Our basic blocks have been sorted and relative jump offsets have been
|
| + // computed. The last remaining step is for all the instructions in our
|
| + // basic blocks to be concatenated into a BPF program.
|
| + program->clear();
|
| + for (BasicBlocks::const_iterator bb_iter = basic_blocks.begin();
|
| + bb_iter != basic_blocks.end();
|
| + ++bb_iter) {
|
| + const BasicBlock& bb = **bb_iter;
|
| + for (Instructions::const_iterator insn_iter = bb.instructions.begin();
|
| + insn_iter != bb.instructions.end();
|
| + ++insn_iter) {
|
| + const Instruction& insn = **insn_iter;
|
| + program->push_back(
|
| + (struct sock_filter) {insn.code, insn.jt, insn.jf, insn.k});
|
| + }
|
| + }
|
| + return;
|
| +}
|
| +
|
| +void CodeGen::Compile(Instruction* instructions, Program* program) {
|
| + if (compiled_) {
|
| + SANDBOX_DIE(
|
| + "Cannot call Compile() multiple times. Create a new code "
|
| + "generator instead");
|
| + }
|
| + compiled_ = true;
|
| +
|
| + BranchTargets branch_targets;
|
| + FindBranchTargets(*instructions, &branch_targets);
|
| + TargetsToBlocks all_blocks;
|
| + BasicBlock* first_block =
|
| + CutGraphIntoBasicBlocks(instructions, branch_targets, &all_blocks);
|
| + MergeTails(&all_blocks);
|
| + BasicBlocks basic_blocks;
|
| + TopoSortBasicBlocks(first_block, all_blocks, &basic_blocks);
|
| + ComputeRelativeJumps(&basic_blocks, all_blocks);
|
| + ConcatenateBasicBlocks(basic_blocks, program);
|
| + return;
|
| +}
|
| +
|
| +} // namespace sandbox
|
|
|