| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #ifndef SkLazyPtr_DEFINED | 8 #ifndef SkLazyPtr_DEFINED |
| 9 #define SkLazyPtr_DEFINED | 9 #define SkLazyPtr_DEFINED |
| 10 | 10 |
| (...skipping 23 matching lines...) Expand all Loading... |
| 34 * | 34 * |
| 35 * Foo* CreateFoo(int i) { return ...; } | 35 * Foo* CreateFoo(int i) { return ...; } |
| 36 * Foo* GetCachedFoo(Foo::Enum enumVal) { | 36 * Foo* GetCachedFoo(Foo::Enum enumVal) { |
| 37 * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, Creat
eFoo); | 37 * SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, Creat
eFoo); |
| 38 * return cachedFoos[enumVal]; | 38 * return cachedFoos[enumVal]; |
| 39 * } | 39 * } |
| 40 * | 40 * |
| 41 * | 41 * |
| 42 * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of | 42 * You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of |
| 43 * SkOnce. There is no mutex or extra storage used past the pointer itself. | 43 * SkOnce. There is no mutex or extra storage used past the pointer itself. |
| 44 * In debug mode, each lazy pointer will be cleaned up at process exit so we | |
| 45 * can check that we've not leaked or freed them early. | |
| 46 * | 44 * |
| 47 * We may call Create more than once, but all threads will see the same pointer | 45 * We may call Create more than once, but all threads will see the same pointer |
| 48 * returned from get(). Any extra calls to Create will be cleaned up. | 46 * returned from get(). Any extra calls to Create will be cleaned up. |
| 49 * | 47 * |
| 50 * These macros must be used in a global scope, not in function scope or as a c
lass member. | 48 * These macros must be used in a global scope, not in function scope or as a c
lass member. |
| 51 */ | 49 */ |
| 52 | 50 |
| 53 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ | 51 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \ |
| 54 namespace {} static Private::SkLazyPtr<T, ##__VA_ARGS__> name | 52 namespace {} static Private::SkLazyPtr<T, ##__VA_ARGS__> name |
| 55 | 53 |
| (...skipping 51 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 107 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delet
e<T> > | 105 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delet
e<T> > |
| 108 class SkLazyPtr { | 106 class SkLazyPtr { |
| 109 public: | 107 public: |
| 110 T* get() { | 108 T* get() { |
| 111 // If fPtr has already been filled, we need a consume barrier when loadi
ng it. | 109 // If fPtr has already been filled, we need a consume barrier when loadi
ng it. |
| 112 // If not, we need a release barrier when setting it. try_cas will do t
hat. | 110 // If not, we need a release barrier when setting it. try_cas will do t
hat. |
| 113 T* ptr = (T*)sk_consume_load(&fPtr); | 111 T* ptr = (T*)sk_consume_load(&fPtr); |
| 114 return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create()); | 112 return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create()); |
| 115 } | 113 } |
| 116 | 114 |
| 117 #ifdef SK_DEVELOPER | |
| 118 // FIXME: We know we leak refs on some classes. For now, let them leak. | |
| 119 void cleanup(SkFontConfigInterfaceDirect*) {} | |
| 120 template <typename U> void cleanup(U* ptr) { Destroy(ptr); } | |
| 121 | |
| 122 ~SkLazyPtr() { | |
| 123 this->cleanup((T*)fPtr); | |
| 124 fPtr = NULL; | |
| 125 } | |
| 126 #endif | |
| 127 | |
| 128 private: | 115 private: |
| 129 void* fPtr; | 116 void* fPtr; |
| 130 }; | 117 }; |
| 131 | 118 |
| 132 template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); } | 119 template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); } |
| 133 | 120 |
| 134 // This has no constructor and must be zero-initalized (the macro above does thi
s). | 121 // This has no constructor and must be zero-initalized (the macro above does thi
s). |
| 135 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(
T*) = sk_delete<T> > | 122 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(
T*) = sk_delete<T> > |
| 136 class SkLazyPtrArray { | 123 class SkLazyPtrArray { |
| 137 public: | 124 public: |
| 138 T* operator[](int i) { | 125 T* operator[](int i) { |
| 139 SkASSERT(i >= 0 && i < N); | 126 SkASSERT(i >= 0 && i < N); |
| 140 // If fPtr has already been filled, we need an consume barrier when load
ing it. | 127 // If fPtr has already been filled, we need an consume barrier when load
ing it. |
| 141 // If not, we need a release barrier when setting it. try_cas will do t
hat. | 128 // If not, we need a release barrier when setting it. try_cas will do t
hat. |
| 142 T* ptr = (T*)sk_consume_load(&fArray[i]); | 129 T* ptr = (T*)sk_consume_load(&fArray[i]); |
| 143 return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i)); | 130 return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i)); |
| 144 } | 131 } |
| 145 | 132 |
| 146 #ifdef SK_DEVELOPER | |
| 147 ~SkLazyPtrArray() { | |
| 148 for (int i = 0; i < N; i++) { | |
| 149 Destroy((T*)fArray[i]); | |
| 150 fArray[i] = NULL; | |
| 151 } | |
| 152 } | |
| 153 #endif | |
| 154 | |
| 155 private: | 133 private: |
| 156 void* fArray[N]; | 134 void* fArray[N]; |
| 157 }; | 135 }; |
| 158 | 136 |
| 159 } // namespace Private | 137 } // namespace Private |
| 160 | 138 |
| 161 #endif//SkLazyPtr_DEFINED | 139 #endif//SkLazyPtr_DEFINED |
| OLD | NEW |