| Index: src/core/SkPoint.cpp
|
| diff --git a/src/core/SkPoint.cpp b/src/core/SkPoint.cpp
|
| index bf3affaaf549d10c155582b65fbfaf71bb874833..719ee54b225ae72e57ee6752ab22a107178adc66 100644
|
| --- a/src/core/SkPoint.cpp
|
| +++ b/src/core/SkPoint.cpp
|
| @@ -87,8 +87,6 @@ bool SkPoint::setLength(SkScalar length) {
|
| return this->setLength(fX, fY, length);
|
| }
|
|
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| -
|
| // Returns the square of the Euclidian distance to (dx,dy).
|
| static inline float getLengthSquared(float dx, float dy) {
|
| return dx * dx + dy * dy;
|
| @@ -177,290 +175,32 @@ bool SkPoint::setLength(float x, float y, float length) {
|
| return true;
|
| }
|
|
|
| -#else
|
| -
|
| -#include "Sk64.h"
|
| -
|
| -// Returns the square of the Euclidian distance to (dx,dy) in *result.
|
| -static inline void getLengthSquared(SkScalar dx, SkScalar dy, Sk64 *result) {
|
| - Sk64 dySqr;
|
| -
|
| - result->setMul(dx, dx);
|
| - dySqr.setMul(dy, dy);
|
| - result->add(dySqr);
|
| -}
|
| -
|
| -// Calculates the square of the Euclidian distance to (dx,dy) and stores it in
|
| -// *lengthSquared. Returns true if the distance is judged to be "nearly zero".
|
| -//
|
| -// This logic is encapsulated in a helper method to make it explicit that we
|
| -// always perform this check in the same manner, to avoid inconsistencies
|
| -// (see http://code.google.com/p/skia/issues/detail?id=560 ).
|
| -static inline bool isLengthNearlyZero(SkScalar dx, SkScalar dy,
|
| - Sk64 *lengthSquared) {
|
| - Sk64 tolSqr;
|
| - getLengthSquared(dx, dy, lengthSquared);
|
| -
|
| - // we want nearlyzero^2, but to compute it fast we want to just do a
|
| - // 32bit multiply, so we require that it not exceed 31bits. That is true
|
| - // if nearlyzero is <= 0xB504, which should be trivial, since usually
|
| - // nearlyzero is a very small fixed-point value.
|
| - SkASSERT(SK_ScalarNearlyZero <= 0xB504);
|
| -
|
| - tolSqr.set(0, SK_ScalarNearlyZero * SK_ScalarNearlyZero);
|
| - return *lengthSquared <= tolSqr;
|
| -}
|
| -
|
| -SkScalar SkPoint::Normalize(SkPoint* pt) {
|
| - Sk64 mag2;
|
| - if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
|
| - SkScalar mag = mag2.getSqrt();
|
| - SkScalar scale = SkScalarInvert(mag);
|
| - pt->fX = SkScalarMul(pt->fX, scale);
|
| - pt->fY = SkScalarMul(pt->fY, scale);
|
| - return mag;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) {
|
| - Sk64 mag2_unused;
|
| - return !isLengthNearlyZero(dx, dy, &mag2_unused);
|
| -}
|
| -
|
| -SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
|
| - Sk64 tmp;
|
| - getLengthSquared(dx, dy, &tmp);
|
| - return tmp.getSqrt();
|
| -}
|
| -
|
| -#ifdef SK_DEBUGx
|
| -static SkFixed fixlen(SkFixed x, SkFixed y) {
|
| - float fx = (float)x;
|
| - float fy = (float)y;
|
| -
|
| - return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f);
|
| -}
|
| -#endif
|
| -
|
| -static inline uint32_t squarefixed(unsigned x) {
|
| - x >>= 16;
|
| - return x*x;
|
| -}
|
| -
|
| -#if 1 // Newton iter for setLength
|
| -
|
| -static inline unsigned invsqrt_iter(unsigned V, unsigned U) {
|
| - unsigned x = V * U >> 14;
|
| - x = x * U >> 14;
|
| - x = (3 << 14) - x;
|
| - x = (U >> 1) * x >> 14;
|
| - return x;
|
| -}
|
| -
|
| -static const uint16_t gInvSqrt14GuessTable[] = {
|
| - 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061,
|
| - 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780,
|
| - 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235,
|
| - 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99,
|
| - 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee,
|
| - 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc,
|
| - 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830,
|
| - 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce
|
| -};
|
| -
|
| -#define BUILD_INVSQRT_TABLEx
|
| -#ifdef BUILD_INVSQRT_TABLE
|
| -static void build_invsqrt14_guess_table() {
|
| - for (int i = 8; i <= 63; i++) {
|
| - unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25));
|
| - printf("0x%x, ", x);
|
| - }
|
| - printf("\n");
|
| -}
|
| -#endif
|
| -
|
| -static unsigned fast_invsqrt(uint32_t x) {
|
| -#ifdef BUILD_INVSQRT_TABLE
|
| - unsigned top2 = x >> 25;
|
| - SkASSERT(top2 >= 8 && top2 <= 63);
|
| -
|
| - static bool gOnce;
|
| - if (!gOnce) {
|
| - build_invsqrt14_guess_table();
|
| - gOnce = true;
|
| - }
|
| -#endif
|
| -
|
| - unsigned V = x >> 14; // make V .14
|
| -
|
| - unsigned top = x >> 25;
|
| - SkASSERT(top >= 8 && top <= 63);
|
| - SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable));
|
| - unsigned U = gInvSqrt14GuessTable[top - 8];
|
| -
|
| - U = invsqrt_iter(V, U);
|
| - return invsqrt_iter(V, U);
|
| +bool SkPoint::setLengthFast(float length) {
|
| + return this->setLengthFast(fX, fY, length);
|
| }
|
|
|
| -/* We "normalize" x,y to be .14 values (so we can square them and stay 32bits.
|
| - Then we Newton-iterate this in .14 space to compute the invser-sqrt, and
|
| - scale by it at the end. The .14 space means we can execute our iterations
|
| - and stay in 32bits as well, making the multiplies much cheaper than calling
|
| - SkFixedMul.
|
| -*/
|
| -bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
|
| - if (ox == 0) {
|
| - if (oy == 0) {
|
| - return false;
|
| - }
|
| - this->set(0, SkApplySign(length, SkExtractSign(oy)));
|
| - return true;
|
| - }
|
| - if (oy == 0) {
|
| - this->set(SkApplySign(length, SkExtractSign(ox)), 0);
|
| - return true;
|
| +bool SkPoint::setLengthFast(float x, float y, float length) {
|
| + float mag2;
|
| + if (isLengthNearlyZero(x, y, &mag2)) {
|
| + return false;
|
| }
|
|
|
| - unsigned x = SkAbs32(ox);
|
| - unsigned y = SkAbs32(oy);
|
| - int zeros = SkCLZ(x | y);
|
| -
|
| - // make x,y 1.14 values so our fast sqr won't overflow
|
| - if (zeros > 17) {
|
| - x <<= zeros - 17;
|
| - y <<= zeros - 17;
|
| + float scale;
|
| + if (SkScalarIsFinite(mag2)) {
|
| + scale = length * sk_float_rsqrt(mag2); // <--- this is the difference
|
| } else {
|
| - x >>= 17 - zeros;
|
| - y >>= 17 - zeros;
|
| - }
|
| - SkASSERT((x | y) <= 0x7FFF);
|
| -
|
| - unsigned invrt = fast_invsqrt(x*x + y*y);
|
| -
|
| - x = x * invrt >> 12;
|
| - y = y * invrt >> 12;
|
| -
|
| - if (length != SK_Fixed1) {
|
| - x = SkFixedMul(x, length);
|
| - y = SkFixedMul(y, length);
|
| - }
|
| - this->set(SkApplySign(x, SkExtractSign(ox)),
|
| - SkApplySign(y, SkExtractSign(oy)));
|
| - return true;
|
| -}
|
| -#else
|
| -/*
|
| - Normalize x,y, and then scale them by length.
|
| -
|
| - The obvious way to do this would be the following:
|
| - S64 tmp1, tmp2;
|
| - tmp1.setMul(x,x);
|
| - tmp2.setMul(y,y);
|
| - tmp1.add(tmp2);
|
| - len = tmp1.getSqrt();
|
| - x' = SkFixedDiv(x, len);
|
| - y' = SkFixedDiv(y, len);
|
| - This is fine, but slower than what we do below.
|
| -
|
| - The present technique does not compute the starting length, but
|
| - rather fiddles with x,y iteratively, all the while checking its
|
| - magnitude^2 (avoiding a sqrt).
|
| -
|
| - We normalize by first shifting x,y so that at least one of them
|
| - has bit 31 set (after taking the abs of them).
|
| - Then we loop, refining x,y by squaring them and comparing
|
| - against a very large 1.0 (1 << 28), and then adding or subtracting
|
| - a delta (which itself is reduced by half each time through the loop).
|
| - For speed we want the squaring to be with a simple integer mul. To keep
|
| - that from overflowing we shift our coordinates down until we are dealing
|
| - with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits)
|
| - When our square is close to 1.0, we shift x,y down into fixed range.
|
| -*/
|
| -bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
|
| - if (ox == 0) {
|
| - if (oy == 0)
|
| - return false;
|
| - this->set(0, SkApplySign(length, SkExtractSign(oy)));
|
| - return true;
|
| - }
|
| - if (oy == 0) {
|
| - this->set(SkApplySign(length, SkExtractSign(ox)), 0);
|
| - return true;
|
| - }
|
| -
|
| - SkFixed x = SkAbs32(ox);
|
| - SkFixed y = SkAbs32(oy);
|
| -
|
| - // shift x,y so that the greater of them is 15bits (1.14 fixed point)
|
| - {
|
| - int shift = SkCLZ(x | y);
|
| - // make them .30
|
| - x <<= shift - 1;
|
| - y <<= shift - 1;
|
| - }
|
| -
|
| - SkFixed dx = x;
|
| - SkFixed dy = y;
|
| -
|
| - for (int i = 0; i < 17; i++) {
|
| - dx >>= 1;
|
| - dy >>= 1;
|
| -
|
| - U32 len2 = squarefixed(x) + squarefixed(y);
|
| - if (len2 >> 28) {
|
| - x -= dx;
|
| - y -= dy;
|
| - } else {
|
| - x += dx;
|
| - y += dy;
|
| - }
|
| - }
|
| - x >>= 14;
|
| - y >>= 14;
|
| -
|
| -#ifdef SK_DEBUGx // measure how far we are from unit-length
|
| - {
|
| - static int gMaxError;
|
| - static int gMaxDiff;
|
| -
|
| - SkFixed len = fixlen(x, y);
|
| - int err = len - SK_Fixed1;
|
| - err = SkAbs32(err);
|
| -
|
| - if (err > gMaxError) {
|
| - gMaxError = err;
|
| - SkDebugf("gMaxError %d\n", err);
|
| - }
|
| -
|
| - float fx = SkAbs32(ox)/65536.0f;
|
| - float fy = SkAbs32(oy)/65536.0f;
|
| - float mag = sqrtf(fx*fx + fy*fy);
|
| - fx /= mag;
|
| - fy /= mag;
|
| - SkFixed xx = (int)floorf(fx * 65536 + 0.5f);
|
| - SkFixed yy = (int)floorf(fy * 65536 + 0.5f);
|
| - err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y));
|
| - if (err > gMaxDiff) {
|
| - gMaxDiff = err;
|
| - SkDebugf("gMaxDiff %d\n", err);
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - x = SkApplySign(x, SkExtractSign(ox));
|
| - y = SkApplySign(y, SkExtractSign(oy));
|
| - if (length != SK_Fixed1) {
|
| - x = SkFixedMul(x, length);
|
| - y = SkFixedMul(y, length);
|
| + // our mag2 step overflowed to infinity, so use doubles instead.
|
| + // much slower, but needed when x or y are very large, other wise we
|
| + // divide by inf. and return (0,0) vector.
|
| + double xx = x;
|
| + double yy = y;
|
| + scale = (float)(length / sqrt(xx * xx + yy * yy));
|
| }
|
| -
|
| - this->set(x, y);
|
| + fX = x * scale;
|
| + fY = y * scale;
|
| return true;
|
| }
|
| -#endif
|
|
|
| -#endif
|
|
|
| ///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|