| Index: src/arm/stub-cache-arm.cc
|
| ===================================================================
|
| --- src/arm/stub-cache-arm.cc (revision 6800)
|
| +++ src/arm/stub-cache-arm.cc (working copy)
|
| @@ -370,27 +370,31 @@
|
| Register receiver,
|
| Register scratch1,
|
| Register scratch2,
|
| - Label* miss) {
|
| + Label* miss,
|
| + bool support_wrappers) {
|
| Label check_wrapper;
|
|
|
| // Check if the object is a string leaving the instance type in the
|
| // scratch1 register.
|
| - GenerateStringCheck(masm, receiver, scratch1, scratch2, miss, &check_wrapper);
|
| + GenerateStringCheck(masm, receiver, scratch1, scratch2, miss,
|
| + support_wrappers ? &check_wrapper : miss);
|
|
|
| // Load length directly from the string.
|
| __ ldr(r0, FieldMemOperand(receiver, String::kLengthOffset));
|
| __ Ret();
|
|
|
| - // Check if the object is a JSValue wrapper.
|
| - __ bind(&check_wrapper);
|
| - __ cmp(scratch1, Operand(JS_VALUE_TYPE));
|
| - __ b(ne, miss);
|
| + if (support_wrappers) {
|
| + // Check if the object is a JSValue wrapper.
|
| + __ bind(&check_wrapper);
|
| + __ cmp(scratch1, Operand(JS_VALUE_TYPE));
|
| + __ b(ne, miss);
|
|
|
| - // Unwrap the value and check if the wrapped value is a string.
|
| - __ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
|
| - GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
|
| - __ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset));
|
| - __ Ret();
|
| + // Unwrap the value and check if the wrapped value is a string.
|
| + __ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
|
| + GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
|
| + __ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset));
|
| + __ Ret();
|
| + }
|
| }
|
|
|
|
|
| @@ -525,7 +529,7 @@
|
| // -----------------------------------
|
|
|
| // Check that the function really is a function.
|
| - __ BranchOnSmi(r1, miss);
|
| + __ JumpIfSmi(r1, miss);
|
| __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
|
| __ b(ne, miss);
|
|
|
| @@ -575,72 +579,94 @@
|
| __ CallStub(&stub);
|
| }
|
|
|
| +static const int kFastApiCallArguments = 3;
|
|
|
| // Reserves space for the extra arguments to FastHandleApiCall in the
|
| // caller's frame.
|
| //
|
| -// These arguments are set by CheckPrototypes and GenerateFastApiCall.
|
| +// These arguments are set by CheckPrototypes and GenerateFastApiDirectCall.
|
| static void ReserveSpaceForFastApiCall(MacroAssembler* masm,
|
| Register scratch) {
|
| __ mov(scratch, Operand(Smi::FromInt(0)));
|
| - __ push(scratch);
|
| - __ push(scratch);
|
| - __ push(scratch);
|
| - __ push(scratch);
|
| + for (int i = 0; i < kFastApiCallArguments; i++) {
|
| + __ push(scratch);
|
| + }
|
| }
|
|
|
|
|
| // Undoes the effects of ReserveSpaceForFastApiCall.
|
| static void FreeSpaceForFastApiCall(MacroAssembler* masm) {
|
| - __ Drop(4);
|
| + __ Drop(kFastApiCallArguments);
|
| }
|
|
|
|
|
| -// Generates call to FastHandleApiCall builtin.
|
| -static void GenerateFastApiCall(MacroAssembler* masm,
|
| - const CallOptimization& optimization,
|
| - int argc) {
|
| +static MaybeObject* GenerateFastApiDirectCall(MacroAssembler* masm,
|
| + const CallOptimization& optimization,
|
| + int argc) {
|
| + // ----------- S t a t e -------------
|
| + // -- sp[0] : holder (set by CheckPrototypes)
|
| + // -- sp[4] : callee js function
|
| + // -- sp[8] : call data
|
| + // -- sp[12] : last js argument
|
| + // -- ...
|
| + // -- sp[(argc + 3) * 4] : first js argument
|
| + // -- sp[(argc + 4) * 4] : receiver
|
| + // -----------------------------------
|
| // Get the function and setup the context.
|
| JSFunction* function = optimization.constant_function();
|
| __ mov(r5, Operand(Handle<JSFunction>(function)));
|
| __ ldr(cp, FieldMemOperand(r5, JSFunction::kContextOffset));
|
|
|
| // Pass the additional arguments FastHandleApiCall expects.
|
| - bool info_loaded = false;
|
| - Object* callback = optimization.api_call_info()->callback();
|
| - if (Heap::InNewSpace(callback)) {
|
| - info_loaded = true;
|
| - __ Move(r0, Handle<CallHandlerInfo>(optimization.api_call_info()));
|
| - __ ldr(r7, FieldMemOperand(r0, CallHandlerInfo::kCallbackOffset));
|
| - } else {
|
| - __ Move(r7, Handle<Object>(callback));
|
| - }
|
| Object* call_data = optimization.api_call_info()->data();
|
| + Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
|
| if (Heap::InNewSpace(call_data)) {
|
| - if (!info_loaded) {
|
| - __ Move(r0, Handle<CallHandlerInfo>(optimization.api_call_info()));
|
| - }
|
| + __ Move(r0, api_call_info_handle);
|
| __ ldr(r6, FieldMemOperand(r0, CallHandlerInfo::kDataOffset));
|
| } else {
|
| __ Move(r6, Handle<Object>(call_data));
|
| }
|
| + // Store js function and call data.
|
| + __ stm(ib, sp, r5.bit() | r6.bit());
|
|
|
| - __ add(sp, sp, Operand(1 * kPointerSize));
|
| - __ stm(ia, sp, r5.bit() | r6.bit() | r7.bit());
|
| - __ sub(sp, sp, Operand(1 * kPointerSize));
|
| + // r2 points to call data as expected by Arguments
|
| + // (refer to layout above).
|
| + __ add(r2, sp, Operand(2 * kPointerSize));
|
|
|
| - // Set the number of arguments.
|
| - __ mov(r0, Operand(argc + 4));
|
| + Object* callback = optimization.api_call_info()->callback();
|
| + Address api_function_address = v8::ToCData<Address>(callback);
|
| + ApiFunction fun(api_function_address);
|
|
|
| - // Jump to the fast api call builtin (tail call).
|
| - Handle<Code> code = Handle<Code>(
|
| - Builtins::builtin(Builtins::FastHandleApiCall));
|
| - ParameterCount expected(0);
|
| - __ InvokeCode(code, expected, expected,
|
| - RelocInfo::CODE_TARGET, JUMP_FUNCTION);
|
| + const int kApiStackSpace = 4;
|
| + __ EnterExitFrame(false, kApiStackSpace);
|
| +
|
| + // r0 = v8::Arguments&
|
| + // Arguments is after the return address.
|
| + __ add(r0, sp, Operand(1 * kPointerSize));
|
| + // v8::Arguments::implicit_args = data
|
| + __ str(r2, MemOperand(r0, 0 * kPointerSize));
|
| + // v8::Arguments::values = last argument
|
| + __ add(ip, r2, Operand(argc * kPointerSize));
|
| + __ str(ip, MemOperand(r0, 1 * kPointerSize));
|
| + // v8::Arguments::length_ = argc
|
| + __ mov(ip, Operand(argc));
|
| + __ str(ip, MemOperand(r0, 2 * kPointerSize));
|
| + // v8::Arguments::is_construct_call = 0
|
| + __ mov(ip, Operand(0));
|
| + __ str(ip, MemOperand(r0, 3 * kPointerSize));
|
| +
|
| + // Emitting a stub call may try to allocate (if the code is not
|
| + // already generated). Do not allow the assembler to perform a
|
| + // garbage collection but instead return the allocation failure
|
| + // object.
|
| + MaybeObject* result = masm->TryCallApiFunctionAndReturn(
|
| + &fun, argc + kFastApiCallArguments + 1);
|
| + if (result->IsFailure()) {
|
| + return result;
|
| + }
|
| + return Heap::undefined_value();
|
| }
|
|
|
| -
|
| class CallInterceptorCompiler BASE_EMBEDDED {
|
| public:
|
| CallInterceptorCompiler(StubCompiler* stub_compiler,
|
| @@ -650,36 +676,36 @@
|
| arguments_(arguments),
|
| name_(name) {}
|
|
|
| - void Compile(MacroAssembler* masm,
|
| - JSObject* object,
|
| - JSObject* holder,
|
| - String* name,
|
| - LookupResult* lookup,
|
| - Register receiver,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* miss) {
|
| + MaybeObject* Compile(MacroAssembler* masm,
|
| + JSObject* object,
|
| + JSObject* holder,
|
| + String* name,
|
| + LookupResult* lookup,
|
| + Register receiver,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + Label* miss) {
|
| ASSERT(holder->HasNamedInterceptor());
|
| ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
|
|
|
| // Check that the receiver isn't a smi.
|
| - __ BranchOnSmi(receiver, miss);
|
| + __ JumpIfSmi(receiver, miss);
|
|
|
| CallOptimization optimization(lookup);
|
|
|
| if (optimization.is_constant_call()) {
|
| - CompileCacheable(masm,
|
| - object,
|
| - receiver,
|
| - scratch1,
|
| - scratch2,
|
| - scratch3,
|
| - holder,
|
| - lookup,
|
| - name,
|
| - optimization,
|
| - miss);
|
| + return CompileCacheable(masm,
|
| + object,
|
| + receiver,
|
| + scratch1,
|
| + scratch2,
|
| + scratch3,
|
| + holder,
|
| + lookup,
|
| + name,
|
| + optimization,
|
| + miss);
|
| } else {
|
| CompileRegular(masm,
|
| object,
|
| @@ -690,21 +716,22 @@
|
| name,
|
| holder,
|
| miss);
|
| + return Heap::undefined_value();
|
| }
|
| }
|
|
|
| private:
|
| - void CompileCacheable(MacroAssembler* masm,
|
| - JSObject* object,
|
| - Register receiver,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - JSObject* interceptor_holder,
|
| - LookupResult* lookup,
|
| - String* name,
|
| - const CallOptimization& optimization,
|
| - Label* miss_label) {
|
| + MaybeObject* CompileCacheable(MacroAssembler* masm,
|
| + JSObject* object,
|
| + Register receiver,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + JSObject* interceptor_holder,
|
| + LookupResult* lookup,
|
| + String* name,
|
| + const CallOptimization& optimization,
|
| + Label* miss_label) {
|
| ASSERT(optimization.is_constant_call());
|
| ASSERT(!lookup->holder()->IsGlobalObject());
|
|
|
| @@ -768,7 +795,10 @@
|
|
|
| // Invoke function.
|
| if (can_do_fast_api_call) {
|
| - GenerateFastApiCall(masm, optimization, arguments_.immediate());
|
| + MaybeObject* result = GenerateFastApiDirectCall(masm,
|
| + optimization,
|
| + arguments_.immediate());
|
| + if (result->IsFailure()) return result;
|
| } else {
|
| __ InvokeFunction(optimization.constant_function(), arguments_,
|
| JUMP_FUNCTION);
|
| @@ -786,6 +816,8 @@
|
| if (can_do_fast_api_call) {
|
| FreeSpaceForFastApiCall(masm);
|
| }
|
| +
|
| + return Heap::undefined_value();
|
| }
|
|
|
| void CompileRegular(MacroAssembler* masm,
|
| @@ -906,7 +938,112 @@
|
| }
|
|
|
|
|
| +// Convert and store int passed in register ival to IEEE 754 single precision
|
| +// floating point value at memory location (dst + 4 * wordoffset)
|
| +// If VFP3 is available use it for conversion.
|
| +static void StoreIntAsFloat(MacroAssembler* masm,
|
| + Register dst,
|
| + Register wordoffset,
|
| + Register ival,
|
| + Register fval,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ vmov(s0, ival);
|
| + __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
|
| + __ vcvt_f32_s32(s0, s0);
|
| + __ vstr(s0, scratch1, 0);
|
| + } else {
|
| + Label not_special, done;
|
| + // Move sign bit from source to destination. This works because the sign
|
| + // bit in the exponent word of the double has the same position and polarity
|
| + // as the 2's complement sign bit in a Smi.
|
| + ASSERT(kBinary32SignMask == 0x80000000u);
|
|
|
| + __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
|
| + // Negate value if it is negative.
|
| + __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + // We have -1, 0 or 1, which we treat specially. Register ival contains
|
| + // absolute value: it is either equal to 1 (special case of -1 and 1),
|
| + // greater than 1 (not a special case) or less than 1 (special case of 0).
|
| + __ cmp(ival, Operand(1));
|
| + __ b(gt, ¬_special);
|
| +
|
| + // For 1 or -1 we need to or in the 0 exponent (biased).
|
| + static const uint32_t exponent_word_for_1 =
|
| + kBinary32ExponentBias << kBinary32ExponentShift;
|
| +
|
| + __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
|
| + __ b(&done);
|
| +
|
| + __ bind(¬_special);
|
| + // Count leading zeros.
|
| + // Gets the wrong answer for 0, but we already checked for that case above.
|
| + Register zeros = scratch2;
|
| + __ CountLeadingZeros(zeros, ival, scratch1);
|
| +
|
| + // Compute exponent and or it into the exponent register.
|
| + __ rsb(scratch1,
|
| + zeros,
|
| + Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
|
| +
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(scratch1, LSL, kBinary32ExponentShift));
|
| +
|
| + // Shift up the source chopping the top bit off.
|
| + __ add(zeros, zeros, Operand(1));
|
| + // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
|
| + __ mov(ival, Operand(ival, LSL, zeros));
|
| + // And the top (top 20 bits).
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
|
| +
|
| + __ bind(&done);
|
| + __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
|
| + }
|
| +}
|
| +
|
| +
|
| +// Convert unsigned integer with specified number of leading zeroes in binary
|
| +// representation to IEEE 754 double.
|
| +// Integer to convert is passed in register hiword.
|
| +// Resulting double is returned in registers hiword:loword.
|
| +// This functions does not work correctly for 0.
|
| +static void GenerateUInt2Double(MacroAssembler* masm,
|
| + Register hiword,
|
| + Register loword,
|
| + Register scratch,
|
| + int leading_zeroes) {
|
| + const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
|
| + const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
|
| +
|
| + const int mantissa_shift_for_hi_word =
|
| + meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + const int mantissa_shift_for_lo_word =
|
| + kBitsPerInt - mantissa_shift_for_hi_word;
|
| +
|
| + __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
|
| + if (mantissa_shift_for_hi_word > 0) {
|
| + __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
|
| + __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
|
| + } else {
|
| + __ mov(loword, Operand(0, RelocInfo::NONE));
|
| + __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
|
| + }
|
| +
|
| + // If least significant bit of biased exponent was not 1 it was corrupted
|
| + // by most significant bit of mantissa so we should fix that.
|
| + if (!(biased_exponent & 1)) {
|
| + __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
|
| + }
|
| +}
|
| +
|
| +
|
| #undef __
|
| #define __ ACCESS_MASM(masm())
|
|
|
| @@ -1093,17 +1230,16 @@
|
| }
|
|
|
|
|
| -bool StubCompiler::GenerateLoadCallback(JSObject* object,
|
| - JSObject* holder,
|
| - Register receiver,
|
| - Register name_reg,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - AccessorInfo* callback,
|
| - String* name,
|
| - Label* miss,
|
| - Failure** failure) {
|
| +MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object,
|
| + JSObject* holder,
|
| + Register receiver,
|
| + Register name_reg,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Register scratch3,
|
| + AccessorInfo* callback,
|
| + String* name,
|
| + Label* miss) {
|
| // Check that the receiver isn't a smi.
|
| __ tst(receiver, Operand(kSmiTagMask));
|
| __ b(eq, miss);
|
| @@ -1124,7 +1260,7 @@
|
| ExternalReference(IC_Utility(IC::kLoadCallbackProperty));
|
| __ TailCallExternalReference(load_callback_property, 5, 1);
|
|
|
| - return true;
|
| + return Heap::undefined_value(); // Success.
|
| }
|
|
|
|
|
| @@ -1142,7 +1278,7 @@
|
| ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
|
|
|
| // Check that the receiver isn't a smi.
|
| - __ BranchOnSmi(receiver, miss);
|
| + __ JumpIfSmi(receiver, miss);
|
|
|
| // So far the most popular follow ups for interceptor loads are FIELD
|
| // and CALLBACKS, so inline only them, other cases may be added
|
| @@ -1336,11 +1472,10 @@
|
|
|
|
|
| MaybeObject* CallStubCompiler::GenerateMissBranch() {
|
| + MaybeObject* maybe_obj = StubCache::ComputeCallMiss(arguments().immediate(),
|
| + kind_);
|
| Object* obj;
|
| - { MaybeObject* maybe_obj =
|
| - StubCache::ComputeCallMiss(arguments().immediate(), kind_);
|
| - if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
| - }
|
| + if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
| __ Jump(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET);
|
| return obj;
|
| }
|
| @@ -1411,7 +1546,7 @@
|
| __ ldr(receiver, MemOperand(sp, argc * kPointerSize));
|
|
|
| // Check that the receiver isn't a smi.
|
| - __ BranchOnSmi(receiver, &miss);
|
| + __ JumpIfSmi(receiver, &miss);
|
|
|
| // Check that the maps haven't changed.
|
| CheckPrototypes(JSObject::cast(object), receiver,
|
| @@ -1469,7 +1604,7 @@
|
|
|
| // Check for a smi.
|
| #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
|
| - __ BranchOnNotSmi(r4, &with_write_barrier);
|
| + __ JumpIfNotSmi(r4, &with_write_barrier);
|
| #endif
|
| __ bind(&exit);
|
| __ Drop(argc + 1);
|
| @@ -1579,7 +1714,7 @@
|
| __ ldr(receiver, MemOperand(sp, argc * kPointerSize));
|
|
|
| // Check that the receiver isn't a smi.
|
| - __ BranchOnSmi(receiver, &miss);
|
| + __ JumpIfSmi(receiver, &miss);
|
|
|
| // Check that the maps haven't changed.
|
| CheckPrototypes(JSObject::cast(object),
|
| @@ -1657,9 +1792,16 @@
|
| const int argc = arguments().immediate();
|
|
|
| Label miss;
|
| + Label name_miss;
|
| Label index_out_of_range;
|
| - GenerateNameCheck(name, &miss);
|
| + Label* index_out_of_range_label = &index_out_of_range;
|
|
|
| + if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) {
|
| + index_out_of_range_label = &miss;
|
| + }
|
| +
|
| + GenerateNameCheck(name, &name_miss);
|
| +
|
| // Check that the maps starting from the prototype haven't changed.
|
| GenerateDirectLoadGlobalFunctionPrototype(masm(),
|
| Context::STRING_FUNCTION_INDEX,
|
| @@ -1686,7 +1828,7 @@
|
| result,
|
| &miss, // When not a string.
|
| &miss, // When not a number.
|
| - &index_out_of_range,
|
| + index_out_of_range_label,
|
| STRING_INDEX_IS_NUMBER);
|
| char_code_at_generator.GenerateFast(masm());
|
| __ Drop(argc + 1);
|
| @@ -1695,12 +1837,17 @@
|
| StubRuntimeCallHelper call_helper;
|
| char_code_at_generator.GenerateSlow(masm(), call_helper);
|
|
|
| - __ bind(&index_out_of_range);
|
| - __ LoadRoot(r0, Heap::kNanValueRootIndex);
|
| - __ Drop(argc + 1);
|
| - __ Ret();
|
| + if (index_out_of_range.is_linked()) {
|
| + __ bind(&index_out_of_range);
|
| + __ LoadRoot(r0, Heap::kNanValueRootIndex);
|
| + __ Drop(argc + 1);
|
| + __ Ret();
|
| + }
|
|
|
| __ bind(&miss);
|
| + // Restore function name in r2.
|
| + __ Move(r2, Handle<String>(name));
|
| + __ bind(&name_miss);
|
| Object* obj;
|
| { MaybeObject* maybe_obj = GenerateMissBranch();
|
| if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
| @@ -1731,10 +1878,16 @@
|
| const int argc = arguments().immediate();
|
|
|
| Label miss;
|
| + Label name_miss;
|
| Label index_out_of_range;
|
| + Label* index_out_of_range_label = &index_out_of_range;
|
|
|
| - GenerateNameCheck(name, &miss);
|
| + if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) {
|
| + index_out_of_range_label = &miss;
|
| + }
|
|
|
| + GenerateNameCheck(name, &name_miss);
|
| +
|
| // Check that the maps starting from the prototype haven't changed.
|
| GenerateDirectLoadGlobalFunctionPrototype(masm(),
|
| Context::STRING_FUNCTION_INDEX,
|
| @@ -1763,7 +1916,7 @@
|
| result,
|
| &miss, // When not a string.
|
| &miss, // When not a number.
|
| - &index_out_of_range,
|
| + index_out_of_range_label,
|
| STRING_INDEX_IS_NUMBER);
|
| char_at_generator.GenerateFast(masm());
|
| __ Drop(argc + 1);
|
| @@ -1772,12 +1925,17 @@
|
| StubRuntimeCallHelper call_helper;
|
| char_at_generator.GenerateSlow(masm(), call_helper);
|
|
|
| - __ bind(&index_out_of_range);
|
| - __ LoadRoot(r0, Heap::kEmptyStringRootIndex);
|
| - __ Drop(argc + 1);
|
| - __ Ret();
|
| + if (index_out_of_range.is_linked()) {
|
| + __ bind(&index_out_of_range);
|
| + __ LoadRoot(r0, Heap::kEmptyStringRootIndex);
|
| + __ Drop(argc + 1);
|
| + __ Ret();
|
| + }
|
|
|
| __ bind(&miss);
|
| + // Restore function name in r2.
|
| + __ Move(r2, Handle<String>(name));
|
| + __ bind(&name_miss);
|
| Object* obj;
|
| { MaybeObject* maybe_obj = GenerateMissBranch();
|
| if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
| @@ -1893,7 +2051,7 @@
|
| __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
|
|
|
| STATIC_ASSERT(kSmiTag == 0);
|
| - __ BranchOnSmi(r1, &miss);
|
| + __ JumpIfSmi(r1, &miss);
|
|
|
| CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
|
| &miss);
|
| @@ -1936,11 +2094,11 @@
|
| // - Make sure Flush-to-zero mode control bit is unset (bit 22).
|
| __ bic(r9, r3,
|
| Operand(kVFPExceptionMask | kVFPRoundingModeMask | kVFPFlushToZeroMask));
|
| - __ orr(r9, r9, Operand(kVFPRoundToMinusInfinityBits));
|
| + __ orr(r9, r9, Operand(kRoundToMinusInf));
|
| __ vmsr(r9);
|
|
|
| // Convert the argument to an integer.
|
| - __ vcvt_s32_f64(s0, d1, Assembler::FPSCRRounding, al);
|
| + __ vcvt_s32_f64(s0, d1, kFPSCRRounding);
|
|
|
| // Use vcvt latency to start checking for special cases.
|
| // Get the argument exponent and clear the sign bit.
|
| @@ -1963,7 +2121,7 @@
|
| __ cmp(r7, Operand(HeapNumber::kMantissaBits));
|
| // If greater or equal, the argument is already round and in r0.
|
| __ b(&restore_fpscr_and_return, ge);
|
| - __ b(&slow);
|
| + __ b(&wont_fit_smi);
|
|
|
| __ bind(&no_vfp_exception);
|
| // Move the result back to general purpose register r0.
|
| @@ -1976,7 +2134,7 @@
|
| __ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
|
|
| // Check for -0.
|
| - __ cmp(r0, Operand(0));
|
| + __ cmp(r0, Operand(0, RelocInfo::NONE));
|
| __ b(&restore_fpscr_and_return, ne);
|
| // r5 already holds the HeapNumber exponent.
|
| __ tst(r5, Operand(HeapNumber::kSignMask));
|
| @@ -1991,10 +2149,10 @@
|
| __ Ret();
|
|
|
| __ bind(&wont_fit_smi);
|
| - __ bind(&slow);
|
| // Restore FPCSR and fall to slow case.
|
| __ vmsr(r3);
|
|
|
| + __ bind(&slow);
|
| // Tail call the full function. We do not have to patch the receiver
|
| // because the function makes no use of it.
|
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION);
|
| @@ -2052,7 +2210,7 @@
|
| // Check if the argument is a smi.
|
| Label not_smi;
|
| STATIC_ASSERT(kSmiTag == 0);
|
| - __ BranchOnNotSmi(r0, ¬_smi);
|
| + __ JumpIfNotSmi(r0, ¬_smi);
|
|
|
| // Do bitwise not or do nothing depending on the sign of the
|
| // argument.
|
| @@ -2249,7 +2407,8 @@
|
| }
|
|
|
| if (depth != kInvalidProtoDepth) {
|
| - GenerateFastApiCall(masm(), optimization, argc);
|
| + MaybeObject* result = GenerateFastApiDirectCall(masm(), optimization, argc);
|
| + if (result->IsFailure()) return result;
|
| } else {
|
| __ InvokeFunction(function, arguments(), JUMP_FUNCTION);
|
| }
|
| @@ -2293,16 +2452,19 @@
|
| __ ldr(r1, MemOperand(sp, argc * kPointerSize));
|
|
|
| CallInterceptorCompiler compiler(this, arguments(), r2);
|
| - compiler.Compile(masm(),
|
| - object,
|
| - holder,
|
| - name,
|
| - &lookup,
|
| - r1,
|
| - r3,
|
| - r4,
|
| - r0,
|
| - &miss);
|
| + MaybeObject* result = compiler.Compile(masm(),
|
| + object,
|
| + holder,
|
| + name,
|
| + &lookup,
|
| + r1,
|
| + r3,
|
| + r4,
|
| + r0,
|
| + &miss);
|
| + if (result->IsFailure()) {
|
| + return result;
|
| + }
|
|
|
| // Move returned value, the function to call, to r1.
|
| __ mov(r1, r0);
|
| @@ -2530,9 +2692,18 @@
|
| __ cmp(r3, Operand(Handle<Map>(object->map())));
|
| __ b(ne, &miss);
|
|
|
| + // Check that the value in the cell is not the hole. If it is, this
|
| + // cell could have been deleted and reintroducing the global needs
|
| + // to update the property details in the property dictionary of the
|
| + // global object. We bail out to the runtime system to do that.
|
| + __ mov(r4, Operand(Handle<JSGlobalPropertyCell>(cell)));
|
| + __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
|
| + __ ldr(r6, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
|
| + __ cmp(r5, r6);
|
| + __ b(eq, &miss);
|
| +
|
| // Store the value in the cell.
|
| - __ mov(r2, Operand(Handle<JSGlobalPropertyCell>(cell)));
|
| - __ str(r0, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
|
| + __ str(r0, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
|
|
|
| __ IncrementCounter(&Counters::named_store_global_inline, 1, r4, r3);
|
| __ Ret();
|
| @@ -2622,12 +2793,11 @@
|
| // -----------------------------------
|
| Label miss;
|
|
|
| - Failure* failure = Failure::InternalError();
|
| - bool success = GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4,
|
| - callback, name, &miss, &failure);
|
| - if (!success) {
|
| + MaybeObject* result = GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4,
|
| + callback, name, &miss);
|
| + if (result->IsFailure()) {
|
| miss.Unuse();
|
| - return failure;
|
| + return result;
|
| }
|
|
|
| __ bind(&miss);
|
| @@ -2774,12 +2944,11 @@
|
| __ cmp(r0, Operand(Handle<String>(name)));
|
| __ b(ne, &miss);
|
|
|
| - Failure* failure = Failure::InternalError();
|
| - bool success = GenerateLoadCallback(receiver, holder, r1, r0, r2, r3, r4,
|
| - callback, name, &miss, &failure);
|
| - if (!success) {
|
| + MaybeObject* result = GenerateLoadCallback(receiver, holder, r1, r0, r2, r3,
|
| + r4, callback, name, &miss);
|
| + if (result->IsFailure()) {
|
| miss.Unuse();
|
| - return failure;
|
| + return result;
|
| }
|
|
|
| __ bind(&miss);
|
| @@ -2879,7 +3048,7 @@
|
| __ cmp(r0, Operand(Handle<String>(name)));
|
| __ b(ne, &miss);
|
|
|
| - GenerateLoadStringLength(masm(), r1, r2, r3, &miss);
|
| + GenerateLoadStringLength(masm(), r1, r2, r3, &miss, true);
|
| __ bind(&miss);
|
| __ DecrementCounter(&Counters::keyed_load_string_length, 1, r2, r3);
|
|
|
| @@ -2961,6 +3130,38 @@
|
| }
|
|
|
|
|
| +MaybeObject* KeyedLoadStubCompiler::CompileLoadPixelArray(JSObject* receiver) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label miss;
|
| +
|
| + // Check that the map matches.
|
| + __ CheckMap(r1, r2, Handle<Map>(receiver->map()), &miss, false);
|
| +
|
| + GenerateFastPixelArrayLoad(masm(),
|
| + r1,
|
| + r0,
|
| + r2,
|
| + r3,
|
| + r4,
|
| + r5,
|
| + r0,
|
| + &miss,
|
| + &miss,
|
| + &miss);
|
| +
|
| + __ bind(&miss);
|
| + Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Miss));
|
| + __ Jump(ic, RelocInfo::CODE_TARGET);
|
| +
|
| + // Return the generated code.
|
| + return GetCode(NORMAL, NULL);
|
| +}
|
| +
|
| +
|
| MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
|
| int index,
|
| Map* transition,
|
| @@ -3071,6 +3272,47 @@
|
| }
|
|
|
|
|
| +MaybeObject* KeyedStoreStubCompiler::CompileStorePixelArray(
|
| + JSObject* receiver) {
|
| + // ----------- S t a t e -------------
|
| + // -- r0 : value
|
| + // -- r1 : key
|
| + // -- r2 : receiver
|
| + // -- r3 : scratch
|
| + // -- r4 : scratch
|
| + // -- r5 : scratch
|
| + // -- r6 : scratch
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| + Label miss;
|
| +
|
| + // Check that the map matches.
|
| + __ CheckMap(r2, r6, Handle<Map>(receiver->map()), &miss, false);
|
| +
|
| + GenerateFastPixelArrayStore(masm(),
|
| + r2,
|
| + r1,
|
| + r0,
|
| + r3,
|
| + r4,
|
| + r5,
|
| + r6,
|
| + true,
|
| + true,
|
| + &miss,
|
| + &miss,
|
| + NULL,
|
| + &miss);
|
| +
|
| + __ bind(&miss);
|
| + Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
|
| + __ Jump(ic, RelocInfo::CODE_TARGET);
|
| +
|
| + // Return the generated code.
|
| + return GetCode(NORMAL, NULL);
|
| +}
|
| +
|
| +
|
| MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
|
| // ----------- S t a t e -------------
|
| // -- r0 : argc
|
| @@ -3215,6 +3457,603 @@
|
| }
|
|
|
|
|
| +static bool IsElementTypeSigned(ExternalArrayType array_type) {
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalShortArray:
|
| + case kExternalIntArray:
|
| + return true;
|
| +
|
| + case kExternalUnsignedByteArray:
|
| + case kExternalUnsignedShortArray:
|
| + case kExternalUnsignedIntArray:
|
| + return false;
|
| +
|
| + default:
|
| + UNREACHABLE();
|
| + return false;
|
| + }
|
| +}
|
| +
|
| +
|
| +MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| + ExternalArrayType array_type, Code::Flags flags) {
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label slow, failed_allocation;
|
| +
|
| + Register key = r0;
|
| + Register receiver = r1;
|
| +
|
| + // Check that the object isn't a smi
|
| + __ JumpIfSmi(receiver, &slow);
|
| +
|
| + // Check that the key is a smi.
|
| + __ JumpIfNotSmi(key, &slow);
|
| +
|
| + // Check that the object is a JS object. Load map into r2.
|
| + __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
|
| + __ b(lt, &slow);
|
| +
|
| + // Check that the receiver does not require access checks. We need
|
| + // to check this explicitly since this generic stub does not perform
|
| + // map checks.
|
| + __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
|
| + __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the elements array is the appropriate type of
|
| + // ExternalArray.
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| + __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| + __ cmp(r2, ip);
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the index is in range.
|
| + __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| + __ cmp(ip, Operand(key, ASR, kSmiTagSize));
|
| + // Unsigned comparison catches both negative and too-large values.
|
| + __ b(lo, &slow);
|
| +
|
| + // r3: elements array
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| + // r3: base pointer of external storage
|
| +
|
| + // We are not untagging smi key and instead work with it
|
| + // as if it was premultiplied by 2.
|
| + ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
|
| +
|
| + Register value = r2;
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + __ ldrsb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case kExternalUnsignedByteArray:
|
| + __ ldrb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case kExternalShortArray:
|
| + __ ldrsh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case kExternalUnsignedShortArray:
|
| + __ ldrh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + break;
|
| + case kExternalFloatArray:
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ add(r2, r3, Operand(key, LSL, 1));
|
| + __ vldr(s0, r2, 0);
|
| + } else {
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + }
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +
|
| + // For integer array types:
|
| + // r2: value
|
| + // For floating-point array type
|
| + // s0: value (if VFP3 is supported)
|
| + // r2: value (if VFP3 is not supported)
|
| +
|
| + if (array_type == kExternalIntArray) {
|
| + // For the Int and UnsignedInt array types, we need to see whether
|
| + // the value can be represented in a Smi. If not, we need to convert
|
| + // it to a HeapNumber.
|
| + Label box_int;
|
| + __ cmp(value, Operand(0xC0000000));
|
| + __ b(mi, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't touch r0 or r1 as they are needed if allocation
|
| + // fails.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
|
| + // Now we can use r0 for the result as key is not needed any more.
|
| + __ mov(r0, r5);
|
| +
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ vmov(s0, value);
|
| + __ vcvt_f64_s32(d0, s0);
|
| + __ sub(r3, r0, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r3, HeapNumber::kValueOffset);
|
| + __ Ret();
|
| + } else {
|
| + WriteInt32ToHeapNumberStub stub(value, r0, r3);
|
| + __ TailCallStub(&stub);
|
| + }
|
| + } else if (array_type == kExternalUnsignedIntArray) {
|
| + // The test is different for unsigned int values. Since we need
|
| + // the value to be in the range of a positive smi, we can't
|
| + // handle either of the top two bits being set in the value.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + Label box_int, done;
|
| + __ tst(value, Operand(0xC0000000));
|
| + __ b(ne, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + __ vmov(s0, value);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
|
| + // registers - also when jumping due to exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
|
| +
|
| + __ vcvt_f64_u32(d0, s0);
|
| + __ sub(r1, r2, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r1, HeapNumber::kValueOffset);
|
| +
|
| + __ mov(r0, r2);
|
| + __ Ret();
|
| + } else {
|
| + // Check whether unsigned integer fits into smi.
|
| + Label box_int_0, box_int_1, done;
|
| + __ tst(value, Operand(0x80000000));
|
| + __ b(ne, &box_int_0);
|
| + __ tst(value, Operand(0x40000000));
|
| + __ b(ne, &box_int_1);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + Register hiword = value; // r2.
|
| + Register loword = r3;
|
| +
|
| + __ bind(&box_int_0);
|
| + // Integer does not have leading zeros.
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 0);
|
| + __ b(&done);
|
| +
|
| + __ bind(&box_int_1);
|
| + // Integer has one leading zero.
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 1);
|
| +
|
| +
|
| + __ bind(&done);
|
| + // Integer was converted to double in registers hiword:loword.
|
| + // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
|
| + // clobbers all registers - also when jumping due to exhausted young
|
| + // space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
|
| +
|
| + __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
|
| + __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r4);
|
| + __ Ret();
|
| + }
|
| + } else if (array_type == kExternalFloatArray) {
|
| + // For the floating-point array type, we need to always allocate a
|
| + // HeapNumber.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
|
| + __ vcvt_f64_f32(d0, s0);
|
| + __ sub(r1, r2, Operand(kHeapObjectTag));
|
| + __ vstr(d0, r1, HeapNumber::kValueOffset);
|
| +
|
| + __ mov(r0, r2);
|
| + __ Ret();
|
| + } else {
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
|
| + // VFP is not available, do manual single to double conversion.
|
| +
|
| + // r2: floating point value (binary32)
|
| + // r3: heap number for result
|
| +
|
| + // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ and_(r0, value, Operand(kBinary32MantissaMask));
|
| +
|
| + // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
|
| + __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
|
| +
|
| + Label exponent_rebiased;
|
| + __ teq(r1, Operand(0x00));
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + __ teq(r1, Operand(0xff));
|
| + __ mov(r1, Operand(0x7ff), LeaveCC, eq);
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + // Rebias exponent.
|
| + __ add(r1,
|
| + r1,
|
| + Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
|
| +
|
| + __ bind(&exponent_rebiased);
|
| + __ and_(r2, value, Operand(kBinary32SignMask));
|
| + value = no_reg;
|
| + __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + // Shift mantissa.
|
| + static const int kMantissaShiftForHiWord =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaShiftForLoWord =
|
| + kBitsPerInt - kMantissaShiftForHiWord;
|
| +
|
| + __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
|
| + __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
|
| +
|
| + __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
|
| + __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r3);
|
| + __ Ret();
|
| + }
|
| +
|
| + } else {
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| + }
|
| +
|
| + // Slow case, key and receiver still in r0 and r1.
|
| + __ bind(&slow);
|
| + __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
|
| +
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| +
|
| + __ Push(r1, r0);
|
| +
|
| + __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
|
| +
|
| + return GetCode(flags);
|
| +}
|
| +
|
| +
|
| +MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| + ExternalArrayType array_type, Code::Flags flags) {
|
| + // ---------- S t a t e --------------
|
| + // -- r0 : value
|
| + // -- r1 : key
|
| + // -- r2 : receiver
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| + Label slow, check_heap_number;
|
| +
|
| + // Register usage.
|
| + Register value = r0;
|
| + Register key = r1;
|
| + Register receiver = r2;
|
| + // r3 mostly holds the elements array or the destination external array.
|
| +
|
| + // Check that the object isn't a smi.
|
| + __ JumpIfSmi(receiver, &slow);
|
| +
|
| + // Check that the object is a JS object. Load map into r3.
|
| + __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
|
| + __ b(le, &slow);
|
| +
|
| + // Check that the receiver does not require access checks. We need
|
| + // to do this because this generic stub does not perform map checks.
|
| + __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
|
| + __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the key is a smi.
|
| + __ JumpIfNotSmi(key, &slow);
|
| +
|
| + // Check that the elements array is the appropriate type of ExternalArray.
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| + __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| + __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| + __ cmp(r4, ip);
|
| + __ b(ne, &slow);
|
| +
|
| + // Check that the index is in range.
|
| + __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
|
| + __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| + __ cmp(r4, ip);
|
| + // Unsigned comparison catches both negative and too-large values.
|
| + __ b(hs, &slow);
|
| +
|
| + // Handle both smis and HeapNumbers in the fast path. Go to the
|
| + // runtime for all other kinds of values.
|
| + // r3: external array.
|
| + // r4: key (integer).
|
| + __ JumpIfNotSmi(value, &check_heap_number);
|
| + __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| +
|
| + // r3: base pointer of external storage.
|
| + // r4: key (integer).
|
| + // r5: value (integer).
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + case kExternalFloatArray:
|
| + // Perform int-to-float conversion and store to memory.
|
| + StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +
|
| + // Entry registers are intact, r0 holds the value which is the return value.
|
| + __ Ret();
|
| +
|
| +
|
| + // r3: external array.
|
| + // r4: index (integer).
|
| + __ bind(&check_heap_number);
|
| + __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
|
| + __ b(ne, &slow);
|
| +
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| +
|
| + // r3: base pointer of external storage.
|
| + // r4: key (integer).
|
| +
|
| + // The WebGL specification leaves the behavior of storing NaN and
|
| + // +/-Infinity into integer arrays basically undefined. For more
|
| + // reproducible behavior, convert these to zero.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| +
|
| +
|
| + if (array_type == kExternalFloatArray) {
|
| + // vldr requires offset to be a multiple of 4 so we can not
|
| + // include -kHeapObjectTag into it.
|
| + __ sub(r5, r0, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| + __ add(r5, r3, Operand(r4, LSL, 2));
|
| + __ vcvt_f32_f64(s0, d0);
|
| + __ vstr(s0, r5, 0);
|
| + } else {
|
| + // Need to perform float-to-int conversion.
|
| + // Test for NaN or infinity (both give zero).
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| +
|
| + // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
|
| + // include -kHeapObjectTag into it.
|
| + __ sub(r5, value, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| +
|
| + __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
| + // NaNs and Infinities have all-one exponents so they sign extend to -1.
|
| + __ cmp(r6, Operand(-1));
|
| + __ mov(r5, Operand(0), LeaveCC, eq);
|
| +
|
| + // Not infinity or NaN simply convert to int.
|
| + if (IsElementTypeSigned(array_type)) {
|
| + __ vcvt_s32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| + } else {
|
| + __ vcvt_u32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| + }
|
| + __ vmov(r5, s0, ne);
|
| +
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Entry registers are intact, r0 holds the value which is the return value.
|
| + __ Ret();
|
| + } else {
|
| + // VFP3 is not available do manual conversions.
|
| + __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
|
| +
|
| + if (array_type == kExternalFloatArray) {
|
| + Label done, nan_or_infinity_or_zero;
|
| + static const int kMantissaInHiWordShift =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaInLoWordShift =
|
| + kBitsPerInt - kMantissaInHiWordShift;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + // Rebias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ add(r9,
|
| + r9,
|
| + Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
|
| +
|
| + __ cmp(r9, Operand(kBinary32MaxExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
|
| + __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
|
| + __ b(gt, &done);
|
| +
|
| + __ cmp(r9, Operand(kBinary32MinExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
|
| + __ b(lt, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
|
| +
|
| + __ bind(&done);
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + // Entry registers are intact, r0 holds the value which is the return
|
| + // value.
|
| + __ Ret();
|
| +
|
| + __ bind(&nan_or_infinity_or_zero);
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r9, r9, r7);
|
| + __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ b(&done);
|
| + } else {
|
| + bool is_signed_type = IsElementTypeSigned(array_type);
|
| + int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
|
| + int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
|
| +
|
| + Label done, sign;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + // Unbias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
|
| + // If exponent is negative then result is 0.
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
|
| + __ b(mi, &done);
|
| +
|
| + // If exponent is too big then result is minimal value.
|
| + __ cmp(r9, Operand(meaningfull_bits - 1));
|
| + __ mov(r5, Operand(min_value), LeaveCC, ge);
|
| + __ b(ge, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
|
| + __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
|
| + __ b(pl, &sign);
|
| +
|
| + __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
|
| + __ mov(r5, Operand(r5, LSL, r9));
|
| + __ rsb(r9, r9, Operand(meaningfull_bits));
|
| + __ orr(r5, r5, Operand(r6, LSR, r9));
|
| +
|
| + __ bind(&sign);
|
| + __ teq(r7, Operand(0, RelocInfo::NONE));
|
| + __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + __ bind(&done);
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Slow case: call runtime.
|
| + __ bind(&slow);
|
| +
|
| + // Entry registers are intact.
|
| + // ---------- S t a t e --------------
|
| + // -- r0 : value
|
| + // -- r1 : key
|
| + // -- r2 : receiver
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| +
|
| + // Push receiver, key and value for runtime call.
|
| + __ Push(r2, r1, r0);
|
| +
|
| + __ TailCallRuntime(Runtime::kSetProperty, 3, 1);
|
| +
|
| + return GetCode(flags);
|
| +}
|
| +
|
| +
|
| #undef __
|
|
|
| } } // namespace v8::internal
|
|
|