Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(497)

Unified Diff: src/math.js

Issue 66703005: Increase precision when finding the remainder after division by pi/2. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | test/mjsunit/mjsunit.js » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/math.js
diff --git a/src/math.js b/src/math.js
index e1798fa599ac7594d28fbfe96516607a27e26f77..43e32c20a3b09ce1905ccc5195c784a7aac42dbd 100644
--- a/src/math.js
+++ b/src/math.js
@@ -217,16 +217,19 @@ var InitTrigonometricFunctions;
// Also define the initialization function that populates the lookup table
// and then wires up the function definitions.
function SetupTrigonometricFunctions() {
- // TODO(yangguo): The following table size has been chosen to satisfy
- // Sunspider's brittle result verification. Reconsider relevance.
- var samples = 4489;
- var pi = 3.1415926535897932;
- var pi_half = pi / 2;
- var inverse_pi_half = 2 / pi;
- var two_pi = 2 * pi;
- var four_pi = 4 * pi;
- var interval = pi_half / samples;
- var inverse_interval = samples / pi_half;
+ var samples = 1800; // Table size. Do not change arbitrarily.
+ var inverse_pi_half = 0.636619772367581343; // 2 / pi
+ var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
+ var s_26 = 1 << 26;
+ var two_step_threshold = 1 << 27;
+ var index_convert = 1145.915590261646418; // samples / (pi / 2)
+ // pi / 2 rounded up
+ var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f
+ // We use two parts for pi/2 to emulate a higher precision.
+ // pi_half_1 only has 26 significant bits for mantissa.
+ // Note that pi_half > pi_half_1 + pi_half_2
+ var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f
+ var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e
var table_sin;
var table_cos_interval;
@@ -234,6 +237,9 @@ function SetupTrigonometricFunctions() {
// 1) Multiplication takes care of to-number conversion.
// 2) Reduce x to the first quadrant [0, pi/2].
// Conveniently enough, in case of +/-Infinity, we get NaN.
+ // Note that we try to use only 26 instead of 52 significant bits for
+ // mantissa to avoid rounding errors when multiplying. For very large
+ // input we therefore have additional steps.
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
// 4) Do a table lookup for the closest samples to the left and right of x.
// 5) Find the derivatives at those sampling points by table lookup:
@@ -241,8 +247,29 @@ function SetupTrigonometricFunctions() {
// 6) Use cubic spline interpolation to approximate sin(x).
// 7) Negate the result if x was in the 3rd or 4th quadrant.
// 8) Get rid of -0 by adding 0.
- var Interpolation = function(x) {
- var double_index = x * inverse_interval;
+ var Interpolation = function(x, phase) {
+ if (x < 0 || x > pi_half) {
+ var multiple;
+ while (x < -two_step_threshold || x > two_step_threshold) {
+ // Let's assume the loop does not terminate.
+ // All numbers x in each loop forms a set S.
+ // abs(x) > 2^27 for all x in S.
+ // abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
+ // multiple is rounded down in 2^26 steps, so the rounding error is at
+ // most max(ulp, 2^26), so for x > 2^27, we subtract at most 3/2 x
+ // and at least 1/2 x. We end up with x' so that abs(x') <= abs(x)/2
+ // Note that since the difference is at least x/2, it cannot be simply
+ // rounded off.
+ // Such a set S cannot exist.
+ multiple = MathFloor(x * inverse_pi_half_s_26) * s_26;
+ x = x - multiple * pi_half_1 - multiple * pi_half_2;
+ }
+ multiple = MathFloor(x * inverse_pi_half);
+ x = x - multiple * pi_half_1 - multiple * pi_half_2;
+ phase += multiple;
+ }
+ var double_index = x * index_convert;
+ if (phase & 1) double_index = samples - double_index;
var index = double_index | 0;
var t1 = double_index - index;
var t2 = 1 - t1;
@@ -251,26 +278,20 @@ function SetupTrigonometricFunctions() {
var dy = y2 - y1;
return (t2 * y1 + t1 * y2 +
t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
- (dy - table_cos_interval[index + 1]) * t1));
+ (dy - table_cos_interval[index + 1]) * t1))
+ * (1 - (phase & 2)) + 0;
}
var MathSinInterpolation = function(x) {
- // This is to make Sunspider's result verification happy.
- if (x > four_pi) x -= four_pi;
- var multiple = MathFloor(x * inverse_pi_half);
- if (%_IsMinusZero(multiple)) return multiple;
- x = (multiple & 1) * pi_half +
- (1 - ((multiple & 1) << 1)) * (x - multiple * pi_half);
- return Interpolation(x) * (1 - (multiple & 2)) + 0;
+ x = x * 1; // Convert to number and deal with -0.
+ if (%_IsMinusZero(x)) return x;
+ return Interpolation(x, 0);
}
- // Cosine is sine with a phase offset of pi/2.
+ // Cosine is sine with a phase offset.
var MathCosInterpolation = function(x) {
- var multiple = MathFloor(x * inverse_pi_half);
- var phase = multiple + 1;
- x = (phase & 1) * pi_half +
- (1 - ((phase & 1) << 1)) * (x - multiple * pi_half);
- return Interpolation(x) * (1 - (phase & 2)) + 0;
+ x = MathAbs(x); // Convert to number and get rid of -0.
+ return Interpolation(x, 1);
};
%SetInlineBuiltinFlag(Interpolation);
« no previous file with comments | « no previous file | test/mjsunit/mjsunit.js » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698