Index: test/cctest/compiler/test-typer.cc |
diff --git a/test/cctest/compiler/test-typer.cc b/test/cctest/compiler/test-typer.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..643b08844a7a99ccc9fd208d4a25d6935f39b5d4 |
--- /dev/null |
+++ b/test/cctest/compiler/test-typer.cc |
@@ -0,0 +1,335 @@ |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include <functional> |
+ |
+#include "src/compiler/node-properties-inl.h" |
+#include "src/compiler/typer.h" |
+#include "test/cctest/cctest.h" |
+#include "test/cctest/compiler/graph-builder-tester.h" |
+#include "test/cctest/types.h" |
+ |
+using namespace v8::internal; |
+using namespace v8::internal::compiler; |
+ |
+ |
+ |
+class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { |
+ public: |
+ TyperTester() |
+ : GraphAndBuilders(main_zone()), |
+ types_(main_zone(), isolate()), |
+ typer_(main_zone()), |
+ javascript_(main_zone()) { |
+ Node* s = graph()->NewNode(common()->Start(3)); |
+ graph()->SetStart(s); |
+ context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); |
+ rng_ = isolate()->random_number_generator(); |
+ |
+ integers.push_back(0); |
+ integers.push_back(0); |
+ integers.push_back(-1); |
+ integers.push_back(+1); |
+ integers.push_back(-V8_INFINITY); |
+ integers.push_back(+V8_INFINITY); |
+ for (int i = 0; i < 5; ++i) { |
+ double x = rng_->NextInt(); |
+ integers.push_back(x); |
+ x *= rng_->NextInt(); |
+ if (!IsMinusZero(x)) integers.push_back(x); |
+ } |
+ |
+ int32s.push_back(0); |
+ int32s.push_back(0); |
+ int32s.push_back(-1); |
+ int32s.push_back(+1); |
+ int32s.push_back(kMinInt); |
+ int32s.push_back(kMaxInt); |
+ for (int i = 0; i < 10; ++i) { |
+ int32s.push_back(rng_->NextInt()); |
+ } |
+ } |
+ |
+ Types<Type, Type*, Zone> types_; |
+ Typer typer_; |
+ JSOperatorBuilder javascript_; |
+ Node* context_node_; |
+ v8::base::RandomNumberGenerator* rng_; |
+ std::vector<double> integers; |
+ std::vector<double> int32s; |
+ |
+ Isolate* isolate() { return main_isolate(); } |
+ Graph* graph() { return main_graph_; } |
+ CommonOperatorBuilder* common() { return &main_common_; } |
+ |
+ Node* Parameter(int index = 0) { |
+ return graph()->NewNode(common()->Parameter(index), graph()->start()); |
+ } |
+ |
+ Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { |
+ Node* p0 = Parameter(0); |
+ Node* p1 = Parameter(1); |
+ NodeProperties::SetBounds(p0, Bounds(lhs)); |
+ NodeProperties::SetBounds(p1, Bounds(rhs)); |
+ Node* n = graph()->NewNode( |
+ op, p0, p1, context_node_, graph()->start(), graph()->start()); |
+ typer_.Init(n); |
+ return NodeProperties::GetBounds(n).upper; |
+ } |
+ |
+ Type* RandomRange(bool int32 = false) { |
+ std::vector<double>& numbers = int32 ? int32s : integers; |
+ Factory* f = isolate()->factory(); |
+ int i = rng_->NextInt(static_cast<int>(numbers.size())); |
+ int j = rng_->NextInt(static_cast<int>(numbers.size())); |
+ i::Handle<i::Object> min = f->NewNumber(numbers[i]); |
+ i::Handle<i::Object> max = f->NewNumber(numbers[j]); |
+ if (min->Number() > max->Number()) std::swap(min, max); |
+ return Type::Range(min, max, main_zone()); |
+ } |
+ |
+ double RandomInt(double min, double max) { |
+ switch (rng_->NextInt(4)) { |
+ case 0: return min; |
+ case 1: return max; |
+ default: break; |
+ } |
+ if (min == +V8_INFINITY) return +V8_INFINITY; |
+ if (max == -V8_INFINITY) return -V8_INFINITY; |
+ if (min == -V8_INFINITY && max == +V8_INFINITY) { |
+ return rng_->NextInt() * static_cast<double>(rng_->NextInt()); |
+ } |
+ double result = nearbyint(min + (max - min) * rng_->NextDouble()); |
+ if (IsMinusZero(result)) return 0; |
+ if (std::isnan(result)) return rng_->NextInt(2) ? min : max; |
+ DCHECK(min <= result && result <= max); |
+ return result; |
+ } |
+ |
+ double RandomInt(Type::RangeType* range) { |
+ return RandomInt(range->Min()->Number(), range->Max()->Number()); |
+ } |
+ |
+ template <class BinaryFunction> |
+ void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { |
+ for (int i = 0; i < 100; ++i) { |
+ Type::RangeType* r1 = RandomRange()->AsRange(); |
+ Type::RangeType* r2 = RandomRange()->AsRange(); |
+ Type* expected_type = TypeBinaryOp(op, r1, r2); |
+ double x1 = RandomInt(r1); |
+ double x2 = RandomInt(r2); |
+ double result_value = opfun(x1, x2); |
+ Type* result_type = Type::Constant( |
+ isolate()->factory()->NewNumber(result_value), main_zone()); |
+ CHECK(result_type->Is(expected_type)); |
+ } |
+ } |
+ |
+ template <class BinaryFunction> |
+ void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { |
+ for (int i = 0; i < 100; ++i) { |
+ Type::RangeType* r1 = RandomRange()->AsRange(); |
+ Type::RangeType* r2 = RandomRange()->AsRange(); |
+ Type* expected_type = TypeBinaryOp(op, r1, r2); |
+ double x1 = RandomInt(r1); |
+ double x2 = RandomInt(r2); |
+ bool result_value = opfun(x1, x2); |
+ Type* result_type = Type::Constant(result_value ? |
+ isolate()->factory()->true_value() : |
+ isolate()->factory()->false_value(), main_zone()); |
+ CHECK(result_type->Is(expected_type)); |
+ } |
+ } |
+ |
+ template <class BinaryFunction> |
+ void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { |
+ for (int i = 0; i < 100; ++i) { |
+ Type::RangeType* r1 = RandomRange(true)->AsRange(); |
+ Type::RangeType* r2 = RandomRange(true)->AsRange(); |
+ Type* expected_type = TypeBinaryOp(op, r1, r2); |
+ int32_t x1 = static_cast<int32_t>(RandomInt(r1)); |
+ int32_t x2 = static_cast<int32_t>(RandomInt(r2)); |
+ double result_value = opfun(x1, x2); |
+ Type* result_type = Type::Constant( |
+ isolate()->factory()->NewNumber(result_value), main_zone()); |
+ CHECK(result_type->Is(expected_type)); |
+ } |
+ } |
+ |
+ Type* RandomSubtype(Type* type) { |
+ Type* subtype; |
+ do { |
+ subtype = types_.Fuzz(); |
+ } while (!subtype->Is(type)); |
+ return subtype; |
+ } |
+ |
+ void TestBinaryMonotonicity(const Operator* op) { |
+ for (int i = 0; i < 50; ++i) { |
+ Type* type1 = types_.Fuzz(); |
+ Type* type2 = types_.Fuzz(); |
+ Type* type = TypeBinaryOp(op, type1, type2); |
+ Type* subtype1 = RandomSubtype(type1);; |
+ Type* subtype2 = RandomSubtype(type2);; |
+ Type* subtype = TypeBinaryOp(op, subtype1, subtype2); |
+ CHECK(subtype->Is(type)); |
+ } |
+ } |
+}; |
+ |
+ |
+static int32_t shift_left(int32_t x, int32_t y) { return x << y; } |
+static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } |
+static int32_t bit_or(int32_t x, int32_t y) { return x | y; } |
+static int32_t bit_and(int32_t x, int32_t y) { return x & y; } |
+static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } |
+ |
+ |
+//------------------------------------------------------------------------------ |
+// Soundness |
+// For simplicity, we currently only test soundness on expression operators |
+// that have a direct equivalent in C++. Also, testing is currently limited |
+// to ranges as input types. |
+ |
+ |
+TEST(TypeJSAdd) { |
+ TyperTester t; |
+ t.TestBinaryArithOp(t.javascript_.Subtract(), std::plus<double>()); |
+} |
+ |
+ |
+TEST(TypeJSSubtract) { |
+ TyperTester t; |
+ t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); |
+} |
+ |
+ |
+TEST(TypeJSMultiply) { |
+ TyperTester t; |
+ t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); |
+} |
+ |
+ |
+TEST(TypeJSDivide) { |
+ TyperTester t; |
+ t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); |
+} |
+ |
+ |
+TEST(TypeJSBitwiseOr) { |
+ TyperTester t; |
+ t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or); |
+} |
+ |
+ |
+TEST(TypeJSBitwiseAnd) { |
+ TyperTester t; |
+ t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and); |
+} |
+ |
+ |
+TEST(TypeJSBitwiseXor) { |
+ TyperTester t; |
+ t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor); |
+} |
+ |
+ |
+TEST(TypeJSShiftLeft) { |
+ TyperTester t; |
+ t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); |
+} |
+ |
+ |
+TEST(TypeJSShiftRight) { |
+ TyperTester t; |
+ t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); |
+} |
+ |
+ |
+TEST(TypeJSLessThan) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); |
+} |
+ |
+ |
+TEST(TypeJSLessThanOrEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp( |
+ t.javascript_.LessThanOrEqual(), std::less_equal<double>()); |
+} |
+ |
+ |
+TEST(TypeJSGreaterThan) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); |
+} |
+ |
+ |
+TEST(TypeJSGreaterThanOrEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp( |
+ t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); |
+} |
+ |
+ |
+TEST(TypeJSEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); |
+} |
+ |
+ |
+TEST(TypeJSNotEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); |
+} |
+ |
+ |
+// For numbers there's no difference between strict and non-strict equality. |
+TEST(TypeJSStrictEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); |
+} |
+ |
+ |
+TEST(TypeJSStrictNotEqual) { |
+ TyperTester t; |
+ t.TestBinaryCompareOp( |
+ t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); |
+} |
+ |
+ |
+//------------------------------------------------------------------------------ |
+// Monotonicity |
+ |
+ |
+// List must be in sync with JS_SIMPLE_BINOP_LIST. |
+#define JSBINOP_LIST(V) \ |
+ V(Equal) \ |
+ V(NotEqual) \ |
+ V(StrictEqual) \ |
+ V(StrictNotEqual) \ |
+ V(LessThan) \ |
+ V(GreaterThan) \ |
+ V(LessThanOrEqual) \ |
+ V(GreaterThanOrEqual) \ |
+ V(BitwiseOr) \ |
+ V(BitwiseXor) \ |
+ V(BitwiseAnd) \ |
+ V(ShiftLeft) \ |
+ V(ShiftRight) \ |
+ V(ShiftRightLogical) \ |
+ V(Add) \ |
+ V(Subtract) \ |
+ V(Multiply) \ |
+ V(Divide) \ |
+ V(Modulus) |
+ |
+ |
+TEST(Monotonicity) { |
+ TyperTester t; |
+ #define TEST_TYPE(name) \ |
+ t.TestBinaryMonotonicity(t.javascript_.name()); |
+ JSBINOP_LIST(TEST_TYPE) |
+ #undef TEST_TYPE |
+} |