Index: src/core/SkPoint.cpp |
diff --git a/src/core/SkPoint.cpp b/src/core/SkPoint.cpp |
index bf3affaaf549d10c155582b65fbfaf71bb874833..719ee54b225ae72e57ee6752ab22a107178adc66 100644 |
--- a/src/core/SkPoint.cpp |
+++ b/src/core/SkPoint.cpp |
@@ -87,8 +87,6 @@ bool SkPoint::setLength(SkScalar length) { |
return this->setLength(fX, fY, length); |
} |
-#ifdef SK_SCALAR_IS_FLOAT |
- |
// Returns the square of the Euclidian distance to (dx,dy). |
static inline float getLengthSquared(float dx, float dy) { |
return dx * dx + dy * dy; |
@@ -177,290 +175,32 @@ bool SkPoint::setLength(float x, float y, float length) { |
return true; |
} |
-#else |
- |
-#include "Sk64.h" |
- |
-// Returns the square of the Euclidian distance to (dx,dy) in *result. |
-static inline void getLengthSquared(SkScalar dx, SkScalar dy, Sk64 *result) { |
- Sk64 dySqr; |
- |
- result->setMul(dx, dx); |
- dySqr.setMul(dy, dy); |
- result->add(dySqr); |
-} |
- |
-// Calculates the square of the Euclidian distance to (dx,dy) and stores it in |
-// *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
-// |
-// This logic is encapsulated in a helper method to make it explicit that we |
-// always perform this check in the same manner, to avoid inconsistencies |
-// (see http://code.google.com/p/skia/issues/detail?id=560 ). |
-static inline bool isLengthNearlyZero(SkScalar dx, SkScalar dy, |
- Sk64 *lengthSquared) { |
- Sk64 tolSqr; |
- getLengthSquared(dx, dy, lengthSquared); |
- |
- // we want nearlyzero^2, but to compute it fast we want to just do a |
- // 32bit multiply, so we require that it not exceed 31bits. That is true |
- // if nearlyzero is <= 0xB504, which should be trivial, since usually |
- // nearlyzero is a very small fixed-point value. |
- SkASSERT(SK_ScalarNearlyZero <= 0xB504); |
- |
- tolSqr.set(0, SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
- return *lengthSquared <= tolSqr; |
-} |
- |
-SkScalar SkPoint::Normalize(SkPoint* pt) { |
- Sk64 mag2; |
- if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) { |
- SkScalar mag = mag2.getSqrt(); |
- SkScalar scale = SkScalarInvert(mag); |
- pt->fX = SkScalarMul(pt->fX, scale); |
- pt->fY = SkScalarMul(pt->fY, scale); |
- return mag; |
- } |
- return 0; |
-} |
- |
-bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) { |
- Sk64 mag2_unused; |
- return !isLengthNearlyZero(dx, dy, &mag2_unused); |
-} |
- |
-SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
- Sk64 tmp; |
- getLengthSquared(dx, dy, &tmp); |
- return tmp.getSqrt(); |
-} |
- |
-#ifdef SK_DEBUGx |
-static SkFixed fixlen(SkFixed x, SkFixed y) { |
- float fx = (float)x; |
- float fy = (float)y; |
- |
- return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f); |
-} |
-#endif |
- |
-static inline uint32_t squarefixed(unsigned x) { |
- x >>= 16; |
- return x*x; |
-} |
- |
-#if 1 // Newton iter for setLength |
- |
-static inline unsigned invsqrt_iter(unsigned V, unsigned U) { |
- unsigned x = V * U >> 14; |
- x = x * U >> 14; |
- x = (3 << 14) - x; |
- x = (U >> 1) * x >> 14; |
- return x; |
-} |
- |
-static const uint16_t gInvSqrt14GuessTable[] = { |
- 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061, |
- 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780, |
- 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235, |
- 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99, |
- 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee, |
- 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc, |
- 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830, |
- 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce |
-}; |
- |
-#define BUILD_INVSQRT_TABLEx |
-#ifdef BUILD_INVSQRT_TABLE |
-static void build_invsqrt14_guess_table() { |
- for (int i = 8; i <= 63; i++) { |
- unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25)); |
- printf("0x%x, ", x); |
- } |
- printf("\n"); |
-} |
-#endif |
- |
-static unsigned fast_invsqrt(uint32_t x) { |
-#ifdef BUILD_INVSQRT_TABLE |
- unsigned top2 = x >> 25; |
- SkASSERT(top2 >= 8 && top2 <= 63); |
- |
- static bool gOnce; |
- if (!gOnce) { |
- build_invsqrt14_guess_table(); |
- gOnce = true; |
- } |
-#endif |
- |
- unsigned V = x >> 14; // make V .14 |
- |
- unsigned top = x >> 25; |
- SkASSERT(top >= 8 && top <= 63); |
- SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable)); |
- unsigned U = gInvSqrt14GuessTable[top - 8]; |
- |
- U = invsqrt_iter(V, U); |
- return invsqrt_iter(V, U); |
+bool SkPoint::setLengthFast(float length) { |
+ return this->setLengthFast(fX, fY, length); |
} |
-/* We "normalize" x,y to be .14 values (so we can square them and stay 32bits. |
- Then we Newton-iterate this in .14 space to compute the invser-sqrt, and |
- scale by it at the end. The .14 space means we can execute our iterations |
- and stay in 32bits as well, making the multiplies much cheaper than calling |
- SkFixedMul. |
-*/ |
-bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { |
- if (ox == 0) { |
- if (oy == 0) { |
- return false; |
- } |
- this->set(0, SkApplySign(length, SkExtractSign(oy))); |
- return true; |
- } |
- if (oy == 0) { |
- this->set(SkApplySign(length, SkExtractSign(ox)), 0); |
- return true; |
+bool SkPoint::setLengthFast(float x, float y, float length) { |
+ float mag2; |
+ if (isLengthNearlyZero(x, y, &mag2)) { |
+ return false; |
} |
- unsigned x = SkAbs32(ox); |
- unsigned y = SkAbs32(oy); |
- int zeros = SkCLZ(x | y); |
- |
- // make x,y 1.14 values so our fast sqr won't overflow |
- if (zeros > 17) { |
- x <<= zeros - 17; |
- y <<= zeros - 17; |
+ float scale; |
+ if (SkScalarIsFinite(mag2)) { |
+ scale = length * sk_float_rsqrt(mag2); // <--- this is the difference |
} else { |
- x >>= 17 - zeros; |
- y >>= 17 - zeros; |
- } |
- SkASSERT((x | y) <= 0x7FFF); |
- |
- unsigned invrt = fast_invsqrt(x*x + y*y); |
- |
- x = x * invrt >> 12; |
- y = y * invrt >> 12; |
- |
- if (length != SK_Fixed1) { |
- x = SkFixedMul(x, length); |
- y = SkFixedMul(y, length); |
- } |
- this->set(SkApplySign(x, SkExtractSign(ox)), |
- SkApplySign(y, SkExtractSign(oy))); |
- return true; |
-} |
-#else |
-/* |
- Normalize x,y, and then scale them by length. |
- |
- The obvious way to do this would be the following: |
- S64 tmp1, tmp2; |
- tmp1.setMul(x,x); |
- tmp2.setMul(y,y); |
- tmp1.add(tmp2); |
- len = tmp1.getSqrt(); |
- x' = SkFixedDiv(x, len); |
- y' = SkFixedDiv(y, len); |
- This is fine, but slower than what we do below. |
- |
- The present technique does not compute the starting length, but |
- rather fiddles with x,y iteratively, all the while checking its |
- magnitude^2 (avoiding a sqrt). |
- |
- We normalize by first shifting x,y so that at least one of them |
- has bit 31 set (after taking the abs of them). |
- Then we loop, refining x,y by squaring them and comparing |
- against a very large 1.0 (1 << 28), and then adding or subtracting |
- a delta (which itself is reduced by half each time through the loop). |
- For speed we want the squaring to be with a simple integer mul. To keep |
- that from overflowing we shift our coordinates down until we are dealing |
- with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits) |
- When our square is close to 1.0, we shift x,y down into fixed range. |
-*/ |
-bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { |
- if (ox == 0) { |
- if (oy == 0) |
- return false; |
- this->set(0, SkApplySign(length, SkExtractSign(oy))); |
- return true; |
- } |
- if (oy == 0) { |
- this->set(SkApplySign(length, SkExtractSign(ox)), 0); |
- return true; |
- } |
- |
- SkFixed x = SkAbs32(ox); |
- SkFixed y = SkAbs32(oy); |
- |
- // shift x,y so that the greater of them is 15bits (1.14 fixed point) |
- { |
- int shift = SkCLZ(x | y); |
- // make them .30 |
- x <<= shift - 1; |
- y <<= shift - 1; |
- } |
- |
- SkFixed dx = x; |
- SkFixed dy = y; |
- |
- for (int i = 0; i < 17; i++) { |
- dx >>= 1; |
- dy >>= 1; |
- |
- U32 len2 = squarefixed(x) + squarefixed(y); |
- if (len2 >> 28) { |
- x -= dx; |
- y -= dy; |
- } else { |
- x += dx; |
- y += dy; |
- } |
- } |
- x >>= 14; |
- y >>= 14; |
- |
-#ifdef SK_DEBUGx // measure how far we are from unit-length |
- { |
- static int gMaxError; |
- static int gMaxDiff; |
- |
- SkFixed len = fixlen(x, y); |
- int err = len - SK_Fixed1; |
- err = SkAbs32(err); |
- |
- if (err > gMaxError) { |
- gMaxError = err; |
- SkDebugf("gMaxError %d\n", err); |
- } |
- |
- float fx = SkAbs32(ox)/65536.0f; |
- float fy = SkAbs32(oy)/65536.0f; |
- float mag = sqrtf(fx*fx + fy*fy); |
- fx /= mag; |
- fy /= mag; |
- SkFixed xx = (int)floorf(fx * 65536 + 0.5f); |
- SkFixed yy = (int)floorf(fy * 65536 + 0.5f); |
- err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y)); |
- if (err > gMaxDiff) { |
- gMaxDiff = err; |
- SkDebugf("gMaxDiff %d\n", err); |
- } |
- } |
-#endif |
- |
- x = SkApplySign(x, SkExtractSign(ox)); |
- y = SkApplySign(y, SkExtractSign(oy)); |
- if (length != SK_Fixed1) { |
- x = SkFixedMul(x, length); |
- y = SkFixedMul(y, length); |
+ // our mag2 step overflowed to infinity, so use doubles instead. |
+ // much slower, but needed when x or y are very large, other wise we |
+ // divide by inf. and return (0,0) vector. |
+ double xx = x; |
+ double yy = y; |
+ scale = (float)(length / sqrt(xx * xx + yy * yy)); |
} |
- |
- this->set(x, y); |
+ fX = x * scale; |
+ fY = y * scale; |
return true; |
} |
-#endif |
-#endif |
/////////////////////////////////////////////////////////////////////////////// |