OLD | NEW |
(Empty) | |
| 1 /* libFLAC - Free Lossless Audio Codec library |
| 2 * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007 Josh Coalson |
| 3 * |
| 4 * Redistribution and use in source and binary forms, with or without |
| 5 * modification, are permitted provided that the following conditions |
| 6 * are met: |
| 7 * |
| 8 * - Redistributions of source code must retain the above copyright |
| 9 * notice, this list of conditions and the following disclaimer. |
| 10 * |
| 11 * - Redistributions in binary form must reproduce the above copyright |
| 12 * notice, this list of conditions and the following disclaimer in the |
| 13 * documentation and/or other materials provided with the distribution. |
| 14 * |
| 15 * - Neither the name of the Xiph.org Foundation nor the names of its |
| 16 * contributors may be used to endorse or promote products derived from |
| 17 * this software without specific prior written permission. |
| 18 * |
| 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 */ |
| 31 |
| 32 #if HAVE_CONFIG_H |
| 33 # include <config.h> |
| 34 #endif |
| 35 |
| 36 #include <math.h> |
| 37 #include <string.h> |
| 38 #include "private/bitmath.h" |
| 39 #include "private/fixed.h" |
| 40 #include "FLAC/assert.h" |
| 41 |
| 42 #ifndef M_LN2 |
| 43 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ |
| 44 #define M_LN2 0.69314718055994530942 |
| 45 #endif |
| 46 |
| 47 #ifdef min |
| 48 #undef min |
| 49 #endif |
| 50 #define min(x,y) ((x) < (y)? (x) : (y)) |
| 51 |
| 52 #ifdef local_abs |
| 53 #undef local_abs |
| 54 #endif |
| 55 #define local_abs(x) ((unsigned)((x)<0? -(x) : (x))) |
| 56 |
| 57 #ifdef FLAC__INTEGER_ONLY_LIBRARY |
| 58 /* rbps stands for residual bits per sample |
| 59 * |
| 60 * (ln(2) * err) |
| 61 * rbps = log (-----------) |
| 62 * 2 ( n ) |
| 63 */ |
| 64 static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__
uint32 n) |
| 65 { |
| 66 FLAC__uint32 rbps; |
| 67 unsigned bits; /* the number of bits required to represent a number */ |
| 68 int fracbits; /* the number of bits of rbps that comprise the fractional
part */ |
| 69 |
| 70 FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); |
| 71 FLAC__ASSERT(err > 0); |
| 72 FLAC__ASSERT(n > 0); |
| 73 |
| 74 FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); |
| 75 if(err <= n) |
| 76 return 0; |
| 77 /* |
| 78 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. |
| 79 * These allow us later to know we won't lose too much precision in the |
| 80 * fixed-point division (err<<fracbits)/n. |
| 81 */ |
| 82 |
| 83 fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1); |
| 84 |
| 85 err <<= fracbits; |
| 86 err /= n; |
| 87 /* err now holds err/n with fracbits fractional bits */ |
| 88 |
| 89 /* |
| 90 * Whittle err down to 16 bits max. 16 significant bits is enough for |
| 91 * our purposes. |
| 92 */ |
| 93 FLAC__ASSERT(err > 0); |
| 94 bits = FLAC__bitmath_ilog2(err)+1; |
| 95 if(bits > 16) { |
| 96 err >>= (bits-16); |
| 97 fracbits -= (bits-16); |
| 98 } |
| 99 rbps = (FLAC__uint32)err; |
| 100 |
| 101 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ |
| 102 rbps *= FLAC__FP_LN2; |
| 103 fracbits += 16; |
| 104 FLAC__ASSERT(fracbits >= 0); |
| 105 |
| 106 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ |
| 107 { |
| 108 const int f = fracbits & 3; |
| 109 if(f) { |
| 110 rbps >>= f; |
| 111 fracbits -= f; |
| 112 } |
| 113 } |
| 114 |
| 115 rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1)); |
| 116 |
| 117 if(rbps == 0) |
| 118 return 0; |
| 119 |
| 120 /* |
| 121 * The return value must have 16 fractional bits. Since the whole part |
| 122 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits |
| 123 * must be >= -3, these assertion allows us to be able to shift rbps |
| 124 * left if necessary to get 16 fracbits without losing any bits of the |
| 125 * whole part of rbps. |
| 126 * |
| 127 * There is a slight chance due to accumulated error that the whole part |
| 128 * will require 6 bits, so we use 6 in the assertion. Really though as |
| 129 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. |
| 130 */ |
| 131 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); |
| 132 FLAC__ASSERT(fracbits >= -3); |
| 133 |
| 134 /* now shift the decimal point into place */ |
| 135 if(fracbits < 16) |
| 136 return rbps << (16-fracbits); |
| 137 else if(fracbits > 16) |
| 138 return rbps >> (fracbits-16); |
| 139 else |
| 140 return rbps; |
| 141 } |
| 142 |
| 143 static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, F
LAC__uint32 n) |
| 144 { |
| 145 FLAC__uint32 rbps; |
| 146 unsigned bits; /* the number of bits required to represent a number */ |
| 147 int fracbits; /* the number of bits of rbps that comprise the fractional
part */ |
| 148 |
| 149 FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); |
| 150 FLAC__ASSERT(err > 0); |
| 151 FLAC__ASSERT(n > 0); |
| 152 |
| 153 FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); |
| 154 if(err <= n) |
| 155 return 0; |
| 156 /* |
| 157 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. |
| 158 * These allow us later to know we won't lose too much precision in the |
| 159 * fixed-point division (err<<fracbits)/n. |
| 160 */ |
| 161 |
| 162 fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1); |
| 163 |
| 164 err <<= fracbits; |
| 165 err /= n; |
| 166 /* err now holds err/n with fracbits fractional bits */ |
| 167 |
| 168 /* |
| 169 * Whittle err down to 16 bits max. 16 significant bits is enough for |
| 170 * our purposes. |
| 171 */ |
| 172 FLAC__ASSERT(err > 0); |
| 173 bits = FLAC__bitmath_ilog2_wide(err)+1; |
| 174 if(bits > 16) { |
| 175 err >>= (bits-16); |
| 176 fracbits -= (bits-16); |
| 177 } |
| 178 rbps = (FLAC__uint32)err; |
| 179 |
| 180 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ |
| 181 rbps *= FLAC__FP_LN2; |
| 182 fracbits += 16; |
| 183 FLAC__ASSERT(fracbits >= 0); |
| 184 |
| 185 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ |
| 186 { |
| 187 const int f = fracbits & 3; |
| 188 if(f) { |
| 189 rbps >>= f; |
| 190 fracbits -= f; |
| 191 } |
| 192 } |
| 193 |
| 194 rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1)); |
| 195 |
| 196 if(rbps == 0) |
| 197 return 0; |
| 198 |
| 199 /* |
| 200 * The return value must have 16 fractional bits. Since the whole part |
| 201 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits |
| 202 * must be >= -3, these assertion allows us to be able to shift rbps |
| 203 * left if necessary to get 16 fracbits without losing any bits of the |
| 204 * whole part of rbps. |
| 205 * |
| 206 * There is a slight chance due to accumulated error that the whole part |
| 207 * will require 6 bits, so we use 6 in the assertion. Really though as |
| 208 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. |
| 209 */ |
| 210 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); |
| 211 FLAC__ASSERT(fracbits >= -3); |
| 212 |
| 213 /* now shift the decimal point into place */ |
| 214 if(fracbits < 16) |
| 215 return rbps << (16-fracbits); |
| 216 else if(fracbits > 16) |
| 217 return rbps >> (fracbits-16); |
| 218 else |
| 219 return rbps; |
| 220 } |
| 221 #endif |
| 222 |
| 223 #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| 224 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned d
ata_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
| 225 #else |
| 226 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned d
ata_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
| 227 #endif |
| 228 { |
| 229 FLAC__int32 last_error_0 = data[-1]; |
| 230 FLAC__int32 last_error_1 = data[-1] - data[-2]; |
| 231 FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); |
| 232 FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[
-4]); |
| 233 FLAC__int32 error, save; |
| 234 FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, to
tal_error_3 = 0, total_error_4 = 0; |
| 235 unsigned i, order; |
| 236 |
| 237 for(i = 0; i < data_len; i++) { |
| 238 error = data[i] ; total_error_0 += local_abs(error);
save = error; |
| 239 error -= last_error_0; total_error_1 += local_abs(error); last_e
rror_0 = save; save = error; |
| 240 error -= last_error_1; total_error_2 += local_abs(error); last_e
rror_1 = save; save = error; |
| 241 error -= last_error_2; total_error_3 += local_abs(error); last_e
rror_2 = save; save = error; |
| 242 error -= last_error_3; total_error_4 += local_abs(error); last_e
rror_3 = save; |
| 243 } |
| 244 |
| 245 if(total_error_0 < min(min(min(total_error_1, total_error_2), total_erro
r_3), total_error_4)) |
| 246 order = 0; |
| 247 else if(total_error_1 < min(min(total_error_2, total_error_3), total_err
or_4)) |
| 248 order = 1; |
| 249 else if(total_error_2 < min(total_error_3, total_error_4)) |
| 250 order = 2; |
| 251 else if(total_error_3 < total_error_4) |
| 252 order = 3; |
| 253 else |
| 254 order = 4; |
| 255 |
| 256 /* Estimate the expected number of bits per residual signal sample. */ |
| 257 /* 'total_error*' is linearly related to the variance of the residual */ |
| 258 /* signal, so we use it directly to compute E(|x|) */ |
| 259 FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
| 260 FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
| 261 FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
| 262 FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
| 263 FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
| 264 #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| 265 residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_
LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 266 residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_
LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 267 residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_
LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 268 residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_
LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 269 residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_
LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 270 #else |
| 271 residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_
integerized(total_error_0, data_len) : 0; |
| 272 residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_
integerized(total_error_1, data_len) : 0; |
| 273 residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_
integerized(total_error_2, data_len) : 0; |
| 274 residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_
integerized(total_error_3, data_len) : 0; |
| 275 residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_
integerized(total_error_4, data_len) : 0; |
| 276 #endif |
| 277 |
| 278 return order; |
| 279 } |
| 280 |
| 281 #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| 282 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsig
ned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
| 283 #else |
| 284 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsig
ned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]
) |
| 285 #endif |
| 286 { |
| 287 FLAC__int32 last_error_0 = data[-1]; |
| 288 FLAC__int32 last_error_1 = data[-1] - data[-2]; |
| 289 FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); |
| 290 FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[
-4]); |
| 291 FLAC__int32 error, save; |
| 292 /* total_error_* are 64-bits to avoid overflow when encoding |
| 293 * erratic signals when the bits-per-sample and blocksize are |
| 294 * large. |
| 295 */ |
| 296 FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, to
tal_error_3 = 0, total_error_4 = 0; |
| 297 unsigned i, order; |
| 298 |
| 299 for(i = 0; i < data_len; i++) { |
| 300 error = data[i] ; total_error_0 += local_abs(error);
save = error; |
| 301 error -= last_error_0; total_error_1 += local_abs(error); last_e
rror_0 = save; save = error; |
| 302 error -= last_error_1; total_error_2 += local_abs(error); last_e
rror_1 = save; save = error; |
| 303 error -= last_error_2; total_error_3 += local_abs(error); last_e
rror_2 = save; save = error; |
| 304 error -= last_error_3; total_error_4 += local_abs(error); last_e
rror_3 = save; |
| 305 } |
| 306 |
| 307 if(total_error_0 < min(min(min(total_error_1, total_error_2), total_erro
r_3), total_error_4)) |
| 308 order = 0; |
| 309 else if(total_error_1 < min(min(total_error_2, total_error_3), total_err
or_4)) |
| 310 order = 1; |
| 311 else if(total_error_2 < min(total_error_3, total_error_4)) |
| 312 order = 2; |
| 313 else if(total_error_3 < total_error_4) |
| 314 order = 3; |
| 315 else |
| 316 order = 4; |
| 317 |
| 318 /* Estimate the expected number of bits per residual signal sample. */ |
| 319 /* 'total_error*' is linearly related to the variance of the residual */ |
| 320 /* signal, so we use it directly to compute E(|x|) */ |
| 321 FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
| 322 FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
| 323 FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
| 324 FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
| 325 FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
| 326 #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| 327 #if defined _MSC_VER || defined __MINGW32__ |
| 328 /* with MSVC you have to spoon feed it the casting */ |
| 329 residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_
LN2 * (FLAC__double)(FLAC__int64)total_error_0 / (FLAC__double)data_len) / M_LN2
: 0.0); |
| 330 residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_
LN2 * (FLAC__double)(FLAC__int64)total_error_1 / (FLAC__double)data_len) / M_LN2
: 0.0); |
| 331 residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_
LN2 * (FLAC__double)(FLAC__int64)total_error_2 / (FLAC__double)data_len) / M_LN2
: 0.0); |
| 332 residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_
LN2 * (FLAC__double)(FLAC__int64)total_error_3 / (FLAC__double)data_len) / M_LN2
: 0.0); |
| 333 residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_
LN2 * (FLAC__double)(FLAC__int64)total_error_4 / (FLAC__double)data_len) / M_LN2
: 0.0); |
| 334 #else |
| 335 residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_
LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 336 residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_
LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 337 residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_
LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 338 residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_
LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 339 residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_
LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 340 #endif |
| 341 #else |
| 342 residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_
wide_integerized(total_error_0, data_len) : 0; |
| 343 residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_
wide_integerized(total_error_1, data_len) : 0; |
| 344 residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_
wide_integerized(total_error_2, data_len) : 0; |
| 345 residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_
wide_integerized(total_error_3, data_len) : 0; |
| 346 residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_
wide_integerized(total_error_4, data_len) : 0; |
| 347 #endif |
| 348 |
| 349 return order; |
| 350 } |
| 351 |
| 352 void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, u
nsigned order, FLAC__int32 residual[]) |
| 353 { |
| 354 const int idata_len = (int)data_len; |
| 355 int i; |
| 356 |
| 357 switch(order) { |
| 358 case 0: |
| 359 FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
| 360 memcpy(residual, data, sizeof(residual[0])*data_len); |
| 361 break; |
| 362 case 1: |
| 363 for(i = 0; i < idata_len; i++) |
| 364 residual[i] = data[i] - data[i-1]; |
| 365 break; |
| 366 case 2: |
| 367 for(i = 0; i < idata_len; i++) |
| 368 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 369 residual[i] = data[i] - (data[i-1] << 1) + data[
i-2]; |
| 370 #else |
| 371 residual[i] = data[i] - 2*data[i-1] + data[i-2]; |
| 372 #endif |
| 373 break; |
| 374 case 3: |
| 375 for(i = 0; i < idata_len; i++) |
| 376 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 377 residual[i] = data[i] - (((data[i-1]-data[i-2])<
<1) + (data[i-1]-data[i-2])) - data[i-3]; |
| 378 #else |
| 379 residual[i] = data[i] - 3*data[i-1] + 3*data[i-2
] - data[i-3]; |
| 380 #endif |
| 381 break; |
| 382 case 4: |
| 383 for(i = 0; i < idata_len; i++) |
| 384 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 385 residual[i] = data[i] - ((data[i-1]+data[i-3])<<
2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4]; |
| 386 #else |
| 387 residual[i] = data[i] - 4*data[i-1] + 6*data[i-2
] - 4*data[i-3] + data[i-4]; |
| 388 #endif |
| 389 break; |
| 390 default: |
| 391 FLAC__ASSERT(0); |
| 392 } |
| 393 } |
| 394 |
| 395 void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len,
unsigned order, FLAC__int32 data[]) |
| 396 { |
| 397 int i, idata_len = (int)data_len; |
| 398 |
| 399 switch(order) { |
| 400 case 0: |
| 401 FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
| 402 memcpy(data, residual, sizeof(residual[0])*data_len); |
| 403 break; |
| 404 case 1: |
| 405 for(i = 0; i < idata_len; i++) |
| 406 data[i] = residual[i] + data[i-1]; |
| 407 break; |
| 408 case 2: |
| 409 for(i = 0; i < idata_len; i++) |
| 410 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 411 data[i] = residual[i] + (data[i-1]<<1) - data[i-
2]; |
| 412 #else |
| 413 data[i] = residual[i] + 2*data[i-1] - data[i-2]; |
| 414 #endif |
| 415 break; |
| 416 case 3: |
| 417 for(i = 0; i < idata_len; i++) |
| 418 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 419 data[i] = residual[i] + (((data[i-1]-data[i-2])<
<1) + (data[i-1]-data[i-2])) + data[i-3]; |
| 420 #else |
| 421 data[i] = residual[i] + 3*data[i-1] - 3*data[i-2
] + data[i-3]; |
| 422 #endif |
| 423 break; |
| 424 case 4: |
| 425 for(i = 0; i < idata_len; i++) |
| 426 #if 1 /* OPT: may be faster with some compilers on some systems */ |
| 427 data[i] = residual[i] + ((data[i-1]+data[i-3])<<
2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4]; |
| 428 #else |
| 429 data[i] = residual[i] + 4*data[i-1] - 6*data[i-2
] + 4*data[i-3] - data[i-4]; |
| 430 #endif |
| 431 break; |
| 432 default: |
| 433 FLAC__ASSERT(0); |
| 434 } |
| 435 } |
OLD | NEW |