Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(211)

Unified Diff: src/core/SkPoint.cpp

Issue 60083014: Add sk_float_rsqrt with SSE + NEON fast paths. (Closed) Base URL: https://skia.googlecode.com/svn/trunk
Patch Set: test Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « include/core/SkPoint.h ('k') | tests/PointTest.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/core/SkPoint.cpp
diff --git a/src/core/SkPoint.cpp b/src/core/SkPoint.cpp
index bf3affaaf549d10c155582b65fbfaf71bb874833..719ee54b225ae72e57ee6752ab22a107178adc66 100644
--- a/src/core/SkPoint.cpp
+++ b/src/core/SkPoint.cpp
@@ -87,8 +87,6 @@ bool SkPoint::setLength(SkScalar length) {
return this->setLength(fX, fY, length);
}
-#ifdef SK_SCALAR_IS_FLOAT
-
// Returns the square of the Euclidian distance to (dx,dy).
static inline float getLengthSquared(float dx, float dy) {
return dx * dx + dy * dy;
@@ -177,290 +175,32 @@ bool SkPoint::setLength(float x, float y, float length) {
return true;
}
-#else
-
-#include "Sk64.h"
-
-// Returns the square of the Euclidian distance to (dx,dy) in *result.
-static inline void getLengthSquared(SkScalar dx, SkScalar dy, Sk64 *result) {
- Sk64 dySqr;
-
- result->setMul(dx, dx);
- dySqr.setMul(dy, dy);
- result->add(dySqr);
-}
-
-// Calculates the square of the Euclidian distance to (dx,dy) and stores it in
-// *lengthSquared. Returns true if the distance is judged to be "nearly zero".
-//
-// This logic is encapsulated in a helper method to make it explicit that we
-// always perform this check in the same manner, to avoid inconsistencies
-// (see http://code.google.com/p/skia/issues/detail?id=560 ).
-static inline bool isLengthNearlyZero(SkScalar dx, SkScalar dy,
- Sk64 *lengthSquared) {
- Sk64 tolSqr;
- getLengthSquared(dx, dy, lengthSquared);
-
- // we want nearlyzero^2, but to compute it fast we want to just do a
- // 32bit multiply, so we require that it not exceed 31bits. That is true
- // if nearlyzero is <= 0xB504, which should be trivial, since usually
- // nearlyzero is a very small fixed-point value.
- SkASSERT(SK_ScalarNearlyZero <= 0xB504);
-
- tolSqr.set(0, SK_ScalarNearlyZero * SK_ScalarNearlyZero);
- return *lengthSquared <= tolSqr;
-}
-
-SkScalar SkPoint::Normalize(SkPoint* pt) {
- Sk64 mag2;
- if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
- SkScalar mag = mag2.getSqrt();
- SkScalar scale = SkScalarInvert(mag);
- pt->fX = SkScalarMul(pt->fX, scale);
- pt->fY = SkScalarMul(pt->fY, scale);
- return mag;
- }
- return 0;
-}
-
-bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) {
- Sk64 mag2_unused;
- return !isLengthNearlyZero(dx, dy, &mag2_unused);
-}
-
-SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
- Sk64 tmp;
- getLengthSquared(dx, dy, &tmp);
- return tmp.getSqrt();
-}
-
-#ifdef SK_DEBUGx
-static SkFixed fixlen(SkFixed x, SkFixed y) {
- float fx = (float)x;
- float fy = (float)y;
-
- return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f);
-}
-#endif
-
-static inline uint32_t squarefixed(unsigned x) {
- x >>= 16;
- return x*x;
-}
-
-#if 1 // Newton iter for setLength
-
-static inline unsigned invsqrt_iter(unsigned V, unsigned U) {
- unsigned x = V * U >> 14;
- x = x * U >> 14;
- x = (3 << 14) - x;
- x = (U >> 1) * x >> 14;
- return x;
-}
-
-static const uint16_t gInvSqrt14GuessTable[] = {
- 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061,
- 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780,
- 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235,
- 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99,
- 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee,
- 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc,
- 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830,
- 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce
-};
-
-#define BUILD_INVSQRT_TABLEx
-#ifdef BUILD_INVSQRT_TABLE
-static void build_invsqrt14_guess_table() {
- for (int i = 8; i <= 63; i++) {
- unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25));
- printf("0x%x, ", x);
- }
- printf("\n");
-}
-#endif
-
-static unsigned fast_invsqrt(uint32_t x) {
-#ifdef BUILD_INVSQRT_TABLE
- unsigned top2 = x >> 25;
- SkASSERT(top2 >= 8 && top2 <= 63);
-
- static bool gOnce;
- if (!gOnce) {
- build_invsqrt14_guess_table();
- gOnce = true;
- }
-#endif
-
- unsigned V = x >> 14; // make V .14
-
- unsigned top = x >> 25;
- SkASSERT(top >= 8 && top <= 63);
- SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable));
- unsigned U = gInvSqrt14GuessTable[top - 8];
-
- U = invsqrt_iter(V, U);
- return invsqrt_iter(V, U);
+bool SkPoint::setLengthFast(float length) {
+ return this->setLengthFast(fX, fY, length);
}
-/* We "normalize" x,y to be .14 values (so we can square them and stay 32bits.
- Then we Newton-iterate this in .14 space to compute the invser-sqrt, and
- scale by it at the end. The .14 space means we can execute our iterations
- and stay in 32bits as well, making the multiplies much cheaper than calling
- SkFixedMul.
-*/
-bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
- if (ox == 0) {
- if (oy == 0) {
- return false;
- }
- this->set(0, SkApplySign(length, SkExtractSign(oy)));
- return true;
- }
- if (oy == 0) {
- this->set(SkApplySign(length, SkExtractSign(ox)), 0);
- return true;
+bool SkPoint::setLengthFast(float x, float y, float length) {
+ float mag2;
+ if (isLengthNearlyZero(x, y, &mag2)) {
+ return false;
}
- unsigned x = SkAbs32(ox);
- unsigned y = SkAbs32(oy);
- int zeros = SkCLZ(x | y);
-
- // make x,y 1.14 values so our fast sqr won't overflow
- if (zeros > 17) {
- x <<= zeros - 17;
- y <<= zeros - 17;
+ float scale;
+ if (SkScalarIsFinite(mag2)) {
+ scale = length * sk_float_rsqrt(mag2); // <--- this is the difference
} else {
- x >>= 17 - zeros;
- y >>= 17 - zeros;
- }
- SkASSERT((x | y) <= 0x7FFF);
-
- unsigned invrt = fast_invsqrt(x*x + y*y);
-
- x = x * invrt >> 12;
- y = y * invrt >> 12;
-
- if (length != SK_Fixed1) {
- x = SkFixedMul(x, length);
- y = SkFixedMul(y, length);
- }
- this->set(SkApplySign(x, SkExtractSign(ox)),
- SkApplySign(y, SkExtractSign(oy)));
- return true;
-}
-#else
-/*
- Normalize x,y, and then scale them by length.
-
- The obvious way to do this would be the following:
- S64 tmp1, tmp2;
- tmp1.setMul(x,x);
- tmp2.setMul(y,y);
- tmp1.add(tmp2);
- len = tmp1.getSqrt();
- x' = SkFixedDiv(x, len);
- y' = SkFixedDiv(y, len);
- This is fine, but slower than what we do below.
-
- The present technique does not compute the starting length, but
- rather fiddles with x,y iteratively, all the while checking its
- magnitude^2 (avoiding a sqrt).
-
- We normalize by first shifting x,y so that at least one of them
- has bit 31 set (after taking the abs of them).
- Then we loop, refining x,y by squaring them and comparing
- against a very large 1.0 (1 << 28), and then adding or subtracting
- a delta (which itself is reduced by half each time through the loop).
- For speed we want the squaring to be with a simple integer mul. To keep
- that from overflowing we shift our coordinates down until we are dealing
- with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits)
- When our square is close to 1.0, we shift x,y down into fixed range.
-*/
-bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
- if (ox == 0) {
- if (oy == 0)
- return false;
- this->set(0, SkApplySign(length, SkExtractSign(oy)));
- return true;
- }
- if (oy == 0) {
- this->set(SkApplySign(length, SkExtractSign(ox)), 0);
- return true;
- }
-
- SkFixed x = SkAbs32(ox);
- SkFixed y = SkAbs32(oy);
-
- // shift x,y so that the greater of them is 15bits (1.14 fixed point)
- {
- int shift = SkCLZ(x | y);
- // make them .30
- x <<= shift - 1;
- y <<= shift - 1;
- }
-
- SkFixed dx = x;
- SkFixed dy = y;
-
- for (int i = 0; i < 17; i++) {
- dx >>= 1;
- dy >>= 1;
-
- U32 len2 = squarefixed(x) + squarefixed(y);
- if (len2 >> 28) {
- x -= dx;
- y -= dy;
- } else {
- x += dx;
- y += dy;
- }
- }
- x >>= 14;
- y >>= 14;
-
-#ifdef SK_DEBUGx // measure how far we are from unit-length
- {
- static int gMaxError;
- static int gMaxDiff;
-
- SkFixed len = fixlen(x, y);
- int err = len - SK_Fixed1;
- err = SkAbs32(err);
-
- if (err > gMaxError) {
- gMaxError = err;
- SkDebugf("gMaxError %d\n", err);
- }
-
- float fx = SkAbs32(ox)/65536.0f;
- float fy = SkAbs32(oy)/65536.0f;
- float mag = sqrtf(fx*fx + fy*fy);
- fx /= mag;
- fy /= mag;
- SkFixed xx = (int)floorf(fx * 65536 + 0.5f);
- SkFixed yy = (int)floorf(fy * 65536 + 0.5f);
- err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y));
- if (err > gMaxDiff) {
- gMaxDiff = err;
- SkDebugf("gMaxDiff %d\n", err);
- }
- }
-#endif
-
- x = SkApplySign(x, SkExtractSign(ox));
- y = SkApplySign(y, SkExtractSign(oy));
- if (length != SK_Fixed1) {
- x = SkFixedMul(x, length);
- y = SkFixedMul(y, length);
+ // our mag2 step overflowed to infinity, so use doubles instead.
+ // much slower, but needed when x or y are very large, other wise we
+ // divide by inf. and return (0,0) vector.
+ double xx = x;
+ double yy = y;
+ scale = (float)(length / sqrt(xx * xx + yy * yy));
}
-
- this->set(x, y);
+ fX = x * scale;
+ fY = y * scale;
return true;
}
-#endif
-#endif
///////////////////////////////////////////////////////////////////////////////
« no previous file with comments | « include/core/SkPoint.h ('k') | tests/PointTest.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698