OLD | NEW |
---|---|
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 199 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
210 } | 210 } |
211 | 211 |
212 | 212 |
213 var InitTrigonometricFunctions; | 213 var InitTrigonometricFunctions; |
214 | 214 |
215 | 215 |
216 // Define constants and interpolation functions. | 216 // Define constants and interpolation functions. |
217 // Also define the initialization function that populates the lookup table | 217 // Also define the initialization function that populates the lookup table |
218 // and then wires up the function definitions. | 218 // and then wires up the function definitions. |
219 function SetupTrigonometricFunctions() { | 219 function SetupTrigonometricFunctions() { |
220 // TODO(yangguo): The following table size has been chosen to satisfy | 220 var samples = 1800; // Table size. Do not change arbitrarily. |
221 // Sunspider's brittle result verification. Reconsider relevance. | 221 // 2 / pi |
222 var samples = 4489; | 222 var inverse_pi_half = %HeapNumberFromHex("83c8c96d305fe43f"); |
Sven Panne
2013/11/20 07:38:35
Why do we need a new %Foo? Our scanner should be a
| |
223 var pi = 3.1415926535897932; | 223 // samples / (pi / 2) |
224 var pi_half = pi / 2; | 224 var index_convert = %HeapNumberFromHex("3b597e90a9e79140"); |
225 var inverse_pi_half = 2 / pi; | 225 // pi / 2 rounded up |
226 var two_pi = 2 * pi; | 226 var pi_half = %HeapNumberFromHex("192d4454fb21f93f"); |
227 var four_pi = 4 * pi; | 227 // We use two parts for pi/2 to emulate a higher precision. |
228 var interval = pi_half / samples; | 228 // Note that pi_half > pi_half_1 + pi_half_2 |
229 var inverse_interval = samples / pi_half; | 229 var pi_half_1 = %HeapNumberFromHex("00000054fb21f93f"); |
230 var pi_half_2 = %HeapNumberFromHex("3326a611460b113e"); | |
230 var table_sin; | 231 var table_sin; |
231 var table_cos_interval; | 232 var table_cos_interval; |
232 | 233 |
233 // This implements sine using the following algorithm. | 234 // This implements sine using the following algorithm. |
234 // 1) Multiplication takes care of to-number conversion. | 235 // 1) Multiplication takes care of to-number conversion. |
235 // 2) Reduce x to the first quadrant [0, pi/2]. | 236 // 2) Reduce x to the first quadrant [0, pi/2]. |
236 // Conveniently enough, in case of +/-Infinity, we get NaN. | 237 // Conveniently enough, in case of +/-Infinity, we get NaN. |
237 // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. | 238 // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
238 // 4) Do a table lookup for the closest samples to the left and right of x. | 239 // 4) Do a table lookup for the closest samples to the left and right of x. |
239 // 5) Find the derivatives at those sampling points by table lookup: | 240 // 5) Find the derivatives at those sampling points by table lookup: |
240 // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. | 241 // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. |
241 // 6) Use cubic spline interpolation to approximate sin(x). | 242 // 6) Use cubic spline interpolation to approximate sin(x). |
242 // 7) Negate the result if x was in the 3rd or 4th quadrant. | 243 // 7) Negate the result if x was in the 3rd or 4th quadrant. |
243 // 8) Get rid of -0 by adding 0. | 244 // 8) Get rid of -0 by adding 0. |
244 var Interpolation = function(x) { | 245 var Interpolation = function(x, phase) { |
245 var double_index = x * inverse_interval; | 246 var double_index = x * index_convert; |
247 if (phase & 1) double_index = samples - double_index; | |
246 var index = double_index | 0; | 248 var index = double_index | 0; |
247 var t1 = double_index - index; | 249 var t1 = double_index - index; |
248 var t2 = 1 - t1; | 250 var t2 = 1 - t1; |
249 var y1 = table_sin[index]; | 251 var y1 = table_sin[index]; |
250 var y2 = table_sin[index + 1]; | 252 var y2 = table_sin[index + 1]; |
251 var dy = y2 - y1; | 253 var dy = y2 - y1; |
252 return (t2 * y1 + t1 * y2 + | 254 return (t2 * y1 + t1 * y2 + |
253 t1 * t2 * ((table_cos_interval[index] - dy) * t2 + | 255 t1 * t2 * ((table_cos_interval[index] - dy) * t2 + |
254 (dy - table_cos_interval[index + 1]) * t1)); | 256 (dy - table_cos_interval[index + 1]) * t1)) |
257 * (1 - (phase & 2)) + 0; | |
255 } | 258 } |
256 | 259 |
257 var MathSinInterpolation = function(x) { | 260 var MathSinInterpolation = function(x) { |
258 // This is to make Sunspider's result verification happy. | 261 var x_over_pi_half = x * inverse_pi_half; |
259 if (x > four_pi) x -= four_pi; | 262 if (%_IsMinusZero(x_over_pi_half)) return x_over_pi_half; |
260 var multiple = MathFloor(x * inverse_pi_half); | 263 var phase = 0; |
261 if (%_IsMinusZero(multiple)) return multiple; | 264 while (x < 0 || x > pi_half) { |
262 x = (multiple & 1) * pi_half + | 265 var multiple = MathFloor(x * inverse_pi_half); |
263 (1 - ((multiple & 1) << 1)) * (x - multiple * pi_half); | 266 x = x - multiple * pi_half_1 - multiple * pi_half_2; |
264 return Interpolation(x) * (1 - (multiple & 2)) + 0; | 267 phase += multiple; |
268 } | |
269 return Interpolation(x, multiple); | |
265 } | 270 } |
266 | 271 |
267 // Cosine is sine with a phase offset of pi/2. | 272 // Cosine is sine with a phase offset of pi/2. |
268 var MathCosInterpolation = function(x) { | 273 var MathCosInterpolation = function(x) { |
269 var multiple = MathFloor(x * inverse_pi_half); | 274 x = MathAbs(x); |
270 var phase = multiple + 1; | 275 var phase = 0; |
271 x = (phase & 1) * pi_half + | 276 while (x < 0 || x > pi_half) { |
272 (1 - ((phase & 1) << 1)) * (x - multiple * pi_half); | 277 var multiple = MathFloor(x * inverse_pi_half); |
273 return Interpolation(x) * (1 - (phase & 2)) + 0; | 278 x = x - multiple * pi_half_1 - multiple * pi_half_2; |
279 phase += multiple; | |
280 } | |
281 return Interpolation(x, phase + 1); | |
274 }; | 282 }; |
275 | 283 |
276 %SetInlineBuiltinFlag(Interpolation); | 284 %SetInlineBuiltinFlag(Interpolation); |
277 %SetInlineBuiltinFlag(MathSinInterpolation); | 285 %SetInlineBuiltinFlag(MathSinInterpolation); |
278 %SetInlineBuiltinFlag(MathCosInterpolation); | 286 %SetInlineBuiltinFlag(MathCosInterpolation); |
279 | 287 |
280 InitTrigonometricFunctions = function() { | 288 InitTrigonometricFunctions = function() { |
281 table_sin = new global.Float64Array(samples + 2); | 289 table_sin = new global.Float64Array(samples + 2); |
282 table_cos_interval = new global.Float64Array(samples + 2); | 290 table_cos_interval = new global.Float64Array(samples + 2); |
283 %PopulateTrigonometricTable(table_sin, table_cos_interval, samples); | 291 %PopulateTrigonometricTable(table_sin, table_cos_interval, samples); |
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
361 "min", MathMin, | 369 "min", MathMin, |
362 "imul", MathImul | 370 "imul", MathImul |
363 )); | 371 )); |
364 | 372 |
365 %SetInlineBuiltinFlag(MathSin); | 373 %SetInlineBuiltinFlag(MathSin); |
366 %SetInlineBuiltinFlag(MathCos); | 374 %SetInlineBuiltinFlag(MathCos); |
367 %SetInlineBuiltinFlag(MathTan); | 375 %SetInlineBuiltinFlag(MathTan); |
368 } | 376 } |
369 | 377 |
370 SetUpMath(); | 378 SetUpMath(); |
OLD | NEW |