Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(31)

Side by Side Diff: third_party/breakpad/src/google_breakpad/processor/minidump.h

Issue 624713003: Keep only base/extractor.[cc|h]. (Closed) Base URL: https://chromium.googlesource.com/external/omaha.git@master
Patch Set: Created 6 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2010 Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // minidump.h: A minidump reader.
31 //
32 // The basic structure of this module tracks the structure of the minidump
33 // file itself. At the top level, a minidump file is represented by a
34 // Minidump object. Like most other classes in this module, Minidump
35 // provides a Read method that initializes the object with information from
36 // the file. Most of the classes in this file are wrappers around the
37 // "raw" structures found in the minidump file itself, and defined in
38 // minidump_format.h. For example, each thread is represented by a
39 // MinidumpThread object, whose parameters are specified in an MDRawThread
40 // structure. A properly byte-swapped MDRawThread can be obtained from a
41 // MinidumpThread easily by calling its thread() method.
42 //
43 // Most of the module lazily reads only the portion of the minidump file
44 // necessary to fulfill the user's request. Calling Minidump::Read
45 // only reads the minidump's directory. The thread list is not read until
46 // it is needed, and even once it's read, the memory regions for each
47 // thread's stack aren't read until they're needed. This strategy avoids
48 // unnecessary file input, and allocating memory for data in which the user
49 // has no interest. Note that although memory allocations for a typical
50 // minidump file are not particularly large, it is possible for legitimate
51 // minidumps to be sizable. A full-memory minidump, for example, contains
52 // a snapshot of the entire mapped memory space. Even a normal minidump,
53 // with stack memory only, can be large if, for example, the dump was
54 // generated in response to a crash that occurred due to an infinite-
55 // recursion bug that caused the stack's limits to be exceeded. Finally,
56 // some users of this library will unfortunately find themselves in the
57 // position of having to process potentially-hostile minidumps that might
58 // attempt to cause problems by forcing the minidump processor to over-
59 // allocate memory.
60 //
61 // Memory management in this module is based on a strict
62 // you-don't-own-anything policy. The only object owned by the user is
63 // the top-level Minidump object, the creation and destruction of which
64 // must be the user's own responsibility. All other objects obtained
65 // through interaction with this module are ultimately owned by the
66 // Minidump object, and will be freed upon the Minidump object's destruction.
67 // Because memory regions can potentially involve large allocations, a
68 // FreeMemory method is provided by MinidumpMemoryRegion, allowing the user
69 // to release data when it is no longer needed. Use of this method is
70 // optional but recommended. If freed data is later required, it will
71 // be read back in from the minidump file again.
72 //
73 // There is one exception to this memory management policy:
74 // Minidump::ReadString will return a string object to the user, and the user
75 // is responsible for its deletion.
76 //
77 // Author: Mark Mentovai
78
79 #ifndef GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
80 #define GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
81
82 #ifndef _WIN32
83 #include <unistd.h>
84 #endif
85
86 #include <iostream>
87 #include <map>
88 #include <string>
89 #include <vector>
90
91 #include "google_breakpad/common/minidump_format.h"
92 #include "google_breakpad/processor/code_module.h"
93 #include "google_breakpad/processor/code_modules.h"
94 #include "google_breakpad/processor/memory_region.h"
95
96
97 namespace google_breakpad {
98
99
100 using std::map;
101 using std::string;
102 using std::vector;
103
104
105 class Minidump;
106 template<typename AddressType, typename EntryType> class RangeMap;
107
108
109 // MinidumpObject is the base of all Minidump* objects except for Minidump
110 // itself.
111 class MinidumpObject {
112 public:
113 virtual ~MinidumpObject() {}
114
115 bool valid() const { return valid_; }
116
117 protected:
118 explicit MinidumpObject(Minidump* minidump);
119
120 // Refers to the Minidump object that is the ultimate parent of this
121 // Some MinidumpObjects are owned by other MinidumpObjects, but at the
122 // root of the ownership tree is always a Minidump. The Minidump object
123 // is kept here for access to its seeking and reading facilities, and
124 // for access to data about the minidump file itself, such as whether
125 // it should be byte-swapped.
126 Minidump* minidump_;
127
128 // MinidumpObjects are not valid when created. When a subclass populates
129 // its own fields, it can set valid_ to true. Accessors and mutators may
130 // wish to consider or alter the valid_ state as they interact with
131 // objects.
132 bool valid_;
133 };
134
135
136 // This class exists primarily to provide a virtual destructor in a base
137 // class common to all objects that might be stored in
138 // Minidump::mStreamObjects. Some object types (MinidumpContext) will
139 // never be stored in Minidump::mStreamObjects, but are represented as
140 // streams and adhere to the same interface, and may be derived from
141 // this class.
142 class MinidumpStream : public MinidumpObject {
143 public:
144 virtual ~MinidumpStream() {}
145
146 protected:
147 explicit MinidumpStream(Minidump* minidump);
148
149 private:
150 // Populate (and validate) the MinidumpStream. minidump_ is expected
151 // to be positioned at the beginning of the stream, so that the next
152 // read from the minidump will be at the beginning of the stream.
153 // expected_size should be set to the stream's length as contained in
154 // the MDRawDirectory record or other identifying record. A class
155 // that implements MinidumpStream can compare expected_size to a
156 // known size as an integrity check.
157 virtual bool Read(u_int32_t expected_size) = 0;
158 };
159
160
161 // MinidumpContext carries a CPU-specific MDRawContext structure, which
162 // contains CPU context such as register states. Each thread has its
163 // own context, and the exception record, if present, also has its own
164 // context. Note that if the exception record is present, the context it
165 // refers to is probably what the user wants to use for the exception
166 // thread, instead of that thread's own context. The exception thread's
167 // context (as opposed to the exception record's context) will contain
168 // context for the exception handler (which performs minidump generation),
169 // and not the context that caused the exception (which is probably what the
170 // user wants).
171 class MinidumpContext : public MinidumpStream {
172 public:
173 virtual ~MinidumpContext();
174
175 // Returns an MD_CONTEXT_* value such as MD_CONTEXT_X86 or MD_CONTEXT_PPC
176 // identifying the CPU type that the context was collected from. The
177 // returned value will identify the CPU only, and will have any other
178 // MD_CONTEXT_* bits masked out. Returns 0 on failure.
179 u_int32_t GetContextCPU() const;
180
181 // Returns raw CPU-specific context data for the named CPU type. If the
182 // context data does not match the CPU type or does not exist, returns
183 // NULL.
184 const MDRawContextAMD64* GetContextAMD64() const;
185 const MDRawContextARM* GetContextARM() const;
186 const MDRawContextPPC* GetContextPPC() const;
187 const MDRawContextSPARC* GetContextSPARC() const;
188 const MDRawContextX86* GetContextX86() const;
189
190 // Print a human-readable representation of the object to stdout.
191 void Print();
192
193 private:
194 friend class MinidumpThread;
195 friend class MinidumpException;
196
197 explicit MinidumpContext(Minidump* minidump);
198
199 bool Read(u_int32_t expected_size);
200
201 // Free the CPU-specific context structure.
202 void FreeContext();
203
204 // If the minidump contains a SYSTEM_INFO_STREAM, makes sure that the
205 // system info stream gives an appropriate CPU type matching the context
206 // CPU type in context_cpu_type. Returns false if the CPU type does not
207 // match. Returns true if the CPU type matches or if the minidump does
208 // not contain a system info stream.
209 bool CheckAgainstSystemInfo(u_int32_t context_cpu_type);
210
211 // Store this separately because of the weirdo AMD64 context
212 u_int32_t context_flags_;
213
214 // The CPU-specific context structure.
215 union {
216 MDRawContextBase* base;
217 MDRawContextX86* x86;
218 MDRawContextPPC* ppc;
219 MDRawContextAMD64* amd64;
220 // on Solaris SPARC, sparc is defined as a numeric constant,
221 // so variables can NOT be named as sparc
222 MDRawContextSPARC* ctx_sparc;
223 MDRawContextARM* arm;
224 } context_;
225 };
226
227
228 // MinidumpMemoryRegion does not wrap any MDRaw structure, and only contains
229 // a reference to an MDMemoryDescriptor. This object is intended to wrap
230 // portions of a minidump file that contain memory dumps. In normal
231 // minidumps, each MinidumpThread owns a MinidumpMemoryRegion corresponding
232 // to the thread's stack memory. MinidumpMemoryList also gives access to
233 // memory regions in its list as MinidumpMemoryRegions. This class
234 // adheres to MemoryRegion so that it may be used as a data provider to
235 // the Stackwalker family of classes.
236 class MinidumpMemoryRegion : public MinidumpObject,
237 public MemoryRegion {
238 public:
239 virtual ~MinidumpMemoryRegion();
240
241 static void set_max_bytes(u_int32_t max_bytes) { max_bytes_ = max_bytes; }
242 static u_int32_t max_bytes() { return max_bytes_; }
243
244 // Returns a pointer to the base of the memory region. Returns the
245 // cached value if available, otherwise, reads the minidump file and
246 // caches the memory region.
247 const u_int8_t* GetMemory() const;
248
249 // The address of the base of the memory region.
250 u_int64_t GetBase() const;
251
252 // The size, in bytes, of the memory region.
253 u_int32_t GetSize() const;
254
255 // Frees the cached memory region, if cached.
256 void FreeMemory();
257
258 // Obtains the value of memory at the pointer specified by address.
259 bool GetMemoryAtAddress(u_int64_t address, u_int8_t* value) const;
260 bool GetMemoryAtAddress(u_int64_t address, u_int16_t* value) const;
261 bool GetMemoryAtAddress(u_int64_t address, u_int32_t* value) const;
262 bool GetMemoryAtAddress(u_int64_t address, u_int64_t* value) const;
263
264 // Print a human-readable representation of the object to stdout.
265 void Print();
266
267 private:
268 friend class MinidumpThread;
269 friend class MinidumpMemoryList;
270
271 explicit MinidumpMemoryRegion(Minidump* minidump);
272
273 // Identify the base address and size of the memory region, and the
274 // location it may be found in the minidump file.
275 void SetDescriptor(MDMemoryDescriptor* descriptor);
276
277 // Implementation for GetMemoryAtAddress
278 template<typename T> bool GetMemoryAtAddressInternal(u_int64_t address,
279 T* value) const;
280
281 // The largest memory region that will be read from a minidump. The
282 // default is 1MB.
283 static u_int32_t max_bytes_;
284
285 // Base address and size of the memory region, and its position in the
286 // minidump file.
287 MDMemoryDescriptor* descriptor_;
288
289 // Cached memory.
290 mutable vector<u_int8_t>* memory_;
291 };
292
293
294 // MinidumpThread contains information about a thread of execution,
295 // including a snapshot of the thread's stack and CPU context. For
296 // the thread that caused an exception, the context carried by
297 // MinidumpException is probably desired instead of the CPU context
298 // provided here.
299 class MinidumpThread : public MinidumpObject {
300 public:
301 virtual ~MinidumpThread();
302
303 const MDRawThread* thread() const { return valid_ ? &thread_ : NULL; }
304 MinidumpMemoryRegion* GetMemory();
305 MinidumpContext* GetContext();
306
307 // The thread ID is used to determine if a thread is the exception thread,
308 // so a special getter is provided to retrieve this data from the
309 // MDRawThread structure. Returns false if the thread ID cannot be
310 // determined.
311 bool GetThreadID(u_int32_t *thread_id) const;
312
313 // Print a human-readable representation of the object to stdout.
314 void Print();
315
316 private:
317 // These objects are managed by MinidumpThreadList.
318 friend class MinidumpThreadList;
319
320 explicit MinidumpThread(Minidump* minidump);
321
322 // This works like MinidumpStream::Read, but is driven by
323 // MinidumpThreadList. No size checking is done, because
324 // MinidumpThreadList handles that directly.
325 bool Read();
326
327 MDRawThread thread_;
328 MinidumpMemoryRegion* memory_;
329 MinidumpContext* context_;
330 };
331
332
333 // MinidumpThreadList contains all of the threads (as MinidumpThreads) in
334 // a process.
335 class MinidumpThreadList : public MinidumpStream {
336 public:
337 virtual ~MinidumpThreadList();
338
339 static void set_max_threads(u_int32_t max_threads) {
340 max_threads_ = max_threads;
341 }
342 static u_int32_t max_threads() { return max_threads_; }
343
344 unsigned int thread_count() const {
345 return valid_ ? thread_count_ : 0;
346 }
347
348 // Sequential access to threads.
349 MinidumpThread* GetThreadAtIndex(unsigned int index) const;
350
351 // Random access to threads.
352 MinidumpThread* GetThreadByID(u_int32_t thread_id);
353
354 // Print a human-readable representation of the object to stdout.
355 void Print();
356
357 private:
358 friend class Minidump;
359
360 typedef map<u_int32_t, MinidumpThread*> IDToThreadMap;
361 typedef vector<MinidumpThread> MinidumpThreads;
362
363 static const u_int32_t kStreamType = MD_THREAD_LIST_STREAM;
364
365 explicit MinidumpThreadList(Minidump* aMinidump);
366
367 bool Read(u_int32_t aExpectedSize);
368
369 // The largest number of threads that will be read from a minidump. The
370 // default is 256.
371 static u_int32_t max_threads_;
372
373 // Access to threads using the thread ID as the key.
374 IDToThreadMap id_to_thread_map_;
375
376 // The list of threads.
377 MinidumpThreads* threads_;
378 u_int32_t thread_count_;
379 };
380
381
382 // MinidumpModule wraps MDRawModule, which contains information about loaded
383 // code modules. Access is provided to various data referenced indirectly
384 // by MDRawModule, such as the module's name and a specification for where
385 // to locate debugging information for the module.
386 class MinidumpModule : public MinidumpObject,
387 public CodeModule {
388 public:
389 virtual ~MinidumpModule();
390
391 static void set_max_cv_bytes(u_int32_t max_cv_bytes) {
392 max_cv_bytes_ = max_cv_bytes;
393 }
394 static u_int32_t max_cv_bytes() { return max_cv_bytes_; }
395
396 static void set_max_misc_bytes(u_int32_t max_misc_bytes) {
397 max_misc_bytes_ = max_misc_bytes;
398 }
399 static u_int32_t max_misc_bytes() { return max_misc_bytes_; }
400
401 const MDRawModule* module() const { return valid_ ? &module_ : NULL; }
402
403 // CodeModule implementation
404 virtual u_int64_t base_address() const {
405 return valid_ ? module_.base_of_image : static_cast<u_int64_t>(-1);
406 }
407 virtual u_int64_t size() const { return valid_ ? module_.size_of_image : 0; }
408 virtual string code_file() const;
409 virtual string code_identifier() const;
410 virtual string debug_file() const;
411 virtual string debug_identifier() const;
412 virtual string version() const;
413 virtual const CodeModule* Copy() const;
414
415 // The CodeView record, which contains information to locate the module's
416 // debugging information (pdb). This is returned as u_int8_t* because
417 // the data can be of types MDCVInfoPDB20* or MDCVInfoPDB70*, or it may be
418 // of a type unknown to Breakpad, in which case the raw data will still be
419 // returned but no byte-swapping will have been performed. Check the
420 // record's signature in the first four bytes to differentiate between
421 // the various types. Current toolchains generate modules which carry
422 // MDCVInfoPDB70 by default. Returns a pointer to the CodeView record on
423 // success, and NULL on failure. On success, the optional |size| argument
424 // is set to the size of the CodeView record.
425 const u_int8_t* GetCVRecord(u_int32_t* size);
426
427 // The miscellaneous debug record, which is obsolete. Current toolchains
428 // do not generate this type of debugging information (dbg), and this
429 // field is not expected to be present. Returns a pointer to the debugging
430 // record on success, and NULL on failure. On success, the optional |size|
431 // argument is set to the size of the debugging record.
432 const MDImageDebugMisc* GetMiscRecord(u_int32_t* size);
433
434 // Print a human-readable representation of the object to stdout.
435 void Print();
436
437 private:
438 // These objects are managed by MinidumpModuleList.
439 friend class MinidumpModuleList;
440
441 explicit MinidumpModule(Minidump* minidump);
442
443 // This works like MinidumpStream::Read, but is driven by
444 // MinidumpModuleList. No size checking is done, because
445 // MinidumpModuleList handles that directly.
446 bool Read();
447
448 // Reads indirectly-referenced data, including the module name, CodeView
449 // record, and miscellaneous debugging record. This is necessary to allow
450 // MinidumpModuleList to fully construct MinidumpModule objects without
451 // requiring seeks to read a contiguous set of MinidumpModule objects.
452 // All auxiliary data should be available when Read is called, in order to
453 // allow the CodeModule getters to be const methods.
454 bool ReadAuxiliaryData();
455
456 // The largest number of bytes that will be read from a minidump for a
457 // CodeView record or miscellaneous debugging record, respectively. The
458 // default for each is 1024.
459 static u_int32_t max_cv_bytes_;
460 static u_int32_t max_misc_bytes_;
461
462 // True after a successful Read. This is different from valid_, which is
463 // not set true until ReadAuxiliaryData also completes successfully.
464 // module_valid_ is only used by ReadAuxiliaryData and the functions it
465 // calls to determine whether the object is ready for auxiliary data to
466 // be read.
467 bool module_valid_;
468
469 // True if debug info was read from the module. Certain modules
470 // may contain debug records in formats we don't support,
471 // so we can just set this to false to ignore them.
472 bool has_debug_info_;
473
474 MDRawModule module_;
475
476 // Cached module name.
477 const string* name_;
478
479 // Cached CodeView record - this is MDCVInfoPDB20 or (likely)
480 // MDCVInfoPDB70, or possibly something else entirely. Stored as a u_int8_t
481 // because the structure contains a variable-sized string and its exact
482 // size cannot be known until it is processed.
483 vector<u_int8_t>* cv_record_;
484
485 // If cv_record_ is present, cv_record_signature_ contains a copy of the
486 // CodeView record's first four bytes, for ease of determinining the
487 // type of structure that cv_record_ contains.
488 u_int32_t cv_record_signature_;
489
490 // Cached MDImageDebugMisc (usually not present), stored as u_int8_t
491 // because the structure contains a variable-sized string and its exact
492 // size cannot be known until it is processed.
493 vector<u_int8_t>* misc_record_;
494 };
495
496
497 // MinidumpModuleList contains all of the loaded code modules for a process
498 // in the form of MinidumpModules. It maintains a map of these modules
499 // so that it may easily provide a code module corresponding to a specific
500 // address.
501 class MinidumpModuleList : public MinidumpStream,
502 public CodeModules {
503 public:
504 virtual ~MinidumpModuleList();
505
506 static void set_max_modules(u_int32_t max_modules) {
507 max_modules_ = max_modules;
508 }
509 static u_int32_t max_modules() { return max_modules_; }
510
511 // CodeModules implementation.
512 virtual unsigned int module_count() const {
513 return valid_ ? module_count_ : 0;
514 }
515 virtual const MinidumpModule* GetModuleForAddress(u_int64_t address) const;
516 virtual const MinidumpModule* GetMainModule() const;
517 virtual const MinidumpModule* GetModuleAtSequence(
518 unsigned int sequence) const;
519 virtual const MinidumpModule* GetModuleAtIndex(unsigned int index) const;
520 virtual const CodeModules* Copy() const;
521
522 // Print a human-readable representation of the object to stdout.
523 void Print();
524
525 private:
526 friend class Minidump;
527
528 typedef vector<MinidumpModule> MinidumpModules;
529
530 static const u_int32_t kStreamType = MD_MODULE_LIST_STREAM;
531
532 explicit MinidumpModuleList(Minidump* minidump);
533
534 bool Read(u_int32_t expected_size);
535
536 // The largest number of modules that will be read from a minidump. The
537 // default is 1024.
538 static u_int32_t max_modules_;
539
540 // Access to modules using addresses as the key.
541 RangeMap<u_int64_t, unsigned int> *range_map_;
542
543 MinidumpModules *modules_;
544 u_int32_t module_count_;
545 };
546
547
548 // MinidumpMemoryList corresponds to a minidump's MEMORY_LIST_STREAM stream,
549 // which references the snapshots of all of the memory regions contained
550 // within the minidump. For a normal minidump, this includes stack memory
551 // (also referenced by each MinidumpThread, in fact, the MDMemoryDescriptors
552 // here and in MDRawThread both point to exactly the same data in a
553 // minidump file, conserving space), as well as a 256-byte snapshot of memory
554 // surrounding the instruction pointer in the case of an exception. Other
555 // types of minidumps may contain significantly more memory regions. Full-
556 // memory minidumps contain all of a process' mapped memory.
557 class MinidumpMemoryList : public MinidumpStream {
558 public:
559 virtual ~MinidumpMemoryList();
560
561 static void set_max_regions(u_int32_t max_regions) {
562 max_regions_ = max_regions;
563 }
564 static u_int32_t max_regions() { return max_regions_; }
565
566 unsigned int region_count() const { return valid_ ? region_count_ : 0; }
567
568 // Sequential access to memory regions.
569 MinidumpMemoryRegion* GetMemoryRegionAtIndex(unsigned int index);
570
571 // Random access to memory regions. Returns the region encompassing
572 // the address identified by address.
573 MinidumpMemoryRegion* GetMemoryRegionForAddress(u_int64_t address);
574
575 // Print a human-readable representation of the object to stdout.
576 void Print();
577
578 private:
579 friend class Minidump;
580
581 typedef vector<MDMemoryDescriptor> MemoryDescriptors;
582 typedef vector<MinidumpMemoryRegion> MemoryRegions;
583
584 static const u_int32_t kStreamType = MD_MEMORY_LIST_STREAM;
585
586 explicit MinidumpMemoryList(Minidump* minidump);
587
588 bool Read(u_int32_t expected_size);
589
590 // The largest number of memory regions that will be read from a minidump.
591 // The default is 256.
592 static u_int32_t max_regions_;
593
594 // Access to memory regions using addresses as the key.
595 RangeMap<u_int64_t, unsigned int> *range_map_;
596
597 // The list of descriptors. This is maintained separately from the list
598 // of regions, because MemoryRegion doesn't own its MemoryDescriptor, it
599 // maintains a pointer to it. descriptors_ provides the storage for this
600 // purpose.
601 MemoryDescriptors *descriptors_;
602
603 // The list of regions.
604 MemoryRegions *regions_;
605 u_int32_t region_count_;
606 };
607
608
609 // MinidumpException wraps MDRawExceptionStream, which contains information
610 // about the exception that caused the minidump to be generated, if the
611 // minidump was generated in an exception handler called as a result of
612 // an exception. It also provides access to a MinidumpContext object,
613 // which contains the CPU context for the exception thread at the time
614 // the exception occurred.
615 class MinidumpException : public MinidumpStream {
616 public:
617 virtual ~MinidumpException();
618
619 const MDRawExceptionStream* exception() const {
620 return valid_ ? &exception_ : NULL;
621 }
622
623 // The thread ID is used to determine if a thread is the exception thread,
624 // so a special getter is provided to retrieve this data from the
625 // MDRawExceptionStream structure. Returns false if the thread ID cannot
626 // be determined.
627 bool GetThreadID(u_int32_t *thread_id) const;
628
629 MinidumpContext* GetContext();
630
631 // Print a human-readable representation of the object to stdout.
632 void Print();
633
634 private:
635 friend class Minidump;
636
637 static const u_int32_t kStreamType = MD_EXCEPTION_STREAM;
638
639 explicit MinidumpException(Minidump* minidump);
640
641 bool Read(u_int32_t expected_size);
642
643 MDRawExceptionStream exception_;
644 MinidumpContext* context_;
645 };
646
647 // MinidumpAssertion wraps MDRawAssertionInfo, which contains information
648 // about an assertion that caused the minidump to be generated.
649 class MinidumpAssertion : public MinidumpStream {
650 public:
651 virtual ~MinidumpAssertion();
652
653 const MDRawAssertionInfo* assertion() const {
654 return valid_ ? &assertion_ : NULL;
655 }
656
657 string expression() const {
658 return valid_ ? expression_ : "";
659 }
660
661 string function() const {
662 return valid_ ? function_ : "";
663 }
664
665 string file() const {
666 return valid_ ? file_ : "";
667 }
668
669 // Print a human-readable representation of the object to stdout.
670 void Print();
671
672 private:
673 friend class Minidump;
674
675 static const u_int32_t kStreamType = MD_ASSERTION_INFO_STREAM;
676
677 explicit MinidumpAssertion(Minidump* minidump);
678
679 bool Read(u_int32_t expected_size);
680
681 MDRawAssertionInfo assertion_;
682 string expression_;
683 string function_;
684 string file_;
685 };
686
687
688 // MinidumpSystemInfo wraps MDRawSystemInfo and provides information about
689 // the system on which the minidump was generated. See also MinidumpMiscInfo.
690 class MinidumpSystemInfo : public MinidumpStream {
691 public:
692 virtual ~MinidumpSystemInfo();
693
694 const MDRawSystemInfo* system_info() const {
695 return valid_ ? &system_info_ : NULL;
696 }
697
698 // GetOS and GetCPU return textual representations of the operating system
699 // and CPU that produced the minidump. Unlike most other Minidump* methods,
700 // they return string objects, not weak pointers. Defined values for
701 // GetOS() are "mac", "windows", and "linux". Defined values for GetCPU
702 // are "x86" and "ppc". These methods return an empty string when their
703 // values are unknown.
704 string GetOS();
705 string GetCPU();
706
707 // I don't know what CSD stands for, but this field is documented as
708 // returning a textual representation of the OS service pack. On other
709 // platforms, this provides additional information about an OS version
710 // level beyond major.minor.micro. Returns NULL if unknown.
711 const string* GetCSDVersion();
712
713 // If a CPU vendor string can be determined, returns a pointer to it,
714 // otherwise, returns NULL. CPU vendor strings can be determined from
715 // x86 CPUs with CPUID 0.
716 const string* GetCPUVendor();
717
718 // Print a human-readable representation of the object to stdout.
719 void Print();
720
721 private:
722 friend class Minidump;
723
724 static const u_int32_t kStreamType = MD_SYSTEM_INFO_STREAM;
725
726 explicit MinidumpSystemInfo(Minidump* minidump);
727
728 bool Read(u_int32_t expected_size);
729
730 MDRawSystemInfo system_info_;
731
732 // Textual representation of the OS service pack, for minidumps produced
733 // by MiniDumpWriteDump on Windows.
734 const string* csd_version_;
735
736 // A string identifying the CPU vendor, if known.
737 const string* cpu_vendor_;
738 };
739
740
741 // MinidumpMiscInfo wraps MDRawMiscInfo and provides information about
742 // the process that generated the minidump, and optionally additional system
743 // information. See also MinidumpSystemInfo.
744 class MinidumpMiscInfo : public MinidumpStream {
745 public:
746 const MDRawMiscInfo* misc_info() const {
747 return valid_ ? &misc_info_ : NULL;
748 }
749
750 // Print a human-readable representation of the object to stdout.
751 void Print();
752
753 private:
754 friend class Minidump;
755
756 static const u_int32_t kStreamType = MD_MISC_INFO_STREAM;
757
758 explicit MinidumpMiscInfo(Minidump* minidump_);
759
760 bool Read(u_int32_t expected_size_);
761
762 MDRawMiscInfo misc_info_;
763 };
764
765
766 // MinidumpBreakpadInfo wraps MDRawBreakpadInfo, which is an optional stream in
767 // a minidump that provides additional information about the process state
768 // at the time the minidump was generated.
769 class MinidumpBreakpadInfo : public MinidumpStream {
770 public:
771 const MDRawBreakpadInfo* breakpad_info() const {
772 return valid_ ? &breakpad_info_ : NULL;
773 }
774
775 // These thread IDs are used to determine if threads deserve special
776 // treatment, so special getters are provided to retrieve this data from
777 // the MDRawBreakpadInfo structure. The getters return false if the thread
778 // IDs cannot be determined.
779 bool GetDumpThreadID(u_int32_t *thread_id) const;
780 bool GetRequestingThreadID(u_int32_t *thread_id) const;
781
782 // Print a human-readable representation of the object to stdout.
783 void Print();
784
785 private:
786 friend class Minidump;
787
788 static const u_int32_t kStreamType = MD_BREAKPAD_INFO_STREAM;
789
790 explicit MinidumpBreakpadInfo(Minidump* minidump_);
791
792 bool Read(u_int32_t expected_size_);
793
794 MDRawBreakpadInfo breakpad_info_;
795 };
796
797 // MinidumpMemoryInfo wraps MDRawMemoryInfo, which provides information
798 // about mapped memory regions in a process, including their ranges
799 // and protection.
800 class MinidumpMemoryInfo : public MinidumpObject {
801 public:
802 const MDRawMemoryInfo* info() const { return valid_ ? &memory_info_ : NULL; }
803
804 // The address of the base of the memory region.
805 u_int64_t GetBase() const { return valid_ ? memory_info_.base_address : 0; }
806
807 // The size, in bytes, of the memory region.
808 u_int32_t GetSize() const { return valid_ ? memory_info_.region_size : 0; }
809
810 // Return true if the memory protection allows execution.
811 bool IsExecutable() const;
812
813 // Return true if the memory protection allows writing.
814 bool IsWritable() const;
815
816 // Print a human-readable representation of the object to stdout.
817 void Print();
818
819 private:
820 // These objects are managed by MinidumpMemoryInfoList.
821 friend class MinidumpMemoryInfoList;
822
823 explicit MinidumpMemoryInfo(Minidump* minidump);
824
825 // This works like MinidumpStream::Read, but is driven by
826 // MinidumpMemoryInfoList. No size checking is done, because
827 // MinidumpMemoryInfoList handles that directly.
828 bool Read();
829
830 MDRawMemoryInfo memory_info_;
831 };
832
833 // MinidumpMemoryInfoList contains a list of information about
834 // mapped memory regions for a process in the form of MDRawMemoryInfo.
835 // It maintains a map of these structures so that it may easily provide
836 // info corresponding to a specific address.
837 class MinidumpMemoryInfoList : public MinidumpStream {
838 public:
839 virtual ~MinidumpMemoryInfoList();
840
841 unsigned int info_count() const { return valid_ ? info_count_ : 0; }
842
843 const MinidumpMemoryInfo* GetMemoryInfoForAddress(u_int64_t address) const;
844 const MinidumpMemoryInfo* GetMemoryInfoAtIndex(unsigned int index) const;
845
846 // Print a human-readable representation of the object to stdout.
847 void Print();
848
849 private:
850 friend class Minidump;
851
852 typedef vector<MinidumpMemoryInfo> MinidumpMemoryInfos;
853
854 static const u_int32_t kStreamType = MD_MEMORY_INFO_LIST_STREAM;
855
856 explicit MinidumpMemoryInfoList(Minidump* minidump);
857
858 bool Read(u_int32_t expected_size);
859
860 // Access to memory info using addresses as the key.
861 RangeMap<u_int64_t, unsigned int> *range_map_;
862
863 MinidumpMemoryInfos* infos_;
864 u_int32_t info_count_;
865 };
866
867
868 // Minidump is the user's interface to a minidump file. It wraps MDRawHeader
869 // and provides access to the minidump's top-level stream directory.
870 class Minidump {
871 public:
872 // path is the pathname of a file containing the minidump.
873 explicit Minidump(const string& path);
874 // input is an istream wrapping minidump data. Minidump holds a
875 // weak pointer to input, and the caller must ensure that the stream
876 // is valid as long as the Minidump object is.
877 explicit Minidump(std::istream& input);
878
879 virtual ~Minidump();
880
881 // path may be empty if the minidump was not opened from a file
882 virtual string path() const {
883 return path_;
884 }
885 static void set_max_streams(u_int32_t max_streams) {
886 max_streams_ = max_streams;
887 }
888 static u_int32_t max_streams() { return max_streams_; }
889
890 static void set_max_string_length(u_int32_t max_string_length) {
891 max_string_length_ = max_string_length;
892 }
893 static u_int32_t max_string_length() { return max_string_length_; }
894
895 virtual const MDRawHeader* header() const { return valid_ ? &header_ : NULL; }
896
897 // Reads the minidump file's header and top-level stream directory.
898 // The minidump is expected to be positioned at the beginning of the
899 // header. Read() sets up the stream list and map, and validates the
900 // Minidump object.
901 virtual bool Read();
902
903 // The next set of methods are stubs that call GetStream. They exist to
904 // force code generation of the templatized API within the module, and
905 // to avoid exposing an ugly API (GetStream needs to accept a garbage
906 // parameter).
907 virtual MinidumpThreadList* GetThreadList();
908 MinidumpModuleList* GetModuleList();
909 MinidumpMemoryList* GetMemoryList();
910 MinidumpException* GetException();
911 MinidumpAssertion* GetAssertion();
912 MinidumpSystemInfo* GetSystemInfo();
913 MinidumpMiscInfo* GetMiscInfo();
914 MinidumpBreakpadInfo* GetBreakpadInfo();
915 MinidumpMemoryInfoList* GetMemoryInfoList();
916
917 // The next set of methods are provided for users who wish to access
918 // data in minidump files directly, while leveraging the rest of
919 // this class and related classes to handle the basic minidump
920 // structure and known stream types.
921
922 unsigned int GetDirectoryEntryCount() const {
923 return valid_ ? header_.stream_count : 0;
924 }
925 const MDRawDirectory* GetDirectoryEntryAtIndex(unsigned int index) const;
926
927 // The next 2 methods are lower-level I/O routines. They use fd_.
928
929 // Reads count bytes from the minidump at the current position into
930 // the storage area pointed to by bytes. bytes must be of sufficient
931 // size. After the read, the file position is advanced by count.
932 bool ReadBytes(void* bytes, size_t count);
933
934 // Sets the position of the minidump file to offset.
935 bool SeekSet(off_t offset);
936
937 // Returns the current position of the minidump file.
938 off_t Tell();
939
940 // The next 2 methods are medium-level I/O routines.
941
942 // ReadString returns a string which is owned by the caller! offset
943 // specifies the offset that a length-encoded string is stored at in the
944 // minidump file.
945 string* ReadString(off_t offset);
946
947 // SeekToStreamType positions the file at the beginning of a stream
948 // identified by stream_type, and informs the caller of the stream's
949 // length by setting *stream_length. Because stream_map maps each stream
950 // type to only one stream in the file, this might mislead the user into
951 // thinking that the stream that this seeks to is the only stream with
952 // type stream_type. That can't happen for streams that these classes
953 // deal with directly, because they're only supposed to be present in the
954 // file singly, and that's verified when stream_map_ is built. Users who
955 // are looking for other stream types should be aware of this
956 // possibility, and consider using GetDirectoryEntryAtIndex (possibly
957 // with GetDirectoryEntryCount) if expecting multiple streams of the same
958 // type in a single minidump file.
959 bool SeekToStreamType(u_int32_t stream_type, u_int32_t* stream_length);
960
961 bool swap() const { return valid_ ? swap_ : false; }
962
963 // Print a human-readable representation of the object to stdout.
964 void Print();
965
966 private:
967 // MinidumpStreamInfo is used in the MinidumpStreamMap. It lets
968 // the Minidump object locate interesting streams quickly, and
969 // provides a convenient place to stash MinidumpStream objects.
970 struct MinidumpStreamInfo {
971 MinidumpStreamInfo() : stream_index(0), stream(NULL) {}
972 ~MinidumpStreamInfo() { delete stream; }
973
974 // Index into the MinidumpDirectoryEntries vector
975 unsigned int stream_index;
976
977 // Pointer to the stream if cached, or NULL if not yet populated
978 MinidumpStream* stream;
979 };
980
981 typedef vector<MDRawDirectory> MinidumpDirectoryEntries;
982 typedef map<u_int32_t, MinidumpStreamInfo> MinidumpStreamMap;
983
984 template<typename T> T* GetStream(T** stream);
985
986 // Opens the minidump file, or if already open, seeks to the beginning.
987 bool Open();
988
989 // The largest number of top-level streams that will be read from a minidump.
990 // Note that streams are only read (and only consume memory) as needed,
991 // when directed by the caller. The default is 128.
992 static u_int32_t max_streams_;
993
994 // The maximum length of a UTF-16 string that will be read from a minidump
995 // in 16-bit words. The default is 1024. UTF-16 strings are converted
996 // to UTF-8 when stored in memory, and each UTF-16 word will be represented
997 // by as many as 3 bytes in UTF-8.
998 static unsigned int max_string_length_;
999
1000 MDRawHeader header_;
1001
1002 // The list of streams.
1003 MinidumpDirectoryEntries* directory_;
1004
1005 // Access to streams using the stream type as the key.
1006 MinidumpStreamMap* stream_map_;
1007
1008 // The pathname of the minidump file to process, set in the constructor.
1009 // This may be empty if the minidump was opened directly from a stream.
1010 const string path_;
1011
1012 // The stream for all file I/O. Used by ReadBytes and SeekSet.
1013 // Set based on the path in Open, or directly in the constructor.
1014 std::istream* stream_;
1015
1016 // swap_ is true if the minidump file should be byte-swapped. If the
1017 // minidump was produced by a CPU that is other-endian than the CPU
1018 // processing the minidump, this will be true. If the two CPUs are
1019 // same-endian, this will be false.
1020 bool swap_;
1021
1022 // Validity of the Minidump structure, false immediately after
1023 // construction or after a failed Read(); true following a successful
1024 // Read().
1025 bool valid_;
1026 };
1027
1028
1029 } // namespace google_breakpad
1030
1031
1032 #endif // GOOGLE_BREAKPAD_PROCESSOR_MINIDUMP_H__
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698