| Index: sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| diff --git a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| index 07de144c5afdd4e41ed2ecd312c692e39ba073e8..49fdd86d4f4f1497b937219e535c82ef69d1ea28 100644
|
| --- a/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| +++ b/sandbox/linux/seccomp-bpf/sandbox_bpf.cc
|
| @@ -38,23 +38,28 @@ namespace {
|
|
|
| const int kExpectedExitCode = 100;
|
|
|
| -template<class T> int popcount(T x);
|
| -template<> int popcount<unsigned int>(unsigned int x) {
|
| +template <class T>
|
| +int popcount(T x);
|
| +template <>
|
| +int popcount<unsigned int>(unsigned int x) {
|
| return __builtin_popcount(x);
|
| }
|
| -template<> int popcount<unsigned long>(unsigned long x) {
|
| +template <>
|
| +int popcount<unsigned long>(unsigned long x) {
|
| return __builtin_popcountl(x);
|
| }
|
| -template<> int popcount<unsigned long long>(unsigned long long x) {
|
| +template <>
|
| +int popcount<unsigned long long>(unsigned long long x) {
|
| return __builtin_popcountll(x);
|
| }
|
|
|
| void WriteFailedStderrSetupMessage(int out_fd) {
|
| const char* error_string = strerror(errno);
|
| - static const char msg[] = "You have reproduced a puzzling issue.\n"
|
| - "Please, report to crbug.com/152530!\n"
|
| - "Failed to set up stderr: ";
|
| - if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg)-1)) > 0 && error_string &&
|
| + static const char msg[] =
|
| + "You have reproduced a puzzling issue.\n"
|
| + "Please, report to crbug.com/152530!\n"
|
| + "Failed to set up stderr: ";
|
| + if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string &&
|
| HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 &&
|
| HANDLE_EINTR(write(out_fd, "\n", 1))) {
|
| }
|
| @@ -62,18 +67,18 @@ void WriteFailedStderrSetupMessage(int out_fd) {
|
|
|
| // We define a really simple sandbox policy. It is just good enough for us
|
| // to tell that the sandbox has actually been activated.
|
| -ErrorCode ProbeEvaluator(Sandbox *, int sysnum, void *) __attribute__((const));
|
| -ErrorCode ProbeEvaluator(Sandbox *, int sysnum, void *) {
|
| +ErrorCode ProbeEvaluator(Sandbox*, int sysnum, void*) __attribute__((const));
|
| +ErrorCode ProbeEvaluator(Sandbox*, int sysnum, void*) {
|
| switch (sysnum) {
|
| - case __NR_getpid:
|
| - // Return EPERM so that we can check that the filter actually ran.
|
| - return ErrorCode(EPERM);
|
| - case __NR_exit_group:
|
| - // Allow exit() with a non-default return code.
|
| - return ErrorCode(ErrorCode::ERR_ALLOWED);
|
| - default:
|
| - // Make everything else fail in an easily recognizable way.
|
| - return ErrorCode(EINVAL);
|
| + case __NR_getpid:
|
| + // Return EPERM so that we can check that the filter actually ran.
|
| + return ErrorCode(EPERM);
|
| + case __NR_exit_group:
|
| + // Allow exit() with a non-default return code.
|
| + return ErrorCode(ErrorCode::ERR_ALLOWED);
|
| + default:
|
| + // Make everything else fail in an easily recognizable way.
|
| + return ErrorCode(EINVAL);
|
| }
|
| }
|
|
|
| @@ -83,7 +88,7 @@ void ProbeProcess(void) {
|
| }
|
| }
|
|
|
| -ErrorCode AllowAllEvaluator(Sandbox *, int sysnum, void *) {
|
| +ErrorCode AllowAllEvaluator(Sandbox*, int sysnum, void*) {
|
| if (!Sandbox::IsValidSyscallNumber(sysnum)) {
|
| return ErrorCode(ENOSYS);
|
| }
|
| @@ -109,12 +114,11 @@ bool IsSingleThreaded(int proc_fd) {
|
|
|
| struct stat sb;
|
| int task = -1;
|
| - if ((task = openat(proc_fd, "self/task", O_RDONLY|O_DIRECTORY)) < 0 ||
|
| - fstat(task, &sb) != 0 ||
|
| - sb.st_nlink != 3 ||
|
| - HANDLE_EINTR(close(task))) {
|
| + if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 ||
|
| + fstat(task, &sb) != 0 || sb.st_nlink != 3 || HANDLE_EINTR(close(task))) {
|
| if (task >= 0) {
|
| - if (HANDLE_EINTR(close(task))) { }
|
| + if (HANDLE_EINTR(close(task))) {
|
| + }
|
| }
|
| return false;
|
| }
|
| @@ -130,14 +134,13 @@ bool IsDenied(const ErrorCode& code) {
|
| // Function that can be passed as a callback function to CodeGen::Traverse().
|
| // Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it
|
| // sets the "bool" variable pointed to by "aux".
|
| -void CheckForUnsafeErrorCodes(Instruction *insn, void *aux) {
|
| - bool *is_unsafe = static_cast<bool *>(aux);
|
| +void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) {
|
| + bool* is_unsafe = static_cast<bool*>(aux);
|
| if (!*is_unsafe) {
|
| - if (BPF_CLASS(insn->code) == BPF_RET &&
|
| - insn->k > SECCOMP_RET_TRAP &&
|
| + if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP &&
|
| insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) {
|
| const ErrorCode& err =
|
| - Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA);
|
| + Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA);
|
| if (err.error_type() != ErrorCode::ET_INVALID && !err.safe()) {
|
| *is_unsafe = true;
|
| }
|
| @@ -147,7 +150,7 @@ void CheckForUnsafeErrorCodes(Instruction *insn, void *aux) {
|
|
|
| // A Trap() handler that returns an "errno" value. The value is encoded
|
| // in the "aux" parameter.
|
| -intptr_t ReturnErrno(const struct arch_seccomp_data&, void *aux) {
|
| +intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
|
| // TrapFnc functions report error by following the native kernel convention
|
| // of returning an exit code in the range of -1..-4096. They do not try to
|
| // set errno themselves. The glibc wrapper that triggered the SIGSYS will
|
| @@ -160,7 +163,7 @@ intptr_t ReturnErrno(const struct arch_seccomp_data&, void *aux) {
|
| // Checks whether the "insn" returns an errno value from a BPF filter. If so,
|
| // it rewrites the instruction to instead call a Trap() handler that does
|
| // the same thing. "aux" is ignored.
|
| -void RedirectToUserspace(Instruction *insn, void *aux) {
|
| +void RedirectToUserspace(Instruction* insn, void* aux) {
|
| // When inside an UnsafeTrap() callback, we want to allow all system calls.
|
| // This means, we must conditionally disable the sandbox -- and that's not
|
| // something that kernel-side BPF filters can do, as they cannot inspect
|
| @@ -170,11 +173,11 @@ void RedirectToUserspace(Instruction *insn, void *aux) {
|
| // The performance penalty for this extra round-trip to user-space is not
|
| // actually that bad, as we only ever pay it for denied system calls; and a
|
| // typical program has very few of these.
|
| - Sandbox *sandbox = static_cast<Sandbox *>(aux);
|
| + Sandbox* sandbox = static_cast<Sandbox*>(aux);
|
| if (BPF_CLASS(insn->code) == BPF_RET &&
|
| (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
|
| insn->k = sandbox->Trap(ReturnErrno,
|
| - reinterpret_cast<void *>(insn->k & SECCOMP_RET_DATA)).err();
|
| + reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err();
|
| }
|
| }
|
|
|
| @@ -195,8 +198,8 @@ class RedirectToUserSpacePolicyWrapper : public SandboxBpfPolicy {
|
| ErrorCode err =
|
| wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number);
|
| if ((err.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
|
| - return sandbox_compiler->Trap(ReturnErrno,
|
| - reinterpret_cast<void*>(err.err() & SECCOMP_RET_DATA));
|
| + return sandbox_compiler->Trap(
|
| + ReturnErrno, reinterpret_cast<void*>(err.err() & SECCOMP_RET_DATA));
|
| }
|
| return err;
|
| }
|
| @@ -206,16 +209,17 @@ class RedirectToUserSpacePolicyWrapper : public SandboxBpfPolicy {
|
| DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper);
|
| };
|
|
|
| -intptr_t BpfFailure(const struct arch_seccomp_data&, void *aux) {
|
| - SANDBOX_DIE(static_cast<char *>(aux));
|
| +intptr_t BpfFailure(const struct arch_seccomp_data&, void* aux) {
|
| + SANDBOX_DIE(static_cast<char*>(aux));
|
| }
|
|
|
| // This class allows compatibility with the old, deprecated SetSandboxPolicy.
|
| class CompatibilityPolicy : public SandboxBpfPolicy {
|
| public:
|
| CompatibilityPolicy(Sandbox::EvaluateSyscall syscall_evaluator, void* aux)
|
| - : syscall_evaluator_(syscall_evaluator),
|
| - aux_(aux) { DCHECK(syscall_evaluator_); }
|
| + : syscall_evaluator_(syscall_evaluator), aux_(aux) {
|
| + DCHECK(syscall_evaluator_);
|
| + }
|
|
|
| virtual ErrorCode EvaluateSyscall(Sandbox* sandbox_compiler,
|
| int system_call_number) const OVERRIDE {
|
| @@ -234,8 +238,7 @@ Sandbox::Sandbox()
|
| : quiet_(false),
|
| proc_fd_(-1),
|
| conds_(new Conds),
|
| - sandbox_has_started_(false) {
|
| -}
|
| + sandbox_has_started_(false) {}
|
|
|
| Sandbox::~Sandbox() {
|
| // It is generally unsafe to call any memory allocator operations or to even
|
| @@ -258,19 +261,17 @@ bool Sandbox::IsValidSyscallNumber(int sysnum) {
|
| return SyscallIterator::IsValid(sysnum);
|
| }
|
|
|
| -
|
| bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(),
|
| Sandbox::EvaluateSyscall syscall_evaluator,
|
| - void *aux) {
|
| + void* aux) {
|
| // Block all signals before forking a child process. This prevents an
|
| // attacker from manipulating our test by sending us an unexpected signal.
|
| sigset_t old_mask, new_mask;
|
| - if (sigfillset(&new_mask) ||
|
| - sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
|
| + if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
|
| SANDBOX_DIE("sigprocmask() failed");
|
| }
|
| int fds[2];
|
| - if (pipe2(fds, O_NONBLOCK|O_CLOEXEC)) {
|
| + if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) {
|
| SANDBOX_DIE("pipe() failed");
|
| }
|
|
|
| @@ -360,7 +361,7 @@ bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(),
|
| char buf[4096];
|
| ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1));
|
| if (len > 0) {
|
| - while (len > 1 && buf[len-1] == '\n') {
|
| + while (len > 1 && buf[len - 1] == '\n') {
|
| --len;
|
| }
|
| buf[len] = '\000';
|
| @@ -375,9 +376,8 @@ bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(),
|
| }
|
|
|
| bool Sandbox::KernelSupportSeccompBPF() {
|
| - return
|
| - RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) &&
|
| - RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0);
|
| + return RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) &&
|
| + RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0);
|
| }
|
|
|
| Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) {
|
| @@ -421,8 +421,8 @@ Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) {
|
| // failures (e.g. if the current kernel lacks support for BPF filters).
|
| sandbox.quiet_ = true;
|
| sandbox.set_proc_fd(proc_fd);
|
| - status_ = sandbox.KernelSupportSeccompBPF()
|
| - ? STATUS_AVAILABLE : STATUS_UNSUPPORTED;
|
| + status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE
|
| + : STATUS_UNSUPPORTED;
|
|
|
| // As we are performing our tests from a child process, the run-time
|
| // environment that is visible to the sandbox is always guaranteed to be
|
| @@ -435,20 +435,20 @@ Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) {
|
| return status_;
|
| }
|
|
|
| -void Sandbox::set_proc_fd(int proc_fd) {
|
| - proc_fd_ = proc_fd;
|
| -}
|
| +void Sandbox::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; }
|
|
|
| void Sandbox::StartSandbox() {
|
| if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) {
|
| - SANDBOX_DIE("Trying to start sandbox, even though it is known to be "
|
| - "unavailable");
|
| + SANDBOX_DIE(
|
| + "Trying to start sandbox, even though it is known to be "
|
| + "unavailable");
|
| } else if (sandbox_has_started_ || !conds_) {
|
| - SANDBOX_DIE("Cannot repeatedly start sandbox. Create a separate Sandbox "
|
| - "object instead.");
|
| + SANDBOX_DIE(
|
| + "Cannot repeatedly start sandbox. Create a separate Sandbox "
|
| + "object instead.");
|
| }
|
| if (proc_fd_ < 0) {
|
| - proc_fd_ = open("/proc", O_RDONLY|O_DIRECTORY);
|
| + proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY);
|
| }
|
| if (proc_fd_ < 0) {
|
| // For now, continue in degraded mode, if we can't access /proc.
|
| @@ -476,11 +476,12 @@ void Sandbox::StartSandbox() {
|
| }
|
|
|
| void Sandbox::PolicySanityChecks(SandboxBpfPolicy* policy) {
|
| - for (SyscallIterator iter(true); !iter.Done(); ) {
|
| + for (SyscallIterator iter(true); !iter.Done();) {
|
| uint32_t sysnum = iter.Next();
|
| if (!IsDenied(policy->EvaluateSyscall(this, sysnum))) {
|
| - SANDBOX_DIE("Policies should deny system calls that are outside the "
|
| - "expected range (typically MIN_SYSCALL..MAX_SYSCALL)");
|
| + SANDBOX_DIE(
|
| + "Policies should deny system calls that are outside the "
|
| + "expected range (typically MIN_SYSCALL..MAX_SYSCALL)");
|
| }
|
| }
|
| return;
|
| @@ -517,11 +518,11 @@ void Sandbox::InstallFilter() {
|
| // installed the BPF filter program in the kernel. Depending on the
|
| // system memory allocator that is in effect, these operators can result
|
| // in system calls to things like munmap() or brk().
|
| - Program *program = AssembleFilter(false /* force_verification */);
|
| + Program* program = AssembleFilter(false /* force_verification */);
|
|
|
| struct sock_filter bpf[program->size()];
|
| - const struct sock_fprog prog = {
|
| - static_cast<unsigned short>(program->size()), bpf };
|
| + const struct sock_fprog prog = {static_cast<unsigned short>(program->size()),
|
| + bpf};
|
| memcpy(bpf, &(*program)[0], sizeof(bpf));
|
| delete program;
|
|
|
| @@ -546,7 +547,7 @@ void Sandbox::InstallFilter() {
|
| return;
|
| }
|
|
|
| -Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| +Sandbox::Program* Sandbox::AssembleFilter(bool force_verification) {
|
| #if !defined(NDEBUG)
|
| force_verification = true;
|
| #endif
|
| @@ -555,21 +556,24 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| DCHECK(policy_);
|
|
|
| // Assemble the BPF filter program.
|
| - CodeGen *gen = new CodeGen();
|
| + CodeGen* gen = new CodeGen();
|
| if (!gen) {
|
| SANDBOX_DIE("Out of memory");
|
| }
|
|
|
| // If the architecture doesn't match SECCOMP_ARCH, disallow the
|
| // system call.
|
| - Instruction *tail;
|
| - Instruction *head =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_ARCH_IDX,
|
| - tail =
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, SECCOMP_ARCH,
|
| - NULL,
|
| - gen->MakeInstruction(BPF_RET+BPF_K,
|
| - Kill("Invalid audit architecture in BPF filter"))));
|
| + Instruction* tail;
|
| + Instruction* head = gen->MakeInstruction(
|
| + BPF_LD + BPF_W + BPF_ABS,
|
| + SECCOMP_ARCH_IDX,
|
| + tail = gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K,
|
| + SECCOMP_ARCH,
|
| + NULL,
|
| + gen->MakeInstruction(
|
| + BPF_RET + BPF_K,
|
| + Kill("Invalid audit architecture in BPF filter"))));
|
|
|
| bool has_unsafe_traps = false;
|
| {
|
| @@ -579,8 +583,8 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| FindRanges(&ranges);
|
|
|
| // Compile the system call ranges to an optimized BPF jumptable
|
| - Instruction *jumptable =
|
| - AssembleJumpTable(gen, ranges.begin(), ranges.end());
|
| + Instruction* jumptable =
|
| + AssembleJumpTable(gen, ranges.begin(), ranges.end());
|
|
|
| // If there is at least one UnsafeTrap() in our program, the entire sandbox
|
| // is unsafe. We need to modify the program so that all non-
|
| @@ -590,8 +594,8 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| gen->Traverse(jumptable, CheckForUnsafeErrorCodes, &has_unsafe_traps);
|
|
|
| // Grab the system call number, so that we can implement jump tables.
|
| - Instruction *load_nr =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_NR_IDX);
|
| + Instruction* load_nr =
|
| + gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX);
|
|
|
| // If our BPF program has unsafe jumps, enable support for them. This
|
| // test happens very early in the BPF filter program. Even before we
|
| @@ -602,25 +606,29 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| // is actually requested by the sandbox policy.
|
| if (has_unsafe_traps) {
|
| if (SandboxSyscall(-1) == -1 && errno == ENOSYS) {
|
| - SANDBOX_DIE("Support for UnsafeTrap() has not yet been ported to this "
|
| - "architecture");
|
| + SANDBOX_DIE(
|
| + "Support for UnsafeTrap() has not yet been ported to this "
|
| + "architecture");
|
| }
|
|
|
| - if (!policy_->EvaluateSyscall(this, __NR_rt_sigprocmask).
|
| - Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) ||
|
| - !policy_->EvaluateSyscall(this, __NR_rt_sigreturn).
|
| - Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| + if (!policy_->EvaluateSyscall(this, __NR_rt_sigprocmask)
|
| + .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) ||
|
| + !policy_->EvaluateSyscall(this, __NR_rt_sigreturn)
|
| + .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| #if defined(__NR_sigprocmask)
|
| - || !policy_->EvaluateSyscall(this, __NR_sigprocmask).
|
| - Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| + ||
|
| + !policy_->EvaluateSyscall(this, __NR_sigprocmask)
|
| + .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| #endif
|
| #if defined(__NR_sigreturn)
|
| - || !policy_->EvaluateSyscall(this, __NR_sigreturn).
|
| - Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| + ||
|
| + !policy_->EvaluateSyscall(this, __NR_sigreturn)
|
| + .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
|
| #endif
|
| ) {
|
| - SANDBOX_DIE("Invalid seccomp policy; if using UnsafeTrap(), you must "
|
| - "unconditionally allow sigreturn() and sigprocmask()");
|
| + SANDBOX_DIE(
|
| + "Invalid seccomp policy; if using UnsafeTrap(), you must "
|
| + "unconditionally allow sigreturn() and sigprocmask()");
|
| }
|
|
|
| if (!Trap::EnableUnsafeTrapsInSigSysHandler()) {
|
| @@ -636,49 +644,58 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| // Allow system calls, if they originate from our magic return address
|
| // (which we can query by calling SandboxSyscall(-1)).
|
| uintptr_t syscall_entry_point =
|
| - static_cast<uintptr_t>(SandboxSyscall(-1));
|
| + static_cast<uintptr_t>(SandboxSyscall(-1));
|
| uint32_t low = static_cast<uint32_t>(syscall_entry_point);
|
| #if __SIZEOF_POINTER__ > 4
|
| - uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
|
| + uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
|
| #endif
|
|
|
| // BPF cannot do native 64bit comparisons. On 64bit architectures, we
|
| // have to compare both 32bit halves of the instruction pointer. If they
|
| // match what we expect, we return ERR_ALLOWED. If either or both don't
|
| // match, we continue evalutating the rest of the sandbox policy.
|
| - Instruction *escape_hatch =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_LSB_IDX,
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, low,
|
| + Instruction* escape_hatch = gen->MakeInstruction(
|
| + BPF_LD + BPF_W + BPF_ABS,
|
| + SECCOMP_IP_LSB_IDX,
|
| + gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K,
|
| + low,
|
| #if __SIZEOF_POINTER__ > 4
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_MSB_IDX,
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, hi,
|
| + gen->MakeInstruction(
|
| + BPF_LD + BPF_W + BPF_ABS,
|
| + SECCOMP_IP_MSB_IDX,
|
| + gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K,
|
| + hi,
|
| #endif
|
| - gen->MakeInstruction(BPF_RET+BPF_K, ErrorCode(ErrorCode::ERR_ALLOWED)),
|
| + gen->MakeInstruction(BPF_RET + BPF_K,
|
| + ErrorCode(ErrorCode::ERR_ALLOWED)),
|
| #if __SIZEOF_POINTER__ > 4
|
| - load_nr)),
|
| + load_nr)),
|
| #endif
|
| - load_nr));
|
| + load_nr));
|
| gen->JoinInstructions(tail, escape_hatch);
|
| } else {
|
| gen->JoinInstructions(tail, load_nr);
|
| }
|
| tail = load_nr;
|
|
|
| - // On Intel architectures, verify that system call numbers are in the
|
| - // expected number range. The older i386 and x86-64 APIs clear bit 30
|
| - // on all system calls. The newer x32 API always sets bit 30.
|
| +// On Intel architectures, verify that system call numbers are in the
|
| +// expected number range. The older i386 and x86-64 APIs clear bit 30
|
| +// on all system calls. The newer x32 API always sets bit 30.
|
| #if defined(__i386__) || defined(__x86_64__)
|
| - Instruction *invalidX32 =
|
| - gen->MakeInstruction(BPF_RET+BPF_K,
|
| - Kill("Illegal mixing of system call ABIs").err_);
|
| - Instruction *checkX32 =
|
| + Instruction* invalidX32 = gen->MakeInstruction(
|
| + BPF_RET + BPF_K, Kill("Illegal mixing of system call ABIs").err_);
|
| + Instruction* checkX32 =
|
| #if defined(__x86_64__) && defined(__ILP32__)
|
| - gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 0x40000000, 0, invalidX32);
|
| + gen->MakeInstruction(
|
| + BPF_JMP + BPF_JSET + BPF_K, 0x40000000, 0, invalidX32);
|
| #else
|
| - gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 0x40000000, invalidX32, 0);
|
| + gen->MakeInstruction(
|
| + BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, 0);
|
| #endif
|
| - gen->JoinInstructions(tail, checkX32);
|
| - tail = checkX32;
|
| + gen->JoinInstructions(tail, checkX32);
|
| + tail = checkX32;
|
| #endif
|
|
|
| // Append jump table to our pre-amble
|
| @@ -686,7 +703,7 @@ Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) {
|
| }
|
|
|
| // Turn the DAG into a vector of instructions.
|
| - Program *program = new Program();
|
| + Program* program = new Program();
|
| gen->Compile(head, program);
|
| delete gen;
|
|
|
| @@ -712,17 +729,16 @@ void Sandbox::VerifyProgram(const Program& program, bool has_unsafe_traps) {
|
| new RedirectToUserSpacePolicyWrapper(policy_.get()));
|
|
|
| const char* err = NULL;
|
| - if (!Verifier::VerifyBPF(
|
| - this,
|
| - program,
|
| - has_unsafe_traps ? *redirected_policy : *policy_,
|
| - &err)) {
|
| + if (!Verifier::VerifyBPF(this,
|
| + program,
|
| + has_unsafe_traps ? *redirected_policy : *policy_,
|
| + &err)) {
|
| CodeGen::PrintProgram(program);
|
| SANDBOX_DIE(err);
|
| }
|
| }
|
|
|
| -void Sandbox::FindRanges(Ranges *ranges) {
|
| +void Sandbox::FindRanges(Ranges* ranges) {
|
| // Please note that "struct seccomp_data" defines system calls as a signed
|
| // int32_t, but BPF instructions always operate on unsigned quantities. We
|
| // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
|
| @@ -732,9 +748,9 @@ void Sandbox::FindRanges(Ranges *ranges) {
|
| ErrorCode old_err = policy_->EvaluateSyscall(this, old_sysnum);
|
| ErrorCode invalid_err = policy_->EvaluateSyscall(this, MIN_SYSCALL - 1);
|
|
|
| - for (SyscallIterator iter(false); !iter.Done(); ) {
|
| + for (SyscallIterator iter(false); !iter.Done();) {
|
| uint32_t sysnum = iter.Next();
|
| - ErrorCode err = policy_->EvaluateSyscall(this, static_cast<int>(sysnum));
|
| + ErrorCode err = policy_->EvaluateSyscall(this, static_cast<int>(sysnum));
|
| if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) {
|
| // A proper sandbox policy should always treat system calls outside of
|
| // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns
|
| @@ -745,12 +761,12 @@ void Sandbox::FindRanges(Ranges *ranges) {
|
| if (!err.Equals(old_err) || iter.Done()) {
|
| ranges->push_back(Range(old_sysnum, sysnum - 1, old_err));
|
| old_sysnum = sysnum;
|
| - old_err = err;
|
| + old_err = err;
|
| }
|
| }
|
| }
|
|
|
| -Instruction *Sandbox::AssembleJumpTable(CodeGen *gen,
|
| +Instruction* Sandbox::AssembleJumpTable(CodeGen* gen,
|
| Ranges::const_iterator start,
|
| Ranges::const_iterator stop) {
|
| // We convert the list of system call ranges into jump table that performs
|
| @@ -769,166 +785,170 @@ Instruction *Sandbox::AssembleJumpTable(CodeGen *gen,
|
| // We compare our system call number against the lowest valid system call
|
| // number in this range object. If our number is lower, it is outside of
|
| // this range object. If it is greater or equal, it might be inside.
|
| - Ranges::const_iterator mid = start + (stop - start)/2;
|
| + Ranges::const_iterator mid = start + (stop - start) / 2;
|
|
|
| // Sub-divide the list of ranges and continue recursively.
|
| - Instruction *jf = AssembleJumpTable(gen, start, mid);
|
| - Instruction *jt = AssembleJumpTable(gen, mid, stop);
|
| - return gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, mid->from, jt, jf);
|
| + Instruction* jf = AssembleJumpTable(gen, start, mid);
|
| + Instruction* jt = AssembleJumpTable(gen, mid, stop);
|
| + return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
|
| }
|
|
|
| -Instruction *Sandbox::RetExpression(CodeGen *gen, const ErrorCode& err) {
|
| +Instruction* Sandbox::RetExpression(CodeGen* gen, const ErrorCode& err) {
|
| if (err.error_type_ == ErrorCode::ET_COND) {
|
| return CondExpression(gen, err);
|
| } else {
|
| - return gen->MakeInstruction(BPF_RET+BPF_K, err);
|
| + return gen->MakeInstruction(BPF_RET + BPF_K, err);
|
| }
|
| }
|
|
|
| -Instruction *Sandbox::CondExpression(CodeGen *gen, const ErrorCode& cond) {
|
| +Instruction* Sandbox::CondExpression(CodeGen* gen, const ErrorCode& cond) {
|
| // We can only inspect the six system call arguments that are passed in
|
| // CPU registers.
|
| if (cond.argno_ < 0 || cond.argno_ >= 6) {
|
| - SANDBOX_DIE("Internal compiler error; invalid argument number "
|
| - "encountered");
|
| + SANDBOX_DIE(
|
| + "Internal compiler error; invalid argument number "
|
| + "encountered");
|
| }
|
|
|
| // BPF programs operate on 32bit entities. Load both halfs of the 64bit
|
| // system call argument and then generate suitable conditional statements.
|
| - Instruction *msb_head =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - SECCOMP_ARG_MSB_IDX(cond.argno_));
|
| - Instruction *msb_tail = msb_head;
|
| - Instruction *lsb_head =
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - SECCOMP_ARG_LSB_IDX(cond.argno_));
|
| - Instruction *lsb_tail = lsb_head;
|
| + Instruction* msb_head = gen->MakeInstruction(
|
| + BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_MSB_IDX(cond.argno_));
|
| + Instruction* msb_tail = msb_head;
|
| + Instruction* lsb_head = gen->MakeInstruction(
|
| + BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_LSB_IDX(cond.argno_));
|
| + Instruction* lsb_tail = lsb_head;
|
|
|
| // Emit a suitable comparison statement.
|
| switch (cond.op_) {
|
| - case ErrorCode::OP_EQUAL:
|
| - // Compare the least significant bits for equality
|
| - lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| - static_cast<uint32_t>(cond.value_),
|
| - RetExpression(gen, *cond.passed_),
|
| - RetExpression(gen, *cond.failed_));
|
| - gen->JoinInstructions(lsb_head, lsb_tail);
|
| -
|
| - // If we are looking at a 64bit argument, we need to also compare the
|
| - // most significant bits.
|
| - if (cond.width_ == ErrorCode::TP_64BIT) {
|
| - msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| - static_cast<uint32_t>(cond.value_ >> 32),
|
| - lsb_head,
|
| + case ErrorCode::OP_EQUAL:
|
| + // Compare the least significant bits for equality
|
| + lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
|
| + static_cast<uint32_t>(cond.value_),
|
| + RetExpression(gen, *cond.passed_),
|
| RetExpression(gen, *cond.failed_));
|
| - gen->JoinInstructions(msb_head, msb_tail);
|
| - }
|
| - break;
|
| - case ErrorCode::OP_HAS_ALL_BITS:
|
| - // Check the bits in the LSB half of the system call argument. Our
|
| - // OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is
|
| - // different from the kernel's BPF_JSET operation which passes, if any of
|
| - // the bits are set.
|
| - // Of course, if there is only a single set bit (or none at all), then
|
| - // things get easier.
|
| - {
|
| - uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
|
| - int lsb_bit_count = popcount(lsb_bits);
|
| - if (lsb_bit_count == 0) {
|
| - // No bits are set in the LSB half. The test will always pass.
|
| - lsb_head = RetExpression(gen, *cond.passed_);
|
| - lsb_tail = NULL;
|
| - } else if (lsb_bit_count == 1) {
|
| - // Exactly one bit is set in the LSB half. We can use the BPF_JSET
|
| - // operator.
|
| - lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K,
|
| - lsb_bits,
|
| - RetExpression(gen, *cond.passed_),
|
| - RetExpression(gen, *cond.failed_));
|
| - gen->JoinInstructions(lsb_head, lsb_tail);
|
| - } else {
|
| - // More than one bit is set in the LSB half. We need to combine
|
| - // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
|
| - // set in the system call argument.
|
| - gen->JoinInstructions(lsb_head,
|
| - gen->MakeInstruction(BPF_ALU+BPF_AND+BPF_K,
|
| - lsb_bits,
|
| - lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| + gen->JoinInstructions(lsb_head, lsb_tail);
|
| +
|
| + // If we are looking at a 64bit argument, we need to also compare the
|
| + // most significant bits.
|
| + if (cond.width_ == ErrorCode::TP_64BIT) {
|
| + msb_tail =
|
| + gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
|
| + static_cast<uint32_t>(cond.value_ >> 32),
|
| + lsb_head,
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(msb_head, msb_tail);
|
| + }
|
| + break;
|
| + case ErrorCode::OP_HAS_ALL_BITS:
|
| + // Check the bits in the LSB half of the system call argument. Our
|
| + // OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is
|
| + // different from the kernel's BPF_JSET operation which passes, if any of
|
| + // the bits are set.
|
| + // Of course, if there is only a single set bit (or none at all), then
|
| + // things get easier.
|
| + {
|
| + uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
|
| + int lsb_bit_count = popcount(lsb_bits);
|
| + if (lsb_bit_count == 0) {
|
| + // No bits are set in the LSB half. The test will always pass.
|
| + lsb_head = RetExpression(gen, *cond.passed_);
|
| + lsb_tail = NULL;
|
| + } else if (lsb_bit_count == 1) {
|
| + // Exactly one bit is set in the LSB half. We can use the BPF_JSET
|
| + // operator.
|
| + lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
|
| lsb_bits,
|
| RetExpression(gen, *cond.passed_),
|
| - RetExpression(gen, *cond.failed_))));
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(lsb_head, lsb_tail);
|
| + } else {
|
| + // More than one bit is set in the LSB half. We need to combine
|
| + // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
|
| + // set in the system call argument.
|
| + gen->JoinInstructions(
|
| + lsb_head,
|
| + gen->MakeInstruction(BPF_ALU + BPF_AND + BPF_K,
|
| + lsb_bits,
|
| + lsb_tail = gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K,
|
| + lsb_bits,
|
| + RetExpression(gen, *cond.passed_),
|
| + RetExpression(gen, *cond.failed_))));
|
| + }
|
| }
|
| - }
|
|
|
| - // If we are looking at a 64bit argument, we need to also check the bits
|
| - // in the MSB half of the system call argument.
|
| - if (cond.width_ == ErrorCode::TP_64BIT) {
|
| - uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
|
| - int msb_bit_count = popcount(msb_bits);
|
| - if (msb_bit_count == 0) {
|
| - // No bits are set in the MSB half. The test will always pass.
|
| - msb_head = lsb_head;
|
| - } else if (msb_bit_count == 1) {
|
| - // Exactly one bit is set in the MSB half. We can use the BPF_JSET
|
| - // operator.
|
| - msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K,
|
| - msb_bits,
|
| - lsb_head,
|
| - RetExpression(gen, *cond.failed_));
|
| - gen->JoinInstructions(msb_head, msb_tail);
|
| - } else {
|
| - // More than one bit is set in the MSB half. We need to combine
|
| - // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
|
| - // set in the system call argument.
|
| - gen->JoinInstructions(msb_head,
|
| - gen->MakeInstruction(BPF_ALU+BPF_AND+BPF_K,
|
| - msb_bits,
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K,
|
| - msb_bits,
|
| - lsb_head,
|
| - RetExpression(gen, *cond.failed_))));
|
| + // If we are looking at a 64bit argument, we need to also check the bits
|
| + // in the MSB half of the system call argument.
|
| + if (cond.width_ == ErrorCode::TP_64BIT) {
|
| + uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
|
| + int msb_bit_count = popcount(msb_bits);
|
| + if (msb_bit_count == 0) {
|
| + // No bits are set in the MSB half. The test will always pass.
|
| + msb_head = lsb_head;
|
| + } else if (msb_bit_count == 1) {
|
| + // Exactly one bit is set in the MSB half. We can use the BPF_JSET
|
| + // operator.
|
| + msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
|
| + msb_bits,
|
| + lsb_head,
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(msb_head, msb_tail);
|
| + } else {
|
| + // More than one bit is set in the MSB half. We need to combine
|
| + // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
|
| + // set in the system call argument.
|
| + gen->JoinInstructions(
|
| + msb_head,
|
| + gen->MakeInstruction(
|
| + BPF_ALU + BPF_AND + BPF_K,
|
| + msb_bits,
|
| + gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
|
| + msb_bits,
|
| + lsb_head,
|
| + RetExpression(gen, *cond.failed_))));
|
| + }
|
| }
|
| - }
|
| - break;
|
| - case ErrorCode::OP_HAS_ANY_BITS:
|
| - // Check the bits in the LSB half of the system call argument. Our
|
| - // OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps
|
| - // nicely to the kernel's BPF_JSET operation.
|
| - {
|
| - uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
|
| - if (!lsb_bits) {
|
| - // No bits are set in the LSB half. The test will always fail.
|
| - lsb_head = RetExpression(gen, *cond.failed_);
|
| - lsb_tail = NULL;
|
| - } else {
|
| - lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K,
|
| - lsb_bits,
|
| - RetExpression(gen, *cond.passed_),
|
| - RetExpression(gen, *cond.failed_));
|
| - gen->JoinInstructions(lsb_head, lsb_tail);
|
| + break;
|
| + case ErrorCode::OP_HAS_ANY_BITS:
|
| + // Check the bits in the LSB half of the system call argument. Our
|
| + // OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps
|
| + // nicely to the kernel's BPF_JSET operation.
|
| + {
|
| + uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
|
| + if (!lsb_bits) {
|
| + // No bits are set in the LSB half. The test will always fail.
|
| + lsb_head = RetExpression(gen, *cond.failed_);
|
| + lsb_tail = NULL;
|
| + } else {
|
| + lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
|
| + lsb_bits,
|
| + RetExpression(gen, *cond.passed_),
|
| + RetExpression(gen, *cond.failed_));
|
| + gen->JoinInstructions(lsb_head, lsb_tail);
|
| + }
|
| }
|
| - }
|
|
|
| - // If we are looking at a 64bit argument, we need to also check the bits
|
| - // in the MSB half of the system call argument.
|
| - if (cond.width_ == ErrorCode::TP_64BIT) {
|
| - uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
|
| - if (!msb_bits) {
|
| - // No bits are set in the MSB half. The test will always fail.
|
| - msb_head = lsb_head;
|
| - } else {
|
| - msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K,
|
| - msb_bits,
|
| - RetExpression(gen, *cond.passed_),
|
| - lsb_head);
|
| - gen->JoinInstructions(msb_head, msb_tail);
|
| + // If we are looking at a 64bit argument, we need to also check the bits
|
| + // in the MSB half of the system call argument.
|
| + if (cond.width_ == ErrorCode::TP_64BIT) {
|
| + uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
|
| + if (!msb_bits) {
|
| + // No bits are set in the MSB half. The test will always fail.
|
| + msb_head = lsb_head;
|
| + } else {
|
| + msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
|
| + msb_bits,
|
| + RetExpression(gen, *cond.passed_),
|
| + lsb_head);
|
| + gen->JoinInstructions(msb_head, msb_tail);
|
| + }
|
| }
|
| - }
|
| - break;
|
| - default:
|
| - // TODO(markus): Need to add support for OP_GREATER
|
| - SANDBOX_DIE("Not implemented");
|
| - break;
|
| + break;
|
| + default:
|
| + // TODO(markus): Need to add support for OP_GREATER
|
| + SANDBOX_DIE("Not implemented");
|
| + break;
|
| }
|
|
|
| // Ensure that we never pass a 64bit value, when we only expect a 32bit
|
| @@ -937,26 +957,28 @@ Instruction *Sandbox::CondExpression(CodeGen *gen, const ErrorCode& cond) {
|
| // LSB has been sign-extended into the MSB.
|
| if (cond.width_ == ErrorCode::TP_32BIT) {
|
| if (cond.value_ >> 32) {
|
| - SANDBOX_DIE("Invalid comparison of a 32bit system call argument "
|
| - "against a 64bit constant; this test is always false.");
|
| + SANDBOX_DIE(
|
| + "Invalid comparison of a 32bit system call argument "
|
| + "against a 64bit constant; this test is always false.");
|
| }
|
|
|
| - Instruction *invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
|
| - #if __SIZEOF_POINTER__ > 4
|
| - invalid_64bit =
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0xFFFFFFFF,
|
| - gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS,
|
| - SECCOMP_ARG_LSB_IDX(cond.argno_),
|
| - gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, 0x80000000,
|
| - lsb_head,
|
| - invalid_64bit)),
|
| - invalid_64bit);
|
| - #endif
|
| + Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
|
| +#if __SIZEOF_POINTER__ > 4
|
| + invalid_64bit = gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K,
|
| + 0xFFFFFFFF,
|
| + gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS,
|
| + SECCOMP_ARG_LSB_IDX(cond.argno_),
|
| + gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K,
|
| + 0x80000000,
|
| + lsb_head,
|
| + invalid_64bit)),
|
| + invalid_64bit);
|
| +#endif
|
| gen->JoinInstructions(
|
| - msb_tail,
|
| - gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0,
|
| - lsb_head,
|
| - invalid_64bit));
|
| + msb_tail,
|
| + gen->MakeInstruction(
|
| + BPF_JMP + BPF_JEQ + BPF_K, 0, lsb_head, invalid_64bit));
|
| }
|
|
|
| return msb_head;
|
| @@ -966,11 +988,11 @@ ErrorCode Sandbox::Unexpected64bitArgument() {
|
| return Kill("Unexpected 64bit argument detected");
|
| }
|
|
|
| -ErrorCode Sandbox::Trap(Trap::TrapFnc fnc, const void *aux) {
|
| +ErrorCode Sandbox::Trap(Trap::TrapFnc fnc, const void* aux) {
|
| return Trap::MakeTrap(fnc, aux, true /* Safe Trap */);
|
| }
|
|
|
| -ErrorCode Sandbox::UnsafeTrap(Trap::TrapFnc fnc, const void *aux) {
|
| +ErrorCode Sandbox::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) {
|
| return Trap::MakeTrap(fnc, aux, false /* Unsafe Trap */);
|
| }
|
|
|
| @@ -984,16 +1006,22 @@ intptr_t Sandbox::ForwardSyscall(const struct arch_seccomp_data& args) {
|
| static_cast<intptr_t>(args.args[5]));
|
| }
|
|
|
| -ErrorCode Sandbox::Cond(int argno, ErrorCode::ArgType width,
|
| - ErrorCode::Operation op, uint64_t value,
|
| - const ErrorCode& passed, const ErrorCode& failed) {
|
| - return ErrorCode(argno, width, op, value,
|
| +ErrorCode Sandbox::Cond(int argno,
|
| + ErrorCode::ArgType width,
|
| + ErrorCode::Operation op,
|
| + uint64_t value,
|
| + const ErrorCode& passed,
|
| + const ErrorCode& failed) {
|
| + return ErrorCode(argno,
|
| + width,
|
| + op,
|
| + value,
|
| &*conds_->insert(passed).first,
|
| &*conds_->insert(failed).first);
|
| }
|
|
|
| -ErrorCode Sandbox::Kill(const char *msg) {
|
| - return Trap(BpfFailure, const_cast<char *>(msg));
|
| +ErrorCode Sandbox::Kill(const char* msg) {
|
| + return Trap(BpfFailure, const_cast<char*>(msg));
|
| }
|
|
|
| Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
|
|
|