| Index: flac/src/libFLAC/fixed.c
|
| ===================================================================
|
| --- flac/src/libFLAC/fixed.c (revision 0)
|
| +++ flac/src/libFLAC/fixed.c (revision 0)
|
| @@ -0,0 +1,435 @@
|
| +/* libFLAC - Free Lossless Audio Codec library
|
| + * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007 Josh Coalson
|
| + *
|
| + * Redistribution and use in source and binary forms, with or without
|
| + * modification, are permitted provided that the following conditions
|
| + * are met:
|
| + *
|
| + * - Redistributions of source code must retain the above copyright
|
| + * notice, this list of conditions and the following disclaimer.
|
| + *
|
| + * - Redistributions in binary form must reproduce the above copyright
|
| + * notice, this list of conditions and the following disclaimer in the
|
| + * documentation and/or other materials provided with the distribution.
|
| + *
|
| + * - Neither the name of the Xiph.org Foundation nor the names of its
|
| + * contributors may be used to endorse or promote products derived from
|
| + * this software without specific prior written permission.
|
| + *
|
| + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
| + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
| + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
| + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| + */
|
| +
|
| +#if HAVE_CONFIG_H
|
| +# include <config.h>
|
| +#endif
|
| +
|
| +#include <math.h>
|
| +#include <string.h>
|
| +#include "private/bitmath.h"
|
| +#include "private/fixed.h"
|
| +#include "FLAC/assert.h"
|
| +
|
| +#ifndef M_LN2
|
| +/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
|
| +#define M_LN2 0.69314718055994530942
|
| +#endif
|
| +
|
| +#ifdef min
|
| +#undef min
|
| +#endif
|
| +#define min(x,y) ((x) < (y)? (x) : (y))
|
| +
|
| +#ifdef local_abs
|
| +#undef local_abs
|
| +#endif
|
| +#define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
|
| +
|
| +#ifdef FLAC__INTEGER_ONLY_LIBRARY
|
| +/* rbps stands for residual bits per sample
|
| + *
|
| + * (ln(2) * err)
|
| + * rbps = log (-----------)
|
| + * 2 ( n )
|
| + */
|
| +static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n)
|
| +{
|
| + FLAC__uint32 rbps;
|
| + unsigned bits; /* the number of bits required to represent a number */
|
| + int fracbits; /* the number of bits of rbps that comprise the fractional part */
|
| +
|
| + FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
|
| + FLAC__ASSERT(err > 0);
|
| + FLAC__ASSERT(n > 0);
|
| +
|
| + FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
|
| + if(err <= n)
|
| + return 0;
|
| + /*
|
| + * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
|
| + * These allow us later to know we won't lose too much precision in the
|
| + * fixed-point division (err<<fracbits)/n.
|
| + */
|
| +
|
| + fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1);
|
| +
|
| + err <<= fracbits;
|
| + err /= n;
|
| + /* err now holds err/n with fracbits fractional bits */
|
| +
|
| + /*
|
| + * Whittle err down to 16 bits max. 16 significant bits is enough for
|
| + * our purposes.
|
| + */
|
| + FLAC__ASSERT(err > 0);
|
| + bits = FLAC__bitmath_ilog2(err)+1;
|
| + if(bits > 16) {
|
| + err >>= (bits-16);
|
| + fracbits -= (bits-16);
|
| + }
|
| + rbps = (FLAC__uint32)err;
|
| +
|
| + /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
|
| + rbps *= FLAC__FP_LN2;
|
| + fracbits += 16;
|
| + FLAC__ASSERT(fracbits >= 0);
|
| +
|
| + /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
|
| + {
|
| + const int f = fracbits & 3;
|
| + if(f) {
|
| + rbps >>= f;
|
| + fracbits -= f;
|
| + }
|
| + }
|
| +
|
| + rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
|
| +
|
| + if(rbps == 0)
|
| + return 0;
|
| +
|
| + /*
|
| + * The return value must have 16 fractional bits. Since the whole part
|
| + * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
|
| + * must be >= -3, these assertion allows us to be able to shift rbps
|
| + * left if necessary to get 16 fracbits without losing any bits of the
|
| + * whole part of rbps.
|
| + *
|
| + * There is a slight chance due to accumulated error that the whole part
|
| + * will require 6 bits, so we use 6 in the assertion. Really though as
|
| + * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
|
| + */
|
| + FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
|
| + FLAC__ASSERT(fracbits >= -3);
|
| +
|
| + /* now shift the decimal point into place */
|
| + if(fracbits < 16)
|
| + return rbps << (16-fracbits);
|
| + else if(fracbits > 16)
|
| + return rbps >> (fracbits-16);
|
| + else
|
| + return rbps;
|
| +}
|
| +
|
| +static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n)
|
| +{
|
| + FLAC__uint32 rbps;
|
| + unsigned bits; /* the number of bits required to represent a number */
|
| + int fracbits; /* the number of bits of rbps that comprise the fractional part */
|
| +
|
| + FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
|
| + FLAC__ASSERT(err > 0);
|
| + FLAC__ASSERT(n > 0);
|
| +
|
| + FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
|
| + if(err <= n)
|
| + return 0;
|
| + /*
|
| + * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
|
| + * These allow us later to know we won't lose too much precision in the
|
| + * fixed-point division (err<<fracbits)/n.
|
| + */
|
| +
|
| + fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1);
|
| +
|
| + err <<= fracbits;
|
| + err /= n;
|
| + /* err now holds err/n with fracbits fractional bits */
|
| +
|
| + /*
|
| + * Whittle err down to 16 bits max. 16 significant bits is enough for
|
| + * our purposes.
|
| + */
|
| + FLAC__ASSERT(err > 0);
|
| + bits = FLAC__bitmath_ilog2_wide(err)+1;
|
| + if(bits > 16) {
|
| + err >>= (bits-16);
|
| + fracbits -= (bits-16);
|
| + }
|
| + rbps = (FLAC__uint32)err;
|
| +
|
| + /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
|
| + rbps *= FLAC__FP_LN2;
|
| + fracbits += 16;
|
| + FLAC__ASSERT(fracbits >= 0);
|
| +
|
| + /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
|
| + {
|
| + const int f = fracbits & 3;
|
| + if(f) {
|
| + rbps >>= f;
|
| + fracbits -= f;
|
| + }
|
| + }
|
| +
|
| + rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
|
| +
|
| + if(rbps == 0)
|
| + return 0;
|
| +
|
| + /*
|
| + * The return value must have 16 fractional bits. Since the whole part
|
| + * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
|
| + * must be >= -3, these assertion allows us to be able to shift rbps
|
| + * left if necessary to get 16 fracbits without losing any bits of the
|
| + * whole part of rbps.
|
| + *
|
| + * There is a slight chance due to accumulated error that the whole part
|
| + * will require 6 bits, so we use 6 in the assertion. Really though as
|
| + * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
|
| + */
|
| + FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
|
| + FLAC__ASSERT(fracbits >= -3);
|
| +
|
| + /* now shift the decimal point into place */
|
| + if(fracbits < 16)
|
| + return rbps << (16-fracbits);
|
| + else if(fracbits > 16)
|
| + return rbps >> (fracbits-16);
|
| + else
|
| + return rbps;
|
| +}
|
| +#endif
|
| +
|
| +#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
| +unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
|
| +#else
|
| +unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
|
| +#endif
|
| +{
|
| + FLAC__int32 last_error_0 = data[-1];
|
| + FLAC__int32 last_error_1 = data[-1] - data[-2];
|
| + FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
|
| + FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
|
| + FLAC__int32 error, save;
|
| + FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
|
| + unsigned i, order;
|
| +
|
| + for(i = 0; i < data_len; i++) {
|
| + error = data[i] ; total_error_0 += local_abs(error); save = error;
|
| + error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
|
| + error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
|
| + error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
|
| + error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
|
| + }
|
| +
|
| + if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
|
| + order = 0;
|
| + else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
|
| + order = 1;
|
| + else if(total_error_2 < min(total_error_3, total_error_4))
|
| + order = 2;
|
| + else if(total_error_3 < total_error_4)
|
| + order = 3;
|
| + else
|
| + order = 4;
|
| +
|
| + /* Estimate the expected number of bits per residual signal sample. */
|
| + /* 'total_error*' is linearly related to the variance of the residual */
|
| + /* signal, so we use it directly to compute E(|x|) */
|
| + FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
|
| +#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
| + residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| +#else
|
| + residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0;
|
| + residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0;
|
| + residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0;
|
| + residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0;
|
| + residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0;
|
| +#endif
|
| +
|
| + return order;
|
| +}
|
| +
|
| +#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
| +unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
|
| +#else
|
| +unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
|
| +#endif
|
| +{
|
| + FLAC__int32 last_error_0 = data[-1];
|
| + FLAC__int32 last_error_1 = data[-1] - data[-2];
|
| + FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
|
| + FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
|
| + FLAC__int32 error, save;
|
| + /* total_error_* are 64-bits to avoid overflow when encoding
|
| + * erratic signals when the bits-per-sample and blocksize are
|
| + * large.
|
| + */
|
| + FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
|
| + unsigned i, order;
|
| +
|
| + for(i = 0; i < data_len; i++) {
|
| + error = data[i] ; total_error_0 += local_abs(error); save = error;
|
| + error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
|
| + error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
|
| + error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
|
| + error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
|
| + }
|
| +
|
| + if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
|
| + order = 0;
|
| + else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
|
| + order = 1;
|
| + else if(total_error_2 < min(total_error_3, total_error_4))
|
| + order = 2;
|
| + else if(total_error_3 < total_error_4)
|
| + order = 3;
|
| + else
|
| + order = 4;
|
| +
|
| + /* Estimate the expected number of bits per residual signal sample. */
|
| + /* 'total_error*' is linearly related to the variance of the residual */
|
| + /* signal, so we use it directly to compute E(|x|) */
|
| + FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
|
| + FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
|
| +#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
| +#if defined _MSC_VER || defined __MINGW32__
|
| + /* with MSVC you have to spoon feed it the casting */
|
| + residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| +#else
|
| + residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| + residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
|
| +#endif
|
| +#else
|
| + residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0;
|
| + residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0;
|
| + residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0;
|
| + residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0;
|
| + residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0;
|
| +#endif
|
| +
|
| + return order;
|
| +}
|
| +
|
| +void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[])
|
| +{
|
| + const int idata_len = (int)data_len;
|
| + int i;
|
| +
|
| + switch(order) {
|
| + case 0:
|
| + FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
|
| + memcpy(residual, data, sizeof(residual[0])*data_len);
|
| + break;
|
| + case 1:
|
| + for(i = 0; i < idata_len; i++)
|
| + residual[i] = data[i] - data[i-1];
|
| + break;
|
| + case 2:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
|
| +#else
|
| + residual[i] = data[i] - 2*data[i-1] + data[i-2];
|
| +#endif
|
| + break;
|
| + case 3:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
|
| +#else
|
| + residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3];
|
| +#endif
|
| + break;
|
| + case 4:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
|
| +#else
|
| + residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4];
|
| +#endif
|
| + break;
|
| + default:
|
| + FLAC__ASSERT(0);
|
| + }
|
| +}
|
| +
|
| +void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[])
|
| +{
|
| + int i, idata_len = (int)data_len;
|
| +
|
| + switch(order) {
|
| + case 0:
|
| + FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
|
| + memcpy(data, residual, sizeof(residual[0])*data_len);
|
| + break;
|
| + case 1:
|
| + for(i = 0; i < idata_len; i++)
|
| + data[i] = residual[i] + data[i-1];
|
| + break;
|
| + case 2:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
|
| +#else
|
| + data[i] = residual[i] + 2*data[i-1] - data[i-2];
|
| +#endif
|
| + break;
|
| + case 3:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
|
| +#else
|
| + data[i] = residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3];
|
| +#endif
|
| + break;
|
| + case 4:
|
| + for(i = 0; i < idata_len; i++)
|
| +#if 1 /* OPT: may be faster with some compilers on some systems */
|
| + data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];
|
| +#else
|
| + data[i] = residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4];
|
| +#endif
|
| + break;
|
| + default:
|
| + FLAC__ASSERT(0);
|
| + }
|
| +}
|
|
|
| Property changes on: flac/src/libFLAC/fixed.c
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|