Index: src/runtime/runtime-strings.cc |
diff --git a/src/runtime/runtime-strings.cc b/src/runtime/runtime-strings.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8d245a509f2aeaa799129c72067994d3579041c3 |
--- /dev/null |
+++ b/src/runtime/runtime-strings.cc |
@@ -0,0 +1,1252 @@ |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "src/v8.h" |
+ |
+#include "src/arguments.h" |
+#include "src/jsregexp-inl.h" |
+#include "src/jsregexp.h" |
+#include "src/runtime/runtime.h" |
+#include "src/runtime/runtime-utils.h" |
+#include "src/runtime/string-builder.h" |
+#include "src/string-search.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+ |
+// This may return an empty MaybeHandle if an exception is thrown or |
+// we abort due to reaching the recursion limit. |
+MaybeHandle<String> StringReplaceOneCharWithString( |
+ Isolate* isolate, Handle<String> subject, Handle<String> search, |
+ Handle<String> replace, bool* found, int recursion_limit) { |
+ StackLimitCheck stackLimitCheck(isolate); |
+ if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) { |
+ return MaybeHandle<String>(); |
+ } |
+ recursion_limit--; |
+ if (subject->IsConsString()) { |
+ ConsString* cons = ConsString::cast(*subject); |
+ Handle<String> first = Handle<String>(cons->first()); |
+ Handle<String> second = Handle<String>(cons->second()); |
+ Handle<String> new_first; |
+ if (!StringReplaceOneCharWithString(isolate, first, search, replace, found, |
+ recursion_limit).ToHandle(&new_first)) { |
+ return MaybeHandle<String>(); |
+ } |
+ if (*found) return isolate->factory()->NewConsString(new_first, second); |
+ |
+ Handle<String> new_second; |
+ if (!StringReplaceOneCharWithString(isolate, second, search, replace, found, |
+ recursion_limit) |
+ .ToHandle(&new_second)) { |
+ return MaybeHandle<String>(); |
+ } |
+ if (*found) return isolate->factory()->NewConsString(first, new_second); |
+ |
+ return subject; |
+ } else { |
+ int index = Runtime::StringMatch(isolate, subject, search, 0); |
+ if (index == -1) return subject; |
+ *found = true; |
+ Handle<String> first = isolate->factory()->NewSubString(subject, 0, index); |
+ Handle<String> cons1; |
+ ASSIGN_RETURN_ON_EXCEPTION( |
+ isolate, cons1, isolate->factory()->NewConsString(first, replace), |
+ String); |
+ Handle<String> second = |
+ isolate->factory()->NewSubString(subject, index + 1, subject->length()); |
+ return isolate->factory()->NewConsString(cons1, second); |
+ } |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, search, 1); |
+ CONVERT_ARG_HANDLE_CHECKED(String, replace, 2); |
+ |
+ // If the cons string tree is too deep, we simply abort the recursion and |
+ // retry with a flattened subject string. |
+ const int kRecursionLimit = 0x1000; |
+ bool found = false; |
+ Handle<String> result; |
+ if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found, |
+ kRecursionLimit).ToHandle(&result)) { |
+ return *result; |
+ } |
+ if (isolate->has_pending_exception()) return isolate->heap()->exception(); |
+ |
+ subject = String::Flatten(subject); |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, |
+ StringReplaceOneCharWithString(isolate, subject, search, replace, &found, |
+ kRecursionLimit)); |
+ return *result; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringIndexOf) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); |
+ CONVERT_ARG_HANDLE_CHECKED(Object, index, 2); |
+ |
+ uint32_t start_index; |
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); |
+ |
+ RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); |
+ int position = Runtime::StringMatch(isolate, sub, pat, start_index); |
+ return Smi::FromInt(position); |
+} |
+ |
+ |
+template <typename schar, typename pchar> |
+static int StringMatchBackwards(Vector<const schar> subject, |
+ Vector<const pchar> pattern, int idx) { |
+ int pattern_length = pattern.length(); |
+ DCHECK(pattern_length >= 1); |
+ DCHECK(idx + pattern_length <= subject.length()); |
+ |
+ if (sizeof(schar) == 1 && sizeof(pchar) > 1) { |
+ for (int i = 0; i < pattern_length; i++) { |
+ uc16 c = pattern[i]; |
+ if (c > String::kMaxOneByteCharCode) { |
+ return -1; |
+ } |
+ } |
+ } |
+ |
+ pchar pattern_first_char = pattern[0]; |
+ for (int i = idx; i >= 0; i--) { |
+ if (subject[i] != pattern_first_char) continue; |
+ int j = 1; |
+ while (j < pattern_length) { |
+ if (pattern[j] != subject[i + j]) { |
+ break; |
+ } |
+ j++; |
+ } |
+ if (j == pattern_length) { |
+ return i; |
+ } |
+ } |
+ return -1; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringLastIndexOf) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); |
+ CONVERT_ARG_HANDLE_CHECKED(Object, index, 2); |
+ |
+ uint32_t start_index; |
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); |
+ |
+ uint32_t pat_length = pat->length(); |
+ uint32_t sub_length = sub->length(); |
+ |
+ if (start_index + pat_length > sub_length) { |
+ start_index = sub_length - pat_length; |
+ } |
+ |
+ if (pat_length == 0) { |
+ return Smi::FromInt(start_index); |
+ } |
+ |
+ sub = String::Flatten(sub); |
+ pat = String::Flatten(pat); |
+ |
+ int position = -1; |
+ DisallowHeapAllocation no_gc; // ensure vectors stay valid |
+ |
+ String::FlatContent sub_content = sub->GetFlatContent(); |
+ String::FlatContent pat_content = pat->GetFlatContent(); |
+ |
+ if (pat_content.IsOneByte()) { |
+ Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector(); |
+ if (sub_content.IsOneByte()) { |
+ position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, |
+ start_index); |
+ } else { |
+ position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, |
+ start_index); |
+ } |
+ } else { |
+ Vector<const uc16> pat_vector = pat_content.ToUC16Vector(); |
+ if (sub_content.IsOneByte()) { |
+ position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, |
+ start_index); |
+ } else { |
+ position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, |
+ start_index); |
+ } |
+ } |
+ |
+ return Smi::FromInt(position); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringLocaleCompare) { |
+ HandleScope handle_scope(isolate); |
+ DCHECK(args.length() == 2); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, str1, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, str2, 1); |
+ |
+ if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal. |
+ int str1_length = str1->length(); |
+ int str2_length = str2->length(); |
+ |
+ // Decide trivial cases without flattening. |
+ if (str1_length == 0) { |
+ if (str2_length == 0) return Smi::FromInt(0); // Equal. |
+ return Smi::FromInt(-str2_length); |
+ } else { |
+ if (str2_length == 0) return Smi::FromInt(str1_length); |
+ } |
+ |
+ int end = str1_length < str2_length ? str1_length : str2_length; |
+ |
+ // No need to flatten if we are going to find the answer on the first |
+ // character. At this point we know there is at least one character |
+ // in each string, due to the trivial case handling above. |
+ int d = str1->Get(0) - str2->Get(0); |
+ if (d != 0) return Smi::FromInt(d); |
+ |
+ str1 = String::Flatten(str1); |
+ str2 = String::Flatten(str2); |
+ |
+ DisallowHeapAllocation no_gc; |
+ String::FlatContent flat1 = str1->GetFlatContent(); |
+ String::FlatContent flat2 = str2->GetFlatContent(); |
+ |
+ for (int i = 0; i < end; i++) { |
+ if (flat1.Get(i) != flat2.Get(i)) { |
+ return Smi::FromInt(flat1.Get(i) - flat2.Get(i)); |
+ } |
+ } |
+ |
+ return Smi::FromInt(str1_length - str2_length); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_SubString) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0); |
+ int start, end; |
+ // We have a fast integer-only case here to avoid a conversion to double in |
+ // the common case where from and to are Smis. |
+ if (args[1]->IsSmi() && args[2]->IsSmi()) { |
+ CONVERT_SMI_ARG_CHECKED(from_number, 1); |
+ CONVERT_SMI_ARG_CHECKED(to_number, 2); |
+ start = from_number; |
+ end = to_number; |
+ } else { |
+ CONVERT_DOUBLE_ARG_CHECKED(from_number, 1); |
+ CONVERT_DOUBLE_ARG_CHECKED(to_number, 2); |
+ start = FastD2IChecked(from_number); |
+ end = FastD2IChecked(to_number); |
+ } |
+ RUNTIME_ASSERT(end >= start); |
+ RUNTIME_ASSERT(start >= 0); |
+ RUNTIME_ASSERT(end <= string->length()); |
+ isolate->counters()->sub_string_runtime()->Increment(); |
+ |
+ return *isolate->factory()->NewSubString(string, start, end); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringAdd) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ CONVERT_ARG_HANDLE_CHECKED(String, str1, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, str2, 1); |
+ isolate->counters()->string_add_runtime()->Increment(); |
+ Handle<String> result; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewConsString(str1, str2)); |
+ return *result; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_InternalizeString) { |
+ HandleScope handles(isolate); |
+ RUNTIME_ASSERT(args.length() == 1); |
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0); |
+ return *isolate->factory()->InternalizeString(string); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringMatch) { |
+ HandleScope handles(isolate); |
+ DCHECK(args.length() == 3); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); |
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2); |
+ |
+ RUNTIME_ASSERT(regexp_info->HasFastObjectElements()); |
+ |
+ RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); |
+ if (global_cache.HasException()) return isolate->heap()->exception(); |
+ |
+ int capture_count = regexp->CaptureCount(); |
+ |
+ ZoneScope zone_scope(isolate->runtime_zone()); |
+ ZoneList<int> offsets(8, zone_scope.zone()); |
+ |
+ while (true) { |
+ int32_t* match = global_cache.FetchNext(); |
+ if (match == NULL) break; |
+ offsets.Add(match[0], zone_scope.zone()); // start |
+ offsets.Add(match[1], zone_scope.zone()); // end |
+ } |
+ |
+ if (global_cache.HasException()) return isolate->heap()->exception(); |
+ |
+ if (offsets.length() == 0) { |
+ // Not a single match. |
+ return isolate->heap()->null_value(); |
+ } |
+ |
+ RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count, |
+ global_cache.LastSuccessfulMatch()); |
+ |
+ int matches = offsets.length() / 2; |
+ Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); |
+ Handle<String> substring = |
+ isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1)); |
+ elements->set(0, *substring); |
+ for (int i = 1; i < matches; i++) { |
+ HandleScope temp_scope(isolate); |
+ int from = offsets.at(i * 2); |
+ int to = offsets.at(i * 2 + 1); |
+ Handle<String> substring = |
+ isolate->factory()->NewProperSubString(subject, from, to); |
+ elements->set(i, *substring); |
+ } |
+ Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); |
+ result->set_length(Smi::FromInt(matches)); |
+ return *result; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) { |
+ HandleScope handle_scope(isolate); |
+ DCHECK(args.length() == 2); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
+ CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]); |
+ |
+ // Flatten the string. If someone wants to get a char at an index |
+ // in a cons string, it is likely that more indices will be |
+ // accessed. |
+ subject = String::Flatten(subject); |
+ |
+ if (i >= static_cast<uint32_t>(subject->length())) { |
+ return isolate->heap()->nan_value(); |
+ } |
+ |
+ return Smi::FromInt(subject->Get(i)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_CharFromCode) { |
+ HandleScope handlescope(isolate); |
+ DCHECK(args.length() == 1); |
+ if (args[0]->IsNumber()) { |
+ CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]); |
+ code &= 0xffff; |
+ return *isolate->factory()->LookupSingleCharacterStringFromCode(code); |
+ } |
+ return isolate->heap()->empty_string(); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringCompare) { |
+ HandleScope handle_scope(isolate); |
+ DCHECK(args.length() == 2); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, x, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, y, 1); |
+ |
+ isolate->counters()->string_compare_runtime()->Increment(); |
+ |
+ // A few fast case tests before we flatten. |
+ if (x.is_identical_to(y)) return Smi::FromInt(EQUAL); |
+ if (y->length() == 0) { |
+ if (x->length() == 0) return Smi::FromInt(EQUAL); |
+ return Smi::FromInt(GREATER); |
+ } else if (x->length() == 0) { |
+ return Smi::FromInt(LESS); |
+ } |
+ |
+ int d = x->Get(0) - y->Get(0); |
+ if (d < 0) |
+ return Smi::FromInt(LESS); |
+ else if (d > 0) |
+ return Smi::FromInt(GREATER); |
+ |
+ // Slow case. |
+ x = String::Flatten(x); |
+ y = String::Flatten(y); |
+ |
+ DisallowHeapAllocation no_gc; |
+ Object* equal_prefix_result = Smi::FromInt(EQUAL); |
+ int prefix_length = x->length(); |
+ if (y->length() < prefix_length) { |
+ prefix_length = y->length(); |
+ equal_prefix_result = Smi::FromInt(GREATER); |
+ } else if (y->length() > prefix_length) { |
+ equal_prefix_result = Smi::FromInt(LESS); |
+ } |
+ int r; |
+ String::FlatContent x_content = x->GetFlatContent(); |
+ String::FlatContent y_content = y->GetFlatContent(); |
+ if (x_content.IsOneByte()) { |
+ Vector<const uint8_t> x_chars = x_content.ToOneByteVector(); |
+ if (y_content.IsOneByte()) { |
+ Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); |
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
+ } else { |
+ Vector<const uc16> y_chars = y_content.ToUC16Vector(); |
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
+ } |
+ } else { |
+ Vector<const uc16> x_chars = x_content.ToUC16Vector(); |
+ if (y_content.IsOneByte()) { |
+ Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); |
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
+ } else { |
+ Vector<const uc16> y_chars = y_content.ToUC16Vector(); |
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); |
+ } |
+ } |
+ Object* result; |
+ if (r == 0) { |
+ result = equal_prefix_result; |
+ } else { |
+ result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER); |
+ } |
+ return result; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringBuilderConcat) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); |
+ int32_t array_length; |
+ if (!args[1]->ToInt32(&array_length)) { |
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); |
+ } |
+ CONVERT_ARG_HANDLE_CHECKED(String, special, 2); |
+ |
+ size_t actual_array_length = 0; |
+ RUNTIME_ASSERT( |
+ TryNumberToSize(isolate, array->length(), &actual_array_length)); |
+ RUNTIME_ASSERT(array_length >= 0); |
+ RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length); |
+ |
+ // This assumption is used by the slice encoding in one or two smis. |
+ DCHECK(Smi::kMaxValue >= String::kMaxLength); |
+ |
+ RUNTIME_ASSERT(array->HasFastElements()); |
+ JSObject::EnsureCanContainHeapObjectElements(array); |
+ |
+ int special_length = special->length(); |
+ if (!array->HasFastObjectElements()) { |
+ return isolate->Throw(isolate->heap()->illegal_argument_string()); |
+ } |
+ |
+ int length; |
+ bool one_byte = special->HasOnlyOneByteChars(); |
+ |
+ { |
+ DisallowHeapAllocation no_gc; |
+ FixedArray* fixed_array = FixedArray::cast(array->elements()); |
+ if (fixed_array->length() < array_length) { |
+ array_length = fixed_array->length(); |
+ } |
+ |
+ if (array_length == 0) { |
+ return isolate->heap()->empty_string(); |
+ } else if (array_length == 1) { |
+ Object* first = fixed_array->get(0); |
+ if (first->IsString()) return first; |
+ } |
+ length = StringBuilderConcatLength(special_length, fixed_array, |
+ array_length, &one_byte); |
+ } |
+ |
+ if (length == -1) { |
+ return isolate->Throw(isolate->heap()->illegal_argument_string()); |
+ } |
+ |
+ if (one_byte) { |
+ Handle<SeqOneByteString> answer; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, answer, isolate->factory()->NewRawOneByteString(length)); |
+ StringBuilderConcatHelper(*special, answer->GetChars(), |
+ FixedArray::cast(array->elements()), |
+ array_length); |
+ return *answer; |
+ } else { |
+ Handle<SeqTwoByteString> answer; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, answer, isolate->factory()->NewRawTwoByteString(length)); |
+ StringBuilderConcatHelper(*special, answer->GetChars(), |
+ FixedArray::cast(array->elements()), |
+ array_length); |
+ return *answer; |
+ } |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringBuilderJoin) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); |
+ int32_t array_length; |
+ if (!args[1]->ToInt32(&array_length)) { |
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); |
+ } |
+ CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); |
+ RUNTIME_ASSERT(array->HasFastObjectElements()); |
+ RUNTIME_ASSERT(array_length >= 0); |
+ |
+ Handle<FixedArray> fixed_array(FixedArray::cast(array->elements())); |
+ if (fixed_array->length() < array_length) { |
+ array_length = fixed_array->length(); |
+ } |
+ |
+ if (array_length == 0) { |
+ return isolate->heap()->empty_string(); |
+ } else if (array_length == 1) { |
+ Object* first = fixed_array->get(0); |
+ RUNTIME_ASSERT(first->IsString()); |
+ return first; |
+ } |
+ |
+ int separator_length = separator->length(); |
+ RUNTIME_ASSERT(separator_length > 0); |
+ int max_nof_separators = |
+ (String::kMaxLength + separator_length - 1) / separator_length; |
+ if (max_nof_separators < (array_length - 1)) { |
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); |
+ } |
+ int length = (array_length - 1) * separator_length; |
+ for (int i = 0; i < array_length; i++) { |
+ Object* element_obj = fixed_array->get(i); |
+ RUNTIME_ASSERT(element_obj->IsString()); |
+ String* element = String::cast(element_obj); |
+ int increment = element->length(); |
+ if (increment > String::kMaxLength - length) { |
+ STATIC_ASSERT(String::kMaxLength < kMaxInt); |
+ length = kMaxInt; // Provoke exception; |
+ break; |
+ } |
+ length += increment; |
+ } |
+ |
+ Handle<SeqTwoByteString> answer; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, answer, isolate->factory()->NewRawTwoByteString(length)); |
+ |
+ DisallowHeapAllocation no_gc; |
+ |
+ uc16* sink = answer->GetChars(); |
+#ifdef DEBUG |
+ uc16* end = sink + length; |
+#endif |
+ |
+ RUNTIME_ASSERT(fixed_array->get(0)->IsString()); |
+ String* first = String::cast(fixed_array->get(0)); |
+ String* separator_raw = *separator; |
+ int first_length = first->length(); |
+ String::WriteToFlat(first, sink, 0, first_length); |
+ sink += first_length; |
+ |
+ for (int i = 1; i < array_length; i++) { |
+ DCHECK(sink + separator_length <= end); |
+ String::WriteToFlat(separator_raw, sink, 0, separator_length); |
+ sink += separator_length; |
+ |
+ RUNTIME_ASSERT(fixed_array->get(i)->IsString()); |
+ String* element = String::cast(fixed_array->get(i)); |
+ int element_length = element->length(); |
+ DCHECK(sink + element_length <= end); |
+ String::WriteToFlat(element, sink, 0, element_length); |
+ sink += element_length; |
+ } |
+ DCHECK(sink == end); |
+ |
+ // Use %_FastOneByteArrayJoin instead. |
+ DCHECK(!answer->IsOneByteRepresentation()); |
+ return *answer; |
+} |
+ |
+template <typename Char> |
+static void JoinSparseArrayWithSeparator(FixedArray* elements, |
+ int elements_length, |
+ uint32_t array_length, |
+ String* separator, |
+ Vector<Char> buffer) { |
+ DisallowHeapAllocation no_gc; |
+ int previous_separator_position = 0; |
+ int separator_length = separator->length(); |
+ int cursor = 0; |
+ for (int i = 0; i < elements_length; i += 2) { |
+ int position = NumberToInt32(elements->get(i)); |
+ String* string = String::cast(elements->get(i + 1)); |
+ int string_length = string->length(); |
+ if (string->length() > 0) { |
+ while (previous_separator_position < position) { |
+ String::WriteToFlat<Char>(separator, &buffer[cursor], 0, |
+ separator_length); |
+ cursor += separator_length; |
+ previous_separator_position++; |
+ } |
+ String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length); |
+ cursor += string->length(); |
+ } |
+ } |
+ if (separator_length > 0) { |
+ // Array length must be representable as a signed 32-bit number, |
+ // otherwise the total string length would have been too large. |
+ DCHECK(array_length <= 0x7fffffff); // Is int32_t. |
+ int last_array_index = static_cast<int>(array_length - 1); |
+ while (previous_separator_position < last_array_index) { |
+ String::WriteToFlat<Char>(separator, &buffer[cursor], 0, |
+ separator_length); |
+ cursor += separator_length; |
+ previous_separator_position++; |
+ } |
+ } |
+ DCHECK(cursor <= buffer.length()); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0); |
+ CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]); |
+ CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); |
+ // elements_array is fast-mode JSarray of alternating positions |
+ // (increasing order) and strings. |
+ RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements()); |
+ // array_length is length of original array (used to add separators); |
+ // separator is string to put between elements. Assumed to be non-empty. |
+ RUNTIME_ASSERT(array_length > 0); |
+ |
+ // Find total length of join result. |
+ int string_length = 0; |
+ bool is_one_byte = separator->IsOneByteRepresentation(); |
+ bool overflow = false; |
+ CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length()); |
+ RUNTIME_ASSERT(elements_length <= elements_array->elements()->length()); |
+ RUNTIME_ASSERT((elements_length & 1) == 0); // Even length. |
+ FixedArray* elements = FixedArray::cast(elements_array->elements()); |
+ for (int i = 0; i < elements_length; i += 2) { |
+ RUNTIME_ASSERT(elements->get(i)->IsNumber()); |
+ CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i)); |
+ RUNTIME_ASSERT(position < array_length); |
+ RUNTIME_ASSERT(elements->get(i + 1)->IsString()); |
+ } |
+ |
+ { |
+ DisallowHeapAllocation no_gc; |
+ for (int i = 0; i < elements_length; i += 2) { |
+ String* string = String::cast(elements->get(i + 1)); |
+ int length = string->length(); |
+ if (is_one_byte && !string->IsOneByteRepresentation()) { |
+ is_one_byte = false; |
+ } |
+ if (length > String::kMaxLength || |
+ String::kMaxLength - length < string_length) { |
+ overflow = true; |
+ break; |
+ } |
+ string_length += length; |
+ } |
+ } |
+ |
+ int separator_length = separator->length(); |
+ if (!overflow && separator_length > 0) { |
+ if (array_length <= 0x7fffffffu) { |
+ int separator_count = static_cast<int>(array_length) - 1; |
+ int remaining_length = String::kMaxLength - string_length; |
+ if ((remaining_length / separator_length) >= separator_count) { |
+ string_length += separator_length * (array_length - 1); |
+ } else { |
+ // Not room for the separators within the maximal string length. |
+ overflow = true; |
+ } |
+ } else { |
+ // Nonempty separator and at least 2^31-1 separators necessary |
+ // means that the string is too large to create. |
+ STATIC_ASSERT(String::kMaxLength < 0x7fffffff); |
+ overflow = true; |
+ } |
+ } |
+ if (overflow) { |
+ // Throw an exception if the resulting string is too large. See |
+ // https://code.google.com/p/chromium/issues/detail?id=336820 |
+ // for details. |
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); |
+ } |
+ |
+ if (is_one_byte) { |
+ Handle<SeqOneByteString> result = isolate->factory() |
+ ->NewRawOneByteString(string_length) |
+ .ToHandleChecked(); |
+ JoinSparseArrayWithSeparator<uint8_t>( |
+ FixedArray::cast(elements_array->elements()), elements_length, |
+ array_length, *separator, |
+ Vector<uint8_t>(result->GetChars(), string_length)); |
+ return *result; |
+ } else { |
+ Handle<SeqTwoByteString> result = isolate->factory() |
+ ->NewRawTwoByteString(string_length) |
+ .ToHandleChecked(); |
+ JoinSparseArrayWithSeparator<uc16>( |
+ FixedArray::cast(elements_array->elements()), elements_length, |
+ array_length, *separator, |
+ Vector<uc16>(result->GetChars(), string_length)); |
+ return *result; |
+ } |
+} |
+ |
+ |
+// Copies Latin1 characters to the given fixed array looking up |
+// one-char strings in the cache. Gives up on the first char that is |
+// not in the cache and fills the remainder with smi zeros. Returns |
+// the length of the successfully copied prefix. |
+static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars, |
+ FixedArray* elements, int length) { |
+ DisallowHeapAllocation no_gc; |
+ FixedArray* one_byte_cache = heap->single_character_string_cache(); |
+ Object* undefined = heap->undefined_value(); |
+ int i; |
+ WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); |
+ for (i = 0; i < length; ++i) { |
+ Object* value = one_byte_cache->get(chars[i]); |
+ if (value == undefined) break; |
+ elements->set(i, value, mode); |
+ } |
+ if (i < length) { |
+ DCHECK(Smi::FromInt(0) == 0); |
+ memset(elements->data_start() + i, 0, kPointerSize * (length - i)); |
+ } |
+#ifdef DEBUG |
+ for (int j = 0; j < length; ++j) { |
+ Object* element = elements->get(j); |
+ DCHECK(element == Smi::FromInt(0) || |
+ (element->IsString() && String::cast(element)->LooksValid())); |
+ } |
+#endif |
+ return i; |
+} |
+ |
+ |
+// Converts a String to JSArray. |
+// For example, "foo" => ["f", "o", "o"]. |
+RUNTIME_FUNCTION(Runtime_StringToArray) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); |
+ |
+ s = String::Flatten(s); |
+ const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); |
+ |
+ Handle<FixedArray> elements; |
+ int position = 0; |
+ if (s->IsFlat() && s->IsOneByteRepresentation()) { |
+ // Try using cached chars where possible. |
+ elements = isolate->factory()->NewUninitializedFixedArray(length); |
+ |
+ DisallowHeapAllocation no_gc; |
+ String::FlatContent content = s->GetFlatContent(); |
+ if (content.IsOneByte()) { |
+ Vector<const uint8_t> chars = content.ToOneByteVector(); |
+ // Note, this will initialize all elements (not only the prefix) |
+ // to prevent GC from seeing partially initialized array. |
+ position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(), |
+ *elements, length); |
+ } else { |
+ MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(), |
+ length); |
+ } |
+ } else { |
+ elements = isolate->factory()->NewFixedArray(length); |
+ } |
+ for (int i = position; i < length; ++i) { |
+ Handle<Object> str = |
+ isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i)); |
+ elements->set(i, *str); |
+ } |
+ |
+#ifdef DEBUG |
+ for (int i = 0; i < length; ++i) { |
+ DCHECK(String::cast(elements->get(i))->length() == 1); |
+ } |
+#endif |
+ |
+ return *isolate->factory()->NewJSArrayWithElements(elements); |
+} |
+ |
+ |
+static inline bool ToUpperOverflows(uc32 character) { |
+ // y with umlauts and the micro sign are the only characters that stop |
+ // fitting into one-byte when converting to uppercase. |
+ static const uc32 yuml_code = 0xff; |
+ static const uc32 micro_code = 0xb5; |
+ return (character == yuml_code || character == micro_code); |
+} |
+ |
+ |
+template <class Converter> |
+MUST_USE_RESULT static Object* ConvertCaseHelper( |
+ Isolate* isolate, String* string, SeqString* result, int result_length, |
+ unibrow::Mapping<Converter, 128>* mapping) { |
+ DisallowHeapAllocation no_gc; |
+ // We try this twice, once with the assumption that the result is no longer |
+ // than the input and, if that assumption breaks, again with the exact |
+ // length. This may not be pretty, but it is nicer than what was here before |
+ // and I hereby claim my vaffel-is. |
+ // |
+ // NOTE: This assumes that the upper/lower case of an ASCII |
+ // character is also ASCII. This is currently the case, but it |
+ // might break in the future if we implement more context and locale |
+ // dependent upper/lower conversions. |
+ bool has_changed_character = false; |
+ |
+ // Convert all characters to upper case, assuming that they will fit |
+ // in the buffer |
+ Access<ConsStringIteratorOp> op(isolate->runtime_state()->string_iterator()); |
+ StringCharacterStream stream(string, op.value()); |
+ unibrow::uchar chars[Converter::kMaxWidth]; |
+ // We can assume that the string is not empty |
+ uc32 current = stream.GetNext(); |
+ bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString(); |
+ for (int i = 0; i < result_length;) { |
+ bool has_next = stream.HasMore(); |
+ uc32 next = has_next ? stream.GetNext() : 0; |
+ int char_length = mapping->get(current, next, chars); |
+ if (char_length == 0) { |
+ // The case conversion of this character is the character itself. |
+ result->Set(i, current); |
+ i++; |
+ } else if (char_length == 1 && |
+ (ignore_overflow || !ToUpperOverflows(current))) { |
+ // Common case: converting the letter resulted in one character. |
+ DCHECK(static_cast<uc32>(chars[0]) != current); |
+ result->Set(i, chars[0]); |
+ has_changed_character = true; |
+ i++; |
+ } else if (result_length == string->length()) { |
+ bool overflows = ToUpperOverflows(current); |
+ // We've assumed that the result would be as long as the |
+ // input but here is a character that converts to several |
+ // characters. No matter, we calculate the exact length |
+ // of the result and try the whole thing again. |
+ // |
+ // Note that this leaves room for optimization. We could just |
+ // memcpy what we already have to the result string. Also, |
+ // the result string is the last object allocated we could |
+ // "realloc" it and probably, in the vast majority of cases, |
+ // extend the existing string to be able to hold the full |
+ // result. |
+ int next_length = 0; |
+ if (has_next) { |
+ next_length = mapping->get(next, 0, chars); |
+ if (next_length == 0) next_length = 1; |
+ } |
+ int current_length = i + char_length + next_length; |
+ while (stream.HasMore()) { |
+ current = stream.GetNext(); |
+ overflows |= ToUpperOverflows(current); |
+ // NOTE: we use 0 as the next character here because, while |
+ // the next character may affect what a character converts to, |
+ // it does not in any case affect the length of what it convert |
+ // to. |
+ int char_length = mapping->get(current, 0, chars); |
+ if (char_length == 0) char_length = 1; |
+ current_length += char_length; |
+ if (current_length > String::kMaxLength) { |
+ AllowHeapAllocation allocate_error_and_return; |
+ THROW_NEW_ERROR_RETURN_FAILURE(isolate, |
+ NewInvalidStringLengthError()); |
+ } |
+ } |
+ // Try again with the real length. Return signed if we need |
+ // to allocate a two-byte string for to uppercase. |
+ return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length) |
+ : Smi::FromInt(current_length); |
+ } else { |
+ for (int j = 0; j < char_length; j++) { |
+ result->Set(i, chars[j]); |
+ i++; |
+ } |
+ has_changed_character = true; |
+ } |
+ current = next; |
+ } |
+ if (has_changed_character) { |
+ return result; |
+ } else { |
+ // If we didn't actually change anything in doing the conversion |
+ // we simple return the result and let the converted string |
+ // become garbage; there is no reason to keep two identical strings |
+ // alive. |
+ return string; |
+ } |
+} |
+ |
+ |
+static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; |
+static const uintptr_t kAsciiMask = kOneInEveryByte << 7; |
+ |
+// Given a word and two range boundaries returns a word with high bit |
+// set in every byte iff the corresponding input byte was strictly in |
+// the range (m, n). All the other bits in the result are cleared. |
+// This function is only useful when it can be inlined and the |
+// boundaries are statically known. |
+// Requires: all bytes in the input word and the boundaries must be |
+// ASCII (less than 0x7F). |
+static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { |
+ // Use strict inequalities since in edge cases the function could be |
+ // further simplified. |
+ DCHECK(0 < m && m < n); |
+ // Has high bit set in every w byte less than n. |
+ uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; |
+ // Has high bit set in every w byte greater than m. |
+ uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); |
+ return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); |
+} |
+ |
+ |
+#ifdef DEBUG |
+static bool CheckFastAsciiConvert(char* dst, const char* src, int length, |
+ bool changed, bool is_to_lower) { |
+ bool expected_changed = false; |
+ for (int i = 0; i < length; i++) { |
+ if (dst[i] == src[i]) continue; |
+ expected_changed = true; |
+ if (is_to_lower) { |
+ DCHECK('A' <= src[i] && src[i] <= 'Z'); |
+ DCHECK(dst[i] == src[i] + ('a' - 'A')); |
+ } else { |
+ DCHECK('a' <= src[i] && src[i] <= 'z'); |
+ DCHECK(dst[i] == src[i] - ('a' - 'A')); |
+ } |
+ } |
+ return (expected_changed == changed); |
+} |
+#endif |
+ |
+ |
+template <class Converter> |
+static bool FastAsciiConvert(char* dst, const char* src, int length, |
+ bool* changed_out) { |
+#ifdef DEBUG |
+ char* saved_dst = dst; |
+ const char* saved_src = src; |
+#endif |
+ DisallowHeapAllocation no_gc; |
+ // We rely on the distance between upper and lower case letters |
+ // being a known power of 2. |
+ DCHECK('a' - 'A' == (1 << 5)); |
+ // Boundaries for the range of input characters than require conversion. |
+ static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; |
+ static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; |
+ bool changed = false; |
+ uintptr_t or_acc = 0; |
+ const char* const limit = src + length; |
+ |
+ // dst is newly allocated and always aligned. |
+ DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t))); |
+ // Only attempt processing one word at a time if src is also aligned. |
+ if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) { |
+ // Process the prefix of the input that requires no conversion one aligned |
+ // (machine) word at a time. |
+ while (src <= limit - sizeof(uintptr_t)) { |
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
+ or_acc |= w; |
+ if (AsciiRangeMask(w, lo, hi) != 0) { |
+ changed = true; |
+ break; |
+ } |
+ *reinterpret_cast<uintptr_t*>(dst) = w; |
+ src += sizeof(uintptr_t); |
+ dst += sizeof(uintptr_t); |
+ } |
+ // Process the remainder of the input performing conversion when |
+ // required one word at a time. |
+ while (src <= limit - sizeof(uintptr_t)) { |
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
+ or_acc |= w; |
+ uintptr_t m = AsciiRangeMask(w, lo, hi); |
+ // The mask has high (7th) bit set in every byte that needs |
+ // conversion and we know that the distance between cases is |
+ // 1 << 5. |
+ *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); |
+ src += sizeof(uintptr_t); |
+ dst += sizeof(uintptr_t); |
+ } |
+ } |
+ // Process the last few bytes of the input (or the whole input if |
+ // unaligned access is not supported). |
+ while (src < limit) { |
+ char c = *src; |
+ or_acc |= c; |
+ if (lo < c && c < hi) { |
+ c ^= (1 << 5); |
+ changed = true; |
+ } |
+ *dst = c; |
+ ++src; |
+ ++dst; |
+ } |
+ |
+ if ((or_acc & kAsciiMask) != 0) return false; |
+ |
+ DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed, |
+ Converter::kIsToLower)); |
+ |
+ *changed_out = changed; |
+ return true; |
+} |
+ |
+ |
+template <class Converter> |
+MUST_USE_RESULT static Object* ConvertCase( |
+ Handle<String> s, Isolate* isolate, |
+ unibrow::Mapping<Converter, 128>* mapping) { |
+ s = String::Flatten(s); |
+ int length = s->length(); |
+ // Assume that the string is not empty; we need this assumption later |
+ if (length == 0) return *s; |
+ |
+ // Simpler handling of ASCII strings. |
+ // |
+ // NOTE: This assumes that the upper/lower case of an ASCII |
+ // character is also ASCII. This is currently the case, but it |
+ // might break in the future if we implement more context and locale |
+ // dependent upper/lower conversions. |
+ if (s->IsOneByteRepresentationUnderneath()) { |
+ // Same length as input. |
+ Handle<SeqOneByteString> result = |
+ isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
+ DisallowHeapAllocation no_gc; |
+ String::FlatContent flat_content = s->GetFlatContent(); |
+ DCHECK(flat_content.IsFlat()); |
+ bool has_changed_character = false; |
+ bool is_ascii = FastAsciiConvert<Converter>( |
+ reinterpret_cast<char*>(result->GetChars()), |
+ reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()), |
+ length, &has_changed_character); |
+ // If not ASCII, we discard the result and take the 2 byte path. |
+ if (is_ascii) return has_changed_character ? *result : *s; |
+ } |
+ |
+ Handle<SeqString> result; // Same length as input. |
+ if (s->IsOneByteRepresentation()) { |
+ result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
+ } else { |
+ result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked(); |
+ } |
+ |
+ Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping); |
+ if (answer->IsException() || answer->IsString()) return answer; |
+ |
+ DCHECK(answer->IsSmi()); |
+ length = Smi::cast(answer)->value(); |
+ if (s->IsOneByteRepresentation() && length > 0) { |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawOneByteString(length)); |
+ } else { |
+ if (length < 0) length = -length; |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawTwoByteString(length)); |
+ } |
+ return ConvertCaseHelper(isolate, *s, *result, length, mapping); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringToLowerCase) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
+ return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping()); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringToUpperCase) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_ARG_HANDLE_CHECKED(String, s, 0); |
+ return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping()); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringTrim) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 3); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, string, 0); |
+ CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1); |
+ CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2); |
+ |
+ string = String::Flatten(string); |
+ int length = string->length(); |
+ |
+ int left = 0; |
+ UnicodeCache* unicode_cache = isolate->unicode_cache(); |
+ if (trimLeft) { |
+ while (left < length && |
+ unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) { |
+ left++; |
+ } |
+ } |
+ |
+ int right = length; |
+ if (trimRight) { |
+ while ( |
+ right > left && |
+ unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) { |
+ right--; |
+ } |
+ } |
+ |
+ return *isolate->factory()->NewSubString(string, left, right); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_TruncateString) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0); |
+ CONVERT_INT32_ARG_CHECKED(new_length, 1); |
+ RUNTIME_ASSERT(new_length >= 0); |
+ return *SeqString::Truncate(string, new_length); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_NewString) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ CONVERT_INT32_ARG_CHECKED(length, 0); |
+ CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1); |
+ if (length == 0) return isolate->heap()->empty_string(); |
+ Handle<String> result; |
+ if (is_one_byte) { |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawOneByteString(length)); |
+ } else { |
+ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawTwoByteString(length)); |
+ } |
+ return *result; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_StringEquals) { |
+ HandleScope handle_scope(isolate); |
+ DCHECK(args.length() == 2); |
+ |
+ CONVERT_ARG_HANDLE_CHECKED(String, x, 0); |
+ CONVERT_ARG_HANDLE_CHECKED(String, y, 1); |
+ |
+ bool not_equal = !String::Equals(x, y); |
+ // This is slightly convoluted because the value that signifies |
+ // equality is 0 and inequality is 1 so we have to negate the result |
+ // from String::Equals. |
+ DCHECK(not_equal == 0 || not_equal == 1); |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(NOT_EQUAL == 1); |
+ return Smi::FromInt(not_equal); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) { |
+ SealHandleScope shs(isolate); |
+ return __RT_impl_Runtime_CharFromCode(args, isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_StringCharAt) { |
+ SealHandleScope shs(isolate); |
+ DCHECK(args.length() == 2); |
+ if (!args[0]->IsString()) return Smi::FromInt(0); |
+ if (!args[1]->IsNumber()) return Smi::FromInt(0); |
+ if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string(); |
+ Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate); |
+ if (code->IsNaN()) return isolate->heap()->empty_string(); |
+ return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) { |
+ SealHandleScope shs(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_INT32_ARG_CHECKED(index, 0); |
+ CONVERT_INT32_ARG_CHECKED(value, 1); |
+ CONVERT_ARG_CHECKED(SeqOneByteString, string, 2); |
+ string->SeqOneByteStringSet(index, value); |
+ return string; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) { |
+ SealHandleScope shs(isolate); |
+ DCHECK(args.length() == 3); |
+ CONVERT_INT32_ARG_CHECKED(index, 0); |
+ CONVERT_INT32_ARG_CHECKED(value, 1); |
+ CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2); |
+ string->SeqTwoByteStringSet(index, value); |
+ return string; |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_StringCompare) { |
+ SealHandleScope shs(isolate); |
+ return __RT_impl_Runtime_StringCompare(args, isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) { |
+ SealHandleScope shs(isolate); |
+ DCHECK(args.length() == 2); |
+ if (!args[0]->IsString()) return isolate->heap()->undefined_value(); |
+ if (!args[1]->IsNumber()) return isolate->heap()->undefined_value(); |
+ if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value(); |
+ return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_SubString) { |
+ SealHandleScope shs(isolate); |
+ return __RT_impl_Runtime_SubString(args, isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_StringAdd) { |
+ SealHandleScope shs(isolate); |
+ return __RT_impl_Runtime_StringAdd(args, isolate); |
+} |
+} |
+} // namespace v8::internal |