Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(635)

Side by Side Diff: base/threading/thread_local_storage_win.cc

Issue 60743004: Implement chromium's TLS. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "base/threading/thread_local_storage.h" 5 #include "base/threading/thread_local_storage.h"
6 6
7 #include <windows.h> 7 #include <windows.h>
8 8
9 #include "base/logging.h" 9 #include "base/logging.h"
10 10
11
12 namespace { 11 namespace {
13 // In order to make TLS destructors work, we need to keep function
14 // pointers to the destructor for each TLS that we allocate.
15 // We make this work by allocating a single OS-level TLS, which
16 // contains an array of slots for the application to use. In
17 // parallel, we also allocate an array of destructors, which we
18 // keep track of and call when threads terminate.
19
20 // g_native_tls_key is the one native TLS that we use. It stores our table.
21 long g_native_tls_key = TLS_OUT_OF_INDEXES;
22
23 // g_last_used_tls_key is the high-water-mark of allocated thread local storage.
24 // Each allocation is an index into our g_tls_destructors[]. Each such index is
25 // assigned to the instance variable slot_ in a ThreadLocalStorage::Slot
26 // instance. We reserve the value slot_ == 0 to indicate that the corresponding
27 // instance of ThreadLocalStorage::Slot has been freed (i.e., destructor called,
28 // etc.). This reserved use of 0 is then stated as the initial value of
29 // g_last_used_tls_key, so that the first issued index will be 1.
30 long g_last_used_tls_key = 0;
31
32 // The maximum number of 'slots' in our thread local storage stack.
33 const int kThreadLocalStorageSize = 64;
34
35 // The maximum number of times to try to clear slots by calling destructors.
36 // Use pthread naming convention for clarity.
37 const int kMaxDestructorIterations = kThreadLocalStorageSize;
38
39 // An array of destructor function pointers for the slots. If a slot has a
40 // destructor, it will be stored in its corresponding entry in this array.
41 // The elements are volatile to ensure that when the compiler reads the value
42 // to potentially call the destructor, it does so once, and that value is tested
43 // for null-ness and then used. Yes, that would be a weird de-optimization,
44 // but I can imagine some register machines where it was just as easy to
45 // re-fetch an array element, and I want to be sure a call to free the key
46 // (i.e., null out the destructor entry) that happens on a separate thread can't
47 // hurt the racy calls to the destructors on another thread.
48 volatile base::ThreadLocalStorage::TLSDestructorFunc
49 g_tls_destructors[kThreadLocalStorageSize];
50
51 void** ConstructTlsVector() {
52 if (g_native_tls_key == TLS_OUT_OF_INDEXES) {
53 long value = TlsAlloc();
54 DCHECK(value != TLS_OUT_OF_INDEXES);
55
56 // Atomically test-and-set the tls_key. If the key is TLS_OUT_OF_INDEXES,
57 // go ahead and set it. Otherwise, do nothing, as another
58 // thread already did our dirty work.
59 if (TLS_OUT_OF_INDEXES != InterlockedCompareExchange(
60 &g_native_tls_key, value, TLS_OUT_OF_INDEXES)) {
61 // We've been shortcut. Another thread replaced g_native_tls_key first so
62 // we need to destroy our index and use the one the other thread got
63 // first.
64 TlsFree(value);
65 }
66 }
67 DCHECK(!TlsGetValue(g_native_tls_key));
68
69 // Some allocators, such as TCMalloc, make use of thread local storage.
70 // As a result, any attempt to call new (or malloc) will lazily cause such a
71 // system to initialize, which will include registering for a TLS key. If we
72 // are not careful here, then that request to create a key will call new back,
73 // and we'll have an infinite loop. We avoid that as follows:
74 // Use a stack allocated vector, so that we don't have dependence on our
75 // allocator until our service is in place. (i.e., don't even call new until
76 // after we're setup)
77 void* stack_allocated_tls_data[kThreadLocalStorageSize];
78 memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
79 // Ensure that any rentrant calls change the temp version.
80 TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
81
82 // Allocate an array to store our data.
83 void** tls_data = new void*[kThreadLocalStorageSize];
84 memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
85 TlsSetValue(g_native_tls_key, tls_data);
86 return tls_data;
87 }
88 12
89 // Called when we terminate a thread, this function calls any TLS destructors 13 // Called when we terminate a thread, this function calls any TLS destructors
90 // that are pending for this thread. 14 // that are pending for this thread.
91 void WinThreadExit() { 15 void WinThreadExit() {
92 if (g_native_tls_key == TLS_OUT_OF_INDEXES) 16 base::internal::PlatformThreadLocalStorage::OnThreadExit(NULL);
93 return;
94
95 void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
96 // Maybe we have never initialized TLS for this thread.
97 if (!tls_data)
98 return;
99
100 // Some allocators, such as TCMalloc, use TLS. As a result, when a thread
101 // terminates, one of the destructor calls we make may be to shut down an
102 // allocator. We have to be careful that after we've shutdown all of the
103 // known destructors (perchance including an allocator), that we don't call
104 // the allocator and cause it to resurrect itself (with no possibly destructor
105 // call to follow). We handle this problem as follows:
106 // Switch to using a stack allocated vector, so that we don't have dependence
107 // on our allocator after we have called all g_tls_destructors. (i.e., don't
108 // even call delete[] after we're done with destructors.)
109 void* stack_allocated_tls_data[kThreadLocalStorageSize];
110 memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
111 // Ensure that any re-entrant calls change the temp version.
112 TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
113 delete[] tls_data; // Our last dependence on an allocator.
114
115 int remaining_attempts = kMaxDestructorIterations;
116 bool need_to_scan_destructors = true;
117 while (need_to_scan_destructors) {
118 need_to_scan_destructors = false;
119 // Try to destroy the first-created-slot (which is slot 1) in our last
120 // destructor call. That user was able to function, and define a slot with
121 // no other services running, so perhaps it is a basic service (like an
122 // allocator) and should also be destroyed last. If we get the order wrong,
123 // then we'll itterate several more times, so it is really not that
124 // critical (but it might help).
125 for (int slot = g_last_used_tls_key; slot > 0; --slot) {
126 void* value = stack_allocated_tls_data[slot];
127 if (value == NULL)
128 continue;
129 base::ThreadLocalStorage::TLSDestructorFunc destructor =
130 g_tls_destructors[slot];
131 if (destructor == NULL)
132 continue;
133 stack_allocated_tls_data[slot] = NULL; // pre-clear the slot.
134 destructor(value);
135 // Any destructor might have called a different service, which then set
136 // a different slot to a non-NULL value. Hence we need to check
137 // the whole vector again. This is a pthread standard.
138 need_to_scan_destructors = true;
139 }
140 if (--remaining_attempts <= 0) {
141 NOTREACHED(); // Destructors might not have been called.
142 break;
143 }
144 }
145
146 // Remove our stack allocated vector.
147 TlsSetValue(g_native_tls_key, NULL);
148 } 17 }
149 18
150 } // namespace 19 } // namespace
151 20
152 namespace base { 21 namespace base {
153 22
154 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) { 23 namespace internal {
155 initialized_ = false; 24
156 slot_ = 0; 25 bool PlatformThreadLocalStorage::AllocTLS(TLSKey* key) {
jar (doing other things) 2013/11/20 01:46:15 I'm very surprised that you don't accept a destruc
michaelbai 2013/11/20 05:27:30 Windows doesn't support key-destructor mapping, ri
157 Initialize(destructor); 26 TLSKey value = TlsAlloc();
27 if (value != TLS_OUT_OF_INDEXES) {
28 *key = value;
29 return true;
30 }
31 return false;
158 } 32 }
159 33
160 bool ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) { 34 void PlatformThreadLocalStorage::FreeTLS(TLSKey key) {
161 if (g_native_tls_key == TLS_OUT_OF_INDEXES || !TlsGetValue(g_native_tls_key)) 35 DCHECK(TlsFree(key));
162 ConstructTlsVector();
163
164 // Grab a new slot.
165 slot_ = InterlockedIncrement(&g_last_used_tls_key);
166 DCHECK_GT(slot_, 0);
167 if (slot_ >= kThreadLocalStorageSize) {
168 NOTREACHED();
169 return false;
170 }
171
172 // Setup our destructor.
173 g_tls_destructors[slot_] = destructor;
174 initialized_ = true;
175 return true;
176 } 36 }
177 37
178 void ThreadLocalStorage::StaticSlot::Free() { 38 void* PlatformThreadLocalStorage::GetTLSValue(TLSKey key) {
179 // At this time, we don't reclaim old indices for TLS slots. 39 return TlsGetValue(key);
180 // So all we need to do is wipe the destructor.
181 DCHECK_GT(slot_, 0);
182 DCHECK_LT(slot_, kThreadLocalStorageSize);
183 g_tls_destructors[slot_] = NULL;
184 slot_ = 0;
185 initialized_ = false;
186 } 40 }
187 41
188 void* ThreadLocalStorage::StaticSlot::Get() const { 42 void PlatformThreadLocalStorage::SetTLSValue(TLSKey key, void* value) {
189 void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key)); 43 DCHECK(TlsSetValue(key, value));
190 if (!tls_data)
191 tls_data = ConstructTlsVector();
192 DCHECK_GT(slot_, 0);
193 DCHECK_LT(slot_, kThreadLocalStorageSize);
194 return tls_data[slot_];
195 } 44 }
196 45
197 void ThreadLocalStorage::StaticSlot::Set(void* value) { 46 } // namespace internal
198 void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
199 if (!tls_data)
200 tls_data = ConstructTlsVector();
201 DCHECK_GT(slot_, 0);
202 DCHECK_LT(slot_, kThreadLocalStorageSize);
203 tls_data[slot_] = value;
204 }
205 47
206 } // namespace base 48 } // namespace base
207 49
208 // Thread Termination Callbacks. 50 // Thread Termination Callbacks.
209 // Windows doesn't support a per-thread destructor with its 51 // Windows doesn't support a per-thread destructor with its
210 // TLS primitives. So, we build it manually by inserting a 52 // TLS primitives. So, we build it manually by inserting a
211 // function to be called on each thread's exit. 53 // function to be called on each thread's exit.
212 // This magic is from http://www.codeproject.com/threads/tls.asp 54 // This magic is from http://www.codeproject.com/threads/tls.asp
213 // and it works for VC++ 7.0 and later. 55 // and it works for VC++ 7.0 and later.
214 56
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
268 #else // _WIN64 110 #else // _WIN64
269 111
270 #pragma data_seg(".CRT$XLB") 112 #pragma data_seg(".CRT$XLB")
271 PIMAGE_TLS_CALLBACK p_thread_callback_base = OnThreadExit; 113 PIMAGE_TLS_CALLBACK p_thread_callback_base = OnThreadExit;
272 114
273 // Reset the default section. 115 // Reset the default section.
274 #pragma data_seg() 116 #pragma data_seg()
275 117
276 #endif // _WIN64 118 #endif // _WIN64
277 } // extern "C" 119 } // extern "C"
OLDNEW
« base/threading/thread_local_storage.cc ('K') | « base/threading/thread_local_storage_posix.cc ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698