OLD | NEW |
| (Empty) |
1 // Copyright 2014 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 | |
6 // This tests the correctness of the typer. | |
7 // | |
8 // For simplicity, it currently only tests it on expression operators that have | |
9 // a direct equivalent in C++. Also, testing is currently limited to ranges as | |
10 // input types. | |
11 | |
12 | |
13 #include <functional> | |
14 | |
15 #include "src/compiler/node-properties-inl.h" | |
16 #include "src/compiler/typer.h" | |
17 #include "test/cctest/cctest.h" | |
18 #include "test/cctest/compiler/graph-builder-tester.h" | |
19 | |
20 using namespace v8::internal; | |
21 using namespace v8::internal::compiler; | |
22 | |
23 | |
24 | |
25 class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { | |
26 public: | |
27 TyperTester() | |
28 : GraphAndBuilders(main_zone()), | |
29 typer_(main_zone()), | |
30 javascript_(main_zone()) { | |
31 Node* s = graph()->NewNode(common()->Start(3)); | |
32 graph()->SetStart(s); | |
33 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); | |
34 rng_ = isolate()->random_number_generator(); | |
35 | |
36 integers.push_back(0); | |
37 integers.push_back(0); | |
38 integers.push_back(-1); | |
39 integers.push_back(+1); | |
40 integers.push_back(-V8_INFINITY); | |
41 integers.push_back(+V8_INFINITY); | |
42 for (int i = 0; i < 5; ++i) { | |
43 double x = rng_->NextInt(); | |
44 integers.push_back(x); | |
45 x *= rng_->NextInt(); | |
46 if (!IsMinusZero(x)) integers.push_back(x); | |
47 } | |
48 | |
49 int32s.push_back(0); | |
50 int32s.push_back(0); | |
51 int32s.push_back(-1); | |
52 int32s.push_back(+1); | |
53 int32s.push_back(kMinInt); | |
54 int32s.push_back(kMaxInt); | |
55 for (int i = 0; i < 10; ++i) { | |
56 int32s.push_back(rng_->NextInt()); | |
57 } | |
58 } | |
59 | |
60 Typer typer_; | |
61 JSOperatorBuilder javascript_; | |
62 Node* context_node_; | |
63 v8::base::RandomNumberGenerator* rng_; | |
64 std::vector<double> integers; | |
65 std::vector<double> int32s; | |
66 | |
67 Isolate* isolate() { return main_isolate(); } | |
68 Graph* graph() { return main_graph_; } | |
69 CommonOperatorBuilder* common() { return &main_common_; } | |
70 | |
71 Node* Parameter(int index = 0) { | |
72 return graph()->NewNode(common()->Parameter(index), graph()->start()); | |
73 } | |
74 | |
75 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { | |
76 Node* p0 = Parameter(0); | |
77 Node* p1 = Parameter(1); | |
78 NodeProperties::SetBounds(p0, Bounds(lhs)); | |
79 NodeProperties::SetBounds(p1, Bounds(rhs)); | |
80 Node* n = graph()->NewNode( | |
81 op, p0, p1, context_node_, graph()->start(), graph()->start()); | |
82 typer_.Init(n); | |
83 return NodeProperties::GetBounds(n).upper; | |
84 } | |
85 | |
86 Type* RandomRange(bool int32 = false) { | |
87 std::vector<double>& numbers = int32 ? int32s : integers; | |
88 Factory* f = isolate()->factory(); | |
89 int i = rng_->NextInt(static_cast<int>(numbers.size())); | |
90 int j = rng_->NextInt(static_cast<int>(numbers.size())); | |
91 i::Handle<i::Object> min = f->NewNumber(numbers[i]); | |
92 i::Handle<i::Object> max = f->NewNumber(numbers[j]); | |
93 if (min->Number() > max->Number()) std::swap(min, max); | |
94 return Type::Range(min, max, main_zone()); | |
95 } | |
96 | |
97 double RandomInt(double min, double max) { | |
98 switch (rng_->NextInt(4)) { | |
99 case 0: return min; | |
100 case 1: return max; | |
101 default: break; | |
102 } | |
103 if (min == +V8_INFINITY) return +V8_INFINITY; | |
104 if (max == -V8_INFINITY) return -V8_INFINITY; | |
105 if (min == -V8_INFINITY && max == +V8_INFINITY) { | |
106 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); | |
107 } | |
108 double result = nearbyint(min + (max - min) * rng_->NextDouble()); | |
109 if (IsMinusZero(result)) return 0; | |
110 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; | |
111 DCHECK(min <= result && result <= max); | |
112 return result; | |
113 } | |
114 | |
115 double RandomInt(Type::RangeType* range) { | |
116 return RandomInt(range->Min()->Number(), range->Max()->Number()); | |
117 } | |
118 | |
119 template <class BinaryFunction> | |
120 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { | |
121 for (int i = 0; i < 100; ++i) { | |
122 Type::RangeType* r1 = RandomRange()->AsRange(); | |
123 Type::RangeType* r2 = RandomRange()->AsRange(); | |
124 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
125 double x1 = RandomInt(r1); | |
126 double x2 = RandomInt(r2); | |
127 double result_value = opfun(x1, x2); | |
128 Type* result_type = Type::Constant( | |
129 isolate()->factory()->NewNumber(result_value), main_zone()); | |
130 CHECK(result_type->Is(expected_type)); | |
131 } | |
132 } | |
133 | |
134 template <class BinaryFunction> | |
135 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { | |
136 for (int i = 0; i < 100; ++i) { | |
137 Type::RangeType* r1 = RandomRange()->AsRange(); | |
138 Type::RangeType* r2 = RandomRange()->AsRange(); | |
139 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
140 double x1 = RandomInt(r1); | |
141 double x2 = RandomInt(r2); | |
142 bool result_value = opfun(x1, x2); | |
143 Type* result_type = Type::Constant(result_value ? | |
144 isolate()->factory()->true_value() : | |
145 isolate()->factory()->false_value(), main_zone()); | |
146 CHECK(result_type->Is(expected_type)); | |
147 } | |
148 } | |
149 | |
150 template <class BinaryFunction> | |
151 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { | |
152 for (int i = 0; i < 100; ++i) { | |
153 Type::RangeType* r1 = RandomRange(true)->AsRange(); | |
154 Type::RangeType* r2 = RandomRange(true)->AsRange(); | |
155 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
156 int32_t x1 = RandomInt(r1); | |
157 int32_t x2 = RandomInt(r2); | |
158 double result_value = opfun(x1, x2); | |
159 Type* result_type = Type::Constant( | |
160 isolate()->factory()->NewNumber(result_value), main_zone()); | |
161 CHECK(result_type->Is(expected_type)); | |
162 } | |
163 } | |
164 }; | |
165 | |
166 | |
167 static int32_t shift_left(int32_t x, int32_t y) { return x << y; } | |
168 static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } | |
169 | |
170 | |
171 TEST(TypeJSAdd) { | |
172 TyperTester t; | |
173 t.TestBinaryArithOp(t.javascript_.Subtract(), std::plus<double>()); | |
174 } | |
175 | |
176 | |
177 TEST(TypeJSSubtract) { | |
178 TyperTester t; | |
179 t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); | |
180 } | |
181 | |
182 | |
183 TEST(TypeJSMultiply) { | |
184 TyperTester t; | |
185 t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); | |
186 } | |
187 | |
188 | |
189 TEST(TypeJSDivide) { | |
190 TyperTester t; | |
191 t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); | |
192 } | |
193 | |
194 | |
195 TEST(TypeJSBitwiseOr) { | |
196 TyperTester t; | |
197 t.TestBinaryBitOp(t.javascript_.BitwiseOr(), std::bit_or<int32_t>()); | |
198 } | |
199 | |
200 | |
201 TEST(TypeJSBitwiseAnd) { | |
202 TyperTester t; | |
203 t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), std::bit_and<int32_t>()); | |
204 } | |
205 | |
206 | |
207 TEST(TypeJSBitwiseXor) { | |
208 TyperTester t; | |
209 t.TestBinaryBitOp(t.javascript_.BitwiseXor(), std::bit_xor<int32_t>()); | |
210 } | |
211 | |
212 | |
213 TEST(TypeJSShiftLeft) { | |
214 TyperTester t; | |
215 t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); | |
216 } | |
217 | |
218 | |
219 TEST(TypeJSShiftRight) { | |
220 TyperTester t; | |
221 t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); | |
222 } | |
223 | |
224 | |
225 TEST(TypeJSLessThan) { | |
226 TyperTester t; | |
227 t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); | |
228 } | |
229 | |
230 | |
231 TEST(TypeJSLessThanOrEqual) { | |
232 TyperTester t; | |
233 t.TestBinaryCompareOp( | |
234 t.javascript_.LessThanOrEqual(), std::less_equal<double>()); | |
235 } | |
236 | |
237 | |
238 TEST(TypeJSGreaterThan) { | |
239 TyperTester t; | |
240 t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); | |
241 } | |
242 | |
243 | |
244 TEST(TypeJSGreaterThanOrEqual) { | |
245 TyperTester t; | |
246 t.TestBinaryCompareOp( | |
247 t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); | |
248 } | |
249 | |
250 | |
251 TEST(TypeJSEqual) { | |
252 TyperTester t; | |
253 t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); | |
254 } | |
255 | |
256 | |
257 TEST(TypeJSNotEqual) { | |
258 TyperTester t; | |
259 t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); | |
260 } | |
261 | |
262 | |
263 // For numbers there's no difference between strict and non-strict equality. | |
264 TEST(TypeJSStrictEqual) { | |
265 TyperTester t; | |
266 t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); | |
267 } | |
268 | |
269 | |
270 TEST(TypeJSStrictNotEqual) { | |
271 TyperTester t; | |
272 t.TestBinaryCompareOp( | |
273 t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); | |
274 } | |
OLD | NEW |