| Index: util/mac/process_reader.cc
|
| diff --git a/util/mac/process_reader.cc b/util/mac/process_reader.cc
|
| deleted file mode 100644
|
| index c142080b6bd32f741981fa379096de3a6788625b..0000000000000000000000000000000000000000
|
| --- a/util/mac/process_reader.cc
|
| +++ /dev/null
|
| @@ -1,716 +0,0 @@
|
| -// Copyright 2014 The Crashpad Authors. All rights reserved.
|
| -//
|
| -// Licensed under the Apache License, Version 2.0 (the "License");
|
| -// you may not use this file except in compliance with the License.
|
| -// You may obtain a copy of the License at
|
| -//
|
| -// http://www.apache.org/licenses/LICENSE-2.0
|
| -//
|
| -// Unless required by applicable law or agreed to in writing, software
|
| -// distributed under the License is distributed on an "AS IS" BASIS,
|
| -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| -// See the License for the specific language governing permissions and
|
| -// limitations under the License.
|
| -
|
| -#include "util/mac/process_reader.h"
|
| -
|
| -#include <AvailabilityMacros.h>
|
| -#include <mach/mach_vm.h>
|
| -#include <mach-o/loader.h>
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/logging.h"
|
| -#include "base/mac/mach_logging.h"
|
| -#include "base/mac/scoped_mach_port.h"
|
| -#include "base/mac/scoped_mach_vm.h"
|
| -#include "base/strings/stringprintf.h"
|
| -#include "util/mac/mach_o_image_reader.h"
|
| -#include "util/mac/process_types.h"
|
| -#include "util/misc/scoped_forbid_return.h"
|
| -
|
| -namespace {
|
| -
|
| -void MachTimeValueToTimeval(const time_value& mach, timeval* tv) {
|
| - tv->tv_sec = mach.seconds;
|
| - tv->tv_usec = mach.microseconds;
|
| -}
|
| -
|
| -kern_return_t MachVMRegionRecurseDeepest(task_t task,
|
| - mach_vm_address_t* address,
|
| - mach_vm_size_t* size,
|
| - natural_t* depth,
|
| - vm_prot_t* protection,
|
| - unsigned int* user_tag) {
|
| - vm_region_submap_short_info_64 submap_info;
|
| - mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
|
| - while (true) {
|
| - kern_return_t kr = mach_vm_region_recurse(
|
| - task,
|
| - address,
|
| - size,
|
| - depth,
|
| - reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
|
| - &count);
|
| - if (kr != KERN_SUCCESS) {
|
| - return kr;
|
| - }
|
| -
|
| - if (!submap_info.is_submap) {
|
| - *protection = submap_info.protection;
|
| - *user_tag = submap_info.user_tag;
|
| - return KERN_SUCCESS;
|
| - }
|
| -
|
| - ++*depth;
|
| - }
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -namespace crashpad {
|
| -
|
| -ProcessReader::Thread::Thread()
|
| - : thread_context(),
|
| - float_context(),
|
| - debug_context(),
|
| - id(0),
|
| - stack_region_address(0),
|
| - stack_region_size(0),
|
| - thread_specific_data_address(0),
|
| - port(THREAD_NULL),
|
| - suspend_count(0),
|
| - priority(0) {
|
| -}
|
| -
|
| -ProcessReader::Module::Module() : name(), reader(nullptr), timestamp(0) {
|
| -}
|
| -
|
| -ProcessReader::Module::~Module() {
|
| -}
|
| -
|
| -ProcessReader::ProcessReader()
|
| - : kern_proc_info_(),
|
| - threads_(),
|
| - modules_(),
|
| - module_readers_(),
|
| - task_memory_(),
|
| - task_(TASK_NULL),
|
| - initialized_(),
|
| - is_64_bit_(false),
|
| - initialized_threads_(false),
|
| - initialized_modules_(false) {
|
| -}
|
| -
|
| -ProcessReader::~ProcessReader() {
|
| - for (const Thread& thread : threads_) {
|
| - kern_return_t kr = mach_port_deallocate(mach_task_self(), thread.port);
|
| - MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr) << "mach_port_deallocate";
|
| - }
|
| -}
|
| -
|
| -bool ProcessReader::Initialize(task_t task) {
|
| - INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
|
| -
|
| - pid_t pid;
|
| - kern_return_t kr = pid_for_task(task, &pid);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(ERROR, kr) << "pid_for_task";
|
| - return false;
|
| - }
|
| -
|
| - int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};
|
| - size_t len = sizeof(kern_proc_info_);
|
| - if (sysctl(mib, arraysize(mib), &kern_proc_info_, &len, nullptr, 0) != 0) {
|
| - PLOG(ERROR) << "sysctl for pid " << pid;
|
| - return false;
|
| - }
|
| -
|
| - DCHECK_EQ(kern_proc_info_.kp_proc.p_pid, pid);
|
| -
|
| - is_64_bit_ = kern_proc_info_.kp_proc.p_flag & P_LP64;
|
| -
|
| - task_memory_.reset(new TaskMemory(task));
|
| - task_ = task;
|
| -
|
| - INITIALIZATION_STATE_SET_VALID(initialized_);
|
| - return true;
|
| -}
|
| -
|
| -void ProcessReader::StartTime(timeval* start_time) const {
|
| - INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
| - *start_time = kern_proc_info_.kp_proc.p_starttime;
|
| -}
|
| -
|
| -bool ProcessReader::CPUTimes(timeval* user_time, timeval* system_time) const {
|
| - INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
| -
|
| - // Calculate user and system time the same way the kernel does for
|
| - // getrusage(). See 10.9.2 xnu-2422.90.20/bsd/kern/kern_resource.c calcru().
|
| - timerclear(user_time);
|
| - timerclear(system_time);
|
| -
|
| - // As of the 10.8 SDK, the preferred routine is MACH_TASK_BASIC_INFO.
|
| - // TASK_BASIC_INFO_64 is equivalent and works on earlier systems.
|
| - task_basic_info_64 task_basic_info;
|
| - mach_msg_type_number_t task_basic_info_count = TASK_BASIC_INFO_64_COUNT;
|
| - kern_return_t kr = task_info(task_,
|
| - TASK_BASIC_INFO_64,
|
| - reinterpret_cast<task_info_t>(&task_basic_info),
|
| - &task_basic_info_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "task_info TASK_BASIC_INFO_64";
|
| - return false;
|
| - }
|
| -
|
| - task_thread_times_info_data_t task_thread_times;
|
| - mach_msg_type_number_t task_thread_times_count = TASK_THREAD_TIMES_INFO_COUNT;
|
| - kr = task_info(task_,
|
| - TASK_THREAD_TIMES_INFO,
|
| - reinterpret_cast<task_info_t>(&task_thread_times),
|
| - &task_thread_times_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "task_info TASK_THREAD_TIMES";
|
| - return false;
|
| - }
|
| -
|
| - MachTimeValueToTimeval(task_basic_info.user_time, user_time);
|
| - MachTimeValueToTimeval(task_basic_info.system_time, system_time);
|
| -
|
| - timeval thread_user_time;
|
| - MachTimeValueToTimeval(task_thread_times.user_time, &thread_user_time);
|
| - timeval thread_system_time;
|
| - MachTimeValueToTimeval(task_thread_times.system_time, &thread_system_time);
|
| -
|
| - timeradd(user_time, &thread_user_time, user_time);
|
| - timeradd(system_time, &thread_system_time, system_time);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -const std::vector<ProcessReader::Thread>& ProcessReader::Threads() {
|
| - INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
| -
|
| - if (!initialized_threads_) {
|
| - InitializeThreads();
|
| - }
|
| -
|
| - return threads_;
|
| -}
|
| -
|
| -const std::vector<ProcessReader::Module>& ProcessReader::Modules() {
|
| - INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
| -
|
| - if (!initialized_modules_) {
|
| - InitializeModules();
|
| - }
|
| -
|
| - return modules_;
|
| -}
|
| -
|
| -void ProcessReader::InitializeThreads() {
|
| - DCHECK(!initialized_threads_);
|
| - DCHECK(threads_.empty());
|
| -
|
| - initialized_threads_ = true;
|
| -
|
| - thread_act_array_t threads;
|
| - mach_msg_type_number_t thread_count = 0;
|
| - kern_return_t kr = task_threads(task_, &threads, &thread_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "task_threads";
|
| - return;
|
| - }
|
| -
|
| - // The send rights in the |threads| array won’t have their send rights managed
|
| - // by anything until they’re added to |threads_| by the loop below. Any early
|
| - // return (or exception) that happens between here and the completion of the
|
| - // loop below will leak thread port send rights.
|
| - ScopedForbidReturn threads_need_owners;
|
| -
|
| - base::mac::ScopedMachVM threads_vm(
|
| - reinterpret_cast<vm_address_t>(threads),
|
| - mach_vm_round_page(thread_count * sizeof(*threads)));
|
| -
|
| - for (size_t index = 0; index < thread_count; ++index) {
|
| - Thread thread;
|
| - thread.port = threads[index];
|
| -
|
| -#if defined(ARCH_CPU_X86_FAMILY)
|
| - const thread_state_flavor_t kThreadStateFlavor =
|
| - Is64Bit() ? x86_THREAD_STATE64 : x86_THREAD_STATE32;
|
| - mach_msg_type_number_t thread_state_count =
|
| - Is64Bit() ? x86_THREAD_STATE64_COUNT : x86_THREAD_STATE32_COUNT;
|
| -
|
| - // TODO(mark): Use the AVX variants instead of the FLOAT variants?
|
| - const thread_state_flavor_t kFloatStateFlavor =
|
| - Is64Bit() ? x86_FLOAT_STATE64 : x86_FLOAT_STATE32;
|
| - mach_msg_type_number_t float_state_count =
|
| - Is64Bit() ? x86_FLOAT_STATE64_COUNT : x86_FLOAT_STATE32_COUNT;
|
| -
|
| - const thread_state_flavor_t kDebugStateFlavor =
|
| - Is64Bit() ? x86_DEBUG_STATE64 : x86_DEBUG_STATE32;
|
| - mach_msg_type_number_t debug_state_count =
|
| - Is64Bit() ? x86_DEBUG_STATE64_COUNT : x86_DEBUG_STATE32_COUNT;
|
| -#endif
|
| -
|
| - kr = thread_get_state(
|
| - thread.port,
|
| - kThreadStateFlavor,
|
| - reinterpret_cast<thread_state_t>(&thread.thread_context),
|
| - &thread_state_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(ERROR, kr) << "thread_get_state(" << kThreadStateFlavor << ")";
|
| - continue;
|
| - }
|
| -
|
| - kr = thread_get_state(
|
| - thread.port,
|
| - kFloatStateFlavor,
|
| - reinterpret_cast<thread_state_t>(&thread.float_context),
|
| - &float_state_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(ERROR, kr) << "thread_get_state(" << kFloatStateFlavor << ")";
|
| - continue;
|
| - }
|
| -
|
| - kr = thread_get_state(
|
| - thread.port,
|
| - kDebugStateFlavor,
|
| - reinterpret_cast<thread_state_t>(&thread.debug_context),
|
| - &debug_state_count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(ERROR, kr) << "thread_get_state(" << kDebugStateFlavor << ")";
|
| - continue;
|
| - }
|
| -
|
| - thread_basic_info basic_info;
|
| - mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
|
| - kr = thread_info(thread.port,
|
| - THREAD_BASIC_INFO,
|
| - reinterpret_cast<thread_info_t>(&basic_info),
|
| - &count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "thread_info(THREAD_BASIC_INFO)";
|
| - } else {
|
| - thread.suspend_count = basic_info.suspend_count;
|
| - }
|
| -
|
| - thread_identifier_info identifier_info;
|
| - count = THREAD_IDENTIFIER_INFO_COUNT;
|
| - kr = thread_info(thread.port,
|
| - THREAD_IDENTIFIER_INFO,
|
| - reinterpret_cast<thread_info_t>(&identifier_info),
|
| - &count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "thread_info(THREAD_IDENTIFIER_INFO)";
|
| - } else {
|
| - thread.id = identifier_info.thread_id;
|
| -
|
| - // thread_identifier_info::thread_handle contains the base of the
|
| - // thread-specific data area, which on x86 and x86_64 is the thread’s base
|
| - // address of the %gs segment. 10.9.2 xnu-2422.90.20/osfmk/kern/thread.c
|
| - // thread_info_internal() gets the value from
|
| - // machine_thread::cthread_self, which is the same value used to set the
|
| - // %gs base in xnu-2422.90.20/osfmk/i386/pcb_native.c
|
| - // act_machine_switch_pcb().
|
| - //
|
| - // This address is the internal pthread’s _pthread::tsd[], an array of
|
| - // void* values that can be indexed by pthread_key_t values.
|
| - thread.thread_specific_data_address = identifier_info.thread_handle;
|
| - }
|
| -
|
| - thread_precedence_policy precedence;
|
| - count = THREAD_PRECEDENCE_POLICY_COUNT;
|
| - boolean_t get_default = FALSE;
|
| - kr = thread_policy_get(thread.port,
|
| - THREAD_PRECEDENCE_POLICY,
|
| - reinterpret_cast<thread_policy_t>(&precedence),
|
| - &count,
|
| - &get_default);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(INFO, kr) << "thread_policy_get";
|
| - } else {
|
| - thread.priority = precedence.importance;
|
| - }
|
| -
|
| -#if defined(ARCH_CPU_X86_FAMILY)
|
| - mach_vm_address_t stack_pointer = Is64Bit()
|
| - ? thread.thread_context.t64.__rsp
|
| - : thread.thread_context.t32.__esp;
|
| -#endif
|
| -
|
| - thread.stack_region_address =
|
| - CalculateStackRegion(stack_pointer, &thread.stack_region_size);
|
| -
|
| - threads_.push_back(thread);
|
| - }
|
| -
|
| - threads_need_owners.Disarm();
|
| -}
|
| -
|
| -void ProcessReader::InitializeModules() {
|
| - DCHECK(!initialized_modules_);
|
| - DCHECK(modules_.empty());
|
| -
|
| - initialized_modules_ = true;
|
| -
|
| - task_dyld_info_data_t dyld_info;
|
| - mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT;
|
| - kern_return_t kr = task_info(
|
| - task_, TASK_DYLD_INFO, reinterpret_cast<task_info_t>(&dyld_info), &count);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(WARNING, kr) << "task_info";
|
| - return;
|
| - }
|
| -
|
| - // TODO(mark): Deal with statically linked executables which don’t use dyld.
|
| - // This may look for the module that matches the executable path in the same
|
| - // data set that vmmap uses.
|
| -
|
| -#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7
|
| - // The task_dyld_info_data_t struct grew in 10.7, adding the format field.
|
| - // Don’t check this field if it’s not present, which can happen when either
|
| - // the SDK used at compile time or the kernel at run time are too old and
|
| - // don’t know about it.
|
| - if (count >= TASK_DYLD_INFO_COUNT) {
|
| - const integer_t kExpectedFormat =
|
| - !Is64Bit() ? TASK_DYLD_ALL_IMAGE_INFO_32 : TASK_DYLD_ALL_IMAGE_INFO_64;
|
| - if (dyld_info.all_image_info_format != kExpectedFormat) {
|
| - LOG(WARNING) << "unexpected task_dyld_info_data_t::all_image_info_format "
|
| - << dyld_info.all_image_info_format;
|
| - DCHECK_EQ(dyld_info.all_image_info_format, kExpectedFormat);
|
| - return;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - process_types::dyld_all_image_infos all_image_infos;
|
| - if (!all_image_infos.Read(this, dyld_info.all_image_info_addr)) {
|
| - LOG(WARNING) << "could not read dyld_all_image_infos";
|
| - return;
|
| - }
|
| -
|
| - DCHECK_GE(all_image_infos.version, 1u);
|
| -
|
| - // Note that all_image_infos.infoArrayCount may be 0 if a crash occurred while
|
| - // dyld was loading the executable. This can happen if a required dynamic
|
| - // library was not found. Similarly, all_image_infos.infoArray may be nullptr
|
| - // if a crash occurred while dyld was updating it.
|
| - //
|
| - // TODO(mark): It may be possible to recover from these situations by looking
|
| - // through memory mappings for Mach-O images.
|
| - if (all_image_infos.infoArrayCount == 0) {
|
| - LOG(WARNING) << "all_image_infos.infoArrayCount is zero";
|
| - return;
|
| - }
|
| - if (!all_image_infos.infoArray) {
|
| - LOG(WARNING) << "all_image_infos.infoArray is nullptr";
|
| - return;
|
| - }
|
| -
|
| - std::vector<process_types::dyld_image_info> image_info_vector(
|
| - all_image_infos.infoArrayCount);
|
| - if (!process_types::dyld_image_info::ReadArrayInto(this,
|
| - all_image_infos.infoArray,
|
| - image_info_vector.size(),
|
| - &image_info_vector[0])) {
|
| - LOG(WARNING) << "could not read dyld_image_info array";
|
| - return;
|
| - }
|
| -
|
| - size_t main_executable_count = 0;
|
| - bool found_dyld = false;
|
| - modules_.reserve(image_info_vector.size());
|
| - for (const process_types::dyld_image_info& image_info : image_info_vector) {
|
| - Module module;
|
| - module.timestamp = image_info.imageFileModDate;
|
| -
|
| - if (!task_memory_->ReadCString(image_info.imageFilePath, &module.name)) {
|
| - LOG(WARNING) << "could not read dyld_image_info::imageFilePath";
|
| - // Proceed anyway with an empty module name.
|
| - }
|
| -
|
| - scoped_ptr<MachOImageReader> reader(new MachOImageReader());
|
| - if (!reader->Initialize(this, image_info.imageLoadAddress, module.name)) {
|
| - reader.reset();
|
| - }
|
| -
|
| - module.reader = reader.get();
|
| -
|
| - uint32_t file_type = reader ? reader->FileType() : 0;
|
| -
|
| - module_readers_.push_back(reader.release());
|
| - modules_.push_back(module);
|
| -
|
| - if (all_image_infos.version >= 2 && all_image_infos.dyldImageLoadAddress &&
|
| - image_info.imageLoadAddress == all_image_infos.dyldImageLoadAddress) {
|
| - found_dyld = true;
|
| -
|
| - LOG_IF(WARNING, file_type != MH_DYLINKER)
|
| - << base::StringPrintf("dylinker (%s) has unexpected Mach-O type %d",
|
| - module.name.c_str(),
|
| - file_type);
|
| - }
|
| -
|
| - if (file_type == MH_EXECUTE) {
|
| - // On Mac OS X 10.6, the main executable does not normally show up at
|
| - // index 0. This is because of how 10.6.8 dyld-132.13/src/dyld.cpp
|
| - // notifyGDB(), the function resposible for causing
|
| - // dyld_all_image_infos::infoArray to be updated, is called. It is
|
| - // registered to be called when all dependents of an image have been
|
| - // mapped (dyld_image_state_dependents_mapped), meaning that the main
|
| - // executable won’t be added to the list until all of the libraries it
|
| - // depends on are, even though dyld begins looking at the main executable
|
| - // first. This changed in later versions of dyld, including those present
|
| - // in 10.7. 10.9.4 dyld-239.4/src/dyld.cpp updateAllImages() (renamed from
|
| - // notifyGDB()) is registered to be called when an image itself has been
|
| - // mapped (dyld_image_state_mapped), regardless of the libraries that it
|
| - // depends on.
|
| - //
|
| - // The interface requires that the main executable be first in the list,
|
| - // so swap it into the right position.
|
| - size_t index = modules_.size() - 1;
|
| - if (main_executable_count == 0) {
|
| - std::swap(modules_[0], modules_[index]);
|
| - } else {
|
| - LOG(WARNING) << base::StringPrintf(
|
| - "multiple MH_EXECUTE modules (%s, %s)",
|
| - modules_[0].name.c_str(),
|
| - modules_[index].name.c_str());
|
| - }
|
| - ++main_executable_count;
|
| - }
|
| - }
|
| -
|
| - LOG_IF(WARNING, main_executable_count == 0) << "no MH_EXECUTE modules";
|
| -
|
| - // all_image_infos.infoArray doesn’t include an entry for dyld, but dyld is
|
| - // loaded into the process’ address space as a module. Its load address is
|
| - // easily known given a sufficiently recent all_image_infos.version, but the
|
| - // timestamp and pathname are not given as they are for other modules.
|
| - //
|
| - // The timestamp is a lost cause, because the kernel doesn’t record the
|
| - // timestamp of the dynamic linker at the time it’s loaded in the same way
|
| - // that dyld records the timestamps of other modules when they’re loaded. (The
|
| - // timestamp for the main executable is also not reported and appears as 0
|
| - // even when accessed via dyld APIs, because it’s loaded by the kernel, not by
|
| - // dyld.)
|
| - //
|
| - // The name can be determined, but it’s not as simple as hardcoding the
|
| - // default "/usr/lib/dyld" because an executable could have specified anything
|
| - // in its LC_LOAD_DYLINKER command.
|
| - if (!found_dyld && all_image_infos.version >= 2 &&
|
| - all_image_infos.dyldImageLoadAddress) {
|
| - Module module;
|
| - module.timestamp = 0;
|
| -
|
| - // Examine the executable’s LC_LOAD_DYLINKER load command to find the path
|
| - // used to load dyld.
|
| - if (all_image_infos.infoArrayCount >= 1 && main_executable_count >= 1) {
|
| - module.name = modules_[0].reader->DylinkerName();
|
| - }
|
| - std::string module_name = !module.name.empty() ? module.name : "(dyld)";
|
| -
|
| - scoped_ptr<MachOImageReader> reader(new MachOImageReader());
|
| - if (!reader->Initialize(
|
| - this, all_image_infos.dyldImageLoadAddress, module_name)) {
|
| - reader.reset();
|
| - }
|
| -
|
| - module.reader = reader.get();
|
| -
|
| - uint32_t file_type = reader ? reader->FileType() : 0;
|
| -
|
| - LOG_IF(WARNING, file_type != MH_DYLINKER)
|
| - << base::StringPrintf("dylinker (%s) has unexpected Mach-O type %d",
|
| - module.name.c_str(),
|
| - file_type);
|
| -
|
| - if (module.name.empty() && file_type == MH_DYLINKER) {
|
| - // Look inside dyld directly to find its preferred path.
|
| - module.name = reader->DylinkerName();
|
| - }
|
| -
|
| - if (module.name.empty()) {
|
| - module.name = "(dyld)";
|
| - }
|
| -
|
| - // dyld is loaded in the process even if its path can’t be determined.
|
| - module_readers_.push_back(reader.release());
|
| - modules_.push_back(module);
|
| - }
|
| -}
|
| -
|
| -mach_vm_address_t ProcessReader::CalculateStackRegion(
|
| - mach_vm_address_t stack_pointer,
|
| - mach_vm_size_t* stack_region_size) {
|
| - INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
| -
|
| - // For pthreads, it may be possible to compute the stack region based on the
|
| - // internal _pthread::stackaddr and _pthread::stacksize. The _pthread struct
|
| - // for a thread can be located at TSD slot 0, or the known offsets of
|
| - // stackaddr and stacksize from the TSD area could be used.
|
| - mach_vm_address_t region_base = stack_pointer;
|
| - mach_vm_size_t region_size;
|
| - natural_t depth = 0;
|
| - vm_prot_t protection;
|
| - unsigned int user_tag;
|
| - kern_return_t kr = MachVMRegionRecurseDeepest(
|
| - task_, ®ion_base, ®ion_size, &depth, &protection, &user_tag);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
| - *stack_region_size = 0;
|
| - return 0;
|
| - }
|
| -
|
| - if (region_base > stack_pointer) {
|
| - // There’s nothing mapped at the stack pointer’s address. Something may have
|
| - // trashed the stack pointer. Note that this shouldn’t happen for a normal
|
| - // stack guard region violation because the guard region is mapped but has
|
| - // VM_PROT_NONE protection.
|
| - *stack_region_size = 0;
|
| - return 0;
|
| - }
|
| -
|
| - mach_vm_address_t start_address = stack_pointer;
|
| -
|
| - if ((protection & VM_PROT_READ) == 0) {
|
| - // If the region isn’t readable, the stack pointer probably points to the
|
| - // guard region. Don’t include it as part of the stack, and don’t include
|
| - // anything at any lower memory address. The code below may still possibly
|
| - // find the real stack region at a memory address higher than this region.
|
| - start_address = region_base + region_size;
|
| - } else {
|
| - // If the ABI requires a red zone, adjust the region to include it if
|
| - // possible.
|
| - LocateRedZone(&start_address, ®ion_base, ®ion_size, user_tag);
|
| -
|
| - // Regardless of whether the ABI requires a red zone, capture up to
|
| - // kExtraCaptureSize additional bytes of stack, but only if present in the
|
| - // region that was already found.
|
| - const mach_vm_size_t kExtraCaptureSize = 128;
|
| - start_address = std::max(start_address >= kExtraCaptureSize
|
| - ? start_address - kExtraCaptureSize
|
| - : start_address,
|
| - region_base);
|
| -
|
| - // Align start_address to a 16-byte boundary, which can help readers by
|
| - // ensuring that data is aligned properly. This could page-align instead,
|
| - // but that might be wasteful.
|
| - const mach_vm_size_t kDesiredAlignment = 16;
|
| - start_address &= ~(kDesiredAlignment - 1);
|
| - DCHECK_GE(start_address, region_base);
|
| - }
|
| -
|
| - region_size -= (start_address - region_base);
|
| - region_base = start_address;
|
| -
|
| - mach_vm_size_t total_region_size = region_size;
|
| -
|
| - // The stack region may have gotten split up into multiple abutting regions.
|
| - // Try to coalesce them. This frequently happens for the main thread’s stack
|
| - // when setrlimit(RLIMIT_STACK, …) is called. It may also happen if a region
|
| - // is split up due to an mprotect() or vm_protect() call.
|
| - //
|
| - // Stack regions created by the kernel and the pthreads library will be marked
|
| - // with the VM_MEMORY_STACK user tag. Scanning for multiple adjacent regions
|
| - // with the same tag should find an entire stack region. Checking that the
|
| - // protection on individual regions is not VM_PROT_NONE should guarantee that
|
| - // this algorithm doesn’t collect map entries belonging to another thread’s
|
| - // stack: well-behaved stacks (such as those created by the kernel and the
|
| - // pthreads library) have VM_PROT_NONE guard regions at their low-address
|
| - // ends.
|
| - //
|
| - // Other stack regions may not be so well-behaved and thus if user_tag is not
|
| - // VM_MEMORY_STACK, the single region that was found is used as-is without
|
| - // trying to merge it with other adjacent regions.
|
| - if (user_tag == VM_MEMORY_STACK) {
|
| - mach_vm_address_t try_address = region_base;
|
| - mach_vm_address_t original_try_address;
|
| -
|
| - while (try_address += region_size,
|
| - original_try_address = try_address,
|
| - (kr = MachVMRegionRecurseDeepest(task_,
|
| - &try_address,
|
| - ®ion_size,
|
| - &depth,
|
| - &protection,
|
| - &user_tag) == KERN_SUCCESS) &&
|
| - try_address == original_try_address &&
|
| - (protection & VM_PROT_READ) != 0 &&
|
| - user_tag == VM_MEMORY_STACK) {
|
| - total_region_size += region_size;
|
| - }
|
| -
|
| - if (kr != KERN_SUCCESS && kr != KERN_INVALID_ADDRESS) {
|
| - // Tolerate KERN_INVALID_ADDRESS because it will be returned when there
|
| - // are no more regions in the map at or above the specified |try_address|.
|
| - MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
| - }
|
| - }
|
| -
|
| - *stack_region_size = total_region_size;
|
| - return region_base;
|
| -}
|
| -
|
| -void ProcessReader::LocateRedZone(mach_vm_address_t* const start_address,
|
| - mach_vm_address_t* const region_base,
|
| - mach_vm_address_t* const region_size,
|
| - const unsigned int user_tag) {
|
| -#if defined(ARCH_CPU_X86_FAMILY)
|
| - if (Is64Bit()) {
|
| - // x86_64 has a red zone. See AMD64 ABI 0.99.6,
|
| - // http://www.x86-64.org/documentation/abi.pdf, section 3.2.2, “The Stack
|
| - // Frame”.
|
| - const mach_vm_size_t kRedZoneSize = 128;
|
| - mach_vm_address_t red_zone_base =
|
| - *start_address >= kRedZoneSize ? *start_address - kRedZoneSize : 0;
|
| - bool red_zone_ok = false;
|
| - if (red_zone_base >= *region_base) {
|
| - // The red zone is within the region already discovered.
|
| - red_zone_ok = true;
|
| - } else if (red_zone_base < *region_base && user_tag == VM_MEMORY_STACK) {
|
| - // Probe to see if there’s a region immediately below the one already
|
| - // discovered.
|
| - mach_vm_address_t red_zone_region_base = red_zone_base;
|
| - mach_vm_size_t red_zone_region_size;
|
| - natural_t red_zone_depth = 0;
|
| - vm_prot_t red_zone_protection;
|
| - unsigned int red_zone_user_tag;
|
| - kern_return_t kr = MachVMRegionRecurseDeepest(task_,
|
| - &red_zone_region_base,
|
| - &red_zone_region_size,
|
| - &red_zone_depth,
|
| - &red_zone_protection,
|
| - &red_zone_user_tag);
|
| - if (kr != KERN_SUCCESS) {
|
| - MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
| - *start_address = *region_base;
|
| - } else if (red_zone_region_base + red_zone_region_size == *region_base &&
|
| - (red_zone_protection & VM_PROT_READ) != 0 &&
|
| - red_zone_user_tag == user_tag) {
|
| - // The region containing the red zone is immediately below the region
|
| - // already found, it’s readable (not the guard region), and it has the
|
| - // same user tag as the region already found, so merge them.
|
| - red_zone_ok = true;
|
| - *region_base -= red_zone_region_size;
|
| - *region_size += red_zone_region_size;
|
| - }
|
| - }
|
| -
|
| - if (red_zone_ok) {
|
| - // Begin capturing from the base of the red zone (but not the entire
|
| - // region that encompasses the red zone).
|
| - *start_address = red_zone_base;
|
| - } else {
|
| - // The red zone would go lower into another region in memory, but no
|
| - // region was found. Memory can only be captured to an address as low as
|
| - // the base address of the region already found.
|
| - *start_address = *region_base;
|
| - }
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -} // namespace crashpad
|
|
|