| Index: test/mjsunit/sin-cos.js | 
| diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js | 
| index 1176b6c9dab045d4435cacad34d7a58f7de24f5f..b63c15e13c2e29151e1311032d85a3cff64c4dd6 100644 | 
| --- a/test/mjsunit/sin-cos.js | 
| +++ b/test/mjsunit/sin-cos.js | 
| @@ -27,6 +27,8 @@ | 
|  | 
| // Test Math.sin and Math.cos. | 
|  | 
| +// Flags: --allow-natives-syntax | 
| + | 
| function sinTest() { | 
| assertEquals(0, Math.sin(0)); | 
| assertEquals(1, Math.sin(Math.PI / 2)); | 
| @@ -97,7 +99,7 @@ function abs_error(fun, ref, x) { | 
|  | 
| var test_inputs = []; | 
| for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257); | 
| -var epsilon = 0.000001; | 
| +var epsilon = 0.0000001; | 
|  | 
| test_inputs.push(0); | 
| test_inputs.push(0 + epsilon); | 
| @@ -117,8 +119,8 @@ for (var i = 0; i < test_inputs.length; i++) { | 
| var x = test_inputs[i]; | 
| var err_sin = abs_error(Math.sin, sin, x); | 
| var err_cos = abs_error(Math.cos, cos, x) | 
| -  assertTrue(err_sin < 1E-13); | 
| -  assertTrue(err_cos < 1E-13); | 
| +  assertEqualsDelta(0, err_sin, 1E-13); | 
| +  assertEqualsDelta(0, err_cos, 1E-13); | 
| squares.push(err_sin*err_sin + err_cos*err_cos); | 
| } | 
|  | 
| @@ -132,7 +134,7 @@ while (squares.length > 1) { | 
| } | 
|  | 
| var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2); | 
| -assertTrue(err_rms < 1E-14); | 
| +assertEqualsDelta(0, err_rms, 1E-14); | 
|  | 
| assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } })); | 
| assertEquals(0, Math.sin("0x00000")); | 
| @@ -141,3 +143,40 @@ assertTrue(isNaN(Math.sin(Infinity))); | 
| assertTrue(isNaN(Math.cos("-Infinity"))); | 
| assertEquals("Infinity", String(Math.tan(Math.PI/2))); | 
| assertEquals("-Infinity", String(Math.tan(-Math.PI/2))); | 
| +assertEquals("-Infinity", String(1/Math.sin("-0"))); | 
| + | 
| +// Assert that the remainder after division by pi is reasonably precise. | 
| +function assertError(expected, x, epsilon) { | 
| +  assertTrue(Math.abs(x - expected) < epsilon); | 
| +} | 
| + | 
| +assertEqualsDelta(0.9367521275331447,  Math.cos(1e06),  1e-15); | 
| +assertEqualsDelta(0.8731196226768560,  Math.cos(1e10),  1e-08); | 
| +assertEqualsDelta(0.9367521275331447,  Math.cos(-1e06), 1e-15); | 
| +assertEqualsDelta(0.8731196226768560,  Math.cos(-1e10), 1e-08); | 
| +assertEqualsDelta(-0.3499935021712929, Math.sin(1e06),  1e-15); | 
| +assertEqualsDelta(-0.4875060250875106, Math.sin(1e10),  1e-08); | 
| +assertEqualsDelta(0.3499935021712929,  Math.sin(-1e06), 1e-15); | 
| +assertEqualsDelta(0.4875060250875106,  Math.sin(-1e10), 1e-08); | 
| +assertEqualsDelta(0.7796880066069787,  Math.sin(1e16),  1e-05); | 
| +assertEqualsDelta(-0.6261681981330861, Math.cos(1e16),  1e-05); | 
| + | 
| +// Assert that remainder calculation terminates. | 
| +for (var i = -1024; i < 1024; i++) { | 
| +  assertFalse(isNaN(Math.sin(Math.pow(2, i)))); | 
| +} | 
| + | 
| +assertFalse(isNaN(Math.cos(1.57079632679489700))); | 
| +assertFalse(isNaN(Math.cos(-1e-100))); | 
| +assertFalse(isNaN(Math.cos(-1e-323))); | 
| + | 
| + | 
| +function no_deopt_on_minus_zero(x) { | 
| +  return Math.sin(x) + Math.cos(x) + Math.tan(x); | 
| +} | 
| + | 
| +no_deopt_on_minus_zero(1); | 
| +no_deopt_on_minus_zero(1); | 
| +%OptimizeFunctionOnNextCall(no_deopt_on_minus_zero); | 
| +no_deopt_on_minus_zero(-0); | 
| +assertOptimized(no_deopt_on_minus_zero); | 
|  |