| OLD | NEW |
| 1 // Copyright 2006-2010 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 28 matching lines...) Expand all Loading... |
| 39 // | 39 // |
| 40 // A JS heap consists of a young generation, an old generation, and a large | 40 // A JS heap consists of a young generation, an old generation, and a large |
| 41 // object space. The young generation is divided into two semispaces. A | 41 // object space. The young generation is divided into two semispaces. A |
| 42 // scavenger implements Cheney's copying algorithm. The old generation is | 42 // scavenger implements Cheney's copying algorithm. The old generation is |
| 43 // separated into a map space and an old object space. The map space contains | 43 // separated into a map space and an old object space. The map space contains |
| 44 // all (and only) map objects, the rest of old objects go into the old space. | 44 // all (and only) map objects, the rest of old objects go into the old space. |
| 45 // The old generation is collected by a mark-sweep-compact collector. | 45 // The old generation is collected by a mark-sweep-compact collector. |
| 46 // | 46 // |
| 47 // The semispaces of the young generation are contiguous. The old and map | 47 // The semispaces of the young generation are contiguous. The old and map |
| 48 // spaces consists of a list of pages. A page has a page header and an object | 48 // spaces consists of a list of pages. A page has a page header and an object |
| 49 // area. A page size is deliberately chosen as 8K bytes. | 49 // area. |
| 50 // The first word of a page is an opaque page header that has the | |
| 51 // address of the next page and its ownership information. The second word may | |
| 52 // have the allocation top address of this page. Heap objects are aligned to the | |
| 53 // pointer size. | |
| 54 // | 50 // |
| 55 // There is a separate large object space for objects larger than | 51 // There is a separate large object space for objects larger than |
| 56 // Page::kMaxHeapObjectSize, so that they do not have to move during | 52 // Page::kMaxHeapObjectSize, so that they do not have to move during |
| 57 // collection. The large object space is paged. Pages in large object space | 53 // collection. The large object space is paged. Pages in large object space |
| 58 // may be larger than 8K. | 54 // may be larger than the page size. |
| 59 // | 55 // |
| 60 // A card marking write barrier is used to keep track of intergenerational | 56 // A store-buffer based write barrier is used to keep track of intergenerational |
| 61 // references. Old space pages are divided into regions of Page::kRegionSize | 57 // references. See store-buffer.h. |
| 62 // size. Each region has a corresponding dirty bit in the page header which is | |
| 63 // set if the region might contain pointers to new space. For details about | |
| 64 // dirty bits encoding see comments in the Page::GetRegionNumberForAddress() | |
| 65 // method body. | |
| 66 // | 58 // |
| 67 // During scavenges and mark-sweep collections we iterate intergenerational | 59 // During scavenges and mark-sweep collections we sometimes (after a store |
| 68 // pointers without decoding heap object maps so if the page belongs to old | 60 // buffer overflow) iterate intergenerational pointers without decoding heap |
| 69 // pointer space or large object space it is essential to guarantee that | 61 // object maps so if the page belongs to old pointer space or large object |
| 70 // the page does not contain any garbage pointers to new space: every pointer | 62 // space it is essential to guarantee that the page does not contain any |
| 71 // aligned word which satisfies the Heap::InNewSpace() predicate must be a | 63 // garbage pointers to new space: every pointer aligned word which satisfies |
| 72 // pointer to a live heap object in new space. Thus objects in old pointer | 64 // the Heap::InNewSpace() predicate must be a pointer to a live heap object in |
| 73 // and large object spaces should have a special layout (e.g. no bare integer | 65 // new space. Thus objects in old pointer and large object spaces should have a |
| 74 // fields). This requirement does not apply to map space which is iterated in | 66 // special layout (e.g. no bare integer fields). This requirement does not |
| 75 // a special fashion. However we still require pointer fields of dead maps to | 67 // apply to map space which is iterated in a special fashion. However we still |
| 76 // be cleaned. | 68 // require pointer fields of dead maps to be cleaned. |
| 77 // | 69 // |
| 78 // To enable lazy cleaning of old space pages we use a notion of allocation | 70 // To enable lazy cleaning of old space pages we use a notion of allocation |
| 79 // watermark. Every pointer under watermark is considered to be well formed. | 71 // watermark. Every pointer under watermark is considered to be well formed. |
| 80 // Page allocation watermark is not necessarily equal to page allocation top but | 72 // Page allocation watermark is not necessarily equal to page allocation top but |
| 81 // all alive objects on page should reside under allocation watermark. | 73 // all alive objects on page should reside under allocation watermark. |
| 82 // During scavenge allocation watermark might be bumped and invalid pointers | 74 // During scavenge allocation watermark might be bumped and invalid pointers |
| 83 // might appear below it. To avoid following them we store a valid watermark | 75 // might appear below it. To avoid following them we store a valid watermark |
| 84 // into special field in the page header and set a page WATERMARK_INVALIDATED | 76 // into special field in the page header and set a page WATERMARK_INVALIDATED |
| 85 // flag. For details see comments in the Page::SetAllocationWatermark() method | 77 // flag. For details see comments in the Page::SetAllocationWatermark() method |
| 86 // body. | 78 // body. |
| (...skipping 404 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 491 return offset; | 483 return offset; |
| 492 } | 484 } |
| 493 | 485 |
| 494 // Returns the address for a given offset to the this page. | 486 // Returns the address for a given offset to the this page. |
| 495 Address OffsetToAddress(int offset) { | 487 Address OffsetToAddress(int offset) { |
| 496 ASSERT_PAGE_OFFSET(offset); | 488 ASSERT_PAGE_OFFSET(offset); |
| 497 return address() + offset; | 489 return address() + offset; |
| 498 } | 490 } |
| 499 | 491 |
| 500 // --------------------------------------------------------------------- | 492 // --------------------------------------------------------------------- |
| 501 // Card marking support | |
| 502 | |
| 503 static const uint32_t kAllRegionsCleanMarks = 0x0; | |
| 504 static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF; | |
| 505 | |
| 506 inline uint32_t GetRegionMarks(); | |
| 507 inline void SetRegionMarks(uint32_t dirty); | |
| 508 | |
| 509 inline uint32_t GetRegionMaskForAddress(Address addr); | |
| 510 inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes); | |
| 511 inline int GetRegionNumberForAddress(Address addr); | |
| 512 | |
| 513 inline void MarkRegionDirty(Address addr); | |
| 514 inline bool IsRegionDirty(Address addr); | |
| 515 | |
| 516 inline void ClearRegionMarks(Address start, | |
| 517 Address end, | |
| 518 bool reaches_limit); | |
| 519 | 493 |
| 520 // Page size in bytes. This must be a multiple of the OS page size. | 494 // Page size in bytes. This must be a multiple of the OS page size. |
| 521 static const int kPageSize = 1 << kPageSizeBits; | 495 static const int kPageSize = 1 << kPageSizeBits; |
| 522 | 496 |
| 523 // Page size mask. | 497 // Page size mask. |
| 524 static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; | 498 static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; |
| 525 | 499 |
| 526 // The start offset of the object area in a page. Aligned to both maps and | 500 // The start offset of the object area in a page. Aligned to both maps and |
| 527 // code alignment to be suitable for both. | 501 // code alignment to be suitable for both. |
| 528 static const int kObjectStartOffset = kBodyOffset; | 502 static const int kObjectStartOffset = kBodyOffset; |
| 529 | 503 |
| 530 // Object area size in bytes. | 504 // Object area size in bytes. |
| 531 static const int kObjectAreaSize = kPageSize - kObjectStartOffset; | 505 static const int kObjectAreaSize = kPageSize - kObjectStartOffset; |
| 532 | 506 |
| 533 // Maximum object size that fits in a page. | 507 // Maximum object size that fits in a page. |
| 534 static const int kMaxHeapObjectSize = kObjectAreaSize; | 508 static const int kMaxHeapObjectSize = kObjectAreaSize; |
| 535 | 509 |
| 536 static const int kFirstUsedCell = | 510 static const int kFirstUsedCell = |
| 537 (kBodyOffset/kPointerSize) >> MarkbitsBitmap::kBitsPerCellLog2; | 511 (kBodyOffset/kPointerSize) >> MarkbitsBitmap::kBitsPerCellLog2; |
| 538 | 512 |
| 539 static const int kLastUsedCell = | 513 static const int kLastUsedCell = |
| 540 ((kPageSize - kPointerSize)/kPointerSize) >> | 514 ((kPageSize - kPointerSize)/kPointerSize) >> |
| 541 MarkbitsBitmap::kBitsPerCellLog2; | 515 MarkbitsBitmap::kBitsPerCellLog2; |
| 542 | 516 |
| 543 | 517 |
| 544 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER | |
| 545 static const int kDirtyFlagOffset = 2 * kPointerSize; | |
| 546 static const int kRegionSizeLog2 = 8; | |
| 547 static const int kRegionSize = 1 << kRegionSizeLog2; | |
| 548 static const intptr_t kRegionAlignmentMask = (kRegionSize - 1); | |
| 549 | |
| 550 STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt); | |
| 551 #endif | |
| 552 | |
| 553 enum PageFlag { | 518 enum PageFlag { |
| 554 // Page allocation watermark was bumped by preallocation during scavenge. | 519 // Page allocation watermark was bumped by preallocation during scavenge. |
| 555 // Correct watermark can be retrieved by CachedAllocationWatermark() method | 520 // Correct watermark can be retrieved by CachedAllocationWatermark() method |
| 556 WATERMARK_INVALIDATED = NUM_MEMORY_CHUNK_FLAGS, | 521 WATERMARK_INVALIDATED = NUM_MEMORY_CHUNK_FLAGS, |
| 557 | 522 |
| 558 // We say that memory region [start_addr, end_addr[ is continuous if | 523 // We say that memory region [start_addr, end_addr[ is continuous if |
| 559 // and only if: | 524 // and only if: |
| 560 // a) start_addr coincides with the start of a valid heap object | 525 // a) start_addr coincides with the start of a valid heap object |
| 561 // b) for any valid heap object o in this region address | 526 // b) for any valid heap object o in this region address |
| 562 // o->address() + o->Size() is either equal to end_addr or coincides | 527 // o->address() + o->Size() is either equal to end_addr or coincides |
| (...skipping 1590 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2153 static const int kMaxMapPageIndex = 1 << 16; | 2118 static const int kMaxMapPageIndex = 1 << 16; |
| 2154 | 2119 |
| 2155 // Are map pointers encodable into map word? | 2120 // Are map pointers encodable into map word? |
| 2156 bool MapPointersEncodable() { | 2121 bool MapPointersEncodable() { |
| 2157 return false; | 2122 return false; |
| 2158 } | 2123 } |
| 2159 | 2124 |
| 2160 // Should be called after forced sweep to find out if map space needs | 2125 // Should be called after forced sweep to find out if map space needs |
| 2161 // compaction. | 2126 // compaction. |
| 2162 bool NeedsCompaction(int live_maps) { | 2127 bool NeedsCompaction(int live_maps) { |
| 2163 return !MapPointersEncodable() && live_maps <= CompactionThreshold(); | 2128 return false; // TODO(gc): Bring back map compaction. |
| 2164 } | |
| 2165 | |
| 2166 Address TopAfterCompaction(int live_maps) { | |
| 2167 ASSERT(NeedsCompaction(live_maps)); | |
| 2168 | |
| 2169 int pages_left = live_maps / kMapsPerPage; | |
| 2170 PageIterator it(this, PageIterator::ALL_PAGES); | |
| 2171 while (pages_left-- > 0) { | |
| 2172 ASSERT(it.has_next()); | |
| 2173 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); | |
| 2174 } | |
| 2175 ASSERT(it.has_next()); | |
| 2176 Page* top_page = it.next(); | |
| 2177 top_page->SetRegionMarks(Page::kAllRegionsCleanMarks); | |
| 2178 ASSERT(top_page->is_valid()); | |
| 2179 | |
| 2180 int offset = live_maps % kMapsPerPage * Map::kSize; | |
| 2181 Address top = top_page->ObjectAreaStart() + offset; | |
| 2182 ASSERT(top < top_page->ObjectAreaEnd()); | |
| 2183 ASSERT(Contains(top)); | |
| 2184 | |
| 2185 return top; | |
| 2186 } | |
| 2187 | |
| 2188 void FinishCompaction(Address new_top, int live_maps) { | |
| 2189 Page* top_page = Page::FromAddress(new_top); | |
| 2190 ASSERT(top_page->is_valid()); | |
| 2191 | |
| 2192 SetAllocationInfo(&allocation_info_, top_page); | |
| 2193 allocation_info_.top = new_top; | |
| 2194 | |
| 2195 int new_size = live_maps * Map::kSize; | |
| 2196 accounting_stats_.DeallocateBytes(accounting_stats_.Size()); | |
| 2197 accounting_stats_.AllocateBytes(new_size); | |
| 2198 | |
| 2199 #ifdef DEBUG | |
| 2200 if (FLAG_enable_slow_asserts) { | |
| 2201 intptr_t actual_size = 0; | |
| 2202 for (Page* p = first_page_; p != top_page; p = p->next_page()) | |
| 2203 actual_size += kMapsPerPage * Map::kSize; | |
| 2204 actual_size += (new_top - top_page->ObjectAreaStart()); | |
| 2205 ASSERT(accounting_stats_.Size() == actual_size); | |
| 2206 } | |
| 2207 #endif | |
| 2208 | |
| 2209 Shrink(); | |
| 2210 ResetFreeList(); | |
| 2211 } | 2129 } |
| 2212 | 2130 |
| 2213 protected: | 2131 protected: |
| 2214 #ifdef DEBUG | 2132 #ifdef DEBUG |
| 2215 virtual void VerifyObject(HeapObject* obj); | 2133 virtual void VerifyObject(HeapObject* obj); |
| 2216 #endif | 2134 #endif |
| 2217 | 2135 |
| 2218 private: | 2136 private: |
| 2219 static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize; | 2137 static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize; |
| 2220 | 2138 |
| (...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2298 | 2216 |
| 2299 // Finds an object for a given address, returns Failure::Exception() | 2217 // Finds an object for a given address, returns Failure::Exception() |
| 2300 // if it is not found. The function iterates through all objects in this | 2218 // if it is not found. The function iterates through all objects in this |
| 2301 // space, may be slow. | 2219 // space, may be slow. |
| 2302 MaybeObject* FindObject(Address a); | 2220 MaybeObject* FindObject(Address a); |
| 2303 | 2221 |
| 2304 // Finds a large object page containing the given pc, returns NULL | 2222 // Finds a large object page containing the given pc, returns NULL |
| 2305 // if such a page doesn't exist. | 2223 // if such a page doesn't exist. |
| 2306 LargePage* FindPageContainingPc(Address pc); | 2224 LargePage* FindPageContainingPc(Address pc); |
| 2307 | 2225 |
| 2308 // Iterates objects covered by dirty regions. | 2226 // Iterates over pointers to new space. |
| 2309 void IterateDirtyRegions(ObjectSlotCallback func); | 2227 void IteratePointersToNewSpace(ObjectSlotCallback func); |
| 2310 | 2228 |
| 2311 // Frees unmarked objects. | 2229 // Frees unmarked objects. |
| 2312 void FreeUnmarkedObjects(); | 2230 void FreeUnmarkedObjects(); |
| 2313 | 2231 |
| 2314 // Checks whether a heap object is in this space; O(1). | 2232 // Checks whether a heap object is in this space; O(1). |
| 2315 bool Contains(HeapObject* obj); | 2233 bool Contains(HeapObject* obj); |
| 2316 | 2234 |
| 2317 // Checks whether the space is empty. | 2235 // Checks whether the space is empty. |
| 2318 bool IsEmpty() { return first_page_ == NULL; } | 2236 bool IsEmpty() { return first_page_ == NULL; } |
| 2319 | 2237 |
| (...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 2369 | 2287 |
| 2370 private: | 2288 private: |
| 2371 LargePage* current_; | 2289 LargePage* current_; |
| 2372 HeapObjectCallback size_func_; | 2290 HeapObjectCallback size_func_; |
| 2373 }; | 2291 }; |
| 2374 | 2292 |
| 2375 | 2293 |
| 2376 } } // namespace v8::internal | 2294 } } // namespace v8::internal |
| 2377 | 2295 |
| 2378 #endif // V8_SPACES_H_ | 2296 #endif // V8_SPACES_H_ |
| OLD | NEW |