Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(665)

Unified Diff: tools/telemetry/telemetry/image_processing/image_util_numpy_impl.py

Issue 668753002: [Telemetry] Migrate bitmap.py from bitmaptools.cc to numpy (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: rebase Created 6 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/telemetry/telemetry/image_processing/image_util_numpy_impl.py
diff --git a/tools/telemetry/telemetry/image_processing/image_util_numpy_impl.py b/tools/telemetry/telemetry/image_processing/image_util_numpy_impl.py
new file mode 100644
index 0000000000000000000000000000000000000000..7bb50fe9e7c1edd146f507682c006a8d9492387d
--- /dev/null
+++ b/tools/telemetry/telemetry/image_processing/image_util_numpy_impl.py
@@ -0,0 +1,183 @@
+# Copyright 2014 The Chromium Authors. All rights reserved.
+# Use of this source code is governed by a BSD-style license that can be
+# found in the LICENSE file.
+
+from __future__ import division
+
+from telemetry.core import util
+from telemetry.image_processing import histogram
+from telemetry.image_processing import rgba_color
+from telemetry.util import external_modules
+
+util.AddDirToPythonPath(util.GetTelemetryDir(), 'third_party', 'png')
+import png # pylint: disable=F0401
+
+cv2 = external_modules.ImportOptionalModule('cv2')
+np = external_modules.ImportRequiredModule('numpy')
+
+
+def Channels(image):
+ return image.shape[2]
+
+def Width(image):
+ return image.shape[1]
+
+def Height(image):
+ return image.shape[0]
+
+def Pixels(image):
+ return bytearray(np.uint8(image[:, :, ::-1]).flat) # Convert from bgr to rgb.
+
+def GetPixelColor(image, x, y):
+ bgr = image[y][x]
+ return rgba_color.RgbaColor(bgr[2], bgr[1], bgr[0])
+
+def WritePngFile(image, path):
+ assert(path.endswith('png'))
+ if cv2 is not None:
+ cv2.imwrite(path, image)
+ else:
+ with open(path, "wb") as f:
+ metadata = {}
+ metadata['size'] = (Width(image), Height(image))
+ metadata['alpha'] = False
+ metadata['bitdepth'] = 8
+ img = image[:, :, ::-1]
+ pixels = img.reshape(-1).tolist()
+ png.Writer(**metadata).write_array(f, pixels)
+
+def FromRGBPixels(width, height, pixels, bpp):
+ img = np.array(pixels, order='F', dtype=np.uint8)
+ img.resize((height, width, bpp))
+ if bpp == 4:
+ img = img[:, :, :3] # Drop alpha.
+ return img[:, :, ::-1] # Convert from rgb to bgr.
+
+def FromPngFile(path):
+ if cv2 is not None:
+ img = cv2.imread(path, cv2.CV_LOAD_IMAGE_COLOR)
+ if img is None:
+ raise ValueError('Image at path {0} could not be read'.format(path))
+ return img
+ else:
+ with open(path, "rb") as f:
+ return FromPng(f.read())
+
+def FromPng(png_data):
+ if cv2 is not None:
+ file_bytes = np.asarray(bytearray(png_data), dtype=np.uint8)
+ return cv2.imdecode(file_bytes, cv2.CV_LOAD_IMAGE_COLOR)
+ else:
+ width, height, pixels, meta = png.Reader(bytes=png_data).read_flat()
+ return FromRGBPixels(width, height, pixels, 4 if meta['alpha'] else 3)
+
+def _SimpleDiff(image1, image2):
+ if cv2 is not None:
+ return cv2.absdiff(image1, image2)
+ else:
+ amax = np.maximum(image1, image2)
+ amin = np.minimum(image1, image2)
+ return amax - amin
+
+def AreEqual(image1, image2, tolerance, likely_equal):
+ if image1.shape != image2.shape:
+ return False
+ self_image = image1
+ other_image = image2
+ if tolerance:
+ if likely_equal:
+ return np.amax(_SimpleDiff(image1, image2)) <= tolerance
+ else:
+ for row in xrange(Height(image1)):
+ if np.amax(_SimpleDiff(image1[row], image2[row])) > tolerance:
+ return False
+ return True
+ else:
+ if likely_equal:
+ return (self_image == other_image).all()
+ else:
+ for row in xrange(Height(image1)):
+ if not (self_image[row] == other_image[row]).all():
+ return False
+ return True
+
+def Diff(image1, image2):
+ self_image = image1
+ other_image = image2
+ if image1.shape[2] != image2.shape[2]:
+ raise ValueError('Cannot diff images of differing bit depth')
+ if image1.shape[:2] != image2.shape[:2]:
+ width = max(Width(image1), Width(image2))
+ height = max(Height(image1), Height(image2))
+ self_image = np.zeros((width, height, image1.shape[2]), np.uint8)
+ other_image = np.zeros((width, height, image1.shape[2]), np.uint8)
+ self_image[0:Height(image1), 0:Width(image1)] = image1
+ other_image[0:Height(image2), 0:Width(image2)] = image2
+ return _SimpleDiff(self_image, other_image)
+
+def GetBoundingBox(image, color, tolerance):
+ if cv2 is not None:
+ color = np.array([color.b, color.g, color.r])
+ img = cv2.inRange(image, np.subtract(color[0:3], tolerance),
+ np.add(color[0:3], tolerance))
+ count = cv2.countNonZero(img)
+ if count == 0:
+ return None, 0
+ contours, _ = cv2.findContours(img, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
+ contour = np.concatenate(contours)
+ return cv2.boundingRect(contour), count
+ else:
+ if tolerance:
+ color = np.array([color.b, color.g, color.r])
+ colorm = color - tolerance
+ colorp = color + tolerance
+ b = image[:, :, 0]
+ g = image[:, :, 1]
+ r = image[:, :, 2]
+ w = np.where(((b >= colorm[0]) & (b <= colorp[0]) &
+ (g >= colorm[1]) & (g <= colorp[1]) &
+ (r >= colorm[2]) & (r <= colorp[2])))
+ else:
+ w = np.where((image[:, :, 0] == color.b) &
+ (image[:, :, 1] == color.g) &
+ (image[:, :, 2] == color.r))
+ if len(w[0]) == 0:
+ return None, 0
+ return (w[1][0], w[0][0], w[1][-1] - w[1][0] + 1, w[0][-1] - w[0][0] + 1), \
+ len(w[0])
+
+def Crop(image, left, top, width, height):
+ img_height, img_width = image.shape[:2]
+ if (left < 0 or top < 0 or
+ (left + width) > img_width or
+ (top + height) > img_height):
+ raise ValueError('Invalid dimensions')
+ return image[top:top + height, left:left + width]
+
+def GetColorHistogram(image, ignore_color, tolerance):
+ if cv2 is not None:
+ mask = None
+ if ignore_color is not None:
+ color = np.array([ignore_color.b, ignore_color.g, ignore_color.r])
+ mask = ~cv2.inRange(image, np.subtract(color, tolerance),
+ np.add(color, tolerance))
+
+ flatten = np.ndarray.flatten
+ hist_b = flatten(cv2.calcHist([image], [0], mask, [256], [0, 256]))
+ hist_g = flatten(cv2.calcHist([image], [1], mask, [256], [0, 256]))
+ hist_r = flatten(cv2.calcHist([image], [2], mask, [256], [0, 256]))
+ else:
+ filtered = image.reshape(-1, 3)
+ if ignore_color is not None:
+ color = np.array([ignore_color.b, ignore_color.g, ignore_color.r])
+ colorm = np.array(color) - tolerance
+ colorp = np.array(color) + tolerance
+ in_range = ((filtered[:, 0] < colorm[0]) | (filtered[:, 0] > colorp[0]) |
+ (filtered[:, 1] < colorm[1]) | (filtered[:, 1] > colorp[1]) |
+ (filtered[:, 2] < colorm[2]) | (filtered[:, 2] > colorp[2]))
+ filtered = np.compress(in_range, filtered, axis = 0)
+ hist_b = np.bincount(filtered[:, 0], minlength=256)
+ hist_g = np.bincount(filtered[:, 1], minlength=256)
+ hist_r = np.bincount(filtered[:, 2], minlength=256)
+
+ return histogram.ColorHistogram(hist_r, hist_g, hist_b, ignore_color)

Powered by Google App Engine
This is Rietveld 408576698