OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/v8.h" |
| 6 |
| 7 #include "src/arguments.h" |
| 8 #include "src/runtime/runtime.h" |
| 9 #include "src/runtime/runtime-utils.h" |
| 10 |
| 11 namespace v8 { |
| 12 namespace internal { |
| 13 |
| 14 RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) { |
| 15 HandleScope scope(isolate); |
| 16 DCHECK(args.length() == 1); |
| 17 CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0); |
| 18 Object* length = prototype->length(); |
| 19 RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0); |
| 20 RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements()); |
| 21 // This is necessary to enable fast checks for absence of elements |
| 22 // on Array.prototype and below. |
| 23 prototype->set_elements(isolate->heap()->empty_fixed_array()); |
| 24 return Smi::FromInt(0); |
| 25 } |
| 26 |
| 27 |
| 28 static void InstallBuiltin(Isolate* isolate, Handle<JSObject> holder, |
| 29 const char* name, Builtins::Name builtin_name) { |
| 30 Handle<String> key = isolate->factory()->InternalizeUtf8String(name); |
| 31 Handle<Code> code(isolate->builtins()->builtin(builtin_name)); |
| 32 Handle<JSFunction> optimized = |
| 33 isolate->factory()->NewFunctionWithoutPrototype(key, code); |
| 34 optimized->shared()->DontAdaptArguments(); |
| 35 JSObject::AddProperty(holder, key, optimized, NONE); |
| 36 } |
| 37 |
| 38 |
| 39 RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) { |
| 40 HandleScope scope(isolate); |
| 41 DCHECK(args.length() == 0); |
| 42 Handle<JSObject> holder = |
| 43 isolate->factory()->NewJSObject(isolate->object_function()); |
| 44 |
| 45 InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop); |
| 46 InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush); |
| 47 InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift); |
| 48 InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift); |
| 49 InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice); |
| 50 InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice); |
| 51 InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat); |
| 52 |
| 53 return *holder; |
| 54 } |
| 55 |
| 56 |
| 57 RUNTIME_FUNCTION(Runtime_TransitionElementsKind) { |
| 58 HandleScope scope(isolate); |
| 59 RUNTIME_ASSERT(args.length() == 2); |
| 60 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); |
| 61 CONVERT_ARG_HANDLE_CHECKED(Map, map, 1); |
| 62 JSObject::TransitionElementsKind(array, map->elements_kind()); |
| 63 return *array; |
| 64 } |
| 65 |
| 66 |
| 67 // Push an object unto an array of objects if it is not already in the |
| 68 // array. Returns true if the element was pushed on the stack and |
| 69 // false otherwise. |
| 70 RUNTIME_FUNCTION(Runtime_PushIfAbsent) { |
| 71 HandleScope scope(isolate); |
| 72 DCHECK(args.length() == 2); |
| 73 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); |
| 74 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1); |
| 75 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements()); |
| 76 int length = Smi::cast(array->length())->value(); |
| 77 FixedArray* elements = FixedArray::cast(array->elements()); |
| 78 for (int i = 0; i < length; i++) { |
| 79 if (elements->get(i) == *element) return isolate->heap()->false_value(); |
| 80 } |
| 81 |
| 82 // Strict not needed. Used for cycle detection in Array join implementation. |
| 83 RETURN_FAILURE_ON_EXCEPTION( |
| 84 isolate, JSObject::SetFastElement(array, length, element, SLOPPY, true)); |
| 85 return isolate->heap()->true_value(); |
| 86 } |
| 87 |
| 88 |
| 89 /** |
| 90 * A simple visitor visits every element of Array's. |
| 91 * The backend storage can be a fixed array for fast elements case, |
| 92 * or a dictionary for sparse array. Since Dictionary is a subtype |
| 93 * of FixedArray, the class can be used by both fast and slow cases. |
| 94 * The second parameter of the constructor, fast_elements, specifies |
| 95 * whether the storage is a FixedArray or Dictionary. |
| 96 * |
| 97 * An index limit is used to deal with the situation that a result array |
| 98 * length overflows 32-bit non-negative integer. |
| 99 */ |
| 100 class ArrayConcatVisitor { |
| 101 public: |
| 102 ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage, |
| 103 bool fast_elements) |
| 104 : isolate_(isolate), |
| 105 storage_(Handle<FixedArray>::cast( |
| 106 isolate->global_handles()->Create(*storage))), |
| 107 index_offset_(0u), |
| 108 fast_elements_(fast_elements), |
| 109 exceeds_array_limit_(false) {} |
| 110 |
| 111 ~ArrayConcatVisitor() { clear_storage(); } |
| 112 |
| 113 void visit(uint32_t i, Handle<Object> elm) { |
| 114 if (i > JSObject::kMaxElementCount - index_offset_) { |
| 115 exceeds_array_limit_ = true; |
| 116 return; |
| 117 } |
| 118 uint32_t index = index_offset_ + i; |
| 119 |
| 120 if (fast_elements_) { |
| 121 if (index < static_cast<uint32_t>(storage_->length())) { |
| 122 storage_->set(index, *elm); |
| 123 return; |
| 124 } |
| 125 // Our initial estimate of length was foiled, possibly by |
| 126 // getters on the arrays increasing the length of later arrays |
| 127 // during iteration. |
| 128 // This shouldn't happen in anything but pathological cases. |
| 129 SetDictionaryMode(); |
| 130 // Fall-through to dictionary mode. |
| 131 } |
| 132 DCHECK(!fast_elements_); |
| 133 Handle<SeededNumberDictionary> dict( |
| 134 SeededNumberDictionary::cast(*storage_)); |
| 135 Handle<SeededNumberDictionary> result = |
| 136 SeededNumberDictionary::AtNumberPut(dict, index, elm); |
| 137 if (!result.is_identical_to(dict)) { |
| 138 // Dictionary needed to grow. |
| 139 clear_storage(); |
| 140 set_storage(*result); |
| 141 } |
| 142 } |
| 143 |
| 144 void increase_index_offset(uint32_t delta) { |
| 145 if (JSObject::kMaxElementCount - index_offset_ < delta) { |
| 146 index_offset_ = JSObject::kMaxElementCount; |
| 147 } else { |
| 148 index_offset_ += delta; |
| 149 } |
| 150 // If the initial length estimate was off (see special case in visit()), |
| 151 // but the array blowing the limit didn't contain elements beyond the |
| 152 // provided-for index range, go to dictionary mode now. |
| 153 if (fast_elements_ && |
| 154 index_offset_ > |
| 155 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { |
| 156 SetDictionaryMode(); |
| 157 } |
| 158 } |
| 159 |
| 160 bool exceeds_array_limit() { return exceeds_array_limit_; } |
| 161 |
| 162 Handle<JSArray> ToArray() { |
| 163 Handle<JSArray> array = isolate_->factory()->NewJSArray(0); |
| 164 Handle<Object> length = |
| 165 isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); |
| 166 Handle<Map> map = JSObject::GetElementsTransitionMap( |
| 167 array, fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); |
| 168 array->set_map(*map); |
| 169 array->set_length(*length); |
| 170 array->set_elements(*storage_); |
| 171 return array; |
| 172 } |
| 173 |
| 174 private: |
| 175 // Convert storage to dictionary mode. |
| 176 void SetDictionaryMode() { |
| 177 DCHECK(fast_elements_); |
| 178 Handle<FixedArray> current_storage(*storage_); |
| 179 Handle<SeededNumberDictionary> slow_storage( |
| 180 SeededNumberDictionary::New(isolate_, current_storage->length())); |
| 181 uint32_t current_length = static_cast<uint32_t>(current_storage->length()); |
| 182 for (uint32_t i = 0; i < current_length; i++) { |
| 183 HandleScope loop_scope(isolate_); |
| 184 Handle<Object> element(current_storage->get(i), isolate_); |
| 185 if (!element->IsTheHole()) { |
| 186 Handle<SeededNumberDictionary> new_storage = |
| 187 SeededNumberDictionary::AtNumberPut(slow_storage, i, element); |
| 188 if (!new_storage.is_identical_to(slow_storage)) { |
| 189 slow_storage = loop_scope.CloseAndEscape(new_storage); |
| 190 } |
| 191 } |
| 192 } |
| 193 clear_storage(); |
| 194 set_storage(*slow_storage); |
| 195 fast_elements_ = false; |
| 196 } |
| 197 |
| 198 inline void clear_storage() { |
| 199 GlobalHandles::Destroy(Handle<Object>::cast(storage_).location()); |
| 200 } |
| 201 |
| 202 inline void set_storage(FixedArray* storage) { |
| 203 storage_ = |
| 204 Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage)); |
| 205 } |
| 206 |
| 207 Isolate* isolate_; |
| 208 Handle<FixedArray> storage_; // Always a global handle. |
| 209 // Index after last seen index. Always less than or equal to |
| 210 // JSObject::kMaxElementCount. |
| 211 uint32_t index_offset_; |
| 212 bool fast_elements_ : 1; |
| 213 bool exceeds_array_limit_ : 1; |
| 214 }; |
| 215 |
| 216 |
| 217 static uint32_t EstimateElementCount(Handle<JSArray> array) { |
| 218 uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
| 219 int element_count = 0; |
| 220 switch (array->GetElementsKind()) { |
| 221 case FAST_SMI_ELEMENTS: |
| 222 case FAST_HOLEY_SMI_ELEMENTS: |
| 223 case FAST_ELEMENTS: |
| 224 case FAST_HOLEY_ELEMENTS: { |
| 225 // Fast elements can't have lengths that are not representable by |
| 226 // a 32-bit signed integer. |
| 227 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); |
| 228 int fast_length = static_cast<int>(length); |
| 229 Handle<FixedArray> elements(FixedArray::cast(array->elements())); |
| 230 for (int i = 0; i < fast_length; i++) { |
| 231 if (!elements->get(i)->IsTheHole()) element_count++; |
| 232 } |
| 233 break; |
| 234 } |
| 235 case FAST_DOUBLE_ELEMENTS: |
| 236 case FAST_HOLEY_DOUBLE_ELEMENTS: { |
| 237 // Fast elements can't have lengths that are not representable by |
| 238 // a 32-bit signed integer. |
| 239 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); |
| 240 int fast_length = static_cast<int>(length); |
| 241 if (array->elements()->IsFixedArray()) { |
| 242 DCHECK(FixedArray::cast(array->elements())->length() == 0); |
| 243 break; |
| 244 } |
| 245 Handle<FixedDoubleArray> elements( |
| 246 FixedDoubleArray::cast(array->elements())); |
| 247 for (int i = 0; i < fast_length; i++) { |
| 248 if (!elements->is_the_hole(i)) element_count++; |
| 249 } |
| 250 break; |
| 251 } |
| 252 case DICTIONARY_ELEMENTS: { |
| 253 Handle<SeededNumberDictionary> dictionary( |
| 254 SeededNumberDictionary::cast(array->elements())); |
| 255 int capacity = dictionary->Capacity(); |
| 256 for (int i = 0; i < capacity; i++) { |
| 257 Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate()); |
| 258 if (dictionary->IsKey(*key)) { |
| 259 element_count++; |
| 260 } |
| 261 } |
| 262 break; |
| 263 } |
| 264 case SLOPPY_ARGUMENTS_ELEMENTS: |
| 265 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ |
| 266 case EXTERNAL_##TYPE##_ELEMENTS: \ |
| 267 case TYPE##_ELEMENTS: |
| 268 |
| 269 TYPED_ARRAYS(TYPED_ARRAY_CASE) |
| 270 #undef TYPED_ARRAY_CASE |
| 271 // External arrays are always dense. |
| 272 return length; |
| 273 } |
| 274 // As an estimate, we assume that the prototype doesn't contain any |
| 275 // inherited elements. |
| 276 return element_count; |
| 277 } |
| 278 |
| 279 |
| 280 template <class ExternalArrayClass, class ElementType> |
| 281 static void IterateExternalArrayElements(Isolate* isolate, |
| 282 Handle<JSObject> receiver, |
| 283 bool elements_are_ints, |
| 284 bool elements_are_guaranteed_smis, |
| 285 ArrayConcatVisitor* visitor) { |
| 286 Handle<ExternalArrayClass> array( |
| 287 ExternalArrayClass::cast(receiver->elements())); |
| 288 uint32_t len = static_cast<uint32_t>(array->length()); |
| 289 |
| 290 DCHECK(visitor != NULL); |
| 291 if (elements_are_ints) { |
| 292 if (elements_are_guaranteed_smis) { |
| 293 for (uint32_t j = 0; j < len; j++) { |
| 294 HandleScope loop_scope(isolate); |
| 295 Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))), |
| 296 isolate); |
| 297 visitor->visit(j, e); |
| 298 } |
| 299 } else { |
| 300 for (uint32_t j = 0; j < len; j++) { |
| 301 HandleScope loop_scope(isolate); |
| 302 int64_t val = static_cast<int64_t>(array->get_scalar(j)); |
| 303 if (Smi::IsValid(static_cast<intptr_t>(val))) { |
| 304 Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate); |
| 305 visitor->visit(j, e); |
| 306 } else { |
| 307 Handle<Object> e = |
| 308 isolate->factory()->NewNumber(static_cast<ElementType>(val)); |
| 309 visitor->visit(j, e); |
| 310 } |
| 311 } |
| 312 } |
| 313 } else { |
| 314 for (uint32_t j = 0; j < len; j++) { |
| 315 HandleScope loop_scope(isolate); |
| 316 Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j)); |
| 317 visitor->visit(j, e); |
| 318 } |
| 319 } |
| 320 } |
| 321 |
| 322 |
| 323 // Used for sorting indices in a List<uint32_t>. |
| 324 static int compareUInt32(const uint32_t* ap, const uint32_t* bp) { |
| 325 uint32_t a = *ap; |
| 326 uint32_t b = *bp; |
| 327 return (a == b) ? 0 : (a < b) ? -1 : 1; |
| 328 } |
| 329 |
| 330 |
| 331 static void CollectElementIndices(Handle<JSObject> object, uint32_t range, |
| 332 List<uint32_t>* indices) { |
| 333 Isolate* isolate = object->GetIsolate(); |
| 334 ElementsKind kind = object->GetElementsKind(); |
| 335 switch (kind) { |
| 336 case FAST_SMI_ELEMENTS: |
| 337 case FAST_ELEMENTS: |
| 338 case FAST_HOLEY_SMI_ELEMENTS: |
| 339 case FAST_HOLEY_ELEMENTS: { |
| 340 Handle<FixedArray> elements(FixedArray::cast(object->elements())); |
| 341 uint32_t length = static_cast<uint32_t>(elements->length()); |
| 342 if (range < length) length = range; |
| 343 for (uint32_t i = 0; i < length; i++) { |
| 344 if (!elements->get(i)->IsTheHole()) { |
| 345 indices->Add(i); |
| 346 } |
| 347 } |
| 348 break; |
| 349 } |
| 350 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 351 case FAST_DOUBLE_ELEMENTS: { |
| 352 if (object->elements()->IsFixedArray()) { |
| 353 DCHECK(object->elements()->length() == 0); |
| 354 break; |
| 355 } |
| 356 Handle<FixedDoubleArray> elements( |
| 357 FixedDoubleArray::cast(object->elements())); |
| 358 uint32_t length = static_cast<uint32_t>(elements->length()); |
| 359 if (range < length) length = range; |
| 360 for (uint32_t i = 0; i < length; i++) { |
| 361 if (!elements->is_the_hole(i)) { |
| 362 indices->Add(i); |
| 363 } |
| 364 } |
| 365 break; |
| 366 } |
| 367 case DICTIONARY_ELEMENTS: { |
| 368 Handle<SeededNumberDictionary> dict( |
| 369 SeededNumberDictionary::cast(object->elements())); |
| 370 uint32_t capacity = dict->Capacity(); |
| 371 for (uint32_t j = 0; j < capacity; j++) { |
| 372 HandleScope loop_scope(isolate); |
| 373 Handle<Object> k(dict->KeyAt(j), isolate); |
| 374 if (dict->IsKey(*k)) { |
| 375 DCHECK(k->IsNumber()); |
| 376 uint32_t index = static_cast<uint32_t>(k->Number()); |
| 377 if (index < range) { |
| 378 indices->Add(index); |
| 379 } |
| 380 } |
| 381 } |
| 382 break; |
| 383 } |
| 384 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ |
| 385 case TYPE##_ELEMENTS: \ |
| 386 case EXTERNAL_##TYPE##_ELEMENTS: |
| 387 |
| 388 TYPED_ARRAYS(TYPED_ARRAY_CASE) |
| 389 #undef TYPED_ARRAY_CASE |
| 390 { |
| 391 uint32_t length = static_cast<uint32_t>( |
| 392 FixedArrayBase::cast(object->elements())->length()); |
| 393 if (range <= length) { |
| 394 length = range; |
| 395 // We will add all indices, so we might as well clear it first |
| 396 // and avoid duplicates. |
| 397 indices->Clear(); |
| 398 } |
| 399 for (uint32_t i = 0; i < length; i++) { |
| 400 indices->Add(i); |
| 401 } |
| 402 if (length == range) return; // All indices accounted for already. |
| 403 break; |
| 404 } |
| 405 case SLOPPY_ARGUMENTS_ELEMENTS: { |
| 406 MaybeHandle<Object> length_obj = |
| 407 Object::GetProperty(object, isolate->factory()->length_string()); |
| 408 double length_num = length_obj.ToHandleChecked()->Number(); |
| 409 uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num)); |
| 410 ElementsAccessor* accessor = object->GetElementsAccessor(); |
| 411 for (uint32_t i = 0; i < length; i++) { |
| 412 if (accessor->HasElement(object, object, i)) { |
| 413 indices->Add(i); |
| 414 } |
| 415 } |
| 416 break; |
| 417 } |
| 418 } |
| 419 |
| 420 PrototypeIterator iter(isolate, object); |
| 421 if (!iter.IsAtEnd()) { |
| 422 // The prototype will usually have no inherited element indices, |
| 423 // but we have to check. |
| 424 CollectElementIndices( |
| 425 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range, |
| 426 indices); |
| 427 } |
| 428 } |
| 429 |
| 430 |
| 431 /** |
| 432 * A helper function that visits elements of a JSArray in numerical |
| 433 * order. |
| 434 * |
| 435 * The visitor argument called for each existing element in the array |
| 436 * with the element index and the element's value. |
| 437 * Afterwards it increments the base-index of the visitor by the array |
| 438 * length. |
| 439 * Returns false if any access threw an exception, otherwise true. |
| 440 */ |
| 441 static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver, |
| 442 ArrayConcatVisitor* visitor) { |
| 443 uint32_t length = static_cast<uint32_t>(receiver->length()->Number()); |
| 444 switch (receiver->GetElementsKind()) { |
| 445 case FAST_SMI_ELEMENTS: |
| 446 case FAST_ELEMENTS: |
| 447 case FAST_HOLEY_SMI_ELEMENTS: |
| 448 case FAST_HOLEY_ELEMENTS: { |
| 449 // Run through the elements FixedArray and use HasElement and GetElement |
| 450 // to check the prototype for missing elements. |
| 451 Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); |
| 452 int fast_length = static_cast<int>(length); |
| 453 DCHECK(fast_length <= elements->length()); |
| 454 for (int j = 0; j < fast_length; j++) { |
| 455 HandleScope loop_scope(isolate); |
| 456 Handle<Object> element_value(elements->get(j), isolate); |
| 457 if (!element_value->IsTheHole()) { |
| 458 visitor->visit(j, element_value); |
| 459 } else { |
| 460 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j); |
| 461 if (!maybe.has_value) return false; |
| 462 if (maybe.value) { |
| 463 // Call GetElement on receiver, not its prototype, or getters won't |
| 464 // have the correct receiver. |
| 465 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 466 isolate, element_value, |
| 467 Object::GetElement(isolate, receiver, j), false); |
| 468 visitor->visit(j, element_value); |
| 469 } |
| 470 } |
| 471 } |
| 472 break; |
| 473 } |
| 474 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 475 case FAST_DOUBLE_ELEMENTS: { |
| 476 // Empty array is FixedArray but not FixedDoubleArray. |
| 477 if (length == 0) break; |
| 478 // Run through the elements FixedArray and use HasElement and GetElement |
| 479 // to check the prototype for missing elements. |
| 480 if (receiver->elements()->IsFixedArray()) { |
| 481 DCHECK(receiver->elements()->length() == 0); |
| 482 break; |
| 483 } |
| 484 Handle<FixedDoubleArray> elements( |
| 485 FixedDoubleArray::cast(receiver->elements())); |
| 486 int fast_length = static_cast<int>(length); |
| 487 DCHECK(fast_length <= elements->length()); |
| 488 for (int j = 0; j < fast_length; j++) { |
| 489 HandleScope loop_scope(isolate); |
| 490 if (!elements->is_the_hole(j)) { |
| 491 double double_value = elements->get_scalar(j); |
| 492 Handle<Object> element_value = |
| 493 isolate->factory()->NewNumber(double_value); |
| 494 visitor->visit(j, element_value); |
| 495 } else { |
| 496 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j); |
| 497 if (!maybe.has_value) return false; |
| 498 if (maybe.value) { |
| 499 // Call GetElement on receiver, not its prototype, or getters won't |
| 500 // have the correct receiver. |
| 501 Handle<Object> element_value; |
| 502 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 503 isolate, element_value, |
| 504 Object::GetElement(isolate, receiver, j), false); |
| 505 visitor->visit(j, element_value); |
| 506 } |
| 507 } |
| 508 } |
| 509 break; |
| 510 } |
| 511 case DICTIONARY_ELEMENTS: { |
| 512 Handle<SeededNumberDictionary> dict(receiver->element_dictionary()); |
| 513 List<uint32_t> indices(dict->Capacity() / 2); |
| 514 // Collect all indices in the object and the prototypes less |
| 515 // than length. This might introduce duplicates in the indices list. |
| 516 CollectElementIndices(receiver, length, &indices); |
| 517 indices.Sort(&compareUInt32); |
| 518 int j = 0; |
| 519 int n = indices.length(); |
| 520 while (j < n) { |
| 521 HandleScope loop_scope(isolate); |
| 522 uint32_t index = indices[j]; |
| 523 Handle<Object> element; |
| 524 ASSIGN_RETURN_ON_EXCEPTION_VALUE( |
| 525 isolate, element, Object::GetElement(isolate, receiver, index), |
| 526 false); |
| 527 visitor->visit(index, element); |
| 528 // Skip to next different index (i.e., omit duplicates). |
| 529 do { |
| 530 j++; |
| 531 } while (j < n && indices[j] == index); |
| 532 } |
| 533 break; |
| 534 } |
| 535 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: { |
| 536 Handle<ExternalUint8ClampedArray> pixels( |
| 537 ExternalUint8ClampedArray::cast(receiver->elements())); |
| 538 for (uint32_t j = 0; j < length; j++) { |
| 539 Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate); |
| 540 visitor->visit(j, e); |
| 541 } |
| 542 break; |
| 543 } |
| 544 case EXTERNAL_INT8_ELEMENTS: { |
| 545 IterateExternalArrayElements<ExternalInt8Array, int8_t>( |
| 546 isolate, receiver, true, true, visitor); |
| 547 break; |
| 548 } |
| 549 case EXTERNAL_UINT8_ELEMENTS: { |
| 550 IterateExternalArrayElements<ExternalUint8Array, uint8_t>( |
| 551 isolate, receiver, true, true, visitor); |
| 552 break; |
| 553 } |
| 554 case EXTERNAL_INT16_ELEMENTS: { |
| 555 IterateExternalArrayElements<ExternalInt16Array, int16_t>( |
| 556 isolate, receiver, true, true, visitor); |
| 557 break; |
| 558 } |
| 559 case EXTERNAL_UINT16_ELEMENTS: { |
| 560 IterateExternalArrayElements<ExternalUint16Array, uint16_t>( |
| 561 isolate, receiver, true, true, visitor); |
| 562 break; |
| 563 } |
| 564 case EXTERNAL_INT32_ELEMENTS: { |
| 565 IterateExternalArrayElements<ExternalInt32Array, int32_t>( |
| 566 isolate, receiver, true, false, visitor); |
| 567 break; |
| 568 } |
| 569 case EXTERNAL_UINT32_ELEMENTS: { |
| 570 IterateExternalArrayElements<ExternalUint32Array, uint32_t>( |
| 571 isolate, receiver, true, false, visitor); |
| 572 break; |
| 573 } |
| 574 case EXTERNAL_FLOAT32_ELEMENTS: { |
| 575 IterateExternalArrayElements<ExternalFloat32Array, float>( |
| 576 isolate, receiver, false, false, visitor); |
| 577 break; |
| 578 } |
| 579 case EXTERNAL_FLOAT64_ELEMENTS: { |
| 580 IterateExternalArrayElements<ExternalFloat64Array, double>( |
| 581 isolate, receiver, false, false, visitor); |
| 582 break; |
| 583 } |
| 584 default: |
| 585 UNREACHABLE(); |
| 586 break; |
| 587 } |
| 588 visitor->increase_index_offset(length); |
| 589 return true; |
| 590 } |
| 591 |
| 592 |
| 593 /** |
| 594 * Array::concat implementation. |
| 595 * See ECMAScript 262, 15.4.4.4. |
| 596 * TODO(581): Fix non-compliance for very large concatenations and update to |
| 597 * following the ECMAScript 5 specification. |
| 598 */ |
| 599 RUNTIME_FUNCTION(Runtime_ArrayConcat) { |
| 600 HandleScope handle_scope(isolate); |
| 601 DCHECK(args.length() == 1); |
| 602 |
| 603 CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0); |
| 604 int argument_count = static_cast<int>(arguments->length()->Number()); |
| 605 RUNTIME_ASSERT(arguments->HasFastObjectElements()); |
| 606 Handle<FixedArray> elements(FixedArray::cast(arguments->elements())); |
| 607 |
| 608 // Pass 1: estimate the length and number of elements of the result. |
| 609 // The actual length can be larger if any of the arguments have getters |
| 610 // that mutate other arguments (but will otherwise be precise). |
| 611 // The number of elements is precise if there are no inherited elements. |
| 612 |
| 613 ElementsKind kind = FAST_SMI_ELEMENTS; |
| 614 |
| 615 uint32_t estimate_result_length = 0; |
| 616 uint32_t estimate_nof_elements = 0; |
| 617 for (int i = 0; i < argument_count; i++) { |
| 618 HandleScope loop_scope(isolate); |
| 619 Handle<Object> obj(elements->get(i), isolate); |
| 620 uint32_t length_estimate; |
| 621 uint32_t element_estimate; |
| 622 if (obj->IsJSArray()) { |
| 623 Handle<JSArray> array(Handle<JSArray>::cast(obj)); |
| 624 length_estimate = static_cast<uint32_t>(array->length()->Number()); |
| 625 if (length_estimate != 0) { |
| 626 ElementsKind array_kind = |
| 627 GetPackedElementsKind(array->map()->elements_kind()); |
| 628 if (IsMoreGeneralElementsKindTransition(kind, array_kind)) { |
| 629 kind = array_kind; |
| 630 } |
| 631 } |
| 632 element_estimate = EstimateElementCount(array); |
| 633 } else { |
| 634 if (obj->IsHeapObject()) { |
| 635 if (obj->IsNumber()) { |
| 636 if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) { |
| 637 kind = FAST_DOUBLE_ELEMENTS; |
| 638 } |
| 639 } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) { |
| 640 kind = FAST_ELEMENTS; |
| 641 } |
| 642 } |
| 643 length_estimate = 1; |
| 644 element_estimate = 1; |
| 645 } |
| 646 // Avoid overflows by capping at kMaxElementCount. |
| 647 if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { |
| 648 estimate_result_length = JSObject::kMaxElementCount; |
| 649 } else { |
| 650 estimate_result_length += length_estimate; |
| 651 } |
| 652 if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { |
| 653 estimate_nof_elements = JSObject::kMaxElementCount; |
| 654 } else { |
| 655 estimate_nof_elements += element_estimate; |
| 656 } |
| 657 } |
| 658 |
| 659 // If estimated number of elements is more than half of length, a |
| 660 // fixed array (fast case) is more time and space-efficient than a |
| 661 // dictionary. |
| 662 bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length; |
| 663 |
| 664 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { |
| 665 Handle<FixedArrayBase> storage = |
| 666 isolate->factory()->NewFixedDoubleArray(estimate_result_length); |
| 667 int j = 0; |
| 668 bool failure = false; |
| 669 if (estimate_result_length > 0) { |
| 670 Handle<FixedDoubleArray> double_storage = |
| 671 Handle<FixedDoubleArray>::cast(storage); |
| 672 for (int i = 0; i < argument_count; i++) { |
| 673 Handle<Object> obj(elements->get(i), isolate); |
| 674 if (obj->IsSmi()) { |
| 675 double_storage->set(j, Smi::cast(*obj)->value()); |
| 676 j++; |
| 677 } else if (obj->IsNumber()) { |
| 678 double_storage->set(j, obj->Number()); |
| 679 j++; |
| 680 } else { |
| 681 JSArray* array = JSArray::cast(*obj); |
| 682 uint32_t length = static_cast<uint32_t>(array->length()->Number()); |
| 683 switch (array->map()->elements_kind()) { |
| 684 case FAST_HOLEY_DOUBLE_ELEMENTS: |
| 685 case FAST_DOUBLE_ELEMENTS: { |
| 686 // Empty array is FixedArray but not FixedDoubleArray. |
| 687 if (length == 0) break; |
| 688 FixedDoubleArray* elements = |
| 689 FixedDoubleArray::cast(array->elements()); |
| 690 for (uint32_t i = 0; i < length; i++) { |
| 691 if (elements->is_the_hole(i)) { |
| 692 // TODO(jkummerow/verwaest): We could be a bit more clever |
| 693 // here: Check if there are no elements/getters on the |
| 694 // prototype chain, and if so, allow creation of a holey |
| 695 // result array. |
| 696 // Same thing below (holey smi case). |
| 697 failure = true; |
| 698 break; |
| 699 } |
| 700 double double_value = elements->get_scalar(i); |
| 701 double_storage->set(j, double_value); |
| 702 j++; |
| 703 } |
| 704 break; |
| 705 } |
| 706 case FAST_HOLEY_SMI_ELEMENTS: |
| 707 case FAST_SMI_ELEMENTS: { |
| 708 FixedArray* elements(FixedArray::cast(array->elements())); |
| 709 for (uint32_t i = 0; i < length; i++) { |
| 710 Object* element = elements->get(i); |
| 711 if (element->IsTheHole()) { |
| 712 failure = true; |
| 713 break; |
| 714 } |
| 715 int32_t int_value = Smi::cast(element)->value(); |
| 716 double_storage->set(j, int_value); |
| 717 j++; |
| 718 } |
| 719 break; |
| 720 } |
| 721 case FAST_HOLEY_ELEMENTS: |
| 722 case FAST_ELEMENTS: |
| 723 DCHECK_EQ(0, length); |
| 724 break; |
| 725 default: |
| 726 UNREACHABLE(); |
| 727 } |
| 728 } |
| 729 if (failure) break; |
| 730 } |
| 731 } |
| 732 if (!failure) { |
| 733 Handle<JSArray> array = isolate->factory()->NewJSArray(0); |
| 734 Smi* length = Smi::FromInt(j); |
| 735 Handle<Map> map; |
| 736 map = JSObject::GetElementsTransitionMap(array, kind); |
| 737 array->set_map(*map); |
| 738 array->set_length(length); |
| 739 array->set_elements(*storage); |
| 740 return *array; |
| 741 } |
| 742 // In case of failure, fall through. |
| 743 } |
| 744 |
| 745 Handle<FixedArray> storage; |
| 746 if (fast_case) { |
| 747 // The backing storage array must have non-existing elements to preserve |
| 748 // holes across concat operations. |
| 749 storage = |
| 750 isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); |
| 751 } else { |
| 752 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate |
| 753 uint32_t at_least_space_for = |
| 754 estimate_nof_elements + (estimate_nof_elements >> 2); |
| 755 storage = Handle<FixedArray>::cast( |
| 756 SeededNumberDictionary::New(isolate, at_least_space_for)); |
| 757 } |
| 758 |
| 759 ArrayConcatVisitor visitor(isolate, storage, fast_case); |
| 760 |
| 761 for (int i = 0; i < argument_count; i++) { |
| 762 Handle<Object> obj(elements->get(i), isolate); |
| 763 if (obj->IsJSArray()) { |
| 764 Handle<JSArray> array = Handle<JSArray>::cast(obj); |
| 765 if (!IterateElements(isolate, array, &visitor)) { |
| 766 return isolate->heap()->exception(); |
| 767 } |
| 768 } else { |
| 769 visitor.visit(0, obj); |
| 770 visitor.increase_index_offset(1); |
| 771 } |
| 772 } |
| 773 |
| 774 if (visitor.exceeds_array_limit()) { |
| 775 THROW_NEW_ERROR_RETURN_FAILURE( |
| 776 isolate, |
| 777 NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0))); |
| 778 } |
| 779 return *visitor.ToArray(); |
| 780 } |
| 781 |
| 782 |
| 783 // Moves all own elements of an object, that are below a limit, to positions |
| 784 // starting at zero. All undefined values are placed after non-undefined values, |
| 785 // and are followed by non-existing element. Does not change the length |
| 786 // property. |
| 787 // Returns the number of non-undefined elements collected. |
| 788 // Returns -1 if hole removal is not supported by this method. |
| 789 RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) { |
| 790 HandleScope scope(isolate); |
| 791 DCHECK(args.length() == 2); |
| 792 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); |
| 793 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); |
| 794 return *JSObject::PrepareElementsForSort(object, limit); |
| 795 } |
| 796 |
| 797 |
| 798 // Move contents of argument 0 (an array) to argument 1 (an array) |
| 799 RUNTIME_FUNCTION(Runtime_MoveArrayContents) { |
| 800 HandleScope scope(isolate); |
| 801 DCHECK(args.length() == 2); |
| 802 CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0); |
| 803 CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1); |
| 804 JSObject::ValidateElements(from); |
| 805 JSObject::ValidateElements(to); |
| 806 |
| 807 Handle<FixedArrayBase> new_elements(from->elements()); |
| 808 ElementsKind from_kind = from->GetElementsKind(); |
| 809 Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind); |
| 810 JSObject::SetMapAndElements(to, new_map, new_elements); |
| 811 to->set_length(from->length()); |
| 812 |
| 813 JSObject::ResetElements(from); |
| 814 from->set_length(Smi::FromInt(0)); |
| 815 |
| 816 JSObject::ValidateElements(to); |
| 817 return *to; |
| 818 } |
| 819 |
| 820 |
| 821 // How many elements does this object/array have? |
| 822 RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) { |
| 823 HandleScope scope(isolate); |
| 824 DCHECK(args.length() == 1); |
| 825 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); |
| 826 Handle<FixedArrayBase> elements(array->elements(), isolate); |
| 827 SealHandleScope shs(isolate); |
| 828 if (elements->IsDictionary()) { |
| 829 int result = |
| 830 Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements(); |
| 831 return Smi::FromInt(result); |
| 832 } else { |
| 833 DCHECK(array->length()->IsSmi()); |
| 834 // For packed elements, we know the exact number of elements |
| 835 int length = elements->length(); |
| 836 ElementsKind kind = array->GetElementsKind(); |
| 837 if (IsFastPackedElementsKind(kind)) { |
| 838 return Smi::FromInt(length); |
| 839 } |
| 840 // For holey elements, take samples from the buffer checking for holes |
| 841 // to generate the estimate. |
| 842 const int kNumberOfHoleCheckSamples = 97; |
| 843 int increment = (length < kNumberOfHoleCheckSamples) |
| 844 ? 1 |
| 845 : static_cast<int>(length / kNumberOfHoleCheckSamples); |
| 846 ElementsAccessor* accessor = array->GetElementsAccessor(); |
| 847 int holes = 0; |
| 848 for (int i = 0; i < length; i += increment) { |
| 849 if (!accessor->HasElement(array, array, i, elements)) { |
| 850 ++holes; |
| 851 } |
| 852 } |
| 853 int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) / |
| 854 kNumberOfHoleCheckSamples * length); |
| 855 return Smi::FromInt(estimate); |
| 856 } |
| 857 } |
| 858 |
| 859 |
| 860 // Returns an array that tells you where in the [0, length) interval an array |
| 861 // might have elements. Can either return an array of keys (positive integers |
| 862 // or undefined) or a number representing the positive length of an interval |
| 863 // starting at index 0. |
| 864 // Intervals can span over some keys that are not in the object. |
| 865 RUNTIME_FUNCTION(Runtime_GetArrayKeys) { |
| 866 HandleScope scope(isolate); |
| 867 DCHECK(args.length() == 2); |
| 868 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); |
| 869 CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); |
| 870 if (array->elements()->IsDictionary()) { |
| 871 Handle<FixedArray> keys = isolate->factory()->empty_fixed_array(); |
| 872 for (PrototypeIterator iter(isolate, array, |
| 873 PrototypeIterator::START_AT_RECEIVER); |
| 874 !iter.IsAtEnd(); iter.Advance()) { |
| 875 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() || |
| 876 JSObject::cast(*PrototypeIterator::GetCurrent(iter)) |
| 877 ->HasIndexedInterceptor()) { |
| 878 // Bail out if we find a proxy or interceptor, likely not worth |
| 879 // collecting keys in that case. |
| 880 return *isolate->factory()->NewNumberFromUint(length); |
| 881 } |
| 882 Handle<JSObject> current = |
| 883 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); |
| 884 Handle<FixedArray> current_keys = |
| 885 isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE)); |
| 886 current->GetOwnElementKeys(*current_keys, NONE); |
| 887 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
| 888 isolate, keys, FixedArray::UnionOfKeys(keys, current_keys)); |
| 889 } |
| 890 // Erase any keys >= length. |
| 891 // TODO(adamk): Remove this step when the contract of %GetArrayKeys |
| 892 // is changed to let this happen on the JS side. |
| 893 for (int i = 0; i < keys->length(); i++) { |
| 894 if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i); |
| 895 } |
| 896 return *isolate->factory()->NewJSArrayWithElements(keys); |
| 897 } else { |
| 898 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() || |
| 899 array->HasFastDoubleElements()); |
| 900 uint32_t actual_length = static_cast<uint32_t>(array->elements()->length()); |
| 901 return *isolate->factory()->NewNumberFromUint(Min(actual_length, length)); |
| 902 } |
| 903 } |
| 904 |
| 905 |
| 906 static Object* ArrayConstructorCommon(Isolate* isolate, |
| 907 Handle<JSFunction> constructor, |
| 908 Handle<AllocationSite> site, |
| 909 Arguments* caller_args) { |
| 910 Factory* factory = isolate->factory(); |
| 911 |
| 912 bool holey = false; |
| 913 bool can_use_type_feedback = true; |
| 914 if (caller_args->length() == 1) { |
| 915 Handle<Object> argument_one = caller_args->at<Object>(0); |
| 916 if (argument_one->IsSmi()) { |
| 917 int value = Handle<Smi>::cast(argument_one)->value(); |
| 918 if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) { |
| 919 // the array is a dictionary in this case. |
| 920 can_use_type_feedback = false; |
| 921 } else if (value != 0) { |
| 922 holey = true; |
| 923 } |
| 924 } else { |
| 925 // Non-smi length argument produces a dictionary |
| 926 can_use_type_feedback = false; |
| 927 } |
| 928 } |
| 929 |
| 930 Handle<JSArray> array; |
| 931 if (!site.is_null() && can_use_type_feedback) { |
| 932 ElementsKind to_kind = site->GetElementsKind(); |
| 933 if (holey && !IsFastHoleyElementsKind(to_kind)) { |
| 934 to_kind = GetHoleyElementsKind(to_kind); |
| 935 // Update the allocation site info to reflect the advice alteration. |
| 936 site->SetElementsKind(to_kind); |
| 937 } |
| 938 |
| 939 // We should allocate with an initial map that reflects the allocation site |
| 940 // advice. Therefore we use AllocateJSObjectFromMap instead of passing |
| 941 // the constructor. |
| 942 Handle<Map> initial_map(constructor->initial_map(), isolate); |
| 943 if (to_kind != initial_map->elements_kind()) { |
| 944 initial_map = Map::AsElementsKind(initial_map, to_kind); |
| 945 } |
| 946 |
| 947 // If we don't care to track arrays of to_kind ElementsKind, then |
| 948 // don't emit a memento for them. |
| 949 Handle<AllocationSite> allocation_site; |
| 950 if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) { |
| 951 allocation_site = site; |
| 952 } |
| 953 |
| 954 array = Handle<JSArray>::cast(factory->NewJSObjectFromMap( |
| 955 initial_map, NOT_TENURED, true, allocation_site)); |
| 956 } else { |
| 957 array = Handle<JSArray>::cast(factory->NewJSObject(constructor)); |
| 958 |
| 959 // We might need to transition to holey |
| 960 ElementsKind kind = constructor->initial_map()->elements_kind(); |
| 961 if (holey && !IsFastHoleyElementsKind(kind)) { |
| 962 kind = GetHoleyElementsKind(kind); |
| 963 JSObject::TransitionElementsKind(array, kind); |
| 964 } |
| 965 } |
| 966 |
| 967 factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS); |
| 968 |
| 969 ElementsKind old_kind = array->GetElementsKind(); |
| 970 RETURN_FAILURE_ON_EXCEPTION( |
| 971 isolate, ArrayConstructInitializeElements(array, caller_args)); |
| 972 if (!site.is_null() && |
| 973 (old_kind != array->GetElementsKind() || !can_use_type_feedback)) { |
| 974 // The arguments passed in caused a transition. This kind of complexity |
| 975 // can't be dealt with in the inlined hydrogen array constructor case. |
| 976 // We must mark the allocationsite as un-inlinable. |
| 977 site->SetDoNotInlineCall(); |
| 978 } |
| 979 return *array; |
| 980 } |
| 981 |
| 982 |
| 983 RUNTIME_FUNCTION(Runtime_ArrayConstructor) { |
| 984 HandleScope scope(isolate); |
| 985 // If we get 2 arguments then they are the stub parameters (constructor, type |
| 986 // info). If we get 4, then the first one is a pointer to the arguments |
| 987 // passed by the caller, and the last one is the length of the arguments |
| 988 // passed to the caller (redundant, but useful to check on the deoptimizer |
| 989 // with an assert). |
| 990 Arguments empty_args(0, NULL); |
| 991 bool no_caller_args = args.length() == 2; |
| 992 DCHECK(no_caller_args || args.length() == 4); |
| 993 int parameters_start = no_caller_args ? 0 : 1; |
| 994 Arguments* caller_args = |
| 995 no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); |
| 996 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); |
| 997 CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1); |
| 998 #ifdef DEBUG |
| 999 if (!no_caller_args) { |
| 1000 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2); |
| 1001 DCHECK(arg_count == caller_args->length()); |
| 1002 } |
| 1003 #endif |
| 1004 |
| 1005 Handle<AllocationSite> site; |
| 1006 if (!type_info.is_null() && |
| 1007 *type_info != isolate->heap()->undefined_value()) { |
| 1008 site = Handle<AllocationSite>::cast(type_info); |
| 1009 DCHECK(!site->SitePointsToLiteral()); |
| 1010 } |
| 1011 |
| 1012 return ArrayConstructorCommon(isolate, constructor, site, caller_args); |
| 1013 } |
| 1014 |
| 1015 |
| 1016 RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) { |
| 1017 HandleScope scope(isolate); |
| 1018 Arguments empty_args(0, NULL); |
| 1019 bool no_caller_args = args.length() == 1; |
| 1020 DCHECK(no_caller_args || args.length() == 3); |
| 1021 int parameters_start = no_caller_args ? 0 : 1; |
| 1022 Arguments* caller_args = |
| 1023 no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); |
| 1024 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); |
| 1025 #ifdef DEBUG |
| 1026 if (!no_caller_args) { |
| 1027 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1); |
| 1028 DCHECK(arg_count == caller_args->length()); |
| 1029 } |
| 1030 #endif |
| 1031 return ArrayConstructorCommon(isolate, constructor, |
| 1032 Handle<AllocationSite>::null(), caller_args); |
| 1033 } |
| 1034 |
| 1035 |
| 1036 RUNTIME_FUNCTION(Runtime_NormalizeElements) { |
| 1037 HandleScope scope(isolate); |
| 1038 DCHECK(args.length() == 1); |
| 1039 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); |
| 1040 RUNTIME_ASSERT(!array->HasExternalArrayElements() && |
| 1041 !array->HasFixedTypedArrayElements()); |
| 1042 JSObject::NormalizeElements(array); |
| 1043 return *array; |
| 1044 } |
| 1045 |
| 1046 |
| 1047 // TODO(dcarney): remove this function when TurboFan supports it. |
| 1048 // Takes the object to be iterated over and the result of GetPropertyNamesFast |
| 1049 // Returns pair (cache_array, cache_type). |
| 1050 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) { |
| 1051 SealHandleScope scope(isolate); |
| 1052 DCHECK(args.length() == 2); |
| 1053 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs. |
| 1054 // Not worth creating a macro atm as this function should be removed. |
| 1055 if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) { |
| 1056 Object* error = isolate->ThrowIllegalOperation(); |
| 1057 return MakePair(error, isolate->heap()->undefined_value()); |
| 1058 } |
| 1059 Handle<JSReceiver> object = args.at<JSReceiver>(0); |
| 1060 Handle<Object> cache_type = args.at<Object>(1); |
| 1061 if (cache_type->IsMap()) { |
| 1062 // Enum cache case. |
| 1063 if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) == |
| 1064 0) { |
| 1065 // 0 length enum. |
| 1066 // Can't handle this case in the graph builder, |
| 1067 // so transform it into the empty fixed array case. |
| 1068 return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1)); |
| 1069 } |
| 1070 return MakePair(object->map()->instance_descriptors()->GetEnumCache(), |
| 1071 *cache_type); |
| 1072 } else { |
| 1073 // FixedArray case. |
| 1074 Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1); |
| 1075 return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type); |
| 1076 } |
| 1077 } |
| 1078 |
| 1079 |
| 1080 // TODO(dcarney): remove this function when TurboFan supports it. |
| 1081 RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) { |
| 1082 SealHandleScope shs(isolate); |
| 1083 DCHECK(args.length() == 2); |
| 1084 CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0); |
| 1085 CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1); |
| 1086 int length = 0; |
| 1087 if (cache_type->IsMap()) { |
| 1088 length = Map::cast(*cache_type)->EnumLength(); |
| 1089 } else { |
| 1090 DCHECK(cache_type->IsSmi()); |
| 1091 length = array->length(); |
| 1092 } |
| 1093 return Smi::FromInt(length); |
| 1094 } |
| 1095 |
| 1096 |
| 1097 // TODO(dcarney): remove this function when TurboFan supports it. |
| 1098 // Takes (the object to be iterated over, |
| 1099 // cache_array from ForInInit, |
| 1100 // cache_type from ForInInit, |
| 1101 // the current index) |
| 1102 // Returns pair (array[index], needs_filtering). |
| 1103 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) { |
| 1104 SealHandleScope scope(isolate); |
| 1105 DCHECK(args.length() == 4); |
| 1106 int32_t index; |
| 1107 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs. |
| 1108 // Not worth creating a macro atm as this function should be removed. |
| 1109 if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() || |
| 1110 !args[2]->IsObject() || !args[3]->ToInt32(&index)) { |
| 1111 Object* error = isolate->ThrowIllegalOperation(); |
| 1112 return MakePair(error, isolate->heap()->undefined_value()); |
| 1113 } |
| 1114 Handle<JSReceiver> object = args.at<JSReceiver>(0); |
| 1115 Handle<FixedArray> array = args.at<FixedArray>(1); |
| 1116 Handle<Object> cache_type = args.at<Object>(2); |
| 1117 // Figure out first if a slow check is needed for this object. |
| 1118 bool slow_check_needed = false; |
| 1119 if (cache_type->IsMap()) { |
| 1120 if (object->map() != Map::cast(*cache_type)) { |
| 1121 // Object transitioned. Need slow check. |
| 1122 slow_check_needed = true; |
| 1123 } |
| 1124 } else { |
| 1125 // No slow check needed for proxies. |
| 1126 slow_check_needed = Smi::cast(*cache_type)->value() == 1; |
| 1127 } |
| 1128 return MakePair(array->get(index), |
| 1129 isolate->heap()->ToBoolean(slow_check_needed)); |
| 1130 } |
| 1131 |
| 1132 |
| 1133 RUNTIME_FUNCTION(RuntimeReference_IsArray) { |
| 1134 SealHandleScope shs(isolate); |
| 1135 DCHECK(args.length() == 1); |
| 1136 CONVERT_ARG_CHECKED(Object, obj, 0); |
| 1137 return isolate->heap()->ToBoolean(obj->IsJSArray()); |
| 1138 } |
| 1139 |
| 1140 |
| 1141 RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) { |
| 1142 SealHandleScope shs(isolate); |
| 1143 DCHECK(args.length() == 1); |
| 1144 return isolate->heap()->false_value(); |
| 1145 } |
| 1146 |
| 1147 |
| 1148 RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) { |
| 1149 SealHandleScope shs(isolate); |
| 1150 DCHECK(args.length() == 1); |
| 1151 return isolate->heap()->undefined_value(); |
| 1152 } |
| 1153 |
| 1154 |
| 1155 RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) { |
| 1156 SealHandleScope shs(isolate); |
| 1157 DCHECK(args.length() == 2); |
| 1158 return isolate->heap()->undefined_value(); |
| 1159 } |
| 1160 } |
| 1161 } // namespace v8::internal |
OLD | NEW |