| Index: test/mjsunit/sin-cos.js
|
| diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js
|
| index 1176b6c9dab045d4435cacad34d7a58f7de24f5f..b63c15e13c2e29151e1311032d85a3cff64c4dd6 100644
|
| --- a/test/mjsunit/sin-cos.js
|
| +++ b/test/mjsunit/sin-cos.js
|
| @@ -27,6 +27,8 @@
|
|
|
| // Test Math.sin and Math.cos.
|
|
|
| +// Flags: --allow-natives-syntax
|
| +
|
| function sinTest() {
|
| assertEquals(0, Math.sin(0));
|
| assertEquals(1, Math.sin(Math.PI / 2));
|
| @@ -97,7 +99,7 @@ function abs_error(fun, ref, x) {
|
|
|
| var test_inputs = [];
|
| for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
|
| -var epsilon = 0.000001;
|
| +var epsilon = 0.0000001;
|
|
|
| test_inputs.push(0);
|
| test_inputs.push(0 + epsilon);
|
| @@ -117,8 +119,8 @@ for (var i = 0; i < test_inputs.length; i++) {
|
| var x = test_inputs[i];
|
| var err_sin = abs_error(Math.sin, sin, x);
|
| var err_cos = abs_error(Math.cos, cos, x)
|
| - assertTrue(err_sin < 1E-13);
|
| - assertTrue(err_cos < 1E-13);
|
| + assertEqualsDelta(0, err_sin, 1E-13);
|
| + assertEqualsDelta(0, err_cos, 1E-13);
|
| squares.push(err_sin*err_sin + err_cos*err_cos);
|
| }
|
|
|
| @@ -132,7 +134,7 @@ while (squares.length > 1) {
|
| }
|
|
|
| var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
|
| -assertTrue(err_rms < 1E-14);
|
| +assertEqualsDelta(0, err_rms, 1E-14);
|
|
|
| assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
|
| assertEquals(0, Math.sin("0x00000"));
|
| @@ -141,3 +143,40 @@ assertTrue(isNaN(Math.sin(Infinity)));
|
| assertTrue(isNaN(Math.cos("-Infinity")));
|
| assertEquals("Infinity", String(Math.tan(Math.PI/2)));
|
| assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
|
| +assertEquals("-Infinity", String(1/Math.sin("-0")));
|
| +
|
| +// Assert that the remainder after division by pi is reasonably precise.
|
| +function assertError(expected, x, epsilon) {
|
| + assertTrue(Math.abs(x - expected) < epsilon);
|
| +}
|
| +
|
| +assertEqualsDelta(0.9367521275331447, Math.cos(1e06), 1e-15);
|
| +assertEqualsDelta(0.8731196226768560, Math.cos(1e10), 1e-08);
|
| +assertEqualsDelta(0.9367521275331447, Math.cos(-1e06), 1e-15);
|
| +assertEqualsDelta(0.8731196226768560, Math.cos(-1e10), 1e-08);
|
| +assertEqualsDelta(-0.3499935021712929, Math.sin(1e06), 1e-15);
|
| +assertEqualsDelta(-0.4875060250875106, Math.sin(1e10), 1e-08);
|
| +assertEqualsDelta(0.3499935021712929, Math.sin(-1e06), 1e-15);
|
| +assertEqualsDelta(0.4875060250875106, Math.sin(-1e10), 1e-08);
|
| +assertEqualsDelta(0.7796880066069787, Math.sin(1e16), 1e-05);
|
| +assertEqualsDelta(-0.6261681981330861, Math.cos(1e16), 1e-05);
|
| +
|
| +// Assert that remainder calculation terminates.
|
| +for (var i = -1024; i < 1024; i++) {
|
| + assertFalse(isNaN(Math.sin(Math.pow(2, i))));
|
| +}
|
| +
|
| +assertFalse(isNaN(Math.cos(1.57079632679489700)));
|
| +assertFalse(isNaN(Math.cos(-1e-100)));
|
| +assertFalse(isNaN(Math.cos(-1e-323)));
|
| +
|
| +
|
| +function no_deopt_on_minus_zero(x) {
|
| + return Math.sin(x) + Math.cos(x) + Math.tan(x);
|
| +}
|
| +
|
| +no_deopt_on_minus_zero(1);
|
| +no_deopt_on_minus_zero(1);
|
| +%OptimizeFunctionOnNextCall(no_deopt_on_minus_zero);
|
| +no_deopt_on_minus_zero(-0);
|
| +assertOptimized(no_deopt_on_minus_zero);
|
|
|