| OLD | NEW |
| (Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 // This file is an internal atomic implementation, use atomicops.h instead. |
| 29 |
| 30 #ifndef V8_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| 31 #define V8_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| 32 |
| 33 // This struct is not part of the public API of this module; clients may not |
| 34 // use it. |
| 35 // Features of this x86. Values may not be correct before main() is run, |
| 36 // but are set conservatively. |
| 37 struct AtomicOps_x86CPUFeatureStruct { |
| 38 bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence |
| 39 // after acquire compare-and-swap. |
| 40 bool has_sse2; // Processor has SSE2. |
| 41 }; |
| 42 extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures; |
| 43 |
| 44 #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory") |
| 45 |
| 46 namespace v8 { |
| 47 namespace internal { |
| 48 |
| 49 // 32-bit low-level operations on any platform. |
| 50 |
| 51 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| 52 Atomic32 old_value, |
| 53 Atomic32 new_value) { |
| 54 Atomic32 prev; |
| 55 __asm__ __volatile__("lock; cmpxchgl %1,%2" |
| 56 : "=a" (prev) |
| 57 : "q" (new_value), "m" (*ptr), "0" (old_value) |
| 58 : "memory"); |
| 59 return prev; |
| 60 } |
| 61 |
| 62 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| 63 Atomic32 new_value) { |
| 64 __asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg. |
| 65 : "=r" (new_value) |
| 66 : "m" (*ptr), "0" (new_value) |
| 67 : "memory"); |
| 68 return new_value; // Now it's the previous value. |
| 69 } |
| 70 |
| 71 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| 72 Atomic32 increment) { |
| 73 Atomic32 temp = increment; |
| 74 __asm__ __volatile__("lock; xaddl %0,%1" |
| 75 : "+r" (temp), "+m" (*ptr) |
| 76 : : "memory"); |
| 77 // temp now holds the old value of *ptr |
| 78 return temp + increment; |
| 79 } |
| 80 |
| 81 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| 82 Atomic32 increment) { |
| 83 Atomic32 temp = increment; |
| 84 __asm__ __volatile__("lock; xaddl %0,%1" |
| 85 : "+r" (temp), "+m" (*ptr) |
| 86 : : "memory"); |
| 87 // temp now holds the old value of *ptr |
| 88 if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| 89 __asm__ __volatile__("lfence" : : : "memory"); |
| 90 } |
| 91 return temp + increment; |
| 92 } |
| 93 |
| 94 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| 95 Atomic32 old_value, |
| 96 Atomic32 new_value) { |
| 97 Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 98 if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| 99 __asm__ __volatile__("lfence" : : : "memory"); |
| 100 } |
| 101 return x; |
| 102 } |
| 103 |
| 104 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| 105 Atomic32 old_value, |
| 106 Atomic32 new_value) { |
| 107 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 108 } |
| 109 |
| 110 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 111 *ptr = value; |
| 112 } |
| 113 |
| 114 #if defined(__x86_64__) |
| 115 |
| 116 // 64-bit implementations of memory barrier can be simpler, because it |
| 117 // "mfence" is guaranteed to exist. |
| 118 inline void MemoryBarrier() { |
| 119 __asm__ __volatile__("mfence" : : : "memory"); |
| 120 } |
| 121 |
| 122 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 123 *ptr = value; |
| 124 MemoryBarrier(); |
| 125 } |
| 126 |
| 127 #else |
| 128 |
| 129 inline void MemoryBarrier() { |
| 130 if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| 131 __asm__ __volatile__("mfence" : : : "memory"); |
| 132 } else { // mfence is faster but not present on PIII |
| 133 Atomic32 x = 0; |
| 134 NoBarrier_AtomicExchange(&x, 0); // acts as a barrier on PIII |
| 135 } |
| 136 } |
| 137 |
| 138 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 139 if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| 140 *ptr = value; |
| 141 __asm__ __volatile__("mfence" : : : "memory"); |
| 142 } else { |
| 143 NoBarrier_AtomicExchange(ptr, value); |
| 144 // acts as a barrier on PIII |
| 145 } |
| 146 } |
| 147 #endif |
| 148 |
| 149 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 150 ATOMICOPS_COMPILER_BARRIER(); |
| 151 *ptr = value; // An x86 store acts as a release barrier. |
| 152 // See comments in Atomic64 version of Release_Store(), below. |
| 153 } |
| 154 |
| 155 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { |
| 156 return *ptr; |
| 157 } |
| 158 |
| 159 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
| 160 Atomic32 value = *ptr; // An x86 load acts as a acquire barrier. |
| 161 // See comments in Atomic64 version of Release_Store(), below. |
| 162 ATOMICOPS_COMPILER_BARRIER(); |
| 163 return value; |
| 164 } |
| 165 |
| 166 inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
| 167 MemoryBarrier(); |
| 168 return *ptr; |
| 169 } |
| 170 |
| 171 #if defined(__x86_64__) |
| 172 |
| 173 // 64-bit low-level operations on 64-bit platform. |
| 174 |
| 175 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, |
| 176 Atomic64 old_value, |
| 177 Atomic64 new_value) { |
| 178 Atomic64 prev; |
| 179 __asm__ __volatile__("lock; cmpxchgq %1,%2" |
| 180 : "=a" (prev) |
| 181 : "q" (new_value), "m" (*ptr), "0" (old_value) |
| 182 : "memory"); |
| 183 return prev; |
| 184 } |
| 185 |
| 186 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, |
| 187 Atomic64 new_value) { |
| 188 __asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg. |
| 189 : "=r" (new_value) |
| 190 : "m" (*ptr), "0" (new_value) |
| 191 : "memory"); |
| 192 return new_value; // Now it's the previous value. |
| 193 } |
| 194 |
| 195 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, |
| 196 Atomic64 increment) { |
| 197 Atomic64 temp = increment; |
| 198 __asm__ __volatile__("lock; xaddq %0,%1" |
| 199 : "+r" (temp), "+m" (*ptr) |
| 200 : : "memory"); |
| 201 // temp now contains the previous value of *ptr |
| 202 return temp + increment; |
| 203 } |
| 204 |
| 205 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, |
| 206 Atomic64 increment) { |
| 207 Atomic64 temp = increment; |
| 208 __asm__ __volatile__("lock; xaddq %0,%1" |
| 209 : "+r" (temp), "+m" (*ptr) |
| 210 : : "memory"); |
| 211 // temp now contains the previous value of *ptr |
| 212 if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| 213 __asm__ __volatile__("lfence" : : : "memory"); |
| 214 } |
| 215 return temp + increment; |
| 216 } |
| 217 |
| 218 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 219 *ptr = value; |
| 220 } |
| 221 |
| 222 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 223 *ptr = value; |
| 224 MemoryBarrier(); |
| 225 } |
| 226 |
| 227 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 228 ATOMICOPS_COMPILER_BARRIER(); |
| 229 |
| 230 *ptr = value; // An x86 store acts as a release barrier |
| 231 // for current AMD/Intel chips as of Jan 2008. |
| 232 // See also Acquire_Load(), below. |
| 233 |
| 234 // When new chips come out, check: |
| 235 // IA-32 Intel Architecture Software Developer's Manual, Volume 3: |
| 236 // System Programming Guide, Chatper 7: Multiple-processor management, |
| 237 // Section 7.2, Memory Ordering. |
| 238 // Last seen at: |
| 239 // http://developer.intel.com/design/pentium4/manuals/index_new.htm |
| 240 // |
| 241 // x86 stores/loads fail to act as barriers for a few instructions (clflush |
| 242 // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are |
| 243 // not generated by the compiler, and are rare. Users of these instructions |
| 244 // need to know about cache behaviour in any case since all of these involve |
| 245 // either flushing cache lines or non-temporal cache hints. |
| 246 } |
| 247 |
| 248 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { |
| 249 return *ptr; |
| 250 } |
| 251 |
| 252 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { |
| 253 Atomic64 value = *ptr; // An x86 load acts as a acquire barrier, |
| 254 // for current AMD/Intel chips as of Jan 2008. |
| 255 // See also Release_Store(), above. |
| 256 ATOMICOPS_COMPILER_BARRIER(); |
| 257 return value; |
| 258 } |
| 259 |
| 260 inline Atomic64 Release_Load(volatile const Atomic64* ptr) { |
| 261 MemoryBarrier(); |
| 262 return *ptr; |
| 263 } |
| 264 |
| 265 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, |
| 266 Atomic64 old_value, |
| 267 Atomic64 new_value) { |
| 268 Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 269 if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| 270 __asm__ __volatile__("lfence" : : : "memory"); |
| 271 } |
| 272 return x; |
| 273 } |
| 274 |
| 275 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, |
| 276 Atomic64 old_value, |
| 277 Atomic64 new_value) { |
| 278 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 279 } |
| 280 |
| 281 #endif // defined(__x86_64__) |
| 282 |
| 283 } } // namespace v8::internal |
| 284 |
| 285 #undef ATOMICOPS_COMPILER_BARRIER |
| 286 |
| 287 #endif // V8_ATOMICOPS_INTERNALS_X86_GCC_H_ |
| OLD | NEW |