Index: src/math.js |
diff --git a/src/math.js b/src/math.js |
index e1798fa599ac7594d28fbfe96516607a27e26f77..43e32c20a3b09ce1905ccc5195c784a7aac42dbd 100644 |
--- a/src/math.js |
+++ b/src/math.js |
@@ -217,16 +217,19 @@ var InitTrigonometricFunctions; |
// Also define the initialization function that populates the lookup table |
// and then wires up the function definitions. |
function SetupTrigonometricFunctions() { |
- // TODO(yangguo): The following table size has been chosen to satisfy |
- // Sunspider's brittle result verification. Reconsider relevance. |
- var samples = 4489; |
- var pi = 3.1415926535897932; |
- var pi_half = pi / 2; |
- var inverse_pi_half = 2 / pi; |
- var two_pi = 2 * pi; |
- var four_pi = 4 * pi; |
- var interval = pi_half / samples; |
- var inverse_interval = samples / pi_half; |
+ var samples = 1800; // Table size. Do not change arbitrarily. |
+ var inverse_pi_half = 0.636619772367581343; // 2 / pi |
+ var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26) |
+ var s_26 = 1 << 26; |
+ var two_step_threshold = 1 << 27; |
+ var index_convert = 1145.915590261646418; // samples / (pi / 2) |
+ // pi / 2 rounded up |
+ var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f |
+ // We use two parts for pi/2 to emulate a higher precision. |
+ // pi_half_1 only has 26 significant bits for mantissa. |
+ // Note that pi_half > pi_half_1 + pi_half_2 |
+ var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f |
+ var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e |
var table_sin; |
var table_cos_interval; |
@@ -234,6 +237,9 @@ function SetupTrigonometricFunctions() { |
// 1) Multiplication takes care of to-number conversion. |
// 2) Reduce x to the first quadrant [0, pi/2]. |
// Conveniently enough, in case of +/-Infinity, we get NaN. |
+ // Note that we try to use only 26 instead of 52 significant bits for |
+ // mantissa to avoid rounding errors when multiplying. For very large |
+ // input we therefore have additional steps. |
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
// 4) Do a table lookup for the closest samples to the left and right of x. |
// 5) Find the derivatives at those sampling points by table lookup: |
@@ -241,8 +247,29 @@ function SetupTrigonometricFunctions() { |
// 6) Use cubic spline interpolation to approximate sin(x). |
// 7) Negate the result if x was in the 3rd or 4th quadrant. |
// 8) Get rid of -0 by adding 0. |
- var Interpolation = function(x) { |
- var double_index = x * inverse_interval; |
+ var Interpolation = function(x, phase) { |
+ if (x < 0 || x > pi_half) { |
+ var multiple; |
+ while (x < -two_step_threshold || x > two_step_threshold) { |
+ // Let's assume the loop does not terminate. |
+ // All numbers x in each loop forms a set S. |
+ // abs(x) > 2^27 for all x in S. |
+ // abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 |
+ // multiple is rounded down in 2^26 steps, so the rounding error is at |
+ // most max(ulp, 2^26), so for x > 2^27, we subtract at most 3/2 x |
+ // and at least 1/2 x. We end up with x' so that abs(x') <= abs(x)/2 |
+ // Note that since the difference is at least x/2, it cannot be simply |
+ // rounded off. |
+ // Such a set S cannot exist. |
+ multiple = MathFloor(x * inverse_pi_half_s_26) * s_26; |
+ x = x - multiple * pi_half_1 - multiple * pi_half_2; |
+ } |
+ multiple = MathFloor(x * inverse_pi_half); |
+ x = x - multiple * pi_half_1 - multiple * pi_half_2; |
+ phase += multiple; |
+ } |
+ var double_index = x * index_convert; |
+ if (phase & 1) double_index = samples - double_index; |
var index = double_index | 0; |
var t1 = double_index - index; |
var t2 = 1 - t1; |
@@ -251,26 +278,20 @@ function SetupTrigonometricFunctions() { |
var dy = y2 - y1; |
return (t2 * y1 + t1 * y2 + |
t1 * t2 * ((table_cos_interval[index] - dy) * t2 + |
- (dy - table_cos_interval[index + 1]) * t1)); |
+ (dy - table_cos_interval[index + 1]) * t1)) |
+ * (1 - (phase & 2)) + 0; |
} |
var MathSinInterpolation = function(x) { |
- // This is to make Sunspider's result verification happy. |
- if (x > four_pi) x -= four_pi; |
- var multiple = MathFloor(x * inverse_pi_half); |
- if (%_IsMinusZero(multiple)) return multiple; |
- x = (multiple & 1) * pi_half + |
- (1 - ((multiple & 1) << 1)) * (x - multiple * pi_half); |
- return Interpolation(x) * (1 - (multiple & 2)) + 0; |
+ x = x * 1; // Convert to number and deal with -0. |
+ if (%_IsMinusZero(x)) return x; |
+ return Interpolation(x, 0); |
} |
- // Cosine is sine with a phase offset of pi/2. |
+ // Cosine is sine with a phase offset. |
var MathCosInterpolation = function(x) { |
- var multiple = MathFloor(x * inverse_pi_half); |
- var phase = multiple + 1; |
- x = (phase & 1) * pi_half + |
- (1 - ((phase & 1) << 1)) * (x - multiple * pi_half); |
- return Interpolation(x) * (1 - (phase & 2)) + 0; |
+ x = MathAbs(x); // Convert to number and get rid of -0. |
+ return Interpolation(x, 1); |
}; |
%SetInlineBuiltinFlag(Interpolation); |