OLD | NEW |
| (Empty) |
1 // Copyright 2007-2009 Google Inc. | |
2 // | |
3 // Licensed under the Apache License, Version 2.0 (the "License"); | |
4 // you may not use this file except in compliance with the License. | |
5 // You may obtain a copy of the License at | |
6 // | |
7 // http://www.apache.org/licenses/LICENSE-2.0 | |
8 // | |
9 // Unless required by applicable law or agreed to in writing, software | |
10 // distributed under the License is distributed on an "AS IS" BASIS, | |
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
12 // See the License for the specific language governing permissions and | |
13 // limitations under the License. | |
14 // ======================================================================== | |
15 | |
16 #include <vector> | |
17 #include "omaha/base/debug.h" | |
18 #include "omaha/base/scoped_ptr_cotask.h" | |
19 #include "omaha/testing/unit_test.h" | |
20 | |
21 // TestMallocSpy monitors CoTaskMemAlloc/Free, and records statistics about | |
22 // them. | |
23 | |
24 class TestMallocSpy : public IMallocSpy { | |
25 public: | |
26 struct Alloc { | |
27 size_t size; | |
28 void* ptr; | |
29 bool freed; | |
30 }; | |
31 | |
32 TestMallocSpy() : ref_(1) {} | |
33 | |
34 virtual ~TestMallocSpy() {} | |
35 | |
36 size_t NumAllocs() const { return allocs_.size(); } | |
37 | |
38 const Alloc* GetAlloc(size_t i) const { | |
39 if (i >= allocs_.size()) | |
40 return NULL; | |
41 return &allocs_[i]; | |
42 } | |
43 | |
44 size_t NumFrees() const { return frees_.size(); } | |
45 | |
46 const Alloc* GetFree(size_t i) const { | |
47 if (i >= frees_.size()) | |
48 return NULL; | |
49 ASSERT1(frees_[i] < allocs_.size()); | |
50 return &allocs_[frees_[i]]; | |
51 } | |
52 | |
53 // IUnknown methods | |
54 virtual HRESULT STDMETHODCALLTYPE QueryInterface(REFIID riid, void** ppv) { | |
55 if (NULL == ppv) { | |
56 return E_POINTER; | |
57 } | |
58 if (::IsEqualIID(__uuidof(IUnknown), riid) || | |
59 ::IsEqualIID(__uuidof(IMallocSpy), riid)) { | |
60 AddRef(); | |
61 *ppv = static_cast<IUnknown*>(this); | |
62 return S_OK; | |
63 } | |
64 *ppv = NULL; | |
65 return E_NOINTERFACE; | |
66 } | |
67 virtual ULONG STDMETHODCALLTYPE AddRef() { | |
68 return ++ref_; | |
69 } | |
70 virtual ULONG STDMETHODCALLTYPE Release() { | |
71 ULONG r = --ref_; | |
72 if (0 == r) { | |
73 delete this; | |
74 } | |
75 return r; | |
76 } | |
77 | |
78 // IMallocSpy methods | |
79 virtual SIZE_T STDMETHODCALLTYPE PreAlloc(SIZE_T request_size) { | |
80 Alloc a = { request_size, NULL, false }; | |
81 allocs_.push_back(a); | |
82 return request_size; | |
83 } | |
84 virtual void* STDMETHODCALLTYPE PostAlloc(void* actual) { | |
85 ASSERT1(!allocs_.empty()); | |
86 ASSERT1(NULL == allocs_.back().ptr); | |
87 allocs_.back().ptr = actual; | |
88 return actual; | |
89 } | |
90 virtual void* STDMETHODCALLTYPE PreFree(void* request, BOOL spyed) { | |
91 if (spyed) { | |
92 bool found = false; | |
93 for (size_t i = 0; i < allocs_.size(); ++i) { | |
94 if ((allocs_[i].ptr == request) && !allocs_[i].freed) { | |
95 allocs_[i].freed = true; | |
96 frees_.push_back(i); | |
97 found = true; | |
98 break; | |
99 } | |
100 } | |
101 ASSERT1(found); | |
102 } | |
103 return request; | |
104 } | |
105 virtual void STDMETHODCALLTYPE PostFree(BOOL) {} | |
106 virtual SIZE_T STDMETHODCALLTYPE PreRealloc(void*, | |
107 SIZE_T request_size, | |
108 void**, | |
109 BOOL) { | |
110 return request_size; | |
111 } | |
112 virtual void* STDMETHODCALLTYPE PostRealloc(void* actual, BOOL) { | |
113 return actual; | |
114 } | |
115 virtual void* STDMETHODCALLTYPE PreGetSize(void* request, BOOL) { | |
116 return request; | |
117 } | |
118 virtual SIZE_T STDMETHODCALLTYPE PostGetSize(SIZE_T actual_size, BOOL) { | |
119 return actual_size; | |
120 } | |
121 virtual void* STDMETHODCALLTYPE PreDidAlloc(void* request, BOOL) { | |
122 return request; | |
123 } | |
124 virtual int STDMETHODCALLTYPE PostDidAlloc(void*, BOOL, int fActual) { | |
125 return fActual; | |
126 } | |
127 virtual void STDMETHODCALLTYPE PreHeapMinimize() {} | |
128 virtual void STDMETHODCALLTYPE PostHeapMinimize() {} | |
129 | |
130 private: | |
131 ULONG ref_; | |
132 std::vector<Alloc> allocs_; | |
133 std::vector<size_t> frees_; | |
134 }; | |
135 | |
136 // MallocTest runs tests with a TestMallocSpy installed. | |
137 | |
138 class MallocTest : public testing::Test { | |
139 public: | |
140 virtual void SetUp() { | |
141 spy_.Attach(new TestMallocSpy); | |
142 ASSERT_SUCCEEDED(::CoRegisterMallocSpy(spy_.p)); | |
143 EXPECT_EQ(0, spy()->NumAllocs()); | |
144 } | |
145 virtual void TearDown() { | |
146 EXPECT_EQ(spy()->NumAllocs(), spy()->NumFrees()); | |
147 ASSERT_SUCCEEDED(::CoRevokeMallocSpy()); | |
148 } | |
149 TestMallocSpy* spy() { return spy_.p; } | |
150 | |
151 private: | |
152 CComPtr<TestMallocSpy> spy_; | |
153 }; | |
154 | |
155 TEST_F(MallocTest, StrDupCoTask) { | |
156 const char kNarrowString[] = "Hello"; | |
157 const size_t kNarrowLen = strlen(kNarrowString); | |
158 const wchar_t kWideString[] = L"World"; | |
159 const size_t kWideLen = wcslen(kWideString); | |
160 | |
161 // Test StrDupCoTask with narrow strings. | |
162 char* narrow_copy = StrDupCoTask(kNarrowString, kNarrowLen); | |
163 | |
164 ASSERT_EQ(1, spy()->NumAllocs()); | |
165 EXPECT_EQ(0, spy()->NumFrees()); | |
166 EXPECT_EQ((kNarrowLen + 1) * sizeof(char), spy()->GetAlloc(0)->size); | |
167 EXPECT_EQ(narrow_copy, spy()->GetAlloc(0)->ptr); | |
168 EXPECT_FALSE(spy()->GetAlloc(0)->freed); | |
169 | |
170 ::CoTaskMemFree(narrow_copy); | |
171 | |
172 ASSERT_EQ(1, spy()->NumFrees()); | |
173 EXPECT_EQ(spy()->GetAlloc(0), spy()->GetFree(0)); | |
174 EXPECT_EQ(narrow_copy, spy()->GetFree(0)->ptr); | |
175 EXPECT_TRUE(spy()->GetFree(0)->freed); | |
176 | |
177 // Test StrDupCoTask with wide strings. | |
178 wchar_t* wide_copy = StrDupCoTask(kWideString, kWideLen); | |
179 | |
180 ASSERT_EQ(2, spy()->NumAllocs()); | |
181 EXPECT_EQ(1, spy()->NumFrees()); | |
182 EXPECT_EQ((kWideLen + 1) * sizeof(wchar_t), spy()->GetAlloc(1)->size); | |
183 EXPECT_EQ(wide_copy, spy()->GetAlloc(1)->ptr); | |
184 EXPECT_FALSE(spy()->GetAlloc(1)->freed); | |
185 | |
186 ::CoTaskMemFree(wide_copy); | |
187 | |
188 ASSERT_EQ(2, spy()->NumFrees()); | |
189 EXPECT_EQ(spy()->GetAlloc(1), spy()->GetFree(1)); | |
190 EXPECT_EQ(wide_copy, spy()->GetFree(1)->ptr); | |
191 EXPECT_TRUE(spy()->GetFree(1)->freed); | |
192 } | |
193 | |
194 TEST_F(MallocTest, scoped_ptr_cotask) { | |
195 scoped_ptr_cotask<wchar_t>* string_ptr; | |
196 | |
197 // Creating an empty ptr does no additional allocations. | |
198 string_ptr = new scoped_ptr_cotask<wchar_t>; | |
199 ASSERT_EQ(0, spy()->NumAllocs()); | |
200 EXPECT_EQ(0, spy()->NumFrees()); | |
201 | |
202 // Assigning a string does not additional allocations. | |
203 string_ptr->reset(StrDupCoTask(L"hi", 2)); | |
204 ASSERT_EQ(1, spy()->NumAllocs()); | |
205 EXPECT_EQ(0, spy()->NumFrees()); | |
206 EXPECT_EQ(3 * sizeof(wchar_t), spy()->GetAlloc(0)->size); | |
207 EXPECT_FALSE(spy()->GetAlloc(0)->freed); | |
208 | |
209 EXPECT_EQ(0, memcmp(string_ptr->get(), L"hi", 3 * sizeof(wchar_t))); | |
210 | |
211 // Replacing the string frees the old memory. | |
212 string_ptr->reset(StrDupCoTask(L"there", 5)); | |
213 ASSERT_EQ(2, spy()->NumAllocs()); | |
214 EXPECT_EQ(1, spy()->NumFrees()); | |
215 EXPECT_EQ(6 * sizeof(wchar_t), spy()->GetAlloc(1)->size); | |
216 EXPECT_TRUE(spy()->GetAlloc(0)->freed); | |
217 EXPECT_FALSE(spy()->GetAlloc(1)->freed); | |
218 | |
219 // Deleting the string frees the memory. | |
220 delete string_ptr; | |
221 ASSERT_EQ(2, spy()->NumAllocs()); | |
222 EXPECT_EQ(2, spy()->NumFrees()); | |
223 EXPECT_TRUE(spy()->GetAlloc(1)->freed); | |
224 } | |
225 | |
226 TEST_F(MallocTest, scoped_array_cotask) { | |
227 const size_t kSize = 5; | |
228 scoped_array_cotask<wchar_t*>* string_array; | |
229 | |
230 // Allocate an array of 5 empty elements. | |
231 string_array = new scoped_array_cotask<wchar_t*>(kSize); | |
232 ASSERT_EQ(kSize, string_array->size()); | |
233 ASSERT_EQ(1, spy()->NumAllocs()); | |
234 EXPECT_EQ(0, spy()->NumFrees()); | |
235 EXPECT_EQ(kSize * sizeof(wchar_t*), spy()->GetAlloc(0)->size); | |
236 | |
237 // Populate array elements. | |
238 for (size_t i = 0; i < kSize; ++i) { | |
239 EXPECT_TRUE(NULL == (*string_array)[i]); | |
240 (*string_array)[i] = StrDupCoTask(L"hi", 2); | |
241 } | |
242 EXPECT_EQ(1 + kSize, spy()->NumAllocs()); | |
243 EXPECT_EQ(0, spy()->NumFrees()); | |
244 | |
245 // Get is idempotent. | |
246 wchar_t** ptr = string_array->get(); | |
247 EXPECT_EQ(ptr, string_array->get()); | |
248 EXPECT_EQ(ptr, spy()->GetAlloc(0)->ptr); | |
249 EXPECT_EQ(0, spy()->NumFrees()); | |
250 | |
251 // Release is not idempotent, but does not free memory. | |
252 ptr = string_array->release(); | |
253 EXPECT_TRUE(NULL == string_array->release()); | |
254 EXPECT_EQ(ptr, spy()->GetAlloc(0)->ptr); | |
255 EXPECT_EQ(0, spy()->NumFrees()); | |
256 | |
257 // Deleting a released array does not free memory. | |
258 delete string_array; | |
259 EXPECT_EQ(0, spy()->NumFrees()); | |
260 | |
261 // Constructing an array from existing memory, does not cause allocations. | |
262 string_array = new scoped_array_cotask<wchar_t*>(kSize, ptr); | |
263 EXPECT_EQ(1 + kSize, spy()->NumAllocs()); | |
264 EXPECT_EQ(0, spy()->NumFrees()); | |
265 | |
266 // Deleting an array frees all elements and the array. | |
267 delete string_array; | |
268 ASSERT_EQ(1 + kSize, spy()->NumAllocs()); | |
269 EXPECT_EQ(1 + kSize, spy()->NumFrees()); | |
270 for (size_t i = 0; i < spy()->NumAllocs(); ++i) { | |
271 EXPECT_TRUE(spy()->GetAlloc(i)->freed); | |
272 } | |
273 } | |
274 | |
275 TEST_F(MallocTest, scoped_array_cotask_reset) { | |
276 // This test exposes a former bug, where reset did not reallocate a new | |
277 // array after being released. | |
278 | |
279 // Allocate an empty array. | |
280 const size_t kSize = 5; | |
281 scoped_array_cotask<int*>* array = new scoped_array_cotask<int*>(kSize); | |
282 ASSERT_EQ(1, spy()->NumAllocs()); | |
283 | |
284 // Release the array, to verify it was allocated. | |
285 int** first_raw_array = array->release(); | |
286 EXPECT_TRUE(NULL != first_raw_array); | |
287 EXPECT_FALSE(spy()->GetAlloc(0)->freed); | |
288 | |
289 // Allocate another empty array. | |
290 array->reset(kSize); | |
291 ASSERT_EQ(2, spy()->NumAllocs()); | |
292 | |
293 // Release the second array, to verify it was allocated. | |
294 int** second_raw_array = array->release(); | |
295 EXPECT_TRUE(NULL != second_raw_array); | |
296 EXPECT_FALSE(spy()->GetAlloc(1)->freed); | |
297 | |
298 // Use the scoped_array_cotask object to dispose of the allocated arrays. | |
299 array->reset(kSize, first_raw_array); | |
300 array->reset(kSize, second_raw_array); | |
301 delete array; | |
302 | |
303 // Check the final conditions. | |
304 ASSERT_EQ(2, spy()->NumAllocs()); | |
305 for (size_t i = 0; i < spy()->NumAllocs(); ++i) { | |
306 EXPECT_TRUE(spy()->GetAlloc(i)->freed); | |
307 } | |
308 } | |
OLD | NEW |