OLD | NEW |
| (Empty) |
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef BASE_BASICTYPES_H_ | |
6 #define BASE_BASICTYPES_H_ | |
7 | |
8 #include <assert.h> // for use with down_cast<> | |
9 #include <limits.h> // So we can set the bounds of our types | |
10 #include <stddef.h> // For size_t | |
11 #include <string.h> // for memcpy | |
12 | |
13 #include "base/port.h" // Types that only need exist on certain systems | |
14 | |
15 #ifndef COMPILER_MSVC | |
16 // stdint.h is part of C99 but MSVC doesn't have it. | |
17 #include <stdint.h> // For intptr_t. | |
18 #endif | |
19 | |
20 typedef signed char schar; | |
21 typedef signed char int8; | |
22 typedef short int16; | |
23 // TODO(mbelshe) Remove these type guards. These are | |
24 // temporary to avoid conflicts with npapi.h. | |
25 #ifndef _INT32 | |
26 #define _INT32 | |
27 typedef int int32; | |
28 #endif | |
29 typedef long long int64; | |
30 | |
31 // NOTE: unsigned types are DANGEROUS in loops and other arithmetical | |
32 // places. Use the signed types unless your variable represents a bit | |
33 // pattern (eg a hash value) or you really need the extra bit. Do NOT | |
34 // use 'unsigned' to express "this value should always be positive"; | |
35 // use assertions for this. | |
36 | |
37 typedef unsigned char uint8; | |
38 typedef unsigned short uint16; | |
39 // TODO(mbelshe) Remove these type guards. These are | |
40 // temporary to avoid conflicts with npapi.h. | |
41 #ifndef _UINT32 | |
42 #define _UINT32 | |
43 typedef unsigned int uint32; | |
44 #endif | |
45 typedef unsigned long long uint64; | |
46 | |
47 // A type to represent a Unicode code-point value. As of Unicode 4.0, | |
48 // such values require up to 21 bits. | |
49 // (For type-checking on pointers, make this explicitly signed, | |
50 // and it should always be the signed version of whatever int32 is.) | |
51 typedef signed int char32; | |
52 | |
53 const uint8 kuint8max = (( uint8) 0xFF); | |
54 const uint16 kuint16max = ((uint16) 0xFFFF); | |
55 const uint32 kuint32max = ((uint32) 0xFFFFFFFF); | |
56 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF)); | |
57 const int8 kint8min = (( int8) 0x80); | |
58 const int8 kint8max = (( int8) 0x7F); | |
59 const int16 kint16min = (( int16) 0x8000); | |
60 const int16 kint16max = (( int16) 0x7FFF); | |
61 const int32 kint32min = (( int32) 0x80000000); | |
62 const int32 kint32max = (( int32) 0x7FFFFFFF); | |
63 const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000)); | |
64 const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF)); | |
65 | |
66 // id for odp categories | |
67 typedef uint32 CatId; | |
68 const CatId kIllegalCatId = static_cast<CatId>(0); | |
69 | |
70 typedef uint32 TermId; | |
71 const TermId kIllegalTermId = static_cast<TermId>(0); | |
72 | |
73 typedef uint32 HostId; | |
74 const HostId kIllegalHostId = static_cast<HostId>(0); | |
75 | |
76 typedef uint32 DomainId; | |
77 const DomainId kIllegalDomainId = static_cast<DomainId>(0); | |
78 | |
79 // A macro to disallow the copy constructor and operator= functions | |
80 // This should be used in the private: declarations for a class | |
81 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ | |
82 TypeName(const TypeName&); \ | |
83 void operator=(const TypeName&) | |
84 | |
85 // An older, deprecated, politically incorrect name for the above. | |
86 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName) | |
87 | |
88 // A macro to disallow all the implicit constructors, namely the | |
89 // default constructor, copy constructor and operator= functions. | |
90 // | |
91 // This should be used in the private: declarations for a class | |
92 // that wants to prevent anyone from instantiating it. This is | |
93 // especially useful for classes containing only static methods. | |
94 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ | |
95 TypeName(); \ | |
96 DISALLOW_COPY_AND_ASSIGN(TypeName) | |
97 | |
98 // The arraysize(arr) macro returns the # of elements in an array arr. | |
99 // The expression is a compile-time constant, and therefore can be | |
100 // used in defining new arrays, for example. If you use arraysize on | |
101 // a pointer by mistake, you will get a compile-time error. | |
102 // | |
103 // One caveat is that arraysize() doesn't accept any array of an | |
104 // anonymous type or a type defined inside a function. In these rare | |
105 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is | |
106 // due to a limitation in C++'s template system. The limitation might | |
107 // eventually be removed, but it hasn't happened yet. | |
108 | |
109 // This template function declaration is used in defining arraysize. | |
110 // Note that the function doesn't need an implementation, as we only | |
111 // use its type. | |
112 template <typename T, size_t N> | |
113 char (&ArraySizeHelper(T (&array)[N]))[N]; | |
114 | |
115 // That gcc wants both of these prototypes seems mysterious. VC, for | |
116 // its part, can't decide which to use (another mystery). Matching of | |
117 // template overloads: the final frontier. | |
118 #ifndef _MSC_VER | |
119 template <typename T, size_t N> | |
120 char (&ArraySizeHelper(const T (&array)[N]))[N]; | |
121 #endif | |
122 | |
123 #define arraysize(array) (sizeof(ArraySizeHelper(array))) | |
124 | |
125 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize, | |
126 // but can be used on anonymous types or types defined inside | |
127 // functions. It's less safe than arraysize as it accepts some | |
128 // (although not all) pointers. Therefore, you should use arraysize | |
129 // whenever possible. | |
130 // | |
131 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type | |
132 // size_t. | |
133 // | |
134 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error | |
135 // | |
136 // "warning: division by zero in ..." | |
137 // | |
138 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer. | |
139 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays. | |
140 // | |
141 // The following comments are on the implementation details, and can | |
142 // be ignored by the users. | |
143 // | |
144 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in | |
145 // the array) and sizeof(*(arr)) (the # of bytes in one array | |
146 // element). If the former is divisible by the latter, perhaps arr is | |
147 // indeed an array, in which case the division result is the # of | |
148 // elements in the array. Otherwise, arr cannot possibly be an array, | |
149 // and we generate a compiler error to prevent the code from | |
150 // compiling. | |
151 // | |
152 // Since the size of bool is implementation-defined, we need to cast | |
153 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final | |
154 // result has type size_t. | |
155 // | |
156 // This macro is not perfect as it wrongfully accepts certain | |
157 // pointers, namely where the pointer size is divisible by the pointee | |
158 // size. Since all our code has to go through a 32-bit compiler, | |
159 // where a pointer is 4 bytes, this means all pointers to a type whose | |
160 // size is 3 or greater than 4 will be (righteously) rejected. | |
161 | |
162 #define ARRAYSIZE_UNSAFE(a) \ | |
163 ((sizeof(a) / sizeof(*(a))) / \ | |
164 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) | |
165 | |
166 | |
167 // Use implicit_cast as a safe version of static_cast or const_cast | |
168 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo | |
169 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to | |
170 // a const pointer to Foo). | |
171 // When you use implicit_cast, the compiler checks that the cast is safe. | |
172 // Such explicit implicit_casts are necessary in surprisingly many | |
173 // situations where C++ demands an exact type match instead of an | |
174 // argument type convertable to a target type. | |
175 // | |
176 // The From type can be inferred, so the preferred syntax for using | |
177 // implicit_cast is the same as for static_cast etc.: | |
178 // | |
179 // implicit_cast<ToType>(expr) | |
180 // | |
181 // implicit_cast would have been part of the C++ standard library, | |
182 // but the proposal was submitted too late. It will probably make | |
183 // its way into the language in the future. | |
184 template<typename To, typename From> | |
185 inline To implicit_cast(From const &f) { | |
186 return f; | |
187 } | |
188 | |
189 | |
190 // When you upcast (that is, cast a pointer from type Foo to type | |
191 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts | |
192 // always succeed. When you downcast (that is, cast a pointer from | |
193 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because | |
194 // how do you know the pointer is really of type SubclassOfFoo? It | |
195 // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, | |
196 // when you downcast, you should use this macro. In debug mode, we | |
197 // use dynamic_cast<> to double-check the downcast is legal (we die | |
198 // if it's not). In normal mode, we do the efficient static_cast<> | |
199 // instead. Thus, it's important to test in debug mode to make sure | |
200 // the cast is legal! | |
201 // This is the only place in the code we should use dynamic_cast<>. | |
202 // In particular, you SHOULDN'T be using dynamic_cast<> in order to | |
203 // do RTTI (eg code like this: | |
204 // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); | |
205 // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); | |
206 // You should design the code some other way not to need this. | |
207 | |
208 template<typename To, typename From> // use like this: down_cast<T*>(foo); | |
209 inline To down_cast(From* f) { // so we only accept pointers | |
210 // Ensures that To is a sub-type of From *. This test is here only | |
211 // for compile-time type checking, and has no overhead in an | |
212 // optimized build at run-time, as it will be optimized away | |
213 // completely. | |
214 if (false) { | |
215 implicit_cast<From*, To>(0); | |
216 } | |
217 | |
218 assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only! | |
219 return static_cast<To>(f); | |
220 } | |
221 | |
222 // The COMPILE_ASSERT macro can be used to verify that a compile time | |
223 // expression is true. For example, you could use it to verify the | |
224 // size of a static array: | |
225 // | |
226 // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES, | |
227 // content_type_names_incorrect_size); | |
228 // | |
229 // or to make sure a struct is smaller than a certain size: | |
230 // | |
231 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); | |
232 // | |
233 // The second argument to the macro is the name of the variable. If | |
234 // the expression is false, most compilers will issue a warning/error | |
235 // containing the name of the variable. | |
236 | |
237 template <bool> | |
238 struct CompileAssert { | |
239 }; | |
240 | |
241 #undef COMPILE_ASSERT | |
242 #define COMPILE_ASSERT(expr, msg) \ | |
243 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] | |
244 | |
245 // Implementation details of COMPILE_ASSERT: | |
246 // | |
247 // - COMPILE_ASSERT works by defining an array type that has -1 | |
248 // elements (and thus is invalid) when the expression is false. | |
249 // | |
250 // - The simpler definition | |
251 // | |
252 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] | |
253 // | |
254 // does not work, as gcc supports variable-length arrays whose sizes | |
255 // are determined at run-time (this is gcc's extension and not part | |
256 // of the C++ standard). As a result, gcc fails to reject the | |
257 // following code with the simple definition: | |
258 // | |
259 // int foo; | |
260 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is | |
261 // // not a compile-time constant. | |
262 // | |
263 // - By using the type CompileAssert<(bool(expr))>, we ensures that | |
264 // expr is a compile-time constant. (Template arguments must be | |
265 // determined at compile-time.) | |
266 // | |
267 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary | |
268 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written | |
269 // | |
270 // CompileAssert<bool(expr)> | |
271 // | |
272 // instead, these compilers will refuse to compile | |
273 // | |
274 // COMPILE_ASSERT(5 > 0, some_message); | |
275 // | |
276 // (They seem to think the ">" in "5 > 0" marks the end of the | |
277 // template argument list.) | |
278 // | |
279 // - The array size is (bool(expr) ? 1 : -1), instead of simply | |
280 // | |
281 // ((expr) ? 1 : -1). | |
282 // | |
283 // This is to avoid running into a bug in MS VC 7.1, which | |
284 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. | |
285 | |
286 | |
287 // MetatagId refers to metatag-id that we assign to | |
288 // each metatag <name, value> pair.. | |
289 typedef uint32 MetatagId; | |
290 | |
291 // Argument type used in interfaces that can optionally take ownership | |
292 // of a passed in argument. If TAKE_OWNERSHIP is passed, the called | |
293 // object takes ownership of the argument. Otherwise it does not. | |
294 enum Ownership { | |
295 DO_NOT_TAKE_OWNERSHIP, | |
296 TAKE_OWNERSHIP | |
297 }; | |
298 | |
299 // Use these as the mlock_bytes parameter to MLock and MLockGeneral | |
300 enum { MLOCK_ALL = -1, MLOCK_NONE = 0 }; | |
301 | |
302 // Helper routine to avoid buggy code like the following: | |
303 // if (pos + N < end) ... | |
304 // If pos is large enough, "pos + N" may overflow. For example, | |
305 // pos==0xfffff000 and N==1MB. | |
306 // | |
307 // PointerRangeSize(a,b) returns the size of the range [a,b-1] | |
308 inline size_t PointerRangeSize(const char* start, const char* end) { | |
309 assert(start <= end); | |
310 return end - start; | |
311 } | |
312 | |
313 // bit_cast<Dest,Source> is a template function that implements the | |
314 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in | |
315 // very low-level functions like the protobuf library and fast math | |
316 // support. | |
317 // | |
318 // float f = 3.14159265358979; | |
319 // int i = bit_cast<int32>(f); | |
320 // // i = 0x40490fdb | |
321 // | |
322 // The classical address-casting method is: | |
323 // | |
324 // // WRONG | |
325 // float f = 3.14159265358979; // WRONG | |
326 // int i = * reinterpret_cast<int*>(&f); // WRONG | |
327 // | |
328 // The address-casting method actually produces undefined behavior | |
329 // according to ISO C++ specification section 3.10 -15 -. Roughly, this | |
330 // section says: if an object in memory has one type, and a program | |
331 // accesses it with a different type, then the result is undefined | |
332 // behavior for most values of "different type". | |
333 // | |
334 // This is true for any cast syntax, either *(int*)&f or | |
335 // *reinterpret_cast<int*>(&f). And it is particularly true for | |
336 // conversions betweeen integral lvalues and floating-point lvalues. | |
337 // | |
338 // The purpose of 3.10 -15- is to allow optimizing compilers to assume | |
339 // that expressions with different types refer to different memory. gcc | |
340 // 4.0.1 has an optimizer that takes advantage of this. So a | |
341 // non-conforming program quietly produces wildly incorrect output. | |
342 // | |
343 // The problem is not the use of reinterpret_cast. The problem is type | |
344 // punning: holding an object in memory of one type and reading its bits | |
345 // back using a different type. | |
346 // | |
347 // The C++ standard is more subtle and complex than this, but that | |
348 // is the basic idea. | |
349 // | |
350 // Anyways ... | |
351 // | |
352 // bit_cast<> calls memcpy() which is blessed by the standard, | |
353 // especially by the example in section 3.9 . Also, of course, | |
354 // bit_cast<> wraps up the nasty logic in one place. | |
355 // | |
356 // Fortunately memcpy() is very fast. In optimized mode, with a | |
357 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline | |
358 // code with the minimal amount of data movement. On a 32-bit system, | |
359 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8) | |
360 // compiles to two loads and two stores. | |
361 // | |
362 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1. | |
363 // | |
364 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy | |
365 // is likely to surprise you. | |
366 | |
367 template <class Dest, class Source> | |
368 inline Dest bit_cast(const Source& source) { | |
369 // Compile time assertion: sizeof(Dest) == sizeof(Source) | |
370 // A compile error here means your Dest and Source have different sizes. | |
371 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1]; | |
372 | |
373 Dest dest; | |
374 memcpy(&dest, &source, sizeof(dest)); | |
375 return dest; | |
376 } | |
377 | |
378 // The following enum should be used only as a constructor argument to indicate | |
379 // that the variable has static storage class, and that the constructor should | |
380 // do nothing to its state. It indicates to the reader that it is legal to | |
381 // declare a static instance of the class, provided the constructor is given | |
382 // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a | |
383 // static variable that has a constructor or a destructor because invocation | |
384 // order is undefined. However, IF the type can be initialized by filling with | |
385 // zeroes (which the loader does for static variables), AND the destructor also | |
386 // does nothing to the storage, AND there are no virtual methods, then a | |
387 // constructor declared as | |
388 // explicit MyClass(base::LinkerInitialized x) {} | |
389 // and invoked as | |
390 // static MyClass my_variable_name(base::LINKER_INITIALIZED); | |
391 namespace base { | |
392 enum LinkerInitialized { LINKER_INITIALIZED }; | |
393 } // base | |
394 | |
395 | |
396 #endif // BASE_BASICTYPES_H_ | |
OLD | NEW |