| OLD | NEW | 
|---|
|  | (Empty) | 
| 1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |  | 
| 2 // |  | 
| 3 // ==================================================== |  | 
| 4 // Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. |  | 
| 5 // |  | 
| 6 // Developed at SunSoft, a Sun Microsystems, Inc. business. |  | 
| 7 // Permission to use, copy, modify, and distribute this |  | 
| 8 // software is freely granted, provided that this notice |  | 
| 9 // is preserved. |  | 
| 10 // ==================================================== |  | 
| 11 // |  | 
| 12 // The original source code covered by the above license above has been |  | 
| 13 // modified significantly by Google Inc. |  | 
| 14 // Copyright 2014 the V8 project authors. All rights reserved. |  | 
| 15 // |  | 
| 16 // The following is a straightforward translation of fdlibm routines |  | 
| 17 // by Raymond Toy (rtoy@google.com). |  | 
| 18 |  | 
| 19 // Double constants that do not have empty lower 32 bits are found in fdlibm.cc |  | 
| 20 // and exposed through kMath as typed array. We assume the compiler to convert |  | 
| 21 // from decimal to binary accurately enough to produce the intended values. |  | 
| 22 // kMath is initialized to a Float64Array during genesis and not writable. |  | 
| 23 var kMath; |  | 
| 24 |  | 
| 25 const INVPIO2 = kMath[0]; |  | 
| 26 const PIO2_1  = kMath[1]; |  | 
| 27 const PIO2_1T = kMath[2]; |  | 
| 28 const PIO2_2  = kMath[3]; |  | 
| 29 const PIO2_2T = kMath[4]; |  | 
| 30 const PIO2_3  = kMath[5]; |  | 
| 31 const PIO2_3T = kMath[6]; |  | 
| 32 const PIO4    = kMath[32]; |  | 
| 33 const PIO4LO  = kMath[33]; |  | 
| 34 |  | 
| 35 // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For |  | 
| 36 // precision, r is returned as two values y0 and y1 such that r = y0 + y1 |  | 
| 37 // to more than double precision. |  | 
| 38 macro REMPIO2(X) |  | 
| 39   var n, y0, y1; |  | 
| 40   var hx = %_DoubleHi(X); |  | 
| 41   var ix = hx & 0x7fffffff; |  | 
| 42 |  | 
| 43   if (ix < 0x4002d97c) { |  | 
| 44     // |X| ~< 3*pi/4, special case with n = +/- 1 |  | 
| 45     if (hx > 0) { |  | 
| 46       var z = X - PIO2_1; |  | 
| 47       if (ix != 0x3ff921fb) { |  | 
| 48         // 33+53 bit pi is good enough |  | 
| 49         y0 = z - PIO2_1T; |  | 
| 50         y1 = (z - y0) - PIO2_1T; |  | 
| 51       } else { |  | 
| 52         // near pi/2, use 33+33+53 bit pi |  | 
| 53         z -= PIO2_2; |  | 
| 54         y0 = z - PIO2_2T; |  | 
| 55         y1 = (z - y0) - PIO2_2T; |  | 
| 56       } |  | 
| 57       n = 1; |  | 
| 58     } else { |  | 
| 59       // Negative X |  | 
| 60       var z = X + PIO2_1; |  | 
| 61       if (ix != 0x3ff921fb) { |  | 
| 62         // 33+53 bit pi is good enough |  | 
| 63         y0 = z + PIO2_1T; |  | 
| 64         y1 = (z - y0) + PIO2_1T; |  | 
| 65       } else { |  | 
| 66         // near pi/2, use 33+33+53 bit pi |  | 
| 67         z += PIO2_2; |  | 
| 68         y0 = z + PIO2_2T; |  | 
| 69         y1 = (z - y0) + PIO2_2T; |  | 
| 70       } |  | 
| 71       n = -1; |  | 
| 72     } |  | 
| 73   } else if (ix <= 0x413921fb) { |  | 
| 74     // |X| ~<= 2^19*(pi/2), medium size |  | 
| 75     var t = MathAbs(X); |  | 
| 76     n = (t * INVPIO2 + 0.5) | 0; |  | 
| 77     var r = t - n * PIO2_1; |  | 
| 78     var w = n * PIO2_1T; |  | 
| 79     // First round good to 85 bit |  | 
| 80     y0 = r - w; |  | 
| 81     if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |  | 
| 82       // 2nd iteration needed, good to 118 |  | 
| 83       t = r; |  | 
| 84       w = n * PIO2_2; |  | 
| 85       r = t - w; |  | 
| 86       w = n * PIO2_2T - ((t - r) - w); |  | 
| 87       y0 = r - w; |  | 
| 88       if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |  | 
| 89         // 3rd iteration needed. 151 bits accuracy |  | 
| 90         t = r; |  | 
| 91         w = n * PIO2_3; |  | 
| 92         r = t - w; |  | 
| 93         w = n * PIO2_3T - ((t - r) - w); |  | 
| 94         y0 = r - w; |  | 
| 95       } |  | 
| 96     } |  | 
| 97     y1 = (r - y0) - w; |  | 
| 98     if (hx < 0) { |  | 
| 99       n = -n; |  | 
| 100       y0 = -y0; |  | 
| 101       y1 = -y1; |  | 
| 102     } |  | 
| 103   } else { |  | 
| 104     // Need to do full Payne-Hanek reduction here. |  | 
| 105     var r = %RemPiO2(X); |  | 
| 106     n = r[0]; |  | 
| 107     y0 = r[1]; |  | 
| 108     y1 = r[2]; |  | 
| 109   } |  | 
| 110 endmacro |  | 
| 111 |  | 
| 112 |  | 
| 113 // __kernel_sin(X, Y, IY) |  | 
| 114 // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |  | 
| 115 // Input X is assumed to be bounded by ~pi/4 in magnitude. |  | 
| 116 // Input Y is the tail of X so that x = X + Y. |  | 
| 117 // |  | 
| 118 // Algorithm |  | 
| 119 //  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. |  | 
| 120 //  2. ieee_sin(x) is approximated by a polynomial of degree 13 on |  | 
| 121 //     [0,pi/4] |  | 
| 122 //                           3            13 |  | 
| 123 //          sin(x) ~ x + S1*x + ... + S6*x |  | 
| 124 //     where |  | 
| 125 // |  | 
| 126 //    |ieee_sin(x)    2     4     6     8     10     12  |     -58 |  | 
| 127 //    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2 |  | 
| 128 //    |  x                                               | |  | 
| 129 // |  | 
| 130 //  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y |  | 
| 131 //              ~ ieee_sin(X) + (1-X*X/2)*Y |  | 
| 132 //     For better accuracy, let |  | 
| 133 //               3      2      2      2      2 |  | 
| 134 //          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) |  | 
| 135 //     then                   3    2 |  | 
| 136 //          sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) |  | 
| 137 // |  | 
| 138 macro KSIN(x) |  | 
| 139 kMath[7+x] |  | 
| 140 endmacro |  | 
| 141 |  | 
| 142 macro RETURN_KERNELSIN(X, Y, SIGN) |  | 
| 143   var z = X * X; |  | 
| 144   var v = z * X; |  | 
| 145   var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + |  | 
| 146                     z * (KSIN(4) + z * KSIN(5)))); |  | 
| 147   return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; |  | 
| 148 endmacro |  | 
| 149 |  | 
| 150 // __kernel_cos(X, Y) |  | 
| 151 // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |  | 
| 152 // Input X is assumed to be bounded by ~pi/4 in magnitude. |  | 
| 153 // Input Y is the tail of X so that x = X + Y. |  | 
| 154 // |  | 
| 155 // Algorithm |  | 
| 156 //  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. |  | 
| 157 //  2. ieee_cos(x) is approximated by a polynomial of degree 14 on |  | 
| 158 //     [0,pi/4] |  | 
| 159 //                                   4            14 |  | 
| 160 //          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |  | 
| 161 //     where the remez error is |  | 
| 162 // |  | 
| 163 //  |                   2     4     6     8     10    12     14 |     -58 |  | 
| 164 //  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2 |  | 
| 165 //  |                                                           | |  | 
| 166 // |  | 
| 167 //                 4     6     8     10    12     14 |  | 
| 168 //  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then |  | 
| 169 //         ieee_cos(x) = 1 - x*x/2 + r |  | 
| 170 //     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y |  | 
| 171 //                    ~ ieee_cos(X) - X*Y, |  | 
| 172 //     a correction term is necessary in ieee_cos(x) and hence |  | 
| 173 //         cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) |  | 
| 174 //     For better accuracy when x > 0.3, let qx = |x|/4 with |  | 
| 175 //     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |  | 
| 176 //     Then |  | 
| 177 //         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). |  | 
| 178 //     Note that 1-qx and (X*X/2-qx) is EXACT here, and the |  | 
| 179 //     magnitude of the latter is at least a quarter of X*X/2, |  | 
| 180 //     thus, reducing the rounding error in the subtraction. |  | 
| 181 // |  | 
| 182 macro KCOS(x) |  | 
| 183 kMath[13+x] |  | 
| 184 endmacro |  | 
| 185 |  | 
| 186 macro RETURN_KERNELCOS(X, Y, SIGN) |  | 
| 187   var ix = %_DoubleHi(X) & 0x7fffffff; |  | 
| 188   var z = X * X; |  | 
| 189   var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ |  | 
| 190           z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); |  | 
| 191   if (ix < 0x3fd33333) {  // |x| ~< 0.3 |  | 
| 192     return (1 - (0.5 * z - (z * r - X * Y))) SIGN; |  | 
| 193   } else { |  | 
| 194     var qx; |  | 
| 195     if (ix > 0x3fe90000) {  // |x| > 0.78125 |  | 
| 196       qx = 0.28125; |  | 
| 197     } else { |  | 
| 198       qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); |  | 
| 199     } |  | 
| 200     var hz = 0.5 * z - qx; |  | 
| 201     return (1 - qx - (hz - (z * r - X * Y))) SIGN; |  | 
| 202   } |  | 
| 203 endmacro |  | 
| 204 |  | 
| 205 |  | 
| 206 // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |  | 
| 207 // Input x is assumed to be bounded by ~pi/4 in magnitude. |  | 
| 208 // Input y is the tail of x. |  | 
| 209 // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) |  | 
| 210 // is returned. |  | 
| 211 // |  | 
| 212 // Algorithm |  | 
| 213 //  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |  | 
| 214 //  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |  | 
| 215 //  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |  | 
| 216 //     [0,0.67434] |  | 
| 217 //                           3             27 |  | 
| 218 //          tan(x) ~ x + T1*x + ... + T13*x |  | 
| 219 //     where |  | 
| 220 // |  | 
| 221 //     |ieee_tan(x)    2     4            26   |     -59.2 |  | 
| 222 //     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 |  | 
| 223 //     |  x                                    | |  | 
| 224 // |  | 
| 225 //     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |  | 
| 226 //                    ~ ieee_tan(x) + (1+x*x)*y |  | 
| 227 //     Therefore, for better accuracy in computing ieee_tan(x+y), let |  | 
| 228 //               3      2      2       2       2 |  | 
| 229 //          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |  | 
| 230 //     then |  | 
| 231 //                              3    2 |  | 
| 232 //          tan(x+y) = x + (T1*x + (x *(r+y)+y)) |  | 
| 233 // |  | 
| 234 //  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then |  | 
| 235 //          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |  | 
| 236 //                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |  | 
| 237 // |  | 
| 238 // Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal |  | 
| 239 // and will cause incorrect results. |  | 
| 240 // |  | 
| 241 macro KTAN(x) |  | 
| 242 kMath[19+x] |  | 
| 243 endmacro |  | 
| 244 |  | 
| 245 function KernelTan(x, y, returnTan) { |  | 
| 246   var z; |  | 
| 247   var w; |  | 
| 248   var hx = %_DoubleHi(x); |  | 
| 249   var ix = hx & 0x7fffffff; |  | 
| 250 |  | 
| 251   if (ix < 0x3e300000) {  // |x| < 2^-28 |  | 
| 252     if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |  | 
| 253       // x == 0 && returnTan = -1 |  | 
| 254       return 1 / MathAbs(x); |  | 
| 255     } else { |  | 
| 256       if (returnTan == 1) { |  | 
| 257         return x; |  | 
| 258       } else { |  | 
| 259         // Compute -1/(x + y) carefully |  | 
| 260         var w = x + y; |  | 
| 261         var z = %_ConstructDouble(%_DoubleHi(w), 0); |  | 
| 262         var v = y - (z - x); |  | 
| 263         var a = -1 / w; |  | 
| 264         var t = %_ConstructDouble(%_DoubleHi(a), 0); |  | 
| 265         var s = 1 + t * z; |  | 
| 266         return t + a * (s + t * v); |  | 
| 267       } |  | 
| 268     } |  | 
| 269   } |  | 
| 270   if (ix >= 0x3fe59429) {  // |x| > .6744 |  | 
| 271     if (x < 0) { |  | 
| 272       x = -x; |  | 
| 273       y = -y; |  | 
| 274     } |  | 
| 275     z = PIO4 - x; |  | 
| 276     w = PIO4LO - y; |  | 
| 277     x = z + w; |  | 
| 278     y = 0; |  | 
| 279   } |  | 
| 280   z = x * x; |  | 
| 281   w = z * z; |  | 
| 282 |  | 
| 283   // Break x^5 * (T1 + x^2*T2 + ...) into |  | 
| 284   // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + |  | 
| 285   // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) |  | 
| 286   var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + |  | 
| 287                     w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); |  | 
| 288   var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + |  | 
| 289                          w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); |  | 
| 290   var s = z * x; |  | 
| 291   r = y + z * (s * (r + v) + y); |  | 
| 292   r = r + KTAN(0) * s; |  | 
| 293   w = x + r; |  | 
| 294   if (ix >= 0x3fe59428) { |  | 
| 295     return (1 - ((hx >> 30) & 2)) * |  | 
| 296       (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |  | 
| 297   } |  | 
| 298   if (returnTan == 1) { |  | 
| 299     return w; |  | 
| 300   } else { |  | 
| 301     z = %_ConstructDouble(%_DoubleHi(w), 0); |  | 
| 302     v = r - (z - x); |  | 
| 303     var a = -1 / w; |  | 
| 304     var t = %_ConstructDouble(%_DoubleHi(a), 0); |  | 
| 305     s = 1 + t * z; |  | 
| 306     return t + a * (s + t * v); |  | 
| 307   } |  | 
| 308 } |  | 
| 309 |  | 
| 310 function MathSinSlow(x) { |  | 
| 311   REMPIO2(x); |  | 
| 312   var sign = 1 - (n & 2); |  | 
| 313   if (n & 1) { |  | 
| 314     RETURN_KERNELCOS(y0, y1, * sign); |  | 
| 315   } else { |  | 
| 316     RETURN_KERNELSIN(y0, y1, * sign); |  | 
| 317   } |  | 
| 318 } |  | 
| 319 |  | 
| 320 function MathCosSlow(x) { |  | 
| 321   REMPIO2(x); |  | 
| 322   if (n & 1) { |  | 
| 323     var sign = (n & 2) - 1; |  | 
| 324     RETURN_KERNELSIN(y0, y1, * sign); |  | 
| 325   } else { |  | 
| 326     var sign = 1 - (n & 2); |  | 
| 327     RETURN_KERNELCOS(y0, y1, * sign); |  | 
| 328   } |  | 
| 329 } |  | 
| 330 |  | 
| 331 // ECMA 262 - 15.8.2.16 |  | 
| 332 function MathSin(x) { |  | 
| 333   x = x * 1;  // Convert to number. |  | 
| 334   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |  | 
| 335     // |x| < pi/4, approximately.  No reduction needed. |  | 
| 336     RETURN_KERNELSIN(x, 0, /* empty */); |  | 
| 337   } |  | 
| 338   return MathSinSlow(x); |  | 
| 339 } |  | 
| 340 |  | 
| 341 // ECMA 262 - 15.8.2.7 |  | 
| 342 function MathCos(x) { |  | 
| 343   x = x * 1;  // Convert to number. |  | 
| 344   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |  | 
| 345     // |x| < pi/4, approximately.  No reduction needed. |  | 
| 346     RETURN_KERNELCOS(x, 0, /* empty */); |  | 
| 347   } |  | 
| 348   return MathCosSlow(x); |  | 
| 349 } |  | 
| 350 |  | 
| 351 // ECMA 262 - 15.8.2.18 |  | 
| 352 function MathTan(x) { |  | 
| 353   x = x * 1;  // Convert to number. |  | 
| 354   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |  | 
| 355     // |x| < pi/4, approximately.  No reduction needed. |  | 
| 356     return KernelTan(x, 0, 1); |  | 
| 357   } |  | 
| 358   REMPIO2(x); |  | 
| 359   return KernelTan(y0, y1, (n & 1) ? -1 : 1); |  | 
| 360 } |  | 
| 361 |  | 
| 362 // ES6 draft 09-27-13, section 20.2.2.20. |  | 
| 363 // Math.log1p |  | 
| 364 // |  | 
| 365 // Method : |  | 
| 366 //   1. Argument Reduction: find k and f such that |  | 
| 367 //                      1+x = 2^k * (1+f), |  | 
| 368 //         where  sqrt(2)/2 < 1+f < sqrt(2) . |  | 
| 369 // |  | 
| 370 //      Note. If k=0, then f=x is exact. However, if k!=0, then f |  | 
| 371 //      may not be representable exactly. In that case, a correction |  | 
| 372 //      term is need. Let u=1+x rounded. Let c = (1+x)-u, then |  | 
| 373 //      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |  | 
| 374 //      and add back the correction term c/u. |  | 
| 375 //      (Note: when x > 2**53, one can simply return log(x)) |  | 
| 376 // |  | 
| 377 //   2. Approximation of log1p(f). |  | 
| 378 //      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |  | 
| 379 //            = 2s + 2/3 s**3 + 2/5 s**5 + ....., |  | 
| 380 //            = 2s + s*R |  | 
| 381 //      We use a special Reme algorithm on [0,0.1716] to generate |  | 
| 382 //      a polynomial of degree 14 to approximate R The maximum error |  | 
| 383 //      of this polynomial approximation is bounded by 2**-58.45. In |  | 
| 384 //      other words, |  | 
| 385 //                      2      4      6      8      10      12      14 |  | 
| 386 //          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s |  | 
| 387 //      (the values of Lp1 to Lp7 are listed in the program) |  | 
| 388 //      and |  | 
| 389 //          |      2          14          |     -58.45 |  | 
| 390 //          | Lp1*s +...+Lp7*s    -  R(z) | <= 2 |  | 
| 391 //          |                             | |  | 
| 392 //      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |  | 
| 393 //      In order to guarantee error in log below 1ulp, we compute log |  | 
| 394 //      by |  | 
| 395 //              log1p(f) = f - (hfsq - s*(hfsq+R)). |  | 
| 396 // |  | 
| 397 //      3. Finally, log1p(x) = k*ln2 + log1p(f). |  | 
| 398 //                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |  | 
| 399 //         Here ln2 is split into two floating point number: |  | 
| 400 //                      ln2_hi + ln2_lo, |  | 
| 401 //         where n*ln2_hi is always exact for |n| < 2000. |  | 
| 402 // |  | 
| 403 // Special cases: |  | 
| 404 //      log1p(x) is NaN with signal if x < -1 (including -INF) ; |  | 
| 405 //      log1p(+INF) is +INF; log1p(-1) is -INF with signal; |  | 
| 406 //      log1p(NaN) is that NaN with no signal. |  | 
| 407 // |  | 
| 408 // Accuracy: |  | 
| 409 //      according to an error analysis, the error is always less than |  | 
| 410 //      1 ulp (unit in the last place). |  | 
| 411 // |  | 
| 412 // Constants: |  | 
| 413 //      Constants are found in fdlibm.cc. We assume the C++ compiler to convert |  | 
| 414 //      from decimal to binary accurately enough to produce the intended values. |  | 
| 415 // |  | 
| 416 // Note: Assuming log() return accurate answer, the following |  | 
| 417 //       algorithm can be used to compute log1p(x) to within a few ULP: |  | 
| 418 // |  | 
| 419 //              u = 1+x; |  | 
| 420 //              if (u==1.0) return x ; else |  | 
| 421 //                          return log(u)*(x/(u-1.0)); |  | 
| 422 // |  | 
| 423 //       See HP-15C Advanced Functions Handbook, p.193. |  | 
| 424 // |  | 
| 425 const LN2_HI    = kMath[34]; |  | 
| 426 const LN2_LO    = kMath[35]; |  | 
| 427 const TWO54     = kMath[36]; |  | 
| 428 const TWO_THIRD = kMath[37]; |  | 
| 429 macro KLOG1P(x) |  | 
| 430 (kMath[38+x]) |  | 
| 431 endmacro |  | 
| 432 |  | 
| 433 function MathLog1p(x) { |  | 
| 434   x = x * 1;  // Convert to number. |  | 
| 435   var hx = %_DoubleHi(x); |  | 
| 436   var ax = hx & 0x7fffffff; |  | 
| 437   var k = 1; |  | 
| 438   var f = x; |  | 
| 439   var hu = 1; |  | 
| 440   var c = 0; |  | 
| 441   var u = x; |  | 
| 442 |  | 
| 443   if (hx < 0x3fda827a) { |  | 
| 444     // x < 0.41422 |  | 
| 445     if (ax >= 0x3ff00000) {  // |x| >= 1 |  | 
| 446       if (x === -1) { |  | 
| 447         return -INFINITY;  // log1p(-1) = -inf |  | 
| 448       } else { |  | 
| 449         return NAN;  // log1p(x<-1) = NaN |  | 
| 450       } |  | 
| 451     } else if (ax < 0x3c900000)  { |  | 
| 452       // For |x| < 2^-54 we can return x. |  | 
| 453       return x; |  | 
| 454     } else if (ax < 0x3e200000) { |  | 
| 455       // For |x| < 2^-29 we can use a simple two-term Taylor series. |  | 
| 456       return x - x * x * 0.5; |  | 
| 457     } |  | 
| 458 |  | 
| 459     if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d |  | 
| 460       // -.2929 < x < 0.41422 |  | 
| 461       k = 0; |  | 
| 462     } |  | 
| 463   } |  | 
| 464 |  | 
| 465   // Handle Infinity and NAN |  | 
| 466   if (hx >= 0x7ff00000) return x; |  | 
| 467 |  | 
| 468   if (k !== 0) { |  | 
| 469     if (hx < 0x43400000) { |  | 
| 470       // x < 2^53 |  | 
| 471       u = 1 + x; |  | 
| 472       hu = %_DoubleHi(u); |  | 
| 473       k = (hu >> 20) - 1023; |  | 
| 474       c = (k > 0) ? 1 - (u - x) : x - (u - 1); |  | 
| 475       c = c / u; |  | 
| 476     } else { |  | 
| 477       hu = %_DoubleHi(u); |  | 
| 478       k = (hu >> 20) - 1023; |  | 
| 479     } |  | 
| 480     hu = hu & 0xfffff; |  | 
| 481     if (hu < 0x6a09e) { |  | 
| 482       u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u. |  | 
| 483     } else { |  | 
| 484       ++k; |  | 
| 485       u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2. |  | 
| 486       hu = (0x00100000 - hu) >> 2; |  | 
| 487     } |  | 
| 488     f = u - 1; |  | 
| 489   } |  | 
| 490 |  | 
| 491   var hfsq = 0.5 * f * f; |  | 
| 492   if (hu === 0) { |  | 
| 493     // |f| < 2^-20; |  | 
| 494     if (f === 0) { |  | 
| 495       if (k === 0) { |  | 
| 496         return 0.0; |  | 
| 497       } else { |  | 
| 498         return k * LN2_HI + (c + k * LN2_LO); |  | 
| 499       } |  | 
| 500     } |  | 
| 501     var R = hfsq * (1 - TWO_THIRD * f); |  | 
| 502     if (k === 0) { |  | 
| 503       return f - R; |  | 
| 504     } else { |  | 
| 505       return k * LN2_HI - ((R - (k * LN2_LO + c)) - f); |  | 
| 506     } |  | 
| 507   } |  | 
| 508 |  | 
| 509   var s = f / (2 + f); |  | 
| 510   var z = s * s; |  | 
| 511   var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z * |  | 
| 512               (KLOG1P(2) + z * (KLOG1P(3) + z * |  | 
| 513               (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6))))))); |  | 
| 514   if (k === 0) { |  | 
| 515     return f - (hfsq - s * (hfsq + R)); |  | 
| 516   } else { |  | 
| 517     return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f); |  | 
| 518   } |  | 
| 519 } |  | 
| 520 |  | 
| 521 // ES6 draft 09-27-13, section 20.2.2.14. |  | 
| 522 // Math.expm1 |  | 
| 523 // Returns exp(x)-1, the exponential of x minus 1. |  | 
| 524 // |  | 
| 525 // Method |  | 
| 526 //   1. Argument reduction: |  | 
| 527 //      Given x, find r and integer k such that |  | 
| 528 // |  | 
| 529 //               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658 |  | 
| 530 // |  | 
| 531 //      Here a correction term c will be computed to compensate |  | 
| 532 //      the error in r when rounded to a floating-point number. |  | 
| 533 // |  | 
| 534 //   2. Approximating expm1(r) by a special rational function on |  | 
| 535 //      the interval [0,0.34658]: |  | 
| 536 //      Since |  | 
| 537 //          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |  | 
| 538 //      we define R1(r*r) by |  | 
| 539 //          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |  | 
| 540 //      That is, |  | 
| 541 //          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |  | 
| 542 //                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |  | 
| 543 //                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |  | 
| 544 //      We use a special Remes algorithm on [0,0.347] to generate |  | 
| 545 //      a polynomial of degree 5 in r*r to approximate R1. The |  | 
| 546 //      maximum error of this polynomial approximation is bounded |  | 
| 547 //      by 2**-61. In other words, |  | 
| 548 //          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |  | 
| 549 //      where   Q1  =  -1.6666666666666567384E-2, |  | 
| 550 //              Q2  =   3.9682539681370365873E-4, |  | 
| 551 //              Q3  =  -9.9206344733435987357E-6, |  | 
| 552 //              Q4  =   2.5051361420808517002E-7, |  | 
| 553 //              Q5  =  -6.2843505682382617102E-9; |  | 
| 554 //      (where z=r*r, and the values of Q1 to Q5 are listed below) |  | 
| 555 //      with error bounded by |  | 
| 556 //          |                  5           |     -61 |  | 
| 557 //          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 |  | 
| 558 //          |                              | |  | 
| 559 // |  | 
| 560 //      expm1(r) = exp(r)-1 is then computed by the following |  | 
| 561 //      specific way which minimize the accumulation rounding error: |  | 
| 562 //                             2     3 |  | 
| 563 //                            r     r    [ 3 - (R1 + R1*r/2)  ] |  | 
| 564 //            expm1(r) = r + --- + --- * [--------------------] |  | 
| 565 //                            2     2    [ 6 - r*(3 - R1*r/2) ] |  | 
| 566 // |  | 
| 567 //      To compensate the error in the argument reduction, we use |  | 
| 568 //              expm1(r+c) = expm1(r) + c + expm1(r)*c |  | 
| 569 //                         ~ expm1(r) + c + r*c |  | 
| 570 //      Thus c+r*c will be added in as the correction terms for |  | 
| 571 //      expm1(r+c). Now rearrange the term to avoid optimization |  | 
| 572 //      screw up: |  | 
| 573 //                      (      2                                    2 ) |  | 
| 574 //                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  ) |  | 
| 575 //       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |  | 
| 576 //                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  ) |  | 
| 577 //                      (                                             ) |  | 
| 578 // |  | 
| 579 //                 = r - E |  | 
| 580 //   3. Scale back to obtain expm1(x): |  | 
| 581 //      From step 1, we have |  | 
| 582 //         expm1(x) = either 2^k*[expm1(r)+1] - 1 |  | 
| 583 //                  = or     2^k*[expm1(r) + (1-2^-k)] |  | 
| 584 //   4. Implementation notes: |  | 
| 585 //      (A). To save one multiplication, we scale the coefficient Qi |  | 
| 586 //           to Qi*2^i, and replace z by (x^2)/2. |  | 
| 587 //      (B). To achieve maximum accuracy, we compute expm1(x) by |  | 
| 588 //        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |  | 
| 589 //        (ii)  if k=0, return r-E |  | 
| 590 //        (iii) if k=-1, return 0.5*(r-E)-0.5 |  | 
| 591 //        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E) |  | 
| 592 //                     else          return  1.0+2.0*(r-E); |  | 
| 593 //        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |  | 
| 594 //        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else |  | 
| 595 //        (vii) return 2^k(1-((E+2^-k)-r)) |  | 
| 596 // |  | 
| 597 // Special cases: |  | 
| 598 //      expm1(INF) is INF, expm1(NaN) is NaN; |  | 
| 599 //      expm1(-INF) is -1, and |  | 
| 600 //      for finite argument, only expm1(0)=0 is exact. |  | 
| 601 // |  | 
| 602 // Accuracy: |  | 
| 603 //      according to an error analysis, the error is always less than |  | 
| 604 //      1 ulp (unit in the last place). |  | 
| 605 // |  | 
| 606 // Misc. info. |  | 
| 607 //      For IEEE double |  | 
| 608 //          if x > 7.09782712893383973096e+02 then expm1(x) overflow |  | 
| 609 // |  | 
| 610 const KEXPM1_OVERFLOW = kMath[45]; |  | 
| 611 const INVLN2          = kMath[46]; |  | 
| 612 macro KEXPM1(x) |  | 
| 613 (kMath[47+x]) |  | 
| 614 endmacro |  | 
| 615 |  | 
| 616 function MathExpm1(x) { |  | 
| 617   x = x * 1;  // Convert to number. |  | 
| 618   var y; |  | 
| 619   var hi; |  | 
| 620   var lo; |  | 
| 621   var k; |  | 
| 622   var t; |  | 
| 623   var c; |  | 
| 624 |  | 
| 625   var hx = %_DoubleHi(x); |  | 
| 626   var xsb = hx & 0x80000000;     // Sign bit of x |  | 
| 627   var y = (xsb === 0) ? x : -x;  // y = |x| |  | 
| 628   hx &= 0x7fffffff;              // High word of |x| |  | 
| 629 |  | 
| 630   // Filter out huge and non-finite argument |  | 
| 631   if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2 |  | 
| 632     if (hx >= 0x40862e42) {   // if |x| >= 709.78 |  | 
| 633       if (hx >= 0x7ff00000) { |  | 
| 634         // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; |  | 
| 635         return (x === -INFINITY) ? -1 : x; |  | 
| 636       } |  | 
| 637       if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow |  | 
| 638     } |  | 
| 639     if (xsb != 0) return -1;  // x < -56 * ln2, return -1. |  | 
| 640   } |  | 
| 641 |  | 
| 642   // Argument reduction |  | 
| 643   if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2 |  | 
| 644     if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2 |  | 
| 645       if (xsb === 0) { |  | 
| 646         hi = x - LN2_HI; |  | 
| 647         lo = LN2_LO; |  | 
| 648         k = 1; |  | 
| 649       } else { |  | 
| 650         hi = x + LN2_HI; |  | 
| 651         lo = -LN2_LO; |  | 
| 652         k = -1; |  | 
| 653       } |  | 
| 654     } else { |  | 
| 655       k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; |  | 
| 656       t = k; |  | 
| 657       // t * ln2_hi is exact here. |  | 
| 658       hi = x - t * LN2_HI; |  | 
| 659       lo = t * LN2_LO; |  | 
| 660     } |  | 
| 661     x = hi - lo; |  | 
| 662     c = (hi - x) - lo; |  | 
| 663   } else if (hx < 0x3c900000)   { |  | 
| 664     // When |x| < 2^-54, we can return x. |  | 
| 665     return x; |  | 
| 666   } else { |  | 
| 667     // Fall through. |  | 
| 668     k = 0; |  | 
| 669   } |  | 
| 670 |  | 
| 671   // x is now in primary range |  | 
| 672   var hfx = 0.5 * x; |  | 
| 673   var hxs = x * hfx; |  | 
| 674   var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs * |  | 
| 675                      (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4))))); |  | 
| 676   t = 3 - r1 * hfx; |  | 
| 677   var e = hxs * ((r1 - t) / (6 - x * t)); |  | 
| 678   if (k === 0) {  // c is 0 |  | 
| 679     return x - (x*e - hxs); |  | 
| 680   } else { |  | 
| 681     e = (x * (e - c) - c); |  | 
| 682     e -= hxs; |  | 
| 683     if (k === -1) return 0.5 * (x - e) - 0.5; |  | 
| 684     if (k === 1) { |  | 
| 685       if (x < -0.25) return -2 * (e - (x + 0.5)); |  | 
| 686       return 1 + 2 * (x - e); |  | 
| 687     } |  | 
| 688 |  | 
| 689     if (k <= -2 || k > 56) { |  | 
| 690       // suffice to return exp(x) + 1 |  | 
| 691       y = 1 - (e - x); |  | 
| 692       // Add k to y's exponent |  | 
| 693       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |  | 
| 694       return y - 1; |  | 
| 695     } |  | 
| 696     if (k < 20) { |  | 
| 697       // t = 1 - 2^k |  | 
| 698       t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); |  | 
| 699       y = t - (e - x); |  | 
| 700       // Add k to y's exponent |  | 
| 701       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |  | 
| 702     } else { |  | 
| 703       // t = 2^-k |  | 
| 704       t = %_ConstructDouble((0x3ff - k) << 20, 0); |  | 
| 705       y = x - (e + t); |  | 
| 706       y += 1; |  | 
| 707       // Add k to y's exponent |  | 
| 708       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |  | 
| 709     } |  | 
| 710   } |  | 
| 711   return y; |  | 
| 712 } |  | 
| 713 |  | 
| 714 |  | 
| 715 // ES6 draft 09-27-13, section 20.2.2.30. |  | 
| 716 // Math.sinh |  | 
| 717 // Method : |  | 
| 718 // mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |  | 
| 719 //      1. Replace x by |x| (sinh(-x) = -sinh(x)). |  | 
| 720 //      2. |  | 
| 721 //                                                  E + E/(E+1) |  | 
| 722 //          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x) |  | 
| 723 //                                                      2 |  | 
| 724 // |  | 
| 725 //          22       <= x <= lnovft :  sinh(x) := exp(x)/2 |  | 
| 726 //          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2) |  | 
| 727 //          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow) |  | 
| 728 // |  | 
| 729 // Special cases: |  | 
| 730 //      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. |  | 
| 731 //      only sinh(0)=0 is exact for finite x. |  | 
| 732 // |  | 
| 733 const KSINH_OVERFLOW = kMath[52]; |  | 
| 734 const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half |  | 
| 735 const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half |  | 
| 736 |  | 
| 737 function MathSinh(x) { |  | 
| 738   x = x * 1;  // Convert to number. |  | 
| 739   var h = (x < 0) ? -0.5 : 0.5; |  | 
| 740   // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1)) |  | 
| 741   var ax = MathAbs(x); |  | 
| 742   if (ax < 22) { |  | 
| 743     // For |x| < 2^-28, sinh(x) = x |  | 
| 744     if (ax < TWO_M28) return x; |  | 
| 745     var t = MathExpm1(ax); |  | 
| 746     if (ax < 1) return h * (2 * t - t * t / (t + 1)); |  | 
| 747     return h * (t + t / (t + 1)); |  | 
| 748   } |  | 
| 749   // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|) |  | 
| 750   if (ax < LOG_MAXD) return h * MathExp(ax); |  | 
| 751   // |x| in [log(maxdouble), overflowthreshold] |  | 
| 752   // overflowthreshold = 710.4758600739426 |  | 
| 753   if (ax <= KSINH_OVERFLOW) { |  | 
| 754     var w = MathExp(0.5 * ax); |  | 
| 755     var t = h * w; |  | 
| 756     return t * w; |  | 
| 757   } |  | 
| 758   // |x| > overflowthreshold or is NaN. |  | 
| 759   // Return Infinity of the appropriate sign or NaN. |  | 
| 760   return x * INFINITY; |  | 
| 761 } |  | 
| 762 |  | 
| 763 |  | 
| 764 // ES6 draft 09-27-13, section 20.2.2.12. |  | 
| 765 // Math.cosh |  | 
| 766 // Method : |  | 
| 767 // mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 |  | 
| 768 //      1. Replace x by |x| (cosh(x) = cosh(-x)). |  | 
| 769 //      2. |  | 
| 770 //                                                      [ exp(x) - 1 ]^2 |  | 
| 771 //          0        <= x <= ln2/2  :  cosh(x) := 1 + ------------------- |  | 
| 772 //                                                         2*exp(x) |  | 
| 773 // |  | 
| 774 //                                                 exp(x) + 1/exp(x) |  | 
| 775 //          ln2/2    <= x <= 22     :  cosh(x) := ------------------- |  | 
| 776 //                                                        2 |  | 
| 777 //          22       <= x <= lnovft :  cosh(x) := exp(x)/2 |  | 
| 778 //          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2) |  | 
| 779 //          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow) |  | 
| 780 // |  | 
| 781 // Special cases: |  | 
| 782 //      cosh(x) is |x| if x is +INF, -INF, or NaN. |  | 
| 783 //      only cosh(0)=1 is exact for finite x. |  | 
| 784 // |  | 
| 785 const KCOSH_OVERFLOW = kMath[52]; |  | 
| 786 |  | 
| 787 function MathCosh(x) { |  | 
| 788   x = x * 1;  // Convert to number. |  | 
| 789   var ix = %_DoubleHi(x) & 0x7fffffff; |  | 
| 790   // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|)) |  | 
| 791   if (ix < 0x3fd62e43) { |  | 
| 792     var t = MathExpm1(MathAbs(x)); |  | 
| 793     var w = 1 + t; |  | 
| 794     // For |x| < 2^-55, cosh(x) = 1 |  | 
| 795     if (ix < 0x3c800000) return w; |  | 
| 796     return 1 + (t * t) / (w + w); |  | 
| 797   } |  | 
| 798   // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2 |  | 
| 799   if (ix < 0x40360000) { |  | 
| 800     var t = MathExp(MathAbs(x)); |  | 
| 801     return 0.5 * t + 0.5 / t; |  | 
| 802   } |  | 
| 803   // |x| in [22, log(maxdouble)], return half*exp(|x|) |  | 
| 804   if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x)); |  | 
| 805   // |x| in [log(maxdouble), overflowthreshold] |  | 
| 806   if (MathAbs(x) <= KCOSH_OVERFLOW) { |  | 
| 807     var w = MathExp(0.5 * MathAbs(x)); |  | 
| 808     var t = 0.5 * w; |  | 
| 809     return t * w; |  | 
| 810   } |  | 
| 811   if (NUMBER_IS_NAN(x)) return x; |  | 
| 812   // |x| > overflowthreshold. |  | 
| 813   return INFINITY; |  | 
| 814 } |  | 
| OLD | NEW | 
|---|