| OLD | NEW |
| (Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #include "runtime-profiler.h" |
| 31 |
| 32 #include "assembler.h" |
| 33 #include "code-stubs.h" |
| 34 #include "compilation-cache.h" |
| 35 #include "deoptimizer.h" |
| 36 #include "execution.h" |
| 37 #include "global-handles.h" |
| 38 #include "platform.h" |
| 39 #include "scopeinfo.h" |
| 40 |
| 41 namespace v8 { |
| 42 namespace internal { |
| 43 |
| 44 |
| 45 class PendingListNode : public Malloced { |
| 46 public: |
| 47 explicit PendingListNode(JSFunction* function); |
| 48 ~PendingListNode() { Destroy(); } |
| 49 |
| 50 PendingListNode* next() const { return next_; } |
| 51 void set_next(PendingListNode* node) { next_ = node; } |
| 52 Handle<JSFunction> function() { return Handle<JSFunction>::cast(function_); } |
| 53 |
| 54 // If the function is garbage collected before we've had the chance |
| 55 // to optimize it the weak handle will be null. |
| 56 bool IsValid() { return !function_.is_null(); } |
| 57 |
| 58 // Returns the number of microseconds this node has been pending. |
| 59 int Delay() const { return static_cast<int>(OS::Ticks() - start_); } |
| 60 |
| 61 private: |
| 62 void Destroy(); |
| 63 static void WeakCallback(v8::Persistent<v8::Value> object, void* data); |
| 64 |
| 65 PendingListNode* next_; |
| 66 Handle<Object> function_; // Weak handle. |
| 67 int64_t start_; |
| 68 }; |
| 69 |
| 70 |
| 71 // Optimization sampler constants. |
| 72 static const int kSamplerFrameCount = 2; |
| 73 static const int kSamplerFrameWeight[kSamplerFrameCount] = { 2, 1 }; |
| 74 |
| 75 static const int kSamplerTicksDelta = 32; |
| 76 |
| 77 static const int kSamplerThresholdInit = 3; |
| 78 static const int kSamplerThresholdMin = 1; |
| 79 static const int kSamplerThresholdDelta = 1; |
| 80 |
| 81 static const int kSamplerThresholdSizeFactorInit = 3; |
| 82 static const int kSamplerThresholdSizeFactorMin = 1; |
| 83 static const int kSamplerThresholdSizeFactorDelta = 1; |
| 84 |
| 85 static const int kSizeLimit = 1500; |
| 86 |
| 87 |
| 88 PendingListNode::PendingListNode(JSFunction* function) : next_(NULL) { |
| 89 GlobalHandles* global_handles = Isolate::Current()->global_handles(); |
| 90 function_ = global_handles->Create(function); |
| 91 start_ = OS::Ticks(); |
| 92 global_handles->MakeWeak(function_.location(), this, &WeakCallback); |
| 93 } |
| 94 |
| 95 |
| 96 void PendingListNode::Destroy() { |
| 97 if (!IsValid()) return; |
| 98 GlobalHandles* global_handles = Isolate::Current()->global_handles(); |
| 99 global_handles->Destroy(function_.location()); |
| 100 function_= Handle<Object>::null(); |
| 101 } |
| 102 |
| 103 |
| 104 void PendingListNode::WeakCallback(v8::Persistent<v8::Value>, void* data) { |
| 105 reinterpret_cast<PendingListNode*>(data)->Destroy(); |
| 106 } |
| 107 |
| 108 |
| 109 static bool IsOptimizable(JSFunction* function) { |
| 110 Code* code = function->code(); |
| 111 return code->kind() == Code::FUNCTION && code->optimizable(); |
| 112 } |
| 113 |
| 114 |
| 115 Atomic32 RuntimeProfiler::state_ = 0; |
| 116 // TODO(isolates): Create the semaphore lazily and clean it up when no |
| 117 // longer required. |
| 118 Semaphore* RuntimeProfiler::semaphore_ = OS::CreateSemaphore(0); |
| 119 |
| 120 |
| 121 RuntimeProfiler::RuntimeProfiler(Isolate* isolate) |
| 122 : isolate_(isolate), |
| 123 sampler_threshold_(kSamplerThresholdInit), |
| 124 sampler_threshold_size_factor_(kSamplerThresholdSizeFactorInit), |
| 125 sampler_window_position_(0), |
| 126 optimize_soon_list_(NULL) { |
| 127 ClearSampleBuffer(); |
| 128 } |
| 129 |
| 130 |
| 131 bool RuntimeProfiler::IsEnabled() { |
| 132 return V8::UseCrankshaft() && FLAG_opt; |
| 133 } |
| 134 |
| 135 |
| 136 void RuntimeProfiler::Optimize(JSFunction* function, bool eager, int delay) { |
| 137 ASSERT(IsOptimizable(function)); |
| 138 if (FLAG_trace_opt) { |
| 139 PrintF("[marking (%s) ", eager ? "eagerly" : "lazily"); |
| 140 function->PrintName(); |
| 141 PrintF(" for recompilation"); |
| 142 if (delay > 0) { |
| 143 PrintF(" (delayed %0.3f ms)", static_cast<double>(delay) / 1000); |
| 144 } |
| 145 PrintF("]\n"); |
| 146 } |
| 147 |
| 148 // The next call to the function will trigger optimization. |
| 149 function->MarkForLazyRecompilation(); |
| 150 } |
| 151 |
| 152 |
| 153 void RuntimeProfiler::AttemptOnStackReplacement(JSFunction* function) { |
| 154 // See AlwaysFullCompiler (in compiler.cc) comment on why we need |
| 155 // Debug::has_break_points(). |
| 156 ASSERT(function->IsMarkedForLazyRecompilation()); |
| 157 if (!FLAG_use_osr || |
| 158 isolate_->debug()->has_break_points() || |
| 159 function->IsBuiltin()) { |
| 160 return; |
| 161 } |
| 162 |
| 163 SharedFunctionInfo* shared = function->shared(); |
| 164 // If the code is not optimizable, don't try OSR. |
| 165 if (!shared->code()->optimizable()) return; |
| 166 |
| 167 // We are not prepared to do OSR for a function that already has an |
| 168 // allocated arguments object. The optimized code would bypass it for |
| 169 // arguments accesses, which is unsound. Don't try OSR. |
| 170 if (shared->scope_info()->HasArgumentsShadow()) return; |
| 171 |
| 172 // We're using on-stack replacement: patch the unoptimized code so that |
| 173 // any back edge in any unoptimized frame will trigger on-stack |
| 174 // replacement for that frame. |
| 175 if (FLAG_trace_osr) { |
| 176 PrintF("[patching stack checks in "); |
| 177 function->PrintName(); |
| 178 PrintF(" for on-stack replacement]\n"); |
| 179 } |
| 180 |
| 181 // Get the stack check stub code object to match against. We aren't |
| 182 // prepared to generate it, but we don't expect to have to. |
| 183 StackCheckStub check_stub; |
| 184 Object* check_code; |
| 185 MaybeObject* maybe_check_code = check_stub.TryGetCode(); |
| 186 if (maybe_check_code->ToObject(&check_code)) { |
| 187 Code* replacement_code = |
| 188 isolate_->builtins()->builtin(Builtins::OnStackReplacement); |
| 189 Code* unoptimized_code = shared->code(); |
| 190 // Iterate the unoptimized code and patch every stack check except at |
| 191 // the function entry. This code assumes the function entry stack |
| 192 // check appears first i.e., is not deferred or otherwise reordered. |
| 193 bool first = true; |
| 194 for (RelocIterator it(unoptimized_code, RelocInfo::kCodeTargetMask); |
| 195 !it.done(); |
| 196 it.next()) { |
| 197 RelocInfo* rinfo = it.rinfo(); |
| 198 if (rinfo->target_address() == Code::cast(check_code)->entry()) { |
| 199 if (first) { |
| 200 first = false; |
| 201 } else { |
| 202 Deoptimizer::PatchStackCheckCode(rinfo, replacement_code); |
| 203 } |
| 204 } |
| 205 } |
| 206 } |
| 207 } |
| 208 |
| 209 |
| 210 void RuntimeProfiler::ClearSampleBuffer() { |
| 211 memset(sampler_window_, 0, sizeof(sampler_window_)); |
| 212 memset(sampler_window_weight_, 0, sizeof(sampler_window_weight_)); |
| 213 } |
| 214 |
| 215 |
| 216 void RuntimeProfiler::ClearSampleBufferNewSpaceEntries() { |
| 217 for (int i = 0; i < kSamplerWindowSize; i++) { |
| 218 if (isolate_->heap()->InNewSpace(sampler_window_[i])) { |
| 219 sampler_window_[i] = NULL; |
| 220 sampler_window_weight_[i] = 0; |
| 221 } |
| 222 } |
| 223 } |
| 224 |
| 225 |
| 226 int RuntimeProfiler::LookupSample(JSFunction* function) { |
| 227 int weight = 0; |
| 228 for (int i = 0; i < kSamplerWindowSize; i++) { |
| 229 JSFunction* sample = sampler_window_[i]; |
| 230 if (sample != NULL) { |
| 231 if (function == sample) { |
| 232 weight += sampler_window_weight_[i]; |
| 233 } |
| 234 } |
| 235 } |
| 236 return weight; |
| 237 } |
| 238 |
| 239 |
| 240 void RuntimeProfiler::AddSample(JSFunction* function, int weight) { |
| 241 ASSERT(IsPowerOf2(kSamplerWindowSize)); |
| 242 sampler_window_[sampler_window_position_] = function; |
| 243 sampler_window_weight_[sampler_window_position_] = weight; |
| 244 sampler_window_position_ = (sampler_window_position_ + 1) & |
| 245 (kSamplerWindowSize - 1); |
| 246 } |
| 247 |
| 248 |
| 249 void RuntimeProfiler::OptimizeNow() { |
| 250 HandleScope scope(isolate_); |
| 251 PendingListNode* current = optimize_soon_list_; |
| 252 while (current != NULL) { |
| 253 PendingListNode* next = current->next(); |
| 254 if (current->IsValid()) { |
| 255 Handle<JSFunction> function = current->function(); |
| 256 int delay = current->Delay(); |
| 257 if (IsOptimizable(*function)) { |
| 258 Optimize(*function, true, delay); |
| 259 } |
| 260 } |
| 261 delete current; |
| 262 current = next; |
| 263 } |
| 264 optimize_soon_list_ = NULL; |
| 265 |
| 266 // Run through the JavaScript frames and collect them. If we already |
| 267 // have a sample of the function, we mark it for optimizations |
| 268 // (eagerly or lazily). |
| 269 JSFunction* samples[kSamplerFrameCount]; |
| 270 int count = 0; |
| 271 for (JavaScriptFrameIterator it; |
| 272 count < kSamplerFrameCount && !it.done(); |
| 273 it.Advance()) { |
| 274 JavaScriptFrame* frame = it.frame(); |
| 275 JSFunction* function = JSFunction::cast(frame->function()); |
| 276 int function_size = function->shared()->SourceSize(); |
| 277 int threshold_size_factor; |
| 278 if (function_size > kSizeLimit) { |
| 279 threshold_size_factor = sampler_threshold_size_factor_; |
| 280 } else { |
| 281 threshold_size_factor = 1; |
| 282 } |
| 283 |
| 284 int threshold = sampler_threshold_ * threshold_size_factor; |
| 285 samples[count++] = function; |
| 286 if (function->IsMarkedForLazyRecompilation()) { |
| 287 Code* unoptimized = function->shared()->code(); |
| 288 int nesting = unoptimized->allow_osr_at_loop_nesting_level(); |
| 289 if (nesting == 0) AttemptOnStackReplacement(function); |
| 290 int new_nesting = Min(nesting + 1, Code::kMaxLoopNestingMarker); |
| 291 unoptimized->set_allow_osr_at_loop_nesting_level(new_nesting); |
| 292 } else if (LookupSample(function) >= threshold) { |
| 293 if (IsOptimizable(function)) { |
| 294 Optimize(function, false, 0); |
| 295 isolate_->compilation_cache()->MarkForEagerOptimizing( |
| 296 Handle<JSFunction>(function, isolate_)); |
| 297 } |
| 298 } |
| 299 } |
| 300 |
| 301 // Add the collected functions as samples. It's important not to do |
| 302 // this as part of collecting them because this will interfere with |
| 303 // the sample lookup in case of recursive functions. |
| 304 for (int i = 0; i < count; i++) { |
| 305 AddSample(samples[i], kSamplerFrameWeight[i]); |
| 306 } |
| 307 } |
| 308 |
| 309 |
| 310 void RuntimeProfiler::OptimizeSoon(JSFunction* function) { |
| 311 if (!IsOptimizable(function)) return; |
| 312 PendingListNode* node = new PendingListNode(function); |
| 313 node->set_next(optimize_soon_list_); |
| 314 optimize_soon_list_ = node; |
| 315 } |
| 316 |
| 317 |
| 318 void RuntimeProfiler::NotifyTick() { |
| 319 isolate_->stack_guard()->RequestRuntimeProfilerTick(); |
| 320 } |
| 321 |
| 322 |
| 323 void RuntimeProfiler::MarkCompactPrologue(bool is_compacting) { |
| 324 if (is_compacting) { |
| 325 // Clear all samples before mark-sweep-compact because every |
| 326 // function might move. |
| 327 ClearSampleBuffer(); |
| 328 } else { |
| 329 // Clear only new space entries on mark-sweep since none of the |
| 330 // old-space functions will move. |
| 331 ClearSampleBufferNewSpaceEntries(); |
| 332 } |
| 333 } |
| 334 |
| 335 |
| 336 void RuntimeProfiler::Setup() { |
| 337 ClearSampleBuffer(); |
| 338 // If the ticker hasn't already started, make sure to do so to get |
| 339 // the ticks for the runtime profiler. |
| 340 if (IsEnabled()) isolate_->logger()->EnsureTickerStarted(); |
| 341 } |
| 342 |
| 343 |
| 344 void RuntimeProfiler::Reset() { |
| 345 sampler_threshold_ = kSamplerThresholdInit; |
| 346 sampler_threshold_size_factor_ = kSamplerThresholdSizeFactorInit; |
| 347 } |
| 348 |
| 349 |
| 350 void RuntimeProfiler::TearDown() { |
| 351 // Nothing to do. |
| 352 } |
| 353 |
| 354 |
| 355 Object** RuntimeProfiler::SamplerWindowAddress() { |
| 356 return reinterpret_cast<Object**>(sampler_window_); |
| 357 } |
| 358 |
| 359 |
| 360 int RuntimeProfiler::SamplerWindowSize() { |
| 361 return kSamplerWindowSize; |
| 362 } |
| 363 |
| 364 |
| 365 void RuntimeProfiler::HandleWakeUp(Isolate* isolate) { |
| 366 // The profiler thread must still be waiting. |
| 367 ASSERT(NoBarrier_Load(&state_) >= 0); |
| 368 // In IsolateEnteredJS we have already incremented the counter and |
| 369 // undid the decrement done by the profiler thread. Increment again |
| 370 // to get the right count of active isolates. |
| 371 NoBarrier_AtomicIncrement(&state_, 1); |
| 372 semaphore_->Signal(); |
| 373 isolate->ResetEagerOptimizingData(); |
| 374 } |
| 375 |
| 376 |
| 377 bool RuntimeProfiler::IsSomeIsolateInJS() { |
| 378 return NoBarrier_Load(&state_) > 0; |
| 379 } |
| 380 |
| 381 |
| 382 bool RuntimeProfiler::WaitForSomeIsolateToEnterJS() { |
| 383 Atomic32 old_state = NoBarrier_CompareAndSwap(&state_, 0, -1); |
| 384 ASSERT(old_state >= -1); |
| 385 if (old_state != 0) return false; |
| 386 semaphore_->Wait(); |
| 387 return true; |
| 388 } |
| 389 |
| 390 |
| 391 void RuntimeProfiler::WakeUpRuntimeProfilerThreadBeforeShutdown() { |
| 392 semaphore_->Signal(); |
| 393 } |
| 394 |
| 395 |
| 396 bool RuntimeProfilerRateLimiter::SuspendIfNecessary() { |
| 397 if (!RuntimeProfiler::IsEnabled()) return false; |
| 398 static const int kNonJSTicksThreshold = 100; |
| 399 if (RuntimeProfiler::IsSomeIsolateInJS()) { |
| 400 non_js_ticks_ = 0; |
| 401 } else { |
| 402 if (non_js_ticks_ < kNonJSTicksThreshold) { |
| 403 ++non_js_ticks_; |
| 404 } else { |
| 405 return RuntimeProfiler::WaitForSomeIsolateToEnterJS(); |
| 406 } |
| 407 } |
| 408 return false; |
| 409 } |
| 410 |
| 411 |
| 412 } } // namespace v8::internal |
| OLD | NEW |