Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(485)

Side by Side Diff: src/arm/ic-arm.cc

Issue 6529032: Merge 6168:6800 from bleeding_edge to experimental/gc branch. (Closed) Base URL: http://v8.googlecode.com/svn/branches/experimental/gc/
Patch Set: Created 9 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/arm/full-codegen-arm.cc ('k') | src/arm/jump-target-arm.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. 1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after
88 88
89 // If this assert fails, we have to check upper bound too. 89 // If this assert fails, we have to check upper bound too.
90 ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); 90 ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
91 91
92 GenerateGlobalInstanceTypeCheck(masm, t1, miss); 92 GenerateGlobalInstanceTypeCheck(masm, t1, miss);
93 93
94 // Check that the global object does not require access checks. 94 // Check that the global object does not require access checks.
95 __ ldrb(t1, FieldMemOperand(t0, Map::kBitFieldOffset)); 95 __ ldrb(t1, FieldMemOperand(t0, Map::kBitFieldOffset));
96 __ tst(t1, Operand((1 << Map::kIsAccessCheckNeeded) | 96 __ tst(t1, Operand((1 << Map::kIsAccessCheckNeeded) |
97 (1 << Map::kHasNamedInterceptor))); 97 (1 << Map::kHasNamedInterceptor)));
98 __ b(nz, miss); 98 __ b(ne, miss);
99 99
100 __ ldr(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); 100 __ ldr(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
101 __ ldr(t1, FieldMemOperand(elements, HeapObject::kMapOffset)); 101 __ ldr(t1, FieldMemOperand(elements, HeapObject::kMapOffset));
102 __ LoadRoot(ip, Heap::kHashTableMapRootIndex); 102 __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
103 __ cmp(t1, ip); 103 __ cmp(t1, ip);
104 __ b(nz, miss); 104 __ b(ne, miss);
105 } 105 }
106 106
107 107
108 // Probe the string dictionary in the |elements| register. Jump to the 108 // Probe the string dictionary in the |elements| register. Jump to the
109 // |done| label if a property with the given name is found. Jump to 109 // |done| label if a property with the given name is found. Jump to
110 // the |miss| label otherwise. 110 // the |miss| label otherwise.
111 static void GenerateStringDictionaryProbes(MacroAssembler* masm, 111 static void GenerateStringDictionaryProbes(MacroAssembler* masm,
112 Label* miss, 112 Label* miss,
113 Label* done, 113 Label* done,
114 Register elements, 114 Register elements,
115 Register name, 115 Register name,
116 Register scratch1, 116 Register scratch1,
117 Register scratch2) { 117 Register scratch2) {
118 // Assert that name contains a string.
119 if (FLAG_debug_code) __ AbortIfNotString(name);
120
118 // Compute the capacity mask. 121 // Compute the capacity mask.
119 const int kCapacityOffset = StringDictionary::kHeaderSize + 122 const int kCapacityOffset = StringDictionary::kHeaderSize +
120 StringDictionary::kCapacityIndex * kPointerSize; 123 StringDictionary::kCapacityIndex * kPointerSize;
121 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); 124 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
122 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int 125 __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
123 __ sub(scratch1, scratch1, Operand(1)); 126 __ sub(scratch1, scratch1, Operand(1));
124 127
125 const int kElementsStartOffset = StringDictionary::kHeaderSize + 128 const int kElementsStartOffset = StringDictionary::kHeaderSize +
126 StringDictionary::kElementsStartIndex * kPointerSize; 129 StringDictionary::kElementsStartIndex * kPointerSize;
127 130
(...skipping 246 matching lines...) Expand 10 before | Expand all | Expand 10 after
374 // -- sp[0] : receiver 377 // -- sp[0] : receiver
375 // ----------------------------------- 378 // -----------------------------------
376 Label miss; 379 Label miss;
377 380
378 StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss); 381 StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss);
379 __ bind(&miss); 382 __ bind(&miss);
380 StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); 383 StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
381 } 384 }
382 385
383 386
384 void LoadIC::GenerateStringLength(MacroAssembler* masm) { 387 void LoadIC::GenerateStringLength(MacroAssembler* masm, bool support_wrappers) {
385 // ----------- S t a t e ------------- 388 // ----------- S t a t e -------------
386 // -- r2 : name 389 // -- r2 : name
387 // -- lr : return address 390 // -- lr : return address
388 // -- r0 : receiver 391 // -- r0 : receiver
389 // -- sp[0] : receiver 392 // -- sp[0] : receiver
390 // ----------------------------------- 393 // -----------------------------------
391 Label miss; 394 Label miss;
392 395
393 StubCompiler::GenerateLoadStringLength(masm, r0, r1, r3, &miss); 396 StubCompiler::GenerateLoadStringLength(masm, r0, r1, r3, &miss,
397 support_wrappers);
394 // Cache miss: Jump to runtime. 398 // Cache miss: Jump to runtime.
395 __ bind(&miss); 399 __ bind(&miss);
396 StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); 400 StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
397 } 401 }
398 402
399 403
400 void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { 404 void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
401 // ----------- S t a t e ------------- 405 // ----------- S t a t e -------------
402 // -- r2 : name 406 // -- r2 : name
403 // -- lr : return address 407 // -- lr : return address
(...skipping 10 matching lines...) Expand all
414 418
415 // Checks the receiver for special cases (value type, slow case bits). 419 // Checks the receiver for special cases (value type, slow case bits).
416 // Falls through for regular JS object. 420 // Falls through for regular JS object.
417 static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, 421 static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
418 Register receiver, 422 Register receiver,
419 Register map, 423 Register map,
420 Register scratch, 424 Register scratch,
421 int interceptor_bit, 425 int interceptor_bit,
422 Label* slow) { 426 Label* slow) {
423 // Check that the object isn't a smi. 427 // Check that the object isn't a smi.
424 __ BranchOnSmi(receiver, slow); 428 __ JumpIfSmi(receiver, slow);
425 // Get the map of the receiver. 429 // Get the map of the receiver.
426 __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); 430 __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
427 // Check bit field. 431 // Check bit field.
428 __ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 432 __ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
429 __ tst(scratch, 433 __ tst(scratch,
430 Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); 434 Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
431 __ b(nz, slow); 435 __ b(ne, slow);
432 // Check that the object is some kind of JS object EXCEPT JS Value type. 436 // Check that the object is some kind of JS object EXCEPT JS Value type.
433 // In the case that the object is a value-wrapper object, 437 // In the case that the object is a value-wrapper object,
434 // we enter the runtime system to make sure that indexing into string 438 // we enter the runtime system to make sure that indexing into string
435 // objects work as intended. 439 // objects work as intended.
436 ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); 440 ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
437 __ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); 441 __ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
438 __ cmp(scratch, Operand(JS_OBJECT_TYPE)); 442 __ cmp(scratch, Operand(JS_OBJECT_TYPE));
439 __ b(lt, slow); 443 __ b(lt, slow);
440 } 444 }
441 445
(...skipping 95 matching lines...) Expand 10 before | Expand all | Expand 10 after
537 static void GenerateMonomorphicCacheProbe(MacroAssembler* masm, 541 static void GenerateMonomorphicCacheProbe(MacroAssembler* masm,
538 int argc, 542 int argc,
539 Code::Kind kind) { 543 Code::Kind kind) {
540 // ----------- S t a t e ------------- 544 // ----------- S t a t e -------------
541 // -- r1 : receiver 545 // -- r1 : receiver
542 // -- r2 : name 546 // -- r2 : name
543 // ----------------------------------- 547 // -----------------------------------
544 Label number, non_number, non_string, boolean, probe, miss; 548 Label number, non_number, non_string, boolean, probe, miss;
545 549
546 // Probe the stub cache. 550 // Probe the stub cache.
547 Code::Flags flags = 551 Code::Flags flags = Code::ComputeFlags(kind,
548 Code::ComputeFlags(kind, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); 552 NOT_IN_LOOP,
553 MONOMORPHIC,
554 Code::kNoExtraICState,
555 NORMAL,
556 argc);
549 StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5); 557 StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5);
550 558
551 // If the stub cache probing failed, the receiver might be a value. 559 // If the stub cache probing failed, the receiver might be a value.
552 // For value objects, we use the map of the prototype objects for 560 // For value objects, we use the map of the prototype objects for
553 // the corresponding JSValue for the cache and that is what we need 561 // the corresponding JSValue for the cache and that is what we need
554 // to probe. 562 // to probe.
555 // 563 //
556 // Check for number. 564 // Check for number.
557 __ tst(r1, Operand(kSmiTagMask)); 565 __ tst(r1, Operand(kSmiTagMask));
558 __ b(eq, &number); 566 __ b(eq, &number);
(...skipping 181 matching lines...) Expand 10 before | Expand all | Expand 10 after
740 // ----------------------------------- 748 // -----------------------------------
741 749
742 // Get the receiver of the function from the stack into r1. 750 // Get the receiver of the function from the stack into r1.
743 __ ldr(r1, MemOperand(sp, argc * kPointerSize)); 751 __ ldr(r1, MemOperand(sp, argc * kPointerSize));
744 752
745 Label do_call, slow_call, slow_load, slow_reload_receiver; 753 Label do_call, slow_call, slow_load, slow_reload_receiver;
746 Label check_number_dictionary, check_string, lookup_monomorphic_cache; 754 Label check_number_dictionary, check_string, lookup_monomorphic_cache;
747 Label index_smi, index_string; 755 Label index_smi, index_string;
748 756
749 // Check that the key is a smi. 757 // Check that the key is a smi.
750 __ BranchOnNotSmi(r2, &check_string); 758 __ JumpIfNotSmi(r2, &check_string);
751 __ bind(&index_smi); 759 __ bind(&index_smi);
752 // Now the key is known to be a smi. This place is also jumped to from below 760 // Now the key is known to be a smi. This place is also jumped to from below
753 // where a numeric string is converted to a smi. 761 // where a numeric string is converted to a smi.
754 762
755 GenerateKeyedLoadReceiverCheck( 763 GenerateKeyedLoadReceiverCheck(
756 masm, r1, r0, r3, Map::kHasIndexedInterceptor, &slow_call); 764 masm, r1, r0, r3, Map::kHasIndexedInterceptor, &slow_call);
757 765
758 GenerateFastArrayLoad( 766 GenerateFastArrayLoad(
759 masm, r1, r2, r4, r3, r0, r1, &check_number_dictionary, &slow_load); 767 masm, r1, r2, r4, r3, r0, r1, &check_number_dictionary, &slow_load);
760 __ IncrementCounter(&Counters::keyed_call_generic_smi_fast, 1, r0, r3); 768 __ IncrementCounter(&Counters::keyed_call_generic_smi_fast, 1, r0, r3);
(...skipping 72 matching lines...) Expand 10 before | Expand all | Expand 10 after
833 __ jmp(&index_smi); 841 __ jmp(&index_smi);
834 } 842 }
835 843
836 844
837 void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) { 845 void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
838 // ----------- S t a t e ------------- 846 // ----------- S t a t e -------------
839 // -- r2 : name 847 // -- r2 : name
840 // -- lr : return address 848 // -- lr : return address
841 // ----------------------------------- 849 // -----------------------------------
842 850
851 // Check if the name is a string.
852 Label miss;
853 __ tst(r2, Operand(kSmiTagMask));
854 __ b(eq, &miss);
855 __ IsObjectJSStringType(r2, r0, &miss);
856
843 GenerateCallNormal(masm, argc); 857 GenerateCallNormal(masm, argc);
858 __ bind(&miss);
844 GenerateMiss(masm, argc); 859 GenerateMiss(masm, argc);
845 } 860 }
846 861
847 862
848 // Defined in ic.cc. 863 // Defined in ic.cc.
849 Object* LoadIC_Miss(Arguments args); 864 Object* LoadIC_Miss(Arguments args);
850 865
851 void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { 866 void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
852 // ----------- S t a t e ------------- 867 // ----------- S t a t e -------------
853 // -- r2 : name 868 // -- r2 : name
(...skipping 304 matching lines...) Expand 10 before | Expand all | Expand 10 after
1158 // -- r0 : key 1173 // -- r0 : key
1159 // -- r1 : receiver 1174 // -- r1 : receiver
1160 // ----------------------------------- 1175 // -----------------------------------
1161 Label slow, check_string, index_smi, index_string, property_array_property; 1176 Label slow, check_string, index_smi, index_string, property_array_property;
1162 Label check_pixel_array, probe_dictionary, check_number_dictionary; 1177 Label check_pixel_array, probe_dictionary, check_number_dictionary;
1163 1178
1164 Register key = r0; 1179 Register key = r0;
1165 Register receiver = r1; 1180 Register receiver = r1;
1166 1181
1167 // Check that the key is a smi. 1182 // Check that the key is a smi.
1168 __ BranchOnNotSmi(key, &check_string); 1183 __ JumpIfNotSmi(key, &check_string);
1169 __ bind(&index_smi); 1184 __ bind(&index_smi);
1170 // Now the key is known to be a smi. This place is also jumped to from below 1185 // Now the key is known to be a smi. This place is also jumped to from below
1171 // where a numeric string is converted to a smi. 1186 // where a numeric string is converted to a smi.
1172 1187
1173 GenerateKeyedLoadReceiverCheck( 1188 GenerateKeyedLoadReceiverCheck(
1174 masm, receiver, r2, r3, Map::kHasIndexedInterceptor, &slow); 1189 masm, receiver, r2, r3, Map::kHasIndexedInterceptor, &slow);
1175 1190
1176 // Check the "has fast elements" bit in the receiver's map which is 1191 // Check the "has fast elements" bit in the receiver's map which is
1177 // now in r2. 1192 // now in r2.
1178 __ ldrb(r3, FieldMemOperand(r2, Map::kBitField2Offset)); 1193 __ ldrb(r3, FieldMemOperand(r2, Map::kBitField2Offset));
1179 __ tst(r3, Operand(1 << Map::kHasFastElements)); 1194 __ tst(r3, Operand(1 << Map::kHasFastElements));
1180 __ b(eq, &check_pixel_array); 1195 __ b(eq, &check_pixel_array);
1181 1196
1182 GenerateFastArrayLoad( 1197 GenerateFastArrayLoad(
1183 masm, receiver, key, r4, r3, r2, r0, NULL, &slow); 1198 masm, receiver, key, r4, r3, r2, r0, NULL, &slow);
1184 __ IncrementCounter(&Counters::keyed_load_generic_smi, 1, r2, r3); 1199 __ IncrementCounter(&Counters::keyed_load_generic_smi, 1, r2, r3);
1185 __ Ret(); 1200 __ Ret();
1186 1201
1187 // Check whether the elements is a pixel array. 1202 // Check whether the elements is a pixel array.
1188 // r0: key 1203 // r0: key
1189 // r1: receiver 1204 // r1: receiver
1190 __ bind(&check_pixel_array); 1205 __ bind(&check_pixel_array);
1191 __ ldr(r4, FieldMemOperand(r1, JSObject::kElementsOffset)); 1206
1192 __ ldr(r3, FieldMemOperand(r4, HeapObject::kMapOffset)); 1207 GenerateFastPixelArrayLoad(masm,
1193 __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); 1208 r1,
1194 __ cmp(r3, ip); 1209 r0,
1195 __ b(ne, &check_number_dictionary); 1210 r3,
1196 __ ldr(ip, FieldMemOperand(r4, PixelArray::kLengthOffset)); 1211 r4,
1197 __ mov(r2, Operand(key, ASR, kSmiTagSize)); 1212 r2,
1198 __ cmp(r2, ip); 1213 r5,
1199 __ b(hs, &slow); 1214 r0,
1200 __ ldr(ip, FieldMemOperand(r4, PixelArray::kExternalPointerOffset)); 1215 &check_number_dictionary,
1201 __ ldrb(r2, MemOperand(ip, r2)); 1216 NULL,
1202 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); // Tag result as smi. 1217 &slow);
1203 __ Ret();
1204 1218
1205 __ bind(&check_number_dictionary); 1219 __ bind(&check_number_dictionary);
1206 // Check whether the elements is a number dictionary. 1220 // Check whether the elements is a number dictionary.
1207 // r0: key 1221 // r0: key
1208 // r3: elements map 1222 // r3: elements map
1209 // r4: elements 1223 // r4: elements
1210 __ LoadRoot(ip, Heap::kHashTableMapRootIndex); 1224 __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
1211 __ cmp(r3, ip); 1225 __ cmp(r3, ip);
1212 __ b(ne, &slow); 1226 __ b(ne, &slow);
1213 __ mov(r2, Operand(r0, ASR, kSmiTagSize)); 1227 __ mov(r2, Operand(r0, ASR, kSmiTagSize));
(...skipping 116 matching lines...) Expand 10 before | Expand all | Expand 10 after
1330 __ Ret(); 1344 __ Ret();
1331 1345
1332 StubRuntimeCallHelper call_helper; 1346 StubRuntimeCallHelper call_helper;
1333 char_at_generator.GenerateSlow(masm, call_helper); 1347 char_at_generator.GenerateSlow(masm, call_helper);
1334 1348
1335 __ bind(&miss); 1349 __ bind(&miss);
1336 GenerateMiss(masm); 1350 GenerateMiss(masm);
1337 } 1351 }
1338 1352
1339 1353
1340 // Convert unsigned integer with specified number of leading zeroes in binary
1341 // representation to IEEE 754 double.
1342 // Integer to convert is passed in register hiword.
1343 // Resulting double is returned in registers hiword:loword.
1344 // This functions does not work correctly for 0.
1345 static void GenerateUInt2Double(MacroAssembler* masm,
1346 Register hiword,
1347 Register loword,
1348 Register scratch,
1349 int leading_zeroes) {
1350 const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
1351 const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
1352
1353 const int mantissa_shift_for_hi_word =
1354 meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
1355
1356 const int mantissa_shift_for_lo_word =
1357 kBitsPerInt - mantissa_shift_for_hi_word;
1358
1359 __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
1360 if (mantissa_shift_for_hi_word > 0) {
1361 __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
1362 __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
1363 } else {
1364 __ mov(loword, Operand(0, RelocInfo::NONE));
1365 __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
1366 }
1367
1368 // If least significant bit of biased exponent was not 1 it was corrupted
1369 // by most significant bit of mantissa so we should fix that.
1370 if (!(biased_exponent & 1)) {
1371 __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
1372 }
1373 }
1374
1375
1376 void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
1377 ExternalArrayType array_type) {
1378 // ---------- S t a t e --------------
1379 // -- lr : return address
1380 // -- r0 : key
1381 // -- r1 : receiver
1382 // -----------------------------------
1383 Label slow, failed_allocation;
1384
1385 Register key = r0;
1386 Register receiver = r1;
1387
1388 // Check that the object isn't a smi
1389 __ BranchOnSmi(receiver, &slow);
1390
1391 // Check that the key is a smi.
1392 __ BranchOnNotSmi(key, &slow);
1393
1394 // Check that the object is a JS object. Load map into r2.
1395 __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
1396 __ b(lt, &slow);
1397
1398 // Check that the receiver does not require access checks. We need
1399 // to check this explicitly since this generic stub does not perform
1400 // map checks.
1401 __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
1402 __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
1403 __ b(ne, &slow);
1404
1405 // Check that the elements array is the appropriate type of
1406 // ExternalArray.
1407 __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
1408 __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
1409 __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
1410 __ cmp(r2, ip);
1411 __ b(ne, &slow);
1412
1413 // Check that the index is in range.
1414 __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
1415 __ cmp(ip, Operand(key, ASR, kSmiTagSize));
1416 // Unsigned comparison catches both negative and too-large values.
1417 __ b(lo, &slow);
1418
1419 // r3: elements array
1420 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
1421 // r3: base pointer of external storage
1422
1423 // We are not untagging smi key and instead work with it
1424 // as if it was premultiplied by 2.
1425 ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
1426
1427 Register value = r2;
1428 switch (array_type) {
1429 case kExternalByteArray:
1430 __ ldrsb(value, MemOperand(r3, key, LSR, 1));
1431 break;
1432 case kExternalUnsignedByteArray:
1433 __ ldrb(value, MemOperand(r3, key, LSR, 1));
1434 break;
1435 case kExternalShortArray:
1436 __ ldrsh(value, MemOperand(r3, key, LSL, 0));
1437 break;
1438 case kExternalUnsignedShortArray:
1439 __ ldrh(value, MemOperand(r3, key, LSL, 0));
1440 break;
1441 case kExternalIntArray:
1442 case kExternalUnsignedIntArray:
1443 __ ldr(value, MemOperand(r3, key, LSL, 1));
1444 break;
1445 case kExternalFloatArray:
1446 if (CpuFeatures::IsSupported(VFP3)) {
1447 CpuFeatures::Scope scope(VFP3);
1448 __ add(r2, r3, Operand(key, LSL, 1));
1449 __ vldr(s0, r2, 0);
1450 } else {
1451 __ ldr(value, MemOperand(r3, key, LSL, 1));
1452 }
1453 break;
1454 default:
1455 UNREACHABLE();
1456 break;
1457 }
1458
1459 // For integer array types:
1460 // r2: value
1461 // For floating-point array type
1462 // s0: value (if VFP3 is supported)
1463 // r2: value (if VFP3 is not supported)
1464
1465 if (array_type == kExternalIntArray) {
1466 // For the Int and UnsignedInt array types, we need to see whether
1467 // the value can be represented in a Smi. If not, we need to convert
1468 // it to a HeapNumber.
1469 Label box_int;
1470 __ cmp(value, Operand(0xC0000000));
1471 __ b(mi, &box_int);
1472 // Tag integer as smi and return it.
1473 __ mov(r0, Operand(value, LSL, kSmiTagSize));
1474 __ Ret();
1475
1476 __ bind(&box_int);
1477 // Allocate a HeapNumber for the result and perform int-to-double
1478 // conversion. Don't touch r0 or r1 as they are needed if allocation
1479 // fails.
1480 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
1481 __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
1482 // Now we can use r0 for the result as key is not needed any more.
1483 __ mov(r0, r5);
1484
1485 if (CpuFeatures::IsSupported(VFP3)) {
1486 CpuFeatures::Scope scope(VFP3);
1487 __ vmov(s0, value);
1488 __ vcvt_f64_s32(d0, s0);
1489 __ sub(r3, r0, Operand(kHeapObjectTag));
1490 __ vstr(d0, r3, HeapNumber::kValueOffset);
1491 __ Ret();
1492 } else {
1493 WriteInt32ToHeapNumberStub stub(value, r0, r3);
1494 __ TailCallStub(&stub);
1495 }
1496 } else if (array_type == kExternalUnsignedIntArray) {
1497 // The test is different for unsigned int values. Since we need
1498 // the value to be in the range of a positive smi, we can't
1499 // handle either of the top two bits being set in the value.
1500 if (CpuFeatures::IsSupported(VFP3)) {
1501 CpuFeatures::Scope scope(VFP3);
1502 Label box_int, done;
1503 __ tst(value, Operand(0xC0000000));
1504 __ b(ne, &box_int);
1505 // Tag integer as smi and return it.
1506 __ mov(r0, Operand(value, LSL, kSmiTagSize));
1507 __ Ret();
1508
1509 __ bind(&box_int);
1510 __ vmov(s0, value);
1511 // Allocate a HeapNumber for the result and perform int-to-double
1512 // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
1513 // registers - also when jumping due to exhausted young space.
1514 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
1515 __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
1516
1517 __ vcvt_f64_u32(d0, s0);
1518 __ sub(r1, r2, Operand(kHeapObjectTag));
1519 __ vstr(d0, r1, HeapNumber::kValueOffset);
1520
1521 __ mov(r0, r2);
1522 __ Ret();
1523 } else {
1524 // Check whether unsigned integer fits into smi.
1525 Label box_int_0, box_int_1, done;
1526 __ tst(value, Operand(0x80000000));
1527 __ b(ne, &box_int_0);
1528 __ tst(value, Operand(0x40000000));
1529 __ b(ne, &box_int_1);
1530 // Tag integer as smi and return it.
1531 __ mov(r0, Operand(value, LSL, kSmiTagSize));
1532 __ Ret();
1533
1534 Register hiword = value; // r2.
1535 Register loword = r3;
1536
1537 __ bind(&box_int_0);
1538 // Integer does not have leading zeros.
1539 GenerateUInt2Double(masm, hiword, loword, r4, 0);
1540 __ b(&done);
1541
1542 __ bind(&box_int_1);
1543 // Integer has one leading zero.
1544 GenerateUInt2Double(masm, hiword, loword, r4, 1);
1545
1546
1547 __ bind(&done);
1548 // Integer was converted to double in registers hiword:loword.
1549 // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
1550 // clobbers all registers - also when jumping due to exhausted young
1551 // space.
1552 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
1553 __ AllocateHeapNumber(r4, r5, r7, r6, &slow);
1554
1555 __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
1556 __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
1557
1558 __ mov(r0, r4);
1559 __ Ret();
1560 }
1561 } else if (array_type == kExternalFloatArray) {
1562 // For the floating-point array type, we need to always allocate a
1563 // HeapNumber.
1564 if (CpuFeatures::IsSupported(VFP3)) {
1565 CpuFeatures::Scope scope(VFP3);
1566 // Allocate a HeapNumber for the result. Don't use r0 and r1 as
1567 // AllocateHeapNumber clobbers all registers - also when jumping due to
1568 // exhausted young space.
1569 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
1570 __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
1571 __ vcvt_f64_f32(d0, s0);
1572 __ sub(r1, r2, Operand(kHeapObjectTag));
1573 __ vstr(d0, r1, HeapNumber::kValueOffset);
1574
1575 __ mov(r0, r2);
1576 __ Ret();
1577 } else {
1578 // Allocate a HeapNumber for the result. Don't use r0 and r1 as
1579 // AllocateHeapNumber clobbers all registers - also when jumping due to
1580 // exhausted young space.
1581 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
1582 __ AllocateHeapNumber(r3, r4, r5, r6, &slow);
1583 // VFP is not available, do manual single to double conversion.
1584
1585 // r2: floating point value (binary32)
1586 // r3: heap number for result
1587
1588 // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
1589 // the slow case from here.
1590 __ and_(r0, value, Operand(kBinary32MantissaMask));
1591
1592 // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
1593 // the slow case from here.
1594 __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
1595 __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
1596
1597 Label exponent_rebiased;
1598 __ teq(r1, Operand(0x00));
1599 __ b(eq, &exponent_rebiased);
1600
1601 __ teq(r1, Operand(0xff));
1602 __ mov(r1, Operand(0x7ff), LeaveCC, eq);
1603 __ b(eq, &exponent_rebiased);
1604
1605 // Rebias exponent.
1606 __ add(r1,
1607 r1,
1608 Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
1609
1610 __ bind(&exponent_rebiased);
1611 __ and_(r2, value, Operand(kBinary32SignMask));
1612 value = no_reg;
1613 __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
1614
1615 // Shift mantissa.
1616 static const int kMantissaShiftForHiWord =
1617 kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
1618
1619 static const int kMantissaShiftForLoWord =
1620 kBitsPerInt - kMantissaShiftForHiWord;
1621
1622 __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
1623 __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
1624
1625 __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
1626 __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
1627
1628 __ mov(r0, r3);
1629 __ Ret();
1630 }
1631
1632 } else {
1633 // Tag integer as smi and return it.
1634 __ mov(r0, Operand(value, LSL, kSmiTagSize));
1635 __ Ret();
1636 }
1637
1638 // Slow case, key and receiver still in r0 and r1.
1639 __ bind(&slow);
1640 __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
1641 GenerateRuntimeGetProperty(masm);
1642 }
1643
1644
1645 void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { 1354 void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
1646 // ---------- S t a t e -------------- 1355 // ---------- S t a t e --------------
1647 // -- lr : return address 1356 // -- lr : return address
1648 // -- r0 : key 1357 // -- r0 : key
1649 // -- r1 : receiver 1358 // -- r1 : receiver
1650 // ----------------------------------- 1359 // -----------------------------------
1651 Label slow; 1360 Label slow;
1652 1361
1653 // Check that the receiver isn't a smi. 1362 // Check that the receiver isn't a smi.
1654 __ BranchOnSmi(r1, &slow); 1363 __ JumpIfSmi(r1, &slow);
1655 1364
1656 // Check that the key is an array index, that is Uint32. 1365 // Check that the key is an array index, that is Uint32.
1657 __ tst(r0, Operand(kSmiTagMask | kSmiSignMask)); 1366 __ tst(r0, Operand(kSmiTagMask | kSmiSignMask));
1658 __ b(ne, &slow); 1367 __ b(ne, &slow);
1659 1368
1660 // Get the map of the receiver. 1369 // Get the map of the receiver.
1661 __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); 1370 __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
1662 1371
1663 // Check that it has indexed interceptor and access checks 1372 // Check that it has indexed interceptor and access checks
1664 // are not enabled for this object. 1373 // are not enabled for this object.
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after
1763 __ bind(&slow); 1472 __ bind(&slow);
1764 // Entry registers are intact. 1473 // Entry registers are intact.
1765 // r0: value. 1474 // r0: value.
1766 // r1: key. 1475 // r1: key.
1767 // r2: receiver. 1476 // r2: receiver.
1768 GenerateRuntimeSetProperty(masm); 1477 GenerateRuntimeSetProperty(masm);
1769 1478
1770 // Check whether the elements is a pixel array. 1479 // Check whether the elements is a pixel array.
1771 // r4: elements map. 1480 // r4: elements map.
1772 __ bind(&check_pixel_array); 1481 __ bind(&check_pixel_array);
1773 __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); 1482 GenerateFastPixelArrayStore(masm,
1774 __ cmp(r4, ip); 1483 r2,
1775 __ b(ne, &slow); 1484 r1,
1776 // Check that the value is a smi. If a conversion is needed call into the 1485 r0,
1777 // runtime to convert and clamp. 1486 elements,
1778 __ BranchOnNotSmi(value, &slow); 1487 r4,
1779 __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the key. 1488 r5,
1780 __ ldr(ip, FieldMemOperand(elements, PixelArray::kLengthOffset)); 1489 r6,
1781 __ cmp(r4, Operand(ip)); 1490 false,
1782 __ b(hs, &slow); 1491 false,
1783 __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value. 1492 NULL,
1784 __ Usat(r5, 8, Operand(r5)); // Clamp the value to [0..255]. 1493 &slow,
1785 1494 &slow,
1786 // Get the pointer to the external array. This clobbers elements. 1495 &slow);
1787 __ ldr(elements,
1788 FieldMemOperand(elements, PixelArray::kExternalPointerOffset));
1789 __ strb(r5, MemOperand(elements, r4)); // Elements is now external array.
1790 __ Ret();
1791 1496
1792 // Extra capacity case: Check if there is extra capacity to 1497 // Extra capacity case: Check if there is extra capacity to
1793 // perform the store and update the length. Used for adding one 1498 // perform the store and update the length. Used for adding one
1794 // element to the array by writing to array[array.length]. 1499 // element to the array by writing to array[array.length].
1795 __ bind(&extra); 1500 __ bind(&extra);
1796 // Condition code from comparing key and array length is still available. 1501 // Condition code from comparing key and array length is still available.
1797 __ b(ne, &slow); // Only support writing to writing to array[array.length]. 1502 __ b(ne, &slow); // Only support writing to writing to array[array.length].
1798 // Check for room in the elements backing store. 1503 // Check for room in the elements backing store.
1799 // Both the key and the length of FixedArray are smis. 1504 // Both the key and the length of FixedArray are smis.
1800 __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); 1505 __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after
1834 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER 1539 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
1835 // Update write barrier for the elements array address. 1540 // Update write barrier for the elements array address.
1836 __ sub(r4, r5, Operand(elements)); 1541 __ sub(r4, r5, Operand(elements));
1837 __ RecordWrite(elements, Operand(r4), r5, r6); 1542 __ RecordWrite(elements, Operand(r4), r5, r6);
1838 #endif 1543 #endif
1839 1544
1840 __ Ret(); 1545 __ Ret();
1841 } 1546 }
1842 1547
1843 1548
1844 // Convert and store int passed in register ival to IEEE 754 single precision 1549 void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
1845 // floating point value at memory location (dst + 4 * wordoffset) 1550 Code::ExtraICState extra_ic_state) {
1846 // If VFP3 is available use it for conversion.
1847 static void StoreIntAsFloat(MacroAssembler* masm,
1848 Register dst,
1849 Register wordoffset,
1850 Register ival,
1851 Register fval,
1852 Register scratch1,
1853 Register scratch2) {
1854 if (CpuFeatures::IsSupported(VFP3)) {
1855 CpuFeatures::Scope scope(VFP3);
1856 __ vmov(s0, ival);
1857 __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
1858 __ vcvt_f32_s32(s0, s0);
1859 __ vstr(s0, scratch1, 0);
1860 } else {
1861 Label not_special, done;
1862 // Move sign bit from source to destination. This works because the sign
1863 // bit in the exponent word of the double has the same position and polarity
1864 // as the 2's complement sign bit in a Smi.
1865 ASSERT(kBinary32SignMask == 0x80000000u);
1866
1867 __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
1868 // Negate value if it is negative.
1869 __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
1870
1871 // We have -1, 0 or 1, which we treat specially. Register ival contains
1872 // absolute value: it is either equal to 1 (special case of -1 and 1),
1873 // greater than 1 (not a special case) or less than 1 (special case of 0).
1874 __ cmp(ival, Operand(1));
1875 __ b(gt, &not_special);
1876
1877 // For 1 or -1 we need to or in the 0 exponent (biased).
1878 static const uint32_t exponent_word_for_1 =
1879 kBinary32ExponentBias << kBinary32ExponentShift;
1880
1881 __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
1882 __ b(&done);
1883
1884 __ bind(&not_special);
1885 // Count leading zeros.
1886 // Gets the wrong answer for 0, but we already checked for that case above.
1887 Register zeros = scratch2;
1888 __ CountLeadingZeros(zeros, ival, scratch1);
1889
1890 // Compute exponent and or it into the exponent register.
1891 __ rsb(scratch1,
1892 zeros,
1893 Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
1894
1895 __ orr(fval,
1896 fval,
1897 Operand(scratch1, LSL, kBinary32ExponentShift));
1898
1899 // Shift up the source chopping the top bit off.
1900 __ add(zeros, zeros, Operand(1));
1901 // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
1902 __ mov(ival, Operand(ival, LSL, zeros));
1903 // And the top (top 20 bits).
1904 __ orr(fval,
1905 fval,
1906 Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
1907
1908 __ bind(&done);
1909 __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
1910 }
1911 }
1912
1913
1914 static bool IsElementTypeSigned(ExternalArrayType array_type) {
1915 switch (array_type) {
1916 case kExternalByteArray:
1917 case kExternalShortArray:
1918 case kExternalIntArray:
1919 return true;
1920
1921 case kExternalUnsignedByteArray:
1922 case kExternalUnsignedShortArray:
1923 case kExternalUnsignedIntArray:
1924 return false;
1925
1926 default:
1927 UNREACHABLE();
1928 return false;
1929 }
1930 }
1931
1932
1933 void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
1934 ExternalArrayType array_type) {
1935 // ---------- S t a t e --------------
1936 // -- r0 : value
1937 // -- r1 : key
1938 // -- r2 : receiver
1939 // -- lr : return address
1940 // -----------------------------------
1941 Label slow, check_heap_number;
1942
1943 // Register usage.
1944 Register value = r0;
1945 Register key = r1;
1946 Register receiver = r2;
1947 // r3 mostly holds the elements array or the destination external array.
1948
1949 // Check that the object isn't a smi.
1950 __ BranchOnSmi(receiver, &slow);
1951
1952 // Check that the object is a JS object. Load map into r3.
1953 __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
1954 __ b(le, &slow);
1955
1956 // Check that the receiver does not require access checks. We need
1957 // to do this because this generic stub does not perform map checks.
1958 __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
1959 __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
1960 __ b(ne, &slow);
1961
1962 // Check that the key is a smi.
1963 __ BranchOnNotSmi(key, &slow);
1964
1965 // Check that the elements array is the appropriate type of ExternalArray.
1966 __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
1967 __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
1968 __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
1969 __ cmp(r4, ip);
1970 __ b(ne, &slow);
1971
1972 // Check that the index is in range.
1973 __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
1974 __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
1975 __ cmp(r4, ip);
1976 // Unsigned comparison catches both negative and too-large values.
1977 __ b(hs, &slow);
1978
1979 // Handle both smis and HeapNumbers in the fast path. Go to the
1980 // runtime for all other kinds of values.
1981 // r3: external array.
1982 // r4: key (integer).
1983 __ BranchOnNotSmi(value, &check_heap_number);
1984 __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
1985 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
1986
1987 // r3: base pointer of external storage.
1988 // r4: key (integer).
1989 // r5: value (integer).
1990 switch (array_type) {
1991 case kExternalByteArray:
1992 case kExternalUnsignedByteArray:
1993 __ strb(r5, MemOperand(r3, r4, LSL, 0));
1994 break;
1995 case kExternalShortArray:
1996 case kExternalUnsignedShortArray:
1997 __ strh(r5, MemOperand(r3, r4, LSL, 1));
1998 break;
1999 case kExternalIntArray:
2000 case kExternalUnsignedIntArray:
2001 __ str(r5, MemOperand(r3, r4, LSL, 2));
2002 break;
2003 case kExternalFloatArray:
2004 // Perform int-to-float conversion and store to memory.
2005 StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
2006 break;
2007 default:
2008 UNREACHABLE();
2009 break;
2010 }
2011
2012 // Entry registers are intact, r0 holds the value which is the return value.
2013 __ Ret();
2014
2015
2016 // r3: external array.
2017 // r4: index (integer).
2018 __ bind(&check_heap_number);
2019 __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
2020 __ b(ne, &slow);
2021
2022 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
2023
2024 // r3: base pointer of external storage.
2025 // r4: key (integer).
2026
2027 // The WebGL specification leaves the behavior of storing NaN and
2028 // +/-Infinity into integer arrays basically undefined. For more
2029 // reproducible behavior, convert these to zero.
2030 if (CpuFeatures::IsSupported(VFP3)) {
2031 CpuFeatures::Scope scope(VFP3);
2032
2033
2034 if (array_type == kExternalFloatArray) {
2035 // vldr requires offset to be a multiple of 4 so we can not
2036 // include -kHeapObjectTag into it.
2037 __ sub(r5, r0, Operand(kHeapObjectTag));
2038 __ vldr(d0, r5, HeapNumber::kValueOffset);
2039 __ add(r5, r3, Operand(r4, LSL, 2));
2040 __ vcvt_f32_f64(s0, d0);
2041 __ vstr(s0, r5, 0);
2042 } else {
2043 // Need to perform float-to-int conversion.
2044 // Test for NaN or infinity (both give zero).
2045 __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset));
2046
2047 // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
2048 // include -kHeapObjectTag into it.
2049 __ sub(r5, r0, Operand(kHeapObjectTag));
2050 __ vldr(d0, r5, HeapNumber::kValueOffset);
2051
2052 __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
2053 // NaNs and Infinities have all-one exponents so they sign extend to -1.
2054 __ cmp(r6, Operand(-1));
2055 __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq);
2056
2057 // Not infinity or NaN simply convert to int.
2058 if (IsElementTypeSigned(array_type)) {
2059 __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
2060 } else {
2061 __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
2062 }
2063 __ vmov(r5, s0, ne);
2064
2065 switch (array_type) {
2066 case kExternalByteArray:
2067 case kExternalUnsignedByteArray:
2068 __ strb(r5, MemOperand(r3, r4, LSL, 0));
2069 break;
2070 case kExternalShortArray:
2071 case kExternalUnsignedShortArray:
2072 __ strh(r5, MemOperand(r3, r4, LSL, 1));
2073 break;
2074 case kExternalIntArray:
2075 case kExternalUnsignedIntArray:
2076 __ str(r5, MemOperand(r3, r4, LSL, 2));
2077 break;
2078 default:
2079 UNREACHABLE();
2080 break;
2081 }
2082 }
2083
2084 // Entry registers are intact, r0 holds the value which is the return value.
2085 __ Ret();
2086 } else {
2087 // VFP3 is not available do manual conversions.
2088 __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
2089 __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2090
2091 if (array_type == kExternalFloatArray) {
2092 Label done, nan_or_infinity_or_zero;
2093 static const int kMantissaInHiWordShift =
2094 kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
2095
2096 static const int kMantissaInLoWordShift =
2097 kBitsPerInt - kMantissaInHiWordShift;
2098
2099 // Test for all special exponent values: zeros, subnormal numbers, NaNs
2100 // and infinities. All these should be converted to 0.
2101 __ mov(r7, Operand(HeapNumber::kExponentMask));
2102 __ and_(r9, r5, Operand(r7), SetCC);
2103 __ b(eq, &nan_or_infinity_or_zero);
2104
2105 __ teq(r9, Operand(r7));
2106 __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
2107 __ b(eq, &nan_or_infinity_or_zero);
2108
2109 // Rebias exponent.
2110 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
2111 __ add(r9,
2112 r9,
2113 Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
2114
2115 __ cmp(r9, Operand(kBinary32MaxExponent));
2116 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
2117 __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
2118 __ b(gt, &done);
2119
2120 __ cmp(r9, Operand(kBinary32MinExponent));
2121 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
2122 __ b(lt, &done);
2123
2124 __ and_(r7, r5, Operand(HeapNumber::kSignMask));
2125 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
2126 __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
2127 __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
2128 __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
2129
2130 __ bind(&done);
2131 __ str(r5, MemOperand(r3, r4, LSL, 2));
2132 // Entry registers are intact, r0 holds the value which is the return
2133 // value.
2134 __ Ret();
2135
2136 __ bind(&nan_or_infinity_or_zero);
2137 __ and_(r7, r5, Operand(HeapNumber::kSignMask));
2138 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
2139 __ orr(r9, r9, r7);
2140 __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
2141 __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
2142 __ b(&done);
2143 } else {
2144 bool is_signed_type = IsElementTypeSigned(array_type);
2145 int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
2146 int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
2147
2148 Label done, sign;
2149
2150 // Test for all special exponent values: zeros, subnormal numbers, NaNs
2151 // and infinities. All these should be converted to 0.
2152 __ mov(r7, Operand(HeapNumber::kExponentMask));
2153 __ and_(r9, r5, Operand(r7), SetCC);
2154 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
2155 __ b(eq, &done);
2156
2157 __ teq(r9, Operand(r7));
2158 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
2159 __ b(eq, &done);
2160
2161 // Unbias exponent.
2162 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
2163 __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
2164 // If exponent is negative than result is 0.
2165 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
2166 __ b(mi, &done);
2167
2168 // If exponent is too big than result is minimal value.
2169 __ cmp(r9, Operand(meaningfull_bits - 1));
2170 __ mov(r5, Operand(min_value), LeaveCC, ge);
2171 __ b(ge, &done);
2172
2173 __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
2174 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
2175 __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
2176
2177 __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
2178 __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
2179 __ b(pl, &sign);
2180
2181 __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
2182 __ mov(r5, Operand(r5, LSL, r9));
2183 __ rsb(r9, r9, Operand(meaningfull_bits));
2184 __ orr(r5, r5, Operand(r6, LSR, r9));
2185
2186 __ bind(&sign);
2187 __ teq(r7, Operand(0, RelocInfo::NONE));
2188 __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
2189
2190 __ bind(&done);
2191 switch (array_type) {
2192 case kExternalByteArray:
2193 case kExternalUnsignedByteArray:
2194 __ strb(r5, MemOperand(r3, r4, LSL, 0));
2195 break;
2196 case kExternalShortArray:
2197 case kExternalUnsignedShortArray:
2198 __ strh(r5, MemOperand(r3, r4, LSL, 1));
2199 break;
2200 case kExternalIntArray:
2201 case kExternalUnsignedIntArray:
2202 __ str(r5, MemOperand(r3, r4, LSL, 2));
2203 break;
2204 default:
2205 UNREACHABLE();
2206 break;
2207 }
2208 }
2209 }
2210
2211 // Slow case: call runtime.
2212 __ bind(&slow);
2213
2214 // Entry registers are intact.
2215 // r0: value
2216 // r1: key
2217 // r2: receiver
2218 GenerateRuntimeSetProperty(masm);
2219 }
2220
2221
2222 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
2223 // ----------- S t a t e ------------- 1551 // ----------- S t a t e -------------
2224 // -- r0 : value 1552 // -- r0 : value
2225 // -- r1 : receiver 1553 // -- r1 : receiver
2226 // -- r2 : name 1554 // -- r2 : name
2227 // -- lr : return address 1555 // -- lr : return address
2228 // ----------------------------------- 1556 // -----------------------------------
2229 1557
2230 // Get the receiver from the stack and probe the stub cache. 1558 // Get the receiver from the stack and probe the stub cache.
2231 Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, 1559 Code::Flags flags = Code::ComputeFlags(Code::STORE_IC,
2232 NOT_IN_LOOP, 1560 NOT_IN_LOOP,
2233 MONOMORPHIC); 1561 MONOMORPHIC,
1562 extra_ic_state);
2234 StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5); 1563 StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5);
2235 1564
2236 // Cache miss: Jump to runtime. 1565 // Cache miss: Jump to runtime.
2237 GenerateMiss(masm); 1566 GenerateMiss(masm);
2238 } 1567 }
2239 1568
2240 1569
2241 void StoreIC::GenerateMiss(MacroAssembler* masm) { 1570 void StoreIC::GenerateMiss(MacroAssembler* masm) {
2242 // ----------- S t a t e ------------- 1571 // ----------- S t a t e -------------
2243 // -- r0 : value 1572 // -- r0 : value
(...skipping 24 matching lines...) Expand all
2268 // to JSArray. 1597 // to JSArray.
2269 // Value must be a number, but only smis are accepted as the most common case. 1598 // Value must be a number, but only smis are accepted as the most common case.
2270 1599
2271 Label miss; 1600 Label miss;
2272 1601
2273 Register receiver = r1; 1602 Register receiver = r1;
2274 Register value = r0; 1603 Register value = r0;
2275 Register scratch = r3; 1604 Register scratch = r3;
2276 1605
2277 // Check that the receiver isn't a smi. 1606 // Check that the receiver isn't a smi.
2278 __ BranchOnSmi(receiver, &miss); 1607 __ JumpIfSmi(receiver, &miss);
2279 1608
2280 // Check that the object is a JS array. 1609 // Check that the object is a JS array.
2281 __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); 1610 __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
2282 __ b(ne, &miss); 1611 __ b(ne, &miss);
2283 1612
2284 // Check that elements are FixedArray. 1613 // Check that elements are FixedArray.
2285 // We rely on StoreIC_ArrayLength below to deal with all types of 1614 // We rely on StoreIC_ArrayLength below to deal with all types of
2286 // fast elements (including COW). 1615 // fast elements (including COW).
2287 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset)); 1616 __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
2288 __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE); 1617 __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
2289 __ b(ne, &miss); 1618 __ b(ne, &miss);
2290 1619
2291 // Check that value is a smi. 1620 // Check that value is a smi.
2292 __ BranchOnNotSmi(value, &miss); 1621 __ JumpIfNotSmi(value, &miss);
2293 1622
2294 // Prepare tail call to StoreIC_ArrayLength. 1623 // Prepare tail call to StoreIC_ArrayLength.
2295 __ Push(receiver, value); 1624 __ Push(receiver, value);
2296 1625
2297 ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength)); 1626 ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength));
2298 __ TailCallExternalReference(ref, 2, 1); 1627 __ TailCallExternalReference(ref, 2, 1);
2299 1628
2300 __ bind(&miss); 1629 __ bind(&miss);
2301 1630
2302 GenerateMiss(masm); 1631 GenerateMiss(masm);
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after
2352 case Token::GT: 1681 case Token::GT:
2353 // Reverse left and right operands to obtain ECMA-262 conversion order. 1682 // Reverse left and right operands to obtain ECMA-262 conversion order.
2354 return lt; 1683 return lt;
2355 case Token::LTE: 1684 case Token::LTE:
2356 // Reverse left and right operands to obtain ECMA-262 conversion order. 1685 // Reverse left and right operands to obtain ECMA-262 conversion order.
2357 return ge; 1686 return ge;
2358 case Token::GTE: 1687 case Token::GTE:
2359 return ge; 1688 return ge;
2360 default: 1689 default:
2361 UNREACHABLE(); 1690 UNREACHABLE();
2362 return no_condition; 1691 return kNoCondition;
2363 } 1692 }
2364 } 1693 }
2365 1694
2366 1695
2367 void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { 1696 void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2368 HandleScope scope; 1697 HandleScope scope;
2369 Handle<Code> rewritten; 1698 Handle<Code> rewritten;
2370 State previous_state = GetState(); 1699 State previous_state = GetState();
2371 State state = TargetState(previous_state, false, x, y); 1700 State state = TargetState(previous_state, false, x, y);
2372 if (state == GENERIC) { 1701 if (state == GENERIC) {
2373 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0); 1702 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
2374 rewritten = stub.GetCode(); 1703 rewritten = stub.GetCode();
2375 } else { 1704 } else {
2376 ICCompareStub stub(op_, state); 1705 ICCompareStub stub(op_, state);
2377 rewritten = stub.GetCode(); 1706 rewritten = stub.GetCode();
2378 } 1707 }
2379 set_target(*rewritten); 1708 set_target(*rewritten);
2380 1709
2381 #ifdef DEBUG 1710 #ifdef DEBUG
2382 if (FLAG_trace_ic) { 1711 if (FLAG_trace_ic) {
2383 PrintF("[CompareIC (%s->%s)#%s]\n", 1712 PrintF("[CompareIC (%s->%s)#%s]\n",
2384 GetStateName(previous_state), 1713 GetStateName(previous_state),
2385 GetStateName(state), 1714 GetStateName(state),
2386 Token::Name(op_)); 1715 Token::Name(op_));
2387 } 1716 }
2388 #endif 1717 #endif
1718
1719 // Activate inlined smi code.
1720 if (previous_state == UNINITIALIZED) {
1721 PatchInlinedSmiCode(address());
1722 }
2389 } 1723 }
2390 1724
2391 1725
2392 void PatchInlinedSmiCode(Address address) { 1726 void PatchInlinedSmiCode(Address address) {
2393 UNIMPLEMENTED(); 1727 Address cmp_instruction_address =
1728 address + Assembler::kCallTargetAddressOffset;
1729
1730 // If the instruction following the call is not a cmp rx, #yyy, nothing
1731 // was inlined.
1732 Instr instr = Assembler::instr_at(cmp_instruction_address);
1733 if (!Assembler::IsCmpImmediate(instr)) {
1734 return;
1735 }
1736
1737 // The delta to the start of the map check instruction and the
1738 // condition code uses at the patched jump.
1739 int delta = Assembler::GetCmpImmediateRawImmediate(instr);
1740 delta +=
1741 Assembler::GetCmpImmediateRegister(instr).code() * kOff12Mask;
1742 // If the delta is 0 the instruction is cmp r0, #0 which also signals that
1743 // nothing was inlined.
1744 if (delta == 0) {
1745 return;
1746 }
1747
1748 #ifdef DEBUG
1749 if (FLAG_trace_ic) {
1750 PrintF("[ patching ic at %p, cmp=%p, delta=%d\n",
1751 address, cmp_instruction_address, delta);
1752 }
1753 #endif
1754
1755 Address patch_address =
1756 cmp_instruction_address - delta * Instruction::kInstrSize;
1757 Instr instr_at_patch = Assembler::instr_at(patch_address);
1758 Instr branch_instr =
1759 Assembler::instr_at(patch_address + Instruction::kInstrSize);
1760 ASSERT(Assembler::IsCmpRegister(instr_at_patch));
1761 ASSERT_EQ(Assembler::GetRn(instr_at_patch).code(),
1762 Assembler::GetRm(instr_at_patch).code());
1763 ASSERT(Assembler::IsBranch(branch_instr));
1764 if (Assembler::GetCondition(branch_instr) == eq) {
1765 // This is patching a "jump if not smi" site to be active.
1766 // Changing
1767 // cmp rx, rx
1768 // b eq, <target>
1769 // to
1770 // tst rx, #kSmiTagMask
1771 // b ne, <target>
1772 CodePatcher patcher(patch_address, 2);
1773 Register reg = Assembler::GetRn(instr_at_patch);
1774 patcher.masm()->tst(reg, Operand(kSmiTagMask));
1775 patcher.EmitCondition(ne);
1776 } else {
1777 ASSERT(Assembler::GetCondition(branch_instr) == ne);
1778 // This is patching a "jump if smi" site to be active.
1779 // Changing
1780 // cmp rx, rx
1781 // b ne, <target>
1782 // to
1783 // tst rx, #kSmiTagMask
1784 // b eq, <target>
1785 CodePatcher patcher(patch_address, 2);
1786 Register reg = Assembler::GetRn(instr_at_patch);
1787 patcher.masm()->tst(reg, Operand(kSmiTagMask));
1788 patcher.EmitCondition(eq);
1789 }
2394 } 1790 }
2395 1791
2396 1792
2397 } } // namespace v8::internal 1793 } } // namespace v8::internal
2398 1794
2399 #endif // V8_TARGET_ARCH_ARM 1795 #endif // V8_TARGET_ARCH_ARM
OLDNEW
« no previous file with comments | « src/arm/full-codegen-arm.cc ('k') | src/arm/jump-target-arm.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698