| Index: src/runtime/runtime-strings.cc
|
| diff --git a/src/runtime/runtime-strings.cc b/src/runtime/runtime-strings.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8d245a509f2aeaa799129c72067994d3579041c3
|
| --- /dev/null
|
| +++ b/src/runtime/runtime-strings.cc
|
| @@ -0,0 +1,1252 @@
|
| +// Copyright 2014 the V8 project authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "src/v8.h"
|
| +
|
| +#include "src/arguments.h"
|
| +#include "src/jsregexp-inl.h"
|
| +#include "src/jsregexp.h"
|
| +#include "src/runtime/runtime.h"
|
| +#include "src/runtime/runtime-utils.h"
|
| +#include "src/runtime/string-builder.h"
|
| +#include "src/string-search.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +// This may return an empty MaybeHandle if an exception is thrown or
|
| +// we abort due to reaching the recursion limit.
|
| +MaybeHandle<String> StringReplaceOneCharWithString(
|
| + Isolate* isolate, Handle<String> subject, Handle<String> search,
|
| + Handle<String> replace, bool* found, int recursion_limit) {
|
| + StackLimitCheck stackLimitCheck(isolate);
|
| + if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
|
| + return MaybeHandle<String>();
|
| + }
|
| + recursion_limit--;
|
| + if (subject->IsConsString()) {
|
| + ConsString* cons = ConsString::cast(*subject);
|
| + Handle<String> first = Handle<String>(cons->first());
|
| + Handle<String> second = Handle<String>(cons->second());
|
| + Handle<String> new_first;
|
| + if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
|
| + recursion_limit).ToHandle(&new_first)) {
|
| + return MaybeHandle<String>();
|
| + }
|
| + if (*found) return isolate->factory()->NewConsString(new_first, second);
|
| +
|
| + Handle<String> new_second;
|
| + if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
|
| + recursion_limit)
|
| + .ToHandle(&new_second)) {
|
| + return MaybeHandle<String>();
|
| + }
|
| + if (*found) return isolate->factory()->NewConsString(first, new_second);
|
| +
|
| + return subject;
|
| + } else {
|
| + int index = Runtime::StringMatch(isolate, subject, search, 0);
|
| + if (index == -1) return subject;
|
| + *found = true;
|
| + Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
|
| + Handle<String> cons1;
|
| + ASSIGN_RETURN_ON_EXCEPTION(
|
| + isolate, cons1, isolate->factory()->NewConsString(first, replace),
|
| + String);
|
| + Handle<String> second =
|
| + isolate->factory()->NewSubString(subject, index + 1, subject->length());
|
| + return isolate->factory()->NewConsString(cons1, second);
|
| + }
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
|
| +
|
| + // If the cons string tree is too deep, we simply abort the recursion and
|
| + // retry with a flattened subject string.
|
| + const int kRecursionLimit = 0x1000;
|
| + bool found = false;
|
| + Handle<String> result;
|
| + if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
|
| + kRecursionLimit).ToHandle(&result)) {
|
| + return *result;
|
| + }
|
| + if (isolate->has_pending_exception()) return isolate->heap()->exception();
|
| +
|
| + subject = String::Flatten(subject);
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result,
|
| + StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
|
| + kRecursionLimit));
|
| + return *result;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringIndexOf) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
|
| +
|
| + uint32_t start_index;
|
| + if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
|
| +
|
| + RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
|
| + int position = Runtime::StringMatch(isolate, sub, pat, start_index);
|
| + return Smi::FromInt(position);
|
| +}
|
| +
|
| +
|
| +template <typename schar, typename pchar>
|
| +static int StringMatchBackwards(Vector<const schar> subject,
|
| + Vector<const pchar> pattern, int idx) {
|
| + int pattern_length = pattern.length();
|
| + DCHECK(pattern_length >= 1);
|
| + DCHECK(idx + pattern_length <= subject.length());
|
| +
|
| + if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
|
| + for (int i = 0; i < pattern_length; i++) {
|
| + uc16 c = pattern[i];
|
| + if (c > String::kMaxOneByteCharCode) {
|
| + return -1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + pchar pattern_first_char = pattern[0];
|
| + for (int i = idx; i >= 0; i--) {
|
| + if (subject[i] != pattern_first_char) continue;
|
| + int j = 1;
|
| + while (j < pattern_length) {
|
| + if (pattern[j] != subject[i + j]) {
|
| + break;
|
| + }
|
| + j++;
|
| + }
|
| + if (j == pattern_length) {
|
| + return i;
|
| + }
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
|
| +
|
| + uint32_t start_index;
|
| + if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
|
| +
|
| + uint32_t pat_length = pat->length();
|
| + uint32_t sub_length = sub->length();
|
| +
|
| + if (start_index + pat_length > sub_length) {
|
| + start_index = sub_length - pat_length;
|
| + }
|
| +
|
| + if (pat_length == 0) {
|
| + return Smi::FromInt(start_index);
|
| + }
|
| +
|
| + sub = String::Flatten(sub);
|
| + pat = String::Flatten(pat);
|
| +
|
| + int position = -1;
|
| + DisallowHeapAllocation no_gc; // ensure vectors stay valid
|
| +
|
| + String::FlatContent sub_content = sub->GetFlatContent();
|
| + String::FlatContent pat_content = pat->GetFlatContent();
|
| +
|
| + if (pat_content.IsOneByte()) {
|
| + Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
|
| + if (sub_content.IsOneByte()) {
|
| + position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
|
| + start_index);
|
| + } else {
|
| + position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
|
| + start_index);
|
| + }
|
| + } else {
|
| + Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
|
| + if (sub_content.IsOneByte()) {
|
| + position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
|
| + start_index);
|
| + } else {
|
| + position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
|
| + start_index);
|
| + }
|
| + }
|
| +
|
| + return Smi::FromInt(position);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
|
| + HandleScope handle_scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
|
| +
|
| + if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal.
|
| + int str1_length = str1->length();
|
| + int str2_length = str2->length();
|
| +
|
| + // Decide trivial cases without flattening.
|
| + if (str1_length == 0) {
|
| + if (str2_length == 0) return Smi::FromInt(0); // Equal.
|
| + return Smi::FromInt(-str2_length);
|
| + } else {
|
| + if (str2_length == 0) return Smi::FromInt(str1_length);
|
| + }
|
| +
|
| + int end = str1_length < str2_length ? str1_length : str2_length;
|
| +
|
| + // No need to flatten if we are going to find the answer on the first
|
| + // character. At this point we know there is at least one character
|
| + // in each string, due to the trivial case handling above.
|
| + int d = str1->Get(0) - str2->Get(0);
|
| + if (d != 0) return Smi::FromInt(d);
|
| +
|
| + str1 = String::Flatten(str1);
|
| + str2 = String::Flatten(str2);
|
| +
|
| + DisallowHeapAllocation no_gc;
|
| + String::FlatContent flat1 = str1->GetFlatContent();
|
| + String::FlatContent flat2 = str2->GetFlatContent();
|
| +
|
| + for (int i = 0; i < end; i++) {
|
| + if (flat1.Get(i) != flat2.Get(i)) {
|
| + return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
|
| + }
|
| + }
|
| +
|
| + return Smi::FromInt(str1_length - str2_length);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_SubString) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
|
| + int start, end;
|
| + // We have a fast integer-only case here to avoid a conversion to double in
|
| + // the common case where from and to are Smis.
|
| + if (args[1]->IsSmi() && args[2]->IsSmi()) {
|
| + CONVERT_SMI_ARG_CHECKED(from_number, 1);
|
| + CONVERT_SMI_ARG_CHECKED(to_number, 2);
|
| + start = from_number;
|
| + end = to_number;
|
| + } else {
|
| + CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
|
| + CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
|
| + start = FastD2IChecked(from_number);
|
| + end = FastD2IChecked(to_number);
|
| + }
|
| + RUNTIME_ASSERT(end >= start);
|
| + RUNTIME_ASSERT(start >= 0);
|
| + RUNTIME_ASSERT(end <= string->length());
|
| + isolate->counters()->sub_string_runtime()->Increment();
|
| +
|
| + return *isolate->factory()->NewSubString(string, start, end);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringAdd) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
|
| + isolate->counters()->string_add_runtime()->Increment();
|
| + Handle<String> result;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewConsString(str1, str2));
|
| + return *result;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_InternalizeString) {
|
| + HandleScope handles(isolate);
|
| + RUNTIME_ASSERT(args.length() == 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
|
| + return *isolate->factory()->InternalizeString(string);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringMatch) {
|
| + HandleScope handles(isolate);
|
| + DCHECK(args.length() == 3);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
|
| +
|
| + RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
|
| +
|
| + RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
|
| + if (global_cache.HasException()) return isolate->heap()->exception();
|
| +
|
| + int capture_count = regexp->CaptureCount();
|
| +
|
| + ZoneScope zone_scope(isolate->runtime_zone());
|
| + ZoneList<int> offsets(8, zone_scope.zone());
|
| +
|
| + while (true) {
|
| + int32_t* match = global_cache.FetchNext();
|
| + if (match == NULL) break;
|
| + offsets.Add(match[0], zone_scope.zone()); // start
|
| + offsets.Add(match[1], zone_scope.zone()); // end
|
| + }
|
| +
|
| + if (global_cache.HasException()) return isolate->heap()->exception();
|
| +
|
| + if (offsets.length() == 0) {
|
| + // Not a single match.
|
| + return isolate->heap()->null_value();
|
| + }
|
| +
|
| + RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
|
| + global_cache.LastSuccessfulMatch());
|
| +
|
| + int matches = offsets.length() / 2;
|
| + Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
|
| + Handle<String> substring =
|
| + isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
|
| + elements->set(0, *substring);
|
| + for (int i = 1; i < matches; i++) {
|
| + HandleScope temp_scope(isolate);
|
| + int from = offsets.at(i * 2);
|
| + int to = offsets.at(i * 2 + 1);
|
| + Handle<String> substring =
|
| + isolate->factory()->NewProperSubString(subject, from, to);
|
| + elements->set(i, *substring);
|
| + }
|
| + Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
|
| + result->set_length(Smi::FromInt(matches));
|
| + return *result;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
|
| + HandleScope handle_scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
|
| + CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
|
| +
|
| + // Flatten the string. If someone wants to get a char at an index
|
| + // in a cons string, it is likely that more indices will be
|
| + // accessed.
|
| + subject = String::Flatten(subject);
|
| +
|
| + if (i >= static_cast<uint32_t>(subject->length())) {
|
| + return isolate->heap()->nan_value();
|
| + }
|
| +
|
| + return Smi::FromInt(subject->Get(i));
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_CharFromCode) {
|
| + HandleScope handlescope(isolate);
|
| + DCHECK(args.length() == 1);
|
| + if (args[0]->IsNumber()) {
|
| + CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
|
| + code &= 0xffff;
|
| + return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
|
| + }
|
| + return isolate->heap()->empty_string();
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringCompare) {
|
| + HandleScope handle_scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
|
| +
|
| + isolate->counters()->string_compare_runtime()->Increment();
|
| +
|
| + // A few fast case tests before we flatten.
|
| + if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
|
| + if (y->length() == 0) {
|
| + if (x->length() == 0) return Smi::FromInt(EQUAL);
|
| + return Smi::FromInt(GREATER);
|
| + } else if (x->length() == 0) {
|
| + return Smi::FromInt(LESS);
|
| + }
|
| +
|
| + int d = x->Get(0) - y->Get(0);
|
| + if (d < 0)
|
| + return Smi::FromInt(LESS);
|
| + else if (d > 0)
|
| + return Smi::FromInt(GREATER);
|
| +
|
| + // Slow case.
|
| + x = String::Flatten(x);
|
| + y = String::Flatten(y);
|
| +
|
| + DisallowHeapAllocation no_gc;
|
| + Object* equal_prefix_result = Smi::FromInt(EQUAL);
|
| + int prefix_length = x->length();
|
| + if (y->length() < prefix_length) {
|
| + prefix_length = y->length();
|
| + equal_prefix_result = Smi::FromInt(GREATER);
|
| + } else if (y->length() > prefix_length) {
|
| + equal_prefix_result = Smi::FromInt(LESS);
|
| + }
|
| + int r;
|
| + String::FlatContent x_content = x->GetFlatContent();
|
| + String::FlatContent y_content = y->GetFlatContent();
|
| + if (x_content.IsOneByte()) {
|
| + Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
|
| + if (y_content.IsOneByte()) {
|
| + Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
|
| + r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
| + } else {
|
| + Vector<const uc16> y_chars = y_content.ToUC16Vector();
|
| + r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
| + }
|
| + } else {
|
| + Vector<const uc16> x_chars = x_content.ToUC16Vector();
|
| + if (y_content.IsOneByte()) {
|
| + Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
|
| + r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
| + } else {
|
| + Vector<const uc16> y_chars = y_content.ToUC16Vector();
|
| + r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
|
| + }
|
| + }
|
| + Object* result;
|
| + if (r == 0) {
|
| + result = equal_prefix_result;
|
| + } else {
|
| + result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
|
| + int32_t array_length;
|
| + if (!args[1]->ToInt32(&array_length)) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
|
| + }
|
| + CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
|
| +
|
| + size_t actual_array_length = 0;
|
| + RUNTIME_ASSERT(
|
| + TryNumberToSize(isolate, array->length(), &actual_array_length));
|
| + RUNTIME_ASSERT(array_length >= 0);
|
| + RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
|
| +
|
| + // This assumption is used by the slice encoding in one or two smis.
|
| + DCHECK(Smi::kMaxValue >= String::kMaxLength);
|
| +
|
| + RUNTIME_ASSERT(array->HasFastElements());
|
| + JSObject::EnsureCanContainHeapObjectElements(array);
|
| +
|
| + int special_length = special->length();
|
| + if (!array->HasFastObjectElements()) {
|
| + return isolate->Throw(isolate->heap()->illegal_argument_string());
|
| + }
|
| +
|
| + int length;
|
| + bool one_byte = special->HasOnlyOneByteChars();
|
| +
|
| + {
|
| + DisallowHeapAllocation no_gc;
|
| + FixedArray* fixed_array = FixedArray::cast(array->elements());
|
| + if (fixed_array->length() < array_length) {
|
| + array_length = fixed_array->length();
|
| + }
|
| +
|
| + if (array_length == 0) {
|
| + return isolate->heap()->empty_string();
|
| + } else if (array_length == 1) {
|
| + Object* first = fixed_array->get(0);
|
| + if (first->IsString()) return first;
|
| + }
|
| + length = StringBuilderConcatLength(special_length, fixed_array,
|
| + array_length, &one_byte);
|
| + }
|
| +
|
| + if (length == -1) {
|
| + return isolate->Throw(isolate->heap()->illegal_argument_string());
|
| + }
|
| +
|
| + if (one_byte) {
|
| + Handle<SeqOneByteString> answer;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, answer, isolate->factory()->NewRawOneByteString(length));
|
| + StringBuilderConcatHelper(*special, answer->GetChars(),
|
| + FixedArray::cast(array->elements()),
|
| + array_length);
|
| + return *answer;
|
| + } else {
|
| + Handle<SeqTwoByteString> answer;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, answer, isolate->factory()->NewRawTwoByteString(length));
|
| + StringBuilderConcatHelper(*special, answer->GetChars(),
|
| + FixedArray::cast(array->elements()),
|
| + array_length);
|
| + return *answer;
|
| + }
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
|
| + int32_t array_length;
|
| + if (!args[1]->ToInt32(&array_length)) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
|
| + }
|
| + CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
|
| + RUNTIME_ASSERT(array->HasFastObjectElements());
|
| + RUNTIME_ASSERT(array_length >= 0);
|
| +
|
| + Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
|
| + if (fixed_array->length() < array_length) {
|
| + array_length = fixed_array->length();
|
| + }
|
| +
|
| + if (array_length == 0) {
|
| + return isolate->heap()->empty_string();
|
| + } else if (array_length == 1) {
|
| + Object* first = fixed_array->get(0);
|
| + RUNTIME_ASSERT(first->IsString());
|
| + return first;
|
| + }
|
| +
|
| + int separator_length = separator->length();
|
| + RUNTIME_ASSERT(separator_length > 0);
|
| + int max_nof_separators =
|
| + (String::kMaxLength + separator_length - 1) / separator_length;
|
| + if (max_nof_separators < (array_length - 1)) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
|
| + }
|
| + int length = (array_length - 1) * separator_length;
|
| + for (int i = 0; i < array_length; i++) {
|
| + Object* element_obj = fixed_array->get(i);
|
| + RUNTIME_ASSERT(element_obj->IsString());
|
| + String* element = String::cast(element_obj);
|
| + int increment = element->length();
|
| + if (increment > String::kMaxLength - length) {
|
| + STATIC_ASSERT(String::kMaxLength < kMaxInt);
|
| + length = kMaxInt; // Provoke exception;
|
| + break;
|
| + }
|
| + length += increment;
|
| + }
|
| +
|
| + Handle<SeqTwoByteString> answer;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, answer, isolate->factory()->NewRawTwoByteString(length));
|
| +
|
| + DisallowHeapAllocation no_gc;
|
| +
|
| + uc16* sink = answer->GetChars();
|
| +#ifdef DEBUG
|
| + uc16* end = sink + length;
|
| +#endif
|
| +
|
| + RUNTIME_ASSERT(fixed_array->get(0)->IsString());
|
| + String* first = String::cast(fixed_array->get(0));
|
| + String* separator_raw = *separator;
|
| + int first_length = first->length();
|
| + String::WriteToFlat(first, sink, 0, first_length);
|
| + sink += first_length;
|
| +
|
| + for (int i = 1; i < array_length; i++) {
|
| + DCHECK(sink + separator_length <= end);
|
| + String::WriteToFlat(separator_raw, sink, 0, separator_length);
|
| + sink += separator_length;
|
| +
|
| + RUNTIME_ASSERT(fixed_array->get(i)->IsString());
|
| + String* element = String::cast(fixed_array->get(i));
|
| + int element_length = element->length();
|
| + DCHECK(sink + element_length <= end);
|
| + String::WriteToFlat(element, sink, 0, element_length);
|
| + sink += element_length;
|
| + }
|
| + DCHECK(sink == end);
|
| +
|
| + // Use %_FastOneByteArrayJoin instead.
|
| + DCHECK(!answer->IsOneByteRepresentation());
|
| + return *answer;
|
| +}
|
| +
|
| +template <typename Char>
|
| +static void JoinSparseArrayWithSeparator(FixedArray* elements,
|
| + int elements_length,
|
| + uint32_t array_length,
|
| + String* separator,
|
| + Vector<Char> buffer) {
|
| + DisallowHeapAllocation no_gc;
|
| + int previous_separator_position = 0;
|
| + int separator_length = separator->length();
|
| + int cursor = 0;
|
| + for (int i = 0; i < elements_length; i += 2) {
|
| + int position = NumberToInt32(elements->get(i));
|
| + String* string = String::cast(elements->get(i + 1));
|
| + int string_length = string->length();
|
| + if (string->length() > 0) {
|
| + while (previous_separator_position < position) {
|
| + String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
|
| + separator_length);
|
| + cursor += separator_length;
|
| + previous_separator_position++;
|
| + }
|
| + String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
|
| + cursor += string->length();
|
| + }
|
| + }
|
| + if (separator_length > 0) {
|
| + // Array length must be representable as a signed 32-bit number,
|
| + // otherwise the total string length would have been too large.
|
| + DCHECK(array_length <= 0x7fffffff); // Is int32_t.
|
| + int last_array_index = static_cast<int>(array_length - 1);
|
| + while (previous_separator_position < last_array_index) {
|
| + String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
|
| + separator_length);
|
| + cursor += separator_length;
|
| + previous_separator_position++;
|
| + }
|
| + }
|
| + DCHECK(cursor <= buffer.length());
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
|
| + CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
|
| + // elements_array is fast-mode JSarray of alternating positions
|
| + // (increasing order) and strings.
|
| + RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
|
| + // array_length is length of original array (used to add separators);
|
| + // separator is string to put between elements. Assumed to be non-empty.
|
| + RUNTIME_ASSERT(array_length > 0);
|
| +
|
| + // Find total length of join result.
|
| + int string_length = 0;
|
| + bool is_one_byte = separator->IsOneByteRepresentation();
|
| + bool overflow = false;
|
| + CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
|
| + RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
|
| + RUNTIME_ASSERT((elements_length & 1) == 0); // Even length.
|
| + FixedArray* elements = FixedArray::cast(elements_array->elements());
|
| + for (int i = 0; i < elements_length; i += 2) {
|
| + RUNTIME_ASSERT(elements->get(i)->IsNumber());
|
| + CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
|
| + RUNTIME_ASSERT(position < array_length);
|
| + RUNTIME_ASSERT(elements->get(i + 1)->IsString());
|
| + }
|
| +
|
| + {
|
| + DisallowHeapAllocation no_gc;
|
| + for (int i = 0; i < elements_length; i += 2) {
|
| + String* string = String::cast(elements->get(i + 1));
|
| + int length = string->length();
|
| + if (is_one_byte && !string->IsOneByteRepresentation()) {
|
| + is_one_byte = false;
|
| + }
|
| + if (length > String::kMaxLength ||
|
| + String::kMaxLength - length < string_length) {
|
| + overflow = true;
|
| + break;
|
| + }
|
| + string_length += length;
|
| + }
|
| + }
|
| +
|
| + int separator_length = separator->length();
|
| + if (!overflow && separator_length > 0) {
|
| + if (array_length <= 0x7fffffffu) {
|
| + int separator_count = static_cast<int>(array_length) - 1;
|
| + int remaining_length = String::kMaxLength - string_length;
|
| + if ((remaining_length / separator_length) >= separator_count) {
|
| + string_length += separator_length * (array_length - 1);
|
| + } else {
|
| + // Not room for the separators within the maximal string length.
|
| + overflow = true;
|
| + }
|
| + } else {
|
| + // Nonempty separator and at least 2^31-1 separators necessary
|
| + // means that the string is too large to create.
|
| + STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
|
| + overflow = true;
|
| + }
|
| + }
|
| + if (overflow) {
|
| + // Throw an exception if the resulting string is too large. See
|
| + // https://code.google.com/p/chromium/issues/detail?id=336820
|
| + // for details.
|
| + THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
|
| + }
|
| +
|
| + if (is_one_byte) {
|
| + Handle<SeqOneByteString> result = isolate->factory()
|
| + ->NewRawOneByteString(string_length)
|
| + .ToHandleChecked();
|
| + JoinSparseArrayWithSeparator<uint8_t>(
|
| + FixedArray::cast(elements_array->elements()), elements_length,
|
| + array_length, *separator,
|
| + Vector<uint8_t>(result->GetChars(), string_length));
|
| + return *result;
|
| + } else {
|
| + Handle<SeqTwoByteString> result = isolate->factory()
|
| + ->NewRawTwoByteString(string_length)
|
| + .ToHandleChecked();
|
| + JoinSparseArrayWithSeparator<uc16>(
|
| + FixedArray::cast(elements_array->elements()), elements_length,
|
| + array_length, *separator,
|
| + Vector<uc16>(result->GetChars(), string_length));
|
| + return *result;
|
| + }
|
| +}
|
| +
|
| +
|
| +// Copies Latin1 characters to the given fixed array looking up
|
| +// one-char strings in the cache. Gives up on the first char that is
|
| +// not in the cache and fills the remainder with smi zeros. Returns
|
| +// the length of the successfully copied prefix.
|
| +static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
|
| + FixedArray* elements, int length) {
|
| + DisallowHeapAllocation no_gc;
|
| + FixedArray* one_byte_cache = heap->single_character_string_cache();
|
| + Object* undefined = heap->undefined_value();
|
| + int i;
|
| + WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
|
| + for (i = 0; i < length; ++i) {
|
| + Object* value = one_byte_cache->get(chars[i]);
|
| + if (value == undefined) break;
|
| + elements->set(i, value, mode);
|
| + }
|
| + if (i < length) {
|
| + DCHECK(Smi::FromInt(0) == 0);
|
| + memset(elements->data_start() + i, 0, kPointerSize * (length - i));
|
| + }
|
| +#ifdef DEBUG
|
| + for (int j = 0; j < length; ++j) {
|
| + Object* element = elements->get(j);
|
| + DCHECK(element == Smi::FromInt(0) ||
|
| + (element->IsString() && String::cast(element)->LooksValid()));
|
| + }
|
| +#endif
|
| + return i;
|
| +}
|
| +
|
| +
|
| +// Converts a String to JSArray.
|
| +// For example, "foo" => ["f", "o", "o"].
|
| +RUNTIME_FUNCTION(Runtime_StringToArray) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
|
| + CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
|
| +
|
| + s = String::Flatten(s);
|
| + const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
|
| +
|
| + Handle<FixedArray> elements;
|
| + int position = 0;
|
| + if (s->IsFlat() && s->IsOneByteRepresentation()) {
|
| + // Try using cached chars where possible.
|
| + elements = isolate->factory()->NewUninitializedFixedArray(length);
|
| +
|
| + DisallowHeapAllocation no_gc;
|
| + String::FlatContent content = s->GetFlatContent();
|
| + if (content.IsOneByte()) {
|
| + Vector<const uint8_t> chars = content.ToOneByteVector();
|
| + // Note, this will initialize all elements (not only the prefix)
|
| + // to prevent GC from seeing partially initialized array.
|
| + position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
|
| + *elements, length);
|
| + } else {
|
| + MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
|
| + length);
|
| + }
|
| + } else {
|
| + elements = isolate->factory()->NewFixedArray(length);
|
| + }
|
| + for (int i = position; i < length; ++i) {
|
| + Handle<Object> str =
|
| + isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
|
| + elements->set(i, *str);
|
| + }
|
| +
|
| +#ifdef DEBUG
|
| + for (int i = 0; i < length; ++i) {
|
| + DCHECK(String::cast(elements->get(i))->length() == 1);
|
| + }
|
| +#endif
|
| +
|
| + return *isolate->factory()->NewJSArrayWithElements(elements);
|
| +}
|
| +
|
| +
|
| +static inline bool ToUpperOverflows(uc32 character) {
|
| + // y with umlauts and the micro sign are the only characters that stop
|
| + // fitting into one-byte when converting to uppercase.
|
| + static const uc32 yuml_code = 0xff;
|
| + static const uc32 micro_code = 0xb5;
|
| + return (character == yuml_code || character == micro_code);
|
| +}
|
| +
|
| +
|
| +template <class Converter>
|
| +MUST_USE_RESULT static Object* ConvertCaseHelper(
|
| + Isolate* isolate, String* string, SeqString* result, int result_length,
|
| + unibrow::Mapping<Converter, 128>* mapping) {
|
| + DisallowHeapAllocation no_gc;
|
| + // We try this twice, once with the assumption that the result is no longer
|
| + // than the input and, if that assumption breaks, again with the exact
|
| + // length. This may not be pretty, but it is nicer than what was here before
|
| + // and I hereby claim my vaffel-is.
|
| + //
|
| + // NOTE: This assumes that the upper/lower case of an ASCII
|
| + // character is also ASCII. This is currently the case, but it
|
| + // might break in the future if we implement more context and locale
|
| + // dependent upper/lower conversions.
|
| + bool has_changed_character = false;
|
| +
|
| + // Convert all characters to upper case, assuming that they will fit
|
| + // in the buffer
|
| + Access<ConsStringIteratorOp> op(isolate->runtime_state()->string_iterator());
|
| + StringCharacterStream stream(string, op.value());
|
| + unibrow::uchar chars[Converter::kMaxWidth];
|
| + // We can assume that the string is not empty
|
| + uc32 current = stream.GetNext();
|
| + bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
|
| + for (int i = 0; i < result_length;) {
|
| + bool has_next = stream.HasMore();
|
| + uc32 next = has_next ? stream.GetNext() : 0;
|
| + int char_length = mapping->get(current, next, chars);
|
| + if (char_length == 0) {
|
| + // The case conversion of this character is the character itself.
|
| + result->Set(i, current);
|
| + i++;
|
| + } else if (char_length == 1 &&
|
| + (ignore_overflow || !ToUpperOverflows(current))) {
|
| + // Common case: converting the letter resulted in one character.
|
| + DCHECK(static_cast<uc32>(chars[0]) != current);
|
| + result->Set(i, chars[0]);
|
| + has_changed_character = true;
|
| + i++;
|
| + } else if (result_length == string->length()) {
|
| + bool overflows = ToUpperOverflows(current);
|
| + // We've assumed that the result would be as long as the
|
| + // input but here is a character that converts to several
|
| + // characters. No matter, we calculate the exact length
|
| + // of the result and try the whole thing again.
|
| + //
|
| + // Note that this leaves room for optimization. We could just
|
| + // memcpy what we already have to the result string. Also,
|
| + // the result string is the last object allocated we could
|
| + // "realloc" it and probably, in the vast majority of cases,
|
| + // extend the existing string to be able to hold the full
|
| + // result.
|
| + int next_length = 0;
|
| + if (has_next) {
|
| + next_length = mapping->get(next, 0, chars);
|
| + if (next_length == 0) next_length = 1;
|
| + }
|
| + int current_length = i + char_length + next_length;
|
| + while (stream.HasMore()) {
|
| + current = stream.GetNext();
|
| + overflows |= ToUpperOverflows(current);
|
| + // NOTE: we use 0 as the next character here because, while
|
| + // the next character may affect what a character converts to,
|
| + // it does not in any case affect the length of what it convert
|
| + // to.
|
| + int char_length = mapping->get(current, 0, chars);
|
| + if (char_length == 0) char_length = 1;
|
| + current_length += char_length;
|
| + if (current_length > String::kMaxLength) {
|
| + AllowHeapAllocation allocate_error_and_return;
|
| + THROW_NEW_ERROR_RETURN_FAILURE(isolate,
|
| + NewInvalidStringLengthError());
|
| + }
|
| + }
|
| + // Try again with the real length. Return signed if we need
|
| + // to allocate a two-byte string for to uppercase.
|
| + return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
|
| + : Smi::FromInt(current_length);
|
| + } else {
|
| + for (int j = 0; j < char_length; j++) {
|
| + result->Set(i, chars[j]);
|
| + i++;
|
| + }
|
| + has_changed_character = true;
|
| + }
|
| + current = next;
|
| + }
|
| + if (has_changed_character) {
|
| + return result;
|
| + } else {
|
| + // If we didn't actually change anything in doing the conversion
|
| + // we simple return the result and let the converted string
|
| + // become garbage; there is no reason to keep two identical strings
|
| + // alive.
|
| + return string;
|
| + }
|
| +}
|
| +
|
| +
|
| +static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
|
| +static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
|
| +
|
| +// Given a word and two range boundaries returns a word with high bit
|
| +// set in every byte iff the corresponding input byte was strictly in
|
| +// the range (m, n). All the other bits in the result are cleared.
|
| +// This function is only useful when it can be inlined and the
|
| +// boundaries are statically known.
|
| +// Requires: all bytes in the input word and the boundaries must be
|
| +// ASCII (less than 0x7F).
|
| +static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
|
| + // Use strict inequalities since in edge cases the function could be
|
| + // further simplified.
|
| + DCHECK(0 < m && m < n);
|
| + // Has high bit set in every w byte less than n.
|
| + uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
|
| + // Has high bit set in every w byte greater than m.
|
| + uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
|
| + return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
|
| +}
|
| +
|
| +
|
| +#ifdef DEBUG
|
| +static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
|
| + bool changed, bool is_to_lower) {
|
| + bool expected_changed = false;
|
| + for (int i = 0; i < length; i++) {
|
| + if (dst[i] == src[i]) continue;
|
| + expected_changed = true;
|
| + if (is_to_lower) {
|
| + DCHECK('A' <= src[i] && src[i] <= 'Z');
|
| + DCHECK(dst[i] == src[i] + ('a' - 'A'));
|
| + } else {
|
| + DCHECK('a' <= src[i] && src[i] <= 'z');
|
| + DCHECK(dst[i] == src[i] - ('a' - 'A'));
|
| + }
|
| + }
|
| + return (expected_changed == changed);
|
| +}
|
| +#endif
|
| +
|
| +
|
| +template <class Converter>
|
| +static bool FastAsciiConvert(char* dst, const char* src, int length,
|
| + bool* changed_out) {
|
| +#ifdef DEBUG
|
| + char* saved_dst = dst;
|
| + const char* saved_src = src;
|
| +#endif
|
| + DisallowHeapAllocation no_gc;
|
| + // We rely on the distance between upper and lower case letters
|
| + // being a known power of 2.
|
| + DCHECK('a' - 'A' == (1 << 5));
|
| + // Boundaries for the range of input characters than require conversion.
|
| + static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
|
| + static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
|
| + bool changed = false;
|
| + uintptr_t or_acc = 0;
|
| + const char* const limit = src + length;
|
| +
|
| + // dst is newly allocated and always aligned.
|
| + DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
|
| + // Only attempt processing one word at a time if src is also aligned.
|
| + if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
|
| + // Process the prefix of the input that requires no conversion one aligned
|
| + // (machine) word at a time.
|
| + while (src <= limit - sizeof(uintptr_t)) {
|
| + const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| + or_acc |= w;
|
| + if (AsciiRangeMask(w, lo, hi) != 0) {
|
| + changed = true;
|
| + break;
|
| + }
|
| + *reinterpret_cast<uintptr_t*>(dst) = w;
|
| + src += sizeof(uintptr_t);
|
| + dst += sizeof(uintptr_t);
|
| + }
|
| + // Process the remainder of the input performing conversion when
|
| + // required one word at a time.
|
| + while (src <= limit - sizeof(uintptr_t)) {
|
| + const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| + or_acc |= w;
|
| + uintptr_t m = AsciiRangeMask(w, lo, hi);
|
| + // The mask has high (7th) bit set in every byte that needs
|
| + // conversion and we know that the distance between cases is
|
| + // 1 << 5.
|
| + *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
|
| + src += sizeof(uintptr_t);
|
| + dst += sizeof(uintptr_t);
|
| + }
|
| + }
|
| + // Process the last few bytes of the input (or the whole input if
|
| + // unaligned access is not supported).
|
| + while (src < limit) {
|
| + char c = *src;
|
| + or_acc |= c;
|
| + if (lo < c && c < hi) {
|
| + c ^= (1 << 5);
|
| + changed = true;
|
| + }
|
| + *dst = c;
|
| + ++src;
|
| + ++dst;
|
| + }
|
| +
|
| + if ((or_acc & kAsciiMask) != 0) return false;
|
| +
|
| + DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
|
| + Converter::kIsToLower));
|
| +
|
| + *changed_out = changed;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +template <class Converter>
|
| +MUST_USE_RESULT static Object* ConvertCase(
|
| + Handle<String> s, Isolate* isolate,
|
| + unibrow::Mapping<Converter, 128>* mapping) {
|
| + s = String::Flatten(s);
|
| + int length = s->length();
|
| + // Assume that the string is not empty; we need this assumption later
|
| + if (length == 0) return *s;
|
| +
|
| + // Simpler handling of ASCII strings.
|
| + //
|
| + // NOTE: This assumes that the upper/lower case of an ASCII
|
| + // character is also ASCII. This is currently the case, but it
|
| + // might break in the future if we implement more context and locale
|
| + // dependent upper/lower conversions.
|
| + if (s->IsOneByteRepresentationUnderneath()) {
|
| + // Same length as input.
|
| + Handle<SeqOneByteString> result =
|
| + isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| + DisallowHeapAllocation no_gc;
|
| + String::FlatContent flat_content = s->GetFlatContent();
|
| + DCHECK(flat_content.IsFlat());
|
| + bool has_changed_character = false;
|
| + bool is_ascii = FastAsciiConvert<Converter>(
|
| + reinterpret_cast<char*>(result->GetChars()),
|
| + reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
|
| + length, &has_changed_character);
|
| + // If not ASCII, we discard the result and take the 2 byte path.
|
| + if (is_ascii) return has_changed_character ? *result : *s;
|
| + }
|
| +
|
| + Handle<SeqString> result; // Same length as input.
|
| + if (s->IsOneByteRepresentation()) {
|
| + result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| + } else {
|
| + result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
|
| + }
|
| +
|
| + Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
|
| + if (answer->IsException() || answer->IsString()) return answer;
|
| +
|
| + DCHECK(answer->IsSmi());
|
| + length = Smi::cast(answer)->value();
|
| + if (s->IsOneByteRepresentation() && length > 0) {
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawOneByteString(length));
|
| + } else {
|
| + if (length < 0) length = -length;
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawTwoByteString(length));
|
| + }
|
| + return ConvertCaseHelper(isolate, *s, *result, length, mapping);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
|
| + return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 1);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
|
| + return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringTrim) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 3);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
|
| + CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
|
| + CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
|
| +
|
| + string = String::Flatten(string);
|
| + int length = string->length();
|
| +
|
| + int left = 0;
|
| + UnicodeCache* unicode_cache = isolate->unicode_cache();
|
| + if (trimLeft) {
|
| + while (left < length &&
|
| + unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
|
| + left++;
|
| + }
|
| + }
|
| +
|
| + int right = length;
|
| + if (trimRight) {
|
| + while (
|
| + right > left &&
|
| + unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
|
| + right--;
|
| + }
|
| + }
|
| +
|
| + return *isolate->factory()->NewSubString(string, left, right);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_TruncateString) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| + CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
|
| + CONVERT_INT32_ARG_CHECKED(new_length, 1);
|
| + RUNTIME_ASSERT(new_length >= 0);
|
| + return *SeqString::Truncate(string, new_length);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_NewString) {
|
| + HandleScope scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| + CONVERT_INT32_ARG_CHECKED(length, 0);
|
| + CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
|
| + if (length == 0) return isolate->heap()->empty_string();
|
| + Handle<String> result;
|
| + if (is_one_byte) {
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawOneByteString(length));
|
| + } else {
|
| + ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawTwoByteString(length));
|
| + }
|
| + return *result;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(Runtime_StringEquals) {
|
| + HandleScope handle_scope(isolate);
|
| + DCHECK(args.length() == 2);
|
| +
|
| + CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
|
| + CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
|
| +
|
| + bool not_equal = !String::Equals(x, y);
|
| + // This is slightly convoluted because the value that signifies
|
| + // equality is 0 and inequality is 1 so we have to negate the result
|
| + // from String::Equals.
|
| + DCHECK(not_equal == 0 || not_equal == 1);
|
| + STATIC_ASSERT(EQUAL == 0);
|
| + STATIC_ASSERT(NOT_EQUAL == 1);
|
| + return Smi::FromInt(not_equal);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
|
| + SealHandleScope shs(isolate);
|
| + return __RT_impl_Runtime_CharFromCode(args, isolate);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
|
| + SealHandleScope shs(isolate);
|
| + DCHECK(args.length() == 2);
|
| + if (!args[0]->IsString()) return Smi::FromInt(0);
|
| + if (!args[1]->IsNumber()) return Smi::FromInt(0);
|
| + if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
|
| + Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
|
| + if (code->IsNaN()) return isolate->heap()->empty_string();
|
| + return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
|
| + SealHandleScope shs(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_INT32_ARG_CHECKED(index, 0);
|
| + CONVERT_INT32_ARG_CHECKED(value, 1);
|
| + CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
|
| + string->SeqOneByteStringSet(index, value);
|
| + return string;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
|
| + SealHandleScope shs(isolate);
|
| + DCHECK(args.length() == 3);
|
| + CONVERT_INT32_ARG_CHECKED(index, 0);
|
| + CONVERT_INT32_ARG_CHECKED(value, 1);
|
| + CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
|
| + string->SeqTwoByteStringSet(index, value);
|
| + return string;
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
|
| + SealHandleScope shs(isolate);
|
| + return __RT_impl_Runtime_StringCompare(args, isolate);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
|
| + SealHandleScope shs(isolate);
|
| + DCHECK(args.length() == 2);
|
| + if (!args[0]->IsString()) return isolate->heap()->undefined_value();
|
| + if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
|
| + if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
|
| + return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_SubString) {
|
| + SealHandleScope shs(isolate);
|
| + return __RT_impl_Runtime_SubString(args, isolate);
|
| +}
|
| +
|
| +
|
| +RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
|
| + SealHandleScope shs(isolate);
|
| + return __RT_impl_Runtime_StringAdd(args, isolate);
|
| +}
|
| +}
|
| +} // namespace v8::internal
|
|
|