Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(6)

Side by Side Diff: src/runtime.cc

Issue 597943003: Move i18n-related runtime functions into a separate file. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: adapt check-name-clashes.py Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/runtime.h ('k') | src/runtime/runtime.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdlib.h>
6 #include <limits>
7
8 #include "src/v8.h"
9
10 #include "src/accessors.h"
11 #include "src/allocation-site-scopes.h"
12 #include "src/api.h"
13 #include "src/arguments.h"
14 #include "src/bailout-reason.h"
15 #include "src/base/cpu.h"
16 #include "src/base/platform/platform.h"
17 #include "src/bootstrapper.h"
18 #include "src/codegen.h"
19 #include "src/compilation-cache.h"
20 #include "src/compiler.h"
21 #include "src/conversions.h"
22 #include "src/cpu-profiler.h"
23 #include "src/date.h"
24 #include "src/dateparser-inl.h"
25 #include "src/debug.h"
26 #include "src/deoptimizer.h"
27 #include "src/execution.h"
28 #include "src/full-codegen.h"
29 #include "src/global-handles.h"
30 #include "src/isolate-inl.h"
31 #include "src/json-parser.h"
32 #include "src/json-stringifier.h"
33 #include "src/jsregexp-inl.h"
34 #include "src/jsregexp.h"
35 #include "src/liveedit.h"
36 #include "src/misc-intrinsics.h"
37 #include "src/parser.h"
38 #include "src/prototype.h"
39 #include "src/runtime.h"
40 #include "src/runtime-profiler.h"
41 #include "src/scopeinfo.h"
42 #include "src/smart-pointers.h"
43 #include "src/string-search.h"
44 #include "src/uri.h"
45 #include "src/utils.h"
46 #include "src/v8threads.h"
47 #include "src/vm-state-inl.h"
48 #include "third_party/fdlibm/fdlibm.h"
49
50 #ifdef V8_I18N_SUPPORT
51 #include "src/i18n.h"
52 #include "unicode/brkiter.h"
53 #include "unicode/calendar.h"
54 #include "unicode/coll.h"
55 #include "unicode/curramt.h"
56 #include "unicode/datefmt.h"
57 #include "unicode/dcfmtsym.h"
58 #include "unicode/decimfmt.h"
59 #include "unicode/dtfmtsym.h"
60 #include "unicode/dtptngen.h"
61 #include "unicode/locid.h"
62 #include "unicode/numfmt.h"
63 #include "unicode/numsys.h"
64 #include "unicode/rbbi.h"
65 #include "unicode/smpdtfmt.h"
66 #include "unicode/timezone.h"
67 #include "unicode/uchar.h"
68 #include "unicode/ucol.h"
69 #include "unicode/ucurr.h"
70 #include "unicode/uloc.h"
71 #include "unicode/unum.h"
72 #include "unicode/uversion.h"
73 #endif
74
75 #ifndef _STLP_VENDOR_CSTD
76 // STLPort doesn't import fpclassify and isless into the std namespace.
77 using std::fpclassify;
78 using std::isless;
79 #endif
80
81 namespace v8 {
82 namespace internal {
83
84
85 #define RUNTIME_ASSERT(value) \
86 if (!(value)) return isolate->ThrowIllegalOperation();
87
88 #define RUNTIME_ASSERT_HANDLIFIED(value, T) \
89 if (!(value)) { \
90 isolate->ThrowIllegalOperation(); \
91 return MaybeHandle<T>(); \
92 }
93
94 // Cast the given object to a value of the specified type and store
95 // it in a variable with the given name. If the object is not of the
96 // expected type call IllegalOperation and return.
97 #define CONVERT_ARG_CHECKED(Type, name, index) \
98 RUNTIME_ASSERT(args[index]->Is##Type()); \
99 Type* name = Type::cast(args[index]);
100
101 #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \
102 RUNTIME_ASSERT(args[index]->Is##Type()); \
103 Handle<Type> name = args.at<Type>(index);
104
105 #define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \
106 RUNTIME_ASSERT(args[index]->IsNumber()); \
107 Handle<Object> name = args.at<Object>(index);
108
109 // Cast the given object to a boolean and store it in a variable with
110 // the given name. If the object is not a boolean call IllegalOperation
111 // and return.
112 #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \
113 RUNTIME_ASSERT(args[index]->IsBoolean()); \
114 bool name = args[index]->IsTrue();
115
116 // Cast the given argument to a Smi and store its value in an int variable
117 // with the given name. If the argument is not a Smi call IllegalOperation
118 // and return.
119 #define CONVERT_SMI_ARG_CHECKED(name, index) \
120 RUNTIME_ASSERT(args[index]->IsSmi()); \
121 int name = args.smi_at(index);
122
123 // Cast the given argument to a double and store it in a variable with
124 // the given name. If the argument is not a number (as opposed to
125 // the number not-a-number) call IllegalOperation and return.
126 #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \
127 RUNTIME_ASSERT(args[index]->IsNumber()); \
128 double name = args.number_at(index);
129
130 // Call the specified converter on the object *comand store the result in
131 // a variable of the specified type with the given name. If the
132 // object is not a Number call IllegalOperation and return.
133 #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
134 RUNTIME_ASSERT(obj->IsNumber()); \
135 type name = NumberTo##Type(obj);
136
137
138 // Cast the given argument to PropertyDetails and store its value in a
139 // variable with the given name. If the argument is not a Smi call
140 // IllegalOperation and return.
141 #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \
142 RUNTIME_ASSERT(args[index]->IsSmi()); \
143 PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
144
145
146 // Assert that the given argument has a valid value for a StrictMode
147 // and store it in a StrictMode variable with the given name.
148 #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \
149 RUNTIME_ASSERT(args[index]->IsSmi()); \
150 RUNTIME_ASSERT(args.smi_at(index) == STRICT || \
151 args.smi_at(index) == SLOPPY); \
152 StrictMode name = static_cast<StrictMode>(args.smi_at(index));
153
154
155 // Assert that the given argument is a number within the Int32 range
156 // and convert it to int32_t. If the argument is not an Int32 call
157 // IllegalOperation and return.
158 #define CONVERT_INT32_ARG_CHECKED(name, index) \
159 RUNTIME_ASSERT(args[index]->IsNumber()); \
160 int32_t name = 0; \
161 RUNTIME_ASSERT(args[index]->ToInt32(&name));
162
163
164 static Handle<Map> ComputeObjectLiteralMap(
165 Handle<Context> context,
166 Handle<FixedArray> constant_properties,
167 bool* is_result_from_cache) {
168 Isolate* isolate = context->GetIsolate();
169 int properties_length = constant_properties->length();
170 int number_of_properties = properties_length / 2;
171 // Check that there are only internal strings and array indices among keys.
172 int number_of_string_keys = 0;
173 for (int p = 0; p != properties_length; p += 2) {
174 Object* key = constant_properties->get(p);
175 uint32_t element_index = 0;
176 if (key->IsInternalizedString()) {
177 number_of_string_keys++;
178 } else if (key->ToArrayIndex(&element_index)) {
179 // An index key does not require space in the property backing store.
180 number_of_properties--;
181 } else {
182 // Bail out as a non-internalized-string non-index key makes caching
183 // impossible.
184 // DCHECK to make sure that the if condition after the loop is false.
185 DCHECK(number_of_string_keys != number_of_properties);
186 break;
187 }
188 }
189 // If we only have internalized strings and array indices among keys then we
190 // can use the map cache in the native context.
191 const int kMaxKeys = 10;
192 if ((number_of_string_keys == number_of_properties) &&
193 (number_of_string_keys < kMaxKeys)) {
194 // Create the fixed array with the key.
195 Handle<FixedArray> keys =
196 isolate->factory()->NewFixedArray(number_of_string_keys);
197 if (number_of_string_keys > 0) {
198 int index = 0;
199 for (int p = 0; p < properties_length; p += 2) {
200 Object* key = constant_properties->get(p);
201 if (key->IsInternalizedString()) {
202 keys->set(index++, key);
203 }
204 }
205 DCHECK(index == number_of_string_keys);
206 }
207 *is_result_from_cache = true;
208 return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
209 }
210 *is_result_from_cache = false;
211 return Map::Create(isolate, number_of_properties);
212 }
213
214
215 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
216 Isolate* isolate,
217 Handle<FixedArray> literals,
218 Handle<FixedArray> constant_properties);
219
220
221 MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate(
222 Isolate* isolate,
223 Handle<FixedArray> literals,
224 Handle<FixedArray> constant_properties,
225 bool should_have_fast_elements,
226 bool has_function_literal) {
227 // Get the native context from the literals array. This is the
228 // context in which the function was created and we use the object
229 // function from this context to create the object literal. We do
230 // not use the object function from the current native context
231 // because this might be the object function from another context
232 // which we should not have access to.
233 Handle<Context> context =
234 Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
235
236 // In case we have function literals, we want the object to be in
237 // slow properties mode for now. We don't go in the map cache because
238 // maps with constant functions can't be shared if the functions are
239 // not the same (which is the common case).
240 bool is_result_from_cache = false;
241 Handle<Map> map = has_function_literal
242 ? Handle<Map>(context->object_function()->initial_map())
243 : ComputeObjectLiteralMap(context,
244 constant_properties,
245 &is_result_from_cache);
246
247 PretenureFlag pretenure_flag =
248 isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
249
250 Handle<JSObject> boilerplate =
251 isolate->factory()->NewJSObjectFromMap(map, pretenure_flag);
252
253 // Normalize the elements of the boilerplate to save space if needed.
254 if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
255
256 // Add the constant properties to the boilerplate.
257 int length = constant_properties->length();
258 bool should_transform =
259 !is_result_from_cache && boilerplate->HasFastProperties();
260 bool should_normalize = should_transform || has_function_literal;
261 if (should_normalize) {
262 // TODO(verwaest): We might not want to ever normalize here.
263 JSObject::NormalizeProperties(
264 boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2);
265 }
266 // TODO(verwaest): Support tracking representations in the boilerplate.
267 for (int index = 0; index < length; index +=2) {
268 Handle<Object> key(constant_properties->get(index+0), isolate);
269 Handle<Object> value(constant_properties->get(index+1), isolate);
270 if (value->IsFixedArray()) {
271 // The value contains the constant_properties of a
272 // simple object or array literal.
273 Handle<FixedArray> array = Handle<FixedArray>::cast(value);
274 ASSIGN_RETURN_ON_EXCEPTION(
275 isolate, value,
276 CreateLiteralBoilerplate(isolate, literals, array),
277 Object);
278 }
279 MaybeHandle<Object> maybe_result;
280 uint32_t element_index = 0;
281 if (key->IsInternalizedString()) {
282 if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
283 // Array index as string (uint32).
284 if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
285 maybe_result =
286 JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
287 } else {
288 Handle<String> name(String::cast(*key));
289 DCHECK(!name->AsArrayIndex(&element_index));
290 maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(
291 boilerplate, name, value, NONE);
292 }
293 } else if (key->ToArrayIndex(&element_index)) {
294 // Array index (uint32).
295 if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
296 maybe_result =
297 JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
298 } else {
299 // Non-uint32 number.
300 DCHECK(key->IsNumber());
301 double num = key->Number();
302 char arr[100];
303 Vector<char> buffer(arr, arraysize(arr));
304 const char* str = DoubleToCString(num, buffer);
305 Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str);
306 maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name,
307 value, NONE);
308 }
309 // If setting the property on the boilerplate throws an
310 // exception, the exception is converted to an empty handle in
311 // the handle based operations. In that case, we need to
312 // convert back to an exception.
313 RETURN_ON_EXCEPTION(isolate, maybe_result, Object);
314 }
315
316 // Transform to fast properties if necessary. For object literals with
317 // containing function literals we defer this operation until after all
318 // computed properties have been assigned so that we can generate
319 // constant function properties.
320 if (should_transform && !has_function_literal) {
321 JSObject::MigrateSlowToFast(
322 boilerplate, boilerplate->map()->unused_property_fields());
323 }
324
325 return boilerplate;
326 }
327
328
329 MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
330 Handle<Object> object,
331 ElementsKind to_kind,
332 Isolate* isolate) {
333 HandleScope scope(isolate);
334 if (!object->IsJSObject()) {
335 isolate->ThrowIllegalOperation();
336 return MaybeHandle<Object>();
337 }
338 ElementsKind from_kind =
339 Handle<JSObject>::cast(object)->map()->elements_kind();
340 if (Map::IsValidElementsTransition(from_kind, to_kind)) {
341 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
342 return object;
343 }
344 isolate->ThrowIllegalOperation();
345 return MaybeHandle<Object>();
346 }
347
348
349 MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate(
350 Isolate* isolate,
351 Handle<FixedArray> literals,
352 Handle<FixedArray> elements) {
353 // Create the JSArray.
354 Handle<JSFunction> constructor(
355 JSFunction::NativeContextFromLiterals(*literals)->array_function());
356
357 PretenureFlag pretenure_flag =
358 isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
359
360 Handle<JSArray> object = Handle<JSArray>::cast(
361 isolate->factory()->NewJSObject(constructor, pretenure_flag));
362
363 ElementsKind constant_elements_kind =
364 static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
365 Handle<FixedArrayBase> constant_elements_values(
366 FixedArrayBase::cast(elements->get(1)));
367
368 { DisallowHeapAllocation no_gc;
369 DCHECK(IsFastElementsKind(constant_elements_kind));
370 Context* native_context = isolate->context()->native_context();
371 Object* maps_array = native_context->js_array_maps();
372 DCHECK(!maps_array->IsUndefined());
373 Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind);
374 object->set_map(Map::cast(map));
375 }
376
377 Handle<FixedArrayBase> copied_elements_values;
378 if (IsFastDoubleElementsKind(constant_elements_kind)) {
379 copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
380 Handle<FixedDoubleArray>::cast(constant_elements_values));
381 } else {
382 DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind));
383 const bool is_cow =
384 (constant_elements_values->map() ==
385 isolate->heap()->fixed_cow_array_map());
386 if (is_cow) {
387 copied_elements_values = constant_elements_values;
388 #if DEBUG
389 Handle<FixedArray> fixed_array_values =
390 Handle<FixedArray>::cast(copied_elements_values);
391 for (int i = 0; i < fixed_array_values->length(); i++) {
392 DCHECK(!fixed_array_values->get(i)->IsFixedArray());
393 }
394 #endif
395 } else {
396 Handle<FixedArray> fixed_array_values =
397 Handle<FixedArray>::cast(constant_elements_values);
398 Handle<FixedArray> fixed_array_values_copy =
399 isolate->factory()->CopyFixedArray(fixed_array_values);
400 copied_elements_values = fixed_array_values_copy;
401 for (int i = 0; i < fixed_array_values->length(); i++) {
402 if (fixed_array_values->get(i)->IsFixedArray()) {
403 // The value contains the constant_properties of a
404 // simple object or array literal.
405 Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
406 Handle<Object> result;
407 ASSIGN_RETURN_ON_EXCEPTION(
408 isolate, result,
409 CreateLiteralBoilerplate(isolate, literals, fa),
410 Object);
411 fixed_array_values_copy->set(i, *result);
412 }
413 }
414 }
415 }
416 object->set_elements(*copied_elements_values);
417 object->set_length(Smi::FromInt(copied_elements_values->length()));
418
419 JSObject::ValidateElements(object);
420 return object;
421 }
422
423
424 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
425 Isolate* isolate,
426 Handle<FixedArray> literals,
427 Handle<FixedArray> array) {
428 Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
429 const bool kHasNoFunctionLiteral = false;
430 switch (CompileTimeValue::GetLiteralType(array)) {
431 case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
432 return CreateObjectLiteralBoilerplate(isolate,
433 literals,
434 elements,
435 true,
436 kHasNoFunctionLiteral);
437 case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
438 return CreateObjectLiteralBoilerplate(isolate,
439 literals,
440 elements,
441 false,
442 kHasNoFunctionLiteral);
443 case CompileTimeValue::ARRAY_LITERAL:
444 return Runtime::CreateArrayLiteralBoilerplate(
445 isolate, literals, elements);
446 default:
447 UNREACHABLE();
448 return MaybeHandle<Object>();
449 }
450 }
451
452
453 RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) {
454 HandleScope scope(isolate);
455 DCHECK(args.length() == 4);
456 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
457 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
458 CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
459 CONVERT_SMI_ARG_CHECKED(flags, 3);
460 bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
461 bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
462
463 RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length());
464
465 // Check if boilerplate exists. If not, create it first.
466 Handle<Object> literal_site(literals->get(literals_index), isolate);
467 Handle<AllocationSite> site;
468 Handle<JSObject> boilerplate;
469 if (*literal_site == isolate->heap()->undefined_value()) {
470 Handle<Object> raw_boilerplate;
471 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
472 isolate, raw_boilerplate,
473 CreateObjectLiteralBoilerplate(
474 isolate,
475 literals,
476 constant_properties,
477 should_have_fast_elements,
478 has_function_literal));
479 boilerplate = Handle<JSObject>::cast(raw_boilerplate);
480
481 AllocationSiteCreationContext creation_context(isolate);
482 site = creation_context.EnterNewScope();
483 RETURN_FAILURE_ON_EXCEPTION(
484 isolate,
485 JSObject::DeepWalk(boilerplate, &creation_context));
486 creation_context.ExitScope(site, boilerplate);
487
488 // Update the functions literal and return the boilerplate.
489 literals->set(literals_index, *site);
490 } else {
491 site = Handle<AllocationSite>::cast(literal_site);
492 boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
493 isolate);
494 }
495
496 AllocationSiteUsageContext usage_context(isolate, site, true);
497 usage_context.EnterNewScope();
498 MaybeHandle<Object> maybe_copy = JSObject::DeepCopy(
499 boilerplate, &usage_context);
500 usage_context.ExitScope(site, boilerplate);
501 Handle<Object> copy;
502 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy);
503 return *copy;
504 }
505
506
507 MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite(
508 Isolate* isolate,
509 Handle<FixedArray> literals,
510 int literals_index,
511 Handle<FixedArray> elements) {
512 // Check if boilerplate exists. If not, create it first.
513 Handle<Object> literal_site(literals->get(literals_index), isolate);
514 Handle<AllocationSite> site;
515 if (*literal_site == isolate->heap()->undefined_value()) {
516 DCHECK(*elements != isolate->heap()->empty_fixed_array());
517 Handle<Object> boilerplate;
518 ASSIGN_RETURN_ON_EXCEPTION(
519 isolate, boilerplate,
520 Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements),
521 AllocationSite);
522
523 AllocationSiteCreationContext creation_context(isolate);
524 site = creation_context.EnterNewScope();
525 if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate),
526 &creation_context).is_null()) {
527 return Handle<AllocationSite>::null();
528 }
529 creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate));
530
531 literals->set(literals_index, *site);
532 } else {
533 site = Handle<AllocationSite>::cast(literal_site);
534 }
535
536 return site;
537 }
538
539
540 static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate,
541 Handle<FixedArray> literals,
542 int literals_index,
543 Handle<FixedArray> elements,
544 int flags) {
545 RUNTIME_ASSERT_HANDLIFIED(literals_index >= 0 &&
546 literals_index < literals->length(), JSObject);
547 Handle<AllocationSite> site;
548 ASSIGN_RETURN_ON_EXCEPTION(
549 isolate, site,
550 GetLiteralAllocationSite(isolate, literals, literals_index, elements),
551 JSObject);
552
553 bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0;
554 Handle<JSObject> boilerplate(JSObject::cast(site->transition_info()));
555 AllocationSiteUsageContext usage_context(isolate, site, enable_mementos);
556 usage_context.EnterNewScope();
557 JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0
558 ? JSObject::kNoHints
559 : JSObject::kObjectIsShallow;
560 MaybeHandle<JSObject> copy = JSObject::DeepCopy(boilerplate, &usage_context,
561 hints);
562 usage_context.ExitScope(site, boilerplate);
563 return copy;
564 }
565
566
567 RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) {
568 HandleScope scope(isolate);
569 DCHECK(args.length() == 4);
570 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
571 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
572 CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
573 CONVERT_SMI_ARG_CHECKED(flags, 3);
574
575 Handle<JSObject> result;
576 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
577 CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
578 flags));
579 return *result;
580 }
581
582
583 RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) {
584 HandleScope scope(isolate);
585 DCHECK(args.length() == 3);
586 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
587 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
588 CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
589
590 Handle<JSObject> result;
591 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
592 CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
593 ArrayLiteral::kShallowElements));
594 return *result;
595 }
596
597
598 RUNTIME_FUNCTION(Runtime_CreateSymbol) {
599 HandleScope scope(isolate);
600 DCHECK(args.length() == 1);
601 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
602 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
603 Handle<Symbol> symbol = isolate->factory()->NewSymbol();
604 if (name->IsString()) symbol->set_name(*name);
605 return *symbol;
606 }
607
608
609 RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) {
610 HandleScope scope(isolate);
611 DCHECK(args.length() == 1);
612 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
613 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
614 Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol();
615 if (name->IsString()) symbol->set_name(*name);
616 return *symbol;
617 }
618
619
620 RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) {
621 HandleScope scope(isolate);
622 DCHECK(args.length() == 1);
623 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
624 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
625 Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol();
626 if (name->IsString()) symbol->set_name(*name);
627 return *symbol;
628 }
629
630
631 RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) {
632 HandleScope scope(isolate);
633 DCHECK(args.length() == 1);
634 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
635 Handle<JSObject> registry = isolate->GetSymbolRegistry();
636 Handle<String> part = isolate->factory()->private_intern_string();
637 Handle<Object> privates;
638 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
639 isolate, privates, Object::GetPropertyOrElement(registry, part));
640 Handle<Object> symbol;
641 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
642 isolate, symbol, Object::GetPropertyOrElement(privates, name));
643 if (!symbol->IsSymbol()) {
644 DCHECK(symbol->IsUndefined());
645 symbol = isolate->factory()->NewPrivateSymbol();
646 Handle<Symbol>::cast(symbol)->set_name(*name);
647 Handle<Symbol>::cast(symbol)->set_is_own(true);
648 JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol,
649 STRICT).Assert();
650 }
651 return *symbol;
652 }
653
654
655 RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) {
656 HandleScope scope(isolate);
657 DCHECK(args.length() == 1);
658 CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0);
659 return *Object::ToObject(isolate, symbol).ToHandleChecked();
660 }
661
662
663 RUNTIME_FUNCTION(Runtime_SymbolDescription) {
664 SealHandleScope shs(isolate);
665 DCHECK(args.length() == 1);
666 CONVERT_ARG_CHECKED(Symbol, symbol, 0);
667 return symbol->name();
668 }
669
670
671 RUNTIME_FUNCTION(Runtime_SymbolRegistry) {
672 HandleScope scope(isolate);
673 DCHECK(args.length() == 0);
674 return *isolate->GetSymbolRegistry();
675 }
676
677
678 RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) {
679 SealHandleScope shs(isolate);
680 DCHECK(args.length() == 1);
681 CONVERT_ARG_CHECKED(Symbol, symbol, 0);
682 return isolate->heap()->ToBoolean(symbol->is_private());
683 }
684
685
686 RUNTIME_FUNCTION(Runtime_CreateJSProxy) {
687 HandleScope scope(isolate);
688 DCHECK(args.length() == 2);
689 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
690 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
691 if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
692 return *isolate->factory()->NewJSProxy(handler, prototype);
693 }
694
695
696 RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) {
697 HandleScope scope(isolate);
698 DCHECK(args.length() == 4);
699 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
700 CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1);
701 RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
702 CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2);
703 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3);
704 if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
705 return *isolate->factory()->NewJSFunctionProxy(
706 handler, call_trap, construct_trap, prototype);
707 }
708
709
710 RUNTIME_FUNCTION(Runtime_IsJSProxy) {
711 SealHandleScope shs(isolate);
712 DCHECK(args.length() == 1);
713 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
714 return isolate->heap()->ToBoolean(obj->IsJSProxy());
715 }
716
717
718 RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) {
719 SealHandleScope shs(isolate);
720 DCHECK(args.length() == 1);
721 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
722 return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
723 }
724
725
726 RUNTIME_FUNCTION(Runtime_GetHandler) {
727 SealHandleScope shs(isolate);
728 DCHECK(args.length() == 1);
729 CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
730 return proxy->handler();
731 }
732
733
734 RUNTIME_FUNCTION(Runtime_GetCallTrap) {
735 SealHandleScope shs(isolate);
736 DCHECK(args.length() == 1);
737 CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
738 return proxy->call_trap();
739 }
740
741
742 RUNTIME_FUNCTION(Runtime_GetConstructTrap) {
743 SealHandleScope shs(isolate);
744 DCHECK(args.length() == 1);
745 CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
746 return proxy->construct_trap();
747 }
748
749
750 RUNTIME_FUNCTION(Runtime_Fix) {
751 HandleScope scope(isolate);
752 DCHECK(args.length() == 1);
753 CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0);
754 JSProxy::Fix(proxy);
755 return isolate->heap()->undefined_value();
756 }
757
758
759 void Runtime::FreeArrayBuffer(Isolate* isolate,
760 JSArrayBuffer* phantom_array_buffer) {
761 if (phantom_array_buffer->should_be_freed()) {
762 DCHECK(phantom_array_buffer->is_external());
763 free(phantom_array_buffer->backing_store());
764 }
765 if (phantom_array_buffer->is_external()) return;
766
767 size_t allocated_length = NumberToSize(
768 isolate, phantom_array_buffer->byte_length());
769
770 reinterpret_cast<v8::Isolate*>(isolate)
771 ->AdjustAmountOfExternalAllocatedMemory(
772 -static_cast<int64_t>(allocated_length));
773 CHECK(V8::ArrayBufferAllocator() != NULL);
774 V8::ArrayBufferAllocator()->Free(
775 phantom_array_buffer->backing_store(),
776 allocated_length);
777 }
778
779
780 void Runtime::SetupArrayBuffer(Isolate* isolate,
781 Handle<JSArrayBuffer> array_buffer,
782 bool is_external,
783 void* data,
784 size_t allocated_length) {
785 DCHECK(array_buffer->GetInternalFieldCount() ==
786 v8::ArrayBuffer::kInternalFieldCount);
787 for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
788 array_buffer->SetInternalField(i, Smi::FromInt(0));
789 }
790 array_buffer->set_backing_store(data);
791 array_buffer->set_flag(Smi::FromInt(0));
792 array_buffer->set_is_external(is_external);
793
794 Handle<Object> byte_length =
795 isolate->factory()->NewNumberFromSize(allocated_length);
796 CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
797 array_buffer->set_byte_length(*byte_length);
798
799 array_buffer->set_weak_next(isolate->heap()->array_buffers_list());
800 isolate->heap()->set_array_buffers_list(*array_buffer);
801 array_buffer->set_weak_first_view(isolate->heap()->undefined_value());
802 }
803
804
805 bool Runtime::SetupArrayBufferAllocatingData(
806 Isolate* isolate,
807 Handle<JSArrayBuffer> array_buffer,
808 size_t allocated_length,
809 bool initialize) {
810 void* data;
811 CHECK(V8::ArrayBufferAllocator() != NULL);
812 if (allocated_length != 0) {
813 if (initialize) {
814 data = V8::ArrayBufferAllocator()->Allocate(allocated_length);
815 } else {
816 data =
817 V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length);
818 }
819 if (data == NULL) return false;
820 } else {
821 data = NULL;
822 }
823
824 SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length);
825
826 reinterpret_cast<v8::Isolate*>(isolate)
827 ->AdjustAmountOfExternalAllocatedMemory(allocated_length);
828
829 return true;
830 }
831
832
833 void Runtime::NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer) {
834 Isolate* isolate = array_buffer->GetIsolate();
835 for (Handle<Object> view_obj(array_buffer->weak_first_view(), isolate);
836 !view_obj->IsUndefined();) {
837 Handle<JSArrayBufferView> view(JSArrayBufferView::cast(*view_obj));
838 if (view->IsJSTypedArray()) {
839 JSTypedArray::cast(*view)->Neuter();
840 } else if (view->IsJSDataView()) {
841 JSDataView::cast(*view)->Neuter();
842 } else {
843 UNREACHABLE();
844 }
845 view_obj = handle(view->weak_next(), isolate);
846 }
847 array_buffer->Neuter();
848 }
849
850
851 RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize) {
852 HandleScope scope(isolate);
853 DCHECK(args.length() == 2);
854 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0);
855 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byteLength, 1);
856 if (!holder->byte_length()->IsUndefined()) {
857 // ArrayBuffer is already initialized; probably a fuzz test.
858 return *holder;
859 }
860 size_t allocated_length = 0;
861 if (!TryNumberToSize(isolate, *byteLength, &allocated_length)) {
862 THROW_NEW_ERROR_RETURN_FAILURE(
863 isolate, NewRangeError("invalid_array_buffer_length",
864 HandleVector<Object>(NULL, 0)));
865 }
866 if (!Runtime::SetupArrayBufferAllocatingData(isolate,
867 holder, allocated_length)) {
868 THROW_NEW_ERROR_RETURN_FAILURE(
869 isolate, NewRangeError("invalid_array_buffer_length",
870 HandleVector<Object>(NULL, 0)));
871 }
872 return *holder;
873 }
874
875
876 RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) {
877 SealHandleScope shs(isolate);
878 DCHECK(args.length() == 1);
879 CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
880 return holder->byte_length();
881 }
882
883
884 RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) {
885 HandleScope scope(isolate);
886 DCHECK(args.length() == 3);
887 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
888 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
889 CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2);
890 RUNTIME_ASSERT(!source.is_identical_to(target));
891 size_t start = 0;
892 RUNTIME_ASSERT(TryNumberToSize(isolate, *first, &start));
893 size_t target_length = NumberToSize(isolate, target->byte_length());
894
895 if (target_length == 0) return isolate->heap()->undefined_value();
896
897 size_t source_byte_length = NumberToSize(isolate, source->byte_length());
898 RUNTIME_ASSERT(start <= source_byte_length);
899 RUNTIME_ASSERT(source_byte_length - start >= target_length);
900 uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
901 uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
902 CopyBytes(target_data, source_data + start, target_length);
903 return isolate->heap()->undefined_value();
904 }
905
906
907 RUNTIME_FUNCTION(Runtime_ArrayBufferIsView) {
908 HandleScope scope(isolate);
909 DCHECK(args.length() == 1);
910 CONVERT_ARG_CHECKED(Object, object, 0);
911 return isolate->heap()->ToBoolean(object->IsJSArrayBufferView());
912 }
913
914
915 RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) {
916 HandleScope scope(isolate);
917 DCHECK(args.length() == 1);
918 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0);
919 if (array_buffer->backing_store() == NULL) {
920 CHECK(Smi::FromInt(0) == array_buffer->byte_length());
921 return isolate->heap()->undefined_value();
922 }
923 DCHECK(!array_buffer->is_external());
924 void* backing_store = array_buffer->backing_store();
925 size_t byte_length = NumberToSize(isolate, array_buffer->byte_length());
926 array_buffer->set_is_external(true);
927 Runtime::NeuterArrayBuffer(array_buffer);
928 V8::ArrayBufferAllocator()->Free(backing_store, byte_length);
929 return isolate->heap()->undefined_value();
930 }
931
932
933 void Runtime::ArrayIdToTypeAndSize(
934 int arrayId,
935 ExternalArrayType* array_type,
936 ElementsKind* external_elements_kind,
937 ElementsKind* fixed_elements_kind,
938 size_t* element_size) {
939 switch (arrayId) {
940 #define ARRAY_ID_CASE(Type, type, TYPE, ctype, size) \
941 case ARRAY_ID_##TYPE: \
942 *array_type = kExternal##Type##Array; \
943 *external_elements_kind = EXTERNAL_##TYPE##_ELEMENTS; \
944 *fixed_elements_kind = TYPE##_ELEMENTS; \
945 *element_size = size; \
946 break;
947
948 TYPED_ARRAYS(ARRAY_ID_CASE)
949 #undef ARRAY_ID_CASE
950
951 default:
952 UNREACHABLE();
953 }
954 }
955
956
957 RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) {
958 HandleScope scope(isolate);
959 DCHECK(args.length() == 5);
960 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
961 CONVERT_SMI_ARG_CHECKED(arrayId, 1);
962 CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2);
963 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3);
964 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4);
965
966 RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
967 arrayId <= Runtime::ARRAY_ID_LAST);
968
969 ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
970 size_t element_size = 1; // Bogus initialization.
971 ElementsKind external_elements_kind =
972 EXTERNAL_INT8_ELEMENTS; // Bogus initialization.
973 ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
974 Runtime::ArrayIdToTypeAndSize(arrayId,
975 &array_type,
976 &external_elements_kind,
977 &fixed_elements_kind,
978 &element_size);
979 RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
980
981 size_t byte_offset = 0;
982 size_t byte_length = 0;
983 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset_object, &byte_offset));
984 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length_object, &byte_length));
985
986 if (maybe_buffer->IsJSArrayBuffer()) {
987 Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
988 size_t array_buffer_byte_length =
989 NumberToSize(isolate, buffer->byte_length());
990 RUNTIME_ASSERT(byte_offset <= array_buffer_byte_length);
991 RUNTIME_ASSERT(array_buffer_byte_length - byte_offset >= byte_length);
992 } else {
993 RUNTIME_ASSERT(maybe_buffer->IsNull());
994 }
995
996 RUNTIME_ASSERT(byte_length % element_size == 0);
997 size_t length = byte_length / element_size;
998
999 if (length > static_cast<unsigned>(Smi::kMaxValue)) {
1000 THROW_NEW_ERROR_RETURN_FAILURE(
1001 isolate, NewRangeError("invalid_typed_array_length",
1002 HandleVector<Object>(NULL, 0)));
1003 }
1004
1005 // All checks are done, now we can modify objects.
1006
1007 DCHECK(holder->GetInternalFieldCount() ==
1008 v8::ArrayBufferView::kInternalFieldCount);
1009 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1010 holder->SetInternalField(i, Smi::FromInt(0));
1011 }
1012 Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
1013 holder->set_length(*length_obj);
1014 holder->set_byte_offset(*byte_offset_object);
1015 holder->set_byte_length(*byte_length_object);
1016
1017 if (!maybe_buffer->IsNull()) {
1018 Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
1019 holder->set_buffer(*buffer);
1020 holder->set_weak_next(buffer->weak_first_view());
1021 buffer->set_weak_first_view(*holder);
1022
1023 Handle<ExternalArray> elements =
1024 isolate->factory()->NewExternalArray(
1025 static_cast<int>(length), array_type,
1026 static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
1027 Handle<Map> map =
1028 JSObject::GetElementsTransitionMap(holder, external_elements_kind);
1029 JSObject::SetMapAndElements(holder, map, elements);
1030 DCHECK(IsExternalArrayElementsKind(holder->map()->elements_kind()));
1031 } else {
1032 holder->set_buffer(Smi::FromInt(0));
1033 holder->set_weak_next(isolate->heap()->undefined_value());
1034 Handle<FixedTypedArrayBase> elements =
1035 isolate->factory()->NewFixedTypedArray(
1036 static_cast<int>(length), array_type);
1037 holder->set_elements(*elements);
1038 }
1039 return isolate->heap()->undefined_value();
1040 }
1041
1042
1043 // Initializes a typed array from an array-like object.
1044 // If an array-like object happens to be a typed array of the same type,
1045 // initializes backing store using memove.
1046 //
1047 // Returns true if backing store was initialized or false otherwise.
1048 RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) {
1049 HandleScope scope(isolate);
1050 DCHECK(args.length() == 4);
1051 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1052 CONVERT_SMI_ARG_CHECKED(arrayId, 1);
1053 CONVERT_ARG_HANDLE_CHECKED(Object, source, 2);
1054 CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3);
1055
1056 RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
1057 arrayId <= Runtime::ARRAY_ID_LAST);
1058
1059 ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
1060 size_t element_size = 1; // Bogus initialization.
1061 ElementsKind external_elements_kind =
1062 EXTERNAL_INT8_ELEMENTS; // Bogus intialization.
1063 ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
1064 Runtime::ArrayIdToTypeAndSize(arrayId,
1065 &array_type,
1066 &external_elements_kind,
1067 &fixed_elements_kind,
1068 &element_size);
1069
1070 RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
1071
1072 Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
1073 if (source->IsJSTypedArray() &&
1074 JSTypedArray::cast(*source)->type() == array_type) {
1075 length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate);
1076 }
1077 size_t length = 0;
1078 RUNTIME_ASSERT(TryNumberToSize(isolate, *length_obj, &length));
1079
1080 if ((length > static_cast<unsigned>(Smi::kMaxValue)) ||
1081 (length > (kMaxInt / element_size))) {
1082 THROW_NEW_ERROR_RETURN_FAILURE(
1083 isolate, NewRangeError("invalid_typed_array_length",
1084 HandleVector<Object>(NULL, 0)));
1085 }
1086 size_t byte_length = length * element_size;
1087
1088 DCHECK(holder->GetInternalFieldCount() ==
1089 v8::ArrayBufferView::kInternalFieldCount);
1090 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1091 holder->SetInternalField(i, Smi::FromInt(0));
1092 }
1093
1094 // NOTE: not initializing backing store.
1095 // We assume that the caller of this function will initialize holder
1096 // with the loop
1097 // for(i = 0; i < length; i++) { holder[i] = source[i]; }
1098 // We assume that the caller of this function is always a typed array
1099 // constructor.
1100 // If source is a typed array, this loop will always run to completion,
1101 // so we are sure that the backing store will be initialized.
1102 // Otherwise, the indexing operation might throw, so the loop will not
1103 // run to completion and the typed array might remain partly initialized.
1104 // However we further assume that the caller of this function is a typed array
1105 // constructor, and the exception will propagate out of the constructor,
1106 // therefore uninitialized memory will not be accessible by a user program.
1107 //
1108 // TODO(dslomov): revise this once we support subclassing.
1109
1110 if (!Runtime::SetupArrayBufferAllocatingData(
1111 isolate, buffer, byte_length, false)) {
1112 THROW_NEW_ERROR_RETURN_FAILURE(
1113 isolate, NewRangeError("invalid_array_buffer_length",
1114 HandleVector<Object>(NULL, 0)));
1115 }
1116
1117 holder->set_buffer(*buffer);
1118 holder->set_byte_offset(Smi::FromInt(0));
1119 Handle<Object> byte_length_obj(
1120 isolate->factory()->NewNumberFromSize(byte_length));
1121 holder->set_byte_length(*byte_length_obj);
1122 holder->set_length(*length_obj);
1123 holder->set_weak_next(buffer->weak_first_view());
1124 buffer->set_weak_first_view(*holder);
1125
1126 Handle<ExternalArray> elements =
1127 isolate->factory()->NewExternalArray(
1128 static_cast<int>(length), array_type,
1129 static_cast<uint8_t*>(buffer->backing_store()));
1130 Handle<Map> map = JSObject::GetElementsTransitionMap(
1131 holder, external_elements_kind);
1132 JSObject::SetMapAndElements(holder, map, elements);
1133
1134 if (source->IsJSTypedArray()) {
1135 Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source));
1136
1137 if (typed_array->type() == holder->type()) {
1138 uint8_t* backing_store =
1139 static_cast<uint8_t*>(
1140 typed_array->GetBuffer()->backing_store());
1141 size_t source_byte_offset =
1142 NumberToSize(isolate, typed_array->byte_offset());
1143 memcpy(
1144 buffer->backing_store(),
1145 backing_store + source_byte_offset,
1146 byte_length);
1147 return isolate->heap()->true_value();
1148 }
1149 }
1150
1151 return isolate->heap()->false_value();
1152 }
1153
1154
1155 #define BUFFER_VIEW_GETTER(Type, getter, accessor) \
1156 RUNTIME_FUNCTION(Runtime_##Type##Get##getter) { \
1157 HandleScope scope(isolate); \
1158 DCHECK(args.length() == 1); \
1159 CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0); \
1160 return holder->accessor(); \
1161 }
1162
1163 BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length)
1164 BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset)
1165 BUFFER_VIEW_GETTER(TypedArray, Length, length)
1166 BUFFER_VIEW_GETTER(DataView, Buffer, buffer)
1167
1168 #undef BUFFER_VIEW_GETTER
1169
1170 RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) {
1171 HandleScope scope(isolate);
1172 DCHECK(args.length() == 1);
1173 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1174 return *holder->GetBuffer();
1175 }
1176
1177
1178 // Return codes for Runtime_TypedArraySetFastCases.
1179 // Should be synchronized with typedarray.js natives.
1180 enum TypedArraySetResultCodes {
1181 // Set from typed array of the same type.
1182 // This is processed by TypedArraySetFastCases
1183 TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0,
1184 // Set from typed array of the different type, overlapping in memory.
1185 TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1,
1186 // Set from typed array of the different type, non-overlapping.
1187 TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2,
1188 // Set from non-typed array.
1189 TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3
1190 };
1191
1192
1193 RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) {
1194 HandleScope scope(isolate);
1195 DCHECK(args.length() == 3);
1196 if (!args[0]->IsJSTypedArray()) {
1197 THROW_NEW_ERROR_RETURN_FAILURE(
1198 isolate,
1199 NewTypeError("not_typed_array", HandleVector<Object>(NULL, 0)));
1200 }
1201
1202 if (!args[1]->IsJSTypedArray())
1203 return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY);
1204
1205 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0);
1206 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1);
1207 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2);
1208
1209 Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
1210 Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
1211 size_t offset = 0;
1212 RUNTIME_ASSERT(TryNumberToSize(isolate, *offset_obj, &offset));
1213 size_t target_length = NumberToSize(isolate, target->length());
1214 size_t source_length = NumberToSize(isolate, source->length());
1215 size_t target_byte_length = NumberToSize(isolate, target->byte_length());
1216 size_t source_byte_length = NumberToSize(isolate, source->byte_length());
1217 if (offset > target_length || offset + source_length > target_length ||
1218 offset + source_length < offset) { // overflow
1219 THROW_NEW_ERROR_RETURN_FAILURE(
1220 isolate, NewRangeError("typed_array_set_source_too_large",
1221 HandleVector<Object>(NULL, 0)));
1222 }
1223
1224 size_t target_offset = NumberToSize(isolate, target->byte_offset());
1225 size_t source_offset = NumberToSize(isolate, source->byte_offset());
1226 uint8_t* target_base =
1227 static_cast<uint8_t*>(
1228 target->GetBuffer()->backing_store()) + target_offset;
1229 uint8_t* source_base =
1230 static_cast<uint8_t*>(
1231 source->GetBuffer()->backing_store()) + source_offset;
1232
1233 // Typed arrays of the same type: use memmove.
1234 if (target->type() == source->type()) {
1235 memmove(target_base + offset * target->element_size(),
1236 source_base, source_byte_length);
1237 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE);
1238 }
1239
1240 // Typed arrays of different types over the same backing store
1241 if ((source_base <= target_base &&
1242 source_base + source_byte_length > target_base) ||
1243 (target_base <= source_base &&
1244 target_base + target_byte_length > source_base)) {
1245 // We do not support overlapping ArrayBuffers
1246 DCHECK(
1247 target->GetBuffer()->backing_store() ==
1248 source->GetBuffer()->backing_store());
1249 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING);
1250 } else { // Non-overlapping typed arrays
1251 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING);
1252 }
1253 }
1254
1255
1256 RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) {
1257 DCHECK(args.length() == 0);
1258 DCHECK_OBJECT_SIZE(
1259 FLAG_typed_array_max_size_in_heap + FixedTypedArrayBase::kDataOffset);
1260 return Smi::FromInt(FLAG_typed_array_max_size_in_heap);
1261 }
1262
1263
1264 RUNTIME_FUNCTION(Runtime_DataViewInitialize) {
1265 HandleScope scope(isolate);
1266 DCHECK(args.length() == 4);
1267 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);
1268 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1);
1269 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset, 2);
1270 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length, 3);
1271
1272 DCHECK(holder->GetInternalFieldCount() ==
1273 v8::ArrayBufferView::kInternalFieldCount);
1274 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1275 holder->SetInternalField(i, Smi::FromInt(0));
1276 }
1277 size_t buffer_length = 0;
1278 size_t offset = 0;
1279 size_t length = 0;
1280 RUNTIME_ASSERT(
1281 TryNumberToSize(isolate, buffer->byte_length(), &buffer_length));
1282 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset, &offset));
1283 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length, &length));
1284
1285 // TODO(jkummerow): When we have a "safe numerics" helper class, use it here.
1286 // Entire range [offset, offset + length] must be in bounds.
1287 RUNTIME_ASSERT(offset <= buffer_length);
1288 RUNTIME_ASSERT(offset + length <= buffer_length);
1289 // No overflow.
1290 RUNTIME_ASSERT(offset + length >= offset);
1291
1292 holder->set_buffer(*buffer);
1293 holder->set_byte_offset(*byte_offset);
1294 holder->set_byte_length(*byte_length);
1295
1296 holder->set_weak_next(buffer->weak_first_view());
1297 buffer->set_weak_first_view(*holder);
1298
1299 return isolate->heap()->undefined_value();
1300 }
1301
1302
1303 inline static bool NeedToFlipBytes(bool is_little_endian) {
1304 #ifdef V8_TARGET_LITTLE_ENDIAN
1305 return !is_little_endian;
1306 #else
1307 return is_little_endian;
1308 #endif
1309 }
1310
1311
1312 template<int n>
1313 inline void CopyBytes(uint8_t* target, uint8_t* source) {
1314 for (int i = 0; i < n; i++) {
1315 *(target++) = *(source++);
1316 }
1317 }
1318
1319
1320 template<int n>
1321 inline void FlipBytes(uint8_t* target, uint8_t* source) {
1322 source = source + (n-1);
1323 for (int i = 0; i < n; i++) {
1324 *(target++) = *(source--);
1325 }
1326 }
1327
1328
1329 template<typename T>
1330 inline static bool DataViewGetValue(
1331 Isolate* isolate,
1332 Handle<JSDataView> data_view,
1333 Handle<Object> byte_offset_obj,
1334 bool is_little_endian,
1335 T* result) {
1336 size_t byte_offset = 0;
1337 if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1338 return false;
1339 }
1340 Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1341
1342 size_t data_view_byte_offset =
1343 NumberToSize(isolate, data_view->byte_offset());
1344 size_t data_view_byte_length =
1345 NumberToSize(isolate, data_view->byte_length());
1346 if (byte_offset + sizeof(T) > data_view_byte_length ||
1347 byte_offset + sizeof(T) < byte_offset) { // overflow
1348 return false;
1349 }
1350
1351 union Value {
1352 T data;
1353 uint8_t bytes[sizeof(T)];
1354 };
1355
1356 Value value;
1357 size_t buffer_offset = data_view_byte_offset + byte_offset;
1358 DCHECK(
1359 NumberToSize(isolate, buffer->byte_length())
1360 >= buffer_offset + sizeof(T));
1361 uint8_t* source =
1362 static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1363 if (NeedToFlipBytes(is_little_endian)) {
1364 FlipBytes<sizeof(T)>(value.bytes, source);
1365 } else {
1366 CopyBytes<sizeof(T)>(value.bytes, source);
1367 }
1368 *result = value.data;
1369 return true;
1370 }
1371
1372
1373 template<typename T>
1374 static bool DataViewSetValue(
1375 Isolate* isolate,
1376 Handle<JSDataView> data_view,
1377 Handle<Object> byte_offset_obj,
1378 bool is_little_endian,
1379 T data) {
1380 size_t byte_offset = 0;
1381 if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1382 return false;
1383 }
1384 Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1385
1386 size_t data_view_byte_offset =
1387 NumberToSize(isolate, data_view->byte_offset());
1388 size_t data_view_byte_length =
1389 NumberToSize(isolate, data_view->byte_length());
1390 if (byte_offset + sizeof(T) > data_view_byte_length ||
1391 byte_offset + sizeof(T) < byte_offset) { // overflow
1392 return false;
1393 }
1394
1395 union Value {
1396 T data;
1397 uint8_t bytes[sizeof(T)];
1398 };
1399
1400 Value value;
1401 value.data = data;
1402 size_t buffer_offset = data_view_byte_offset + byte_offset;
1403 DCHECK(
1404 NumberToSize(isolate, buffer->byte_length())
1405 >= buffer_offset + sizeof(T));
1406 uint8_t* target =
1407 static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1408 if (NeedToFlipBytes(is_little_endian)) {
1409 FlipBytes<sizeof(T)>(target, value.bytes);
1410 } else {
1411 CopyBytes<sizeof(T)>(target, value.bytes);
1412 }
1413 return true;
1414 }
1415
1416
1417 #define DATA_VIEW_GETTER(TypeName, Type, Converter) \
1418 RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) { \
1419 HandleScope scope(isolate); \
1420 DCHECK(args.length() == 3); \
1421 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
1422 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
1423 CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \
1424 Type result; \
1425 if (DataViewGetValue(isolate, holder, offset, is_little_endian, \
1426 &result)) { \
1427 return *isolate->factory()->Converter(result); \
1428 } else { \
1429 THROW_NEW_ERROR_RETURN_FAILURE( \
1430 isolate, NewRangeError("invalid_data_view_accessor_offset", \
1431 HandleVector<Object>(NULL, 0))); \
1432 } \
1433 }
1434
1435 DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint)
1436 DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt)
1437 DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint)
1438 DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt)
1439 DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint)
1440 DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt)
1441 DATA_VIEW_GETTER(Float32, float, NewNumber)
1442 DATA_VIEW_GETTER(Float64, double, NewNumber)
1443
1444 #undef DATA_VIEW_GETTER
1445
1446
1447 template <typename T>
1448 static T DataViewConvertValue(double value);
1449
1450
1451 template <>
1452 int8_t DataViewConvertValue<int8_t>(double value) {
1453 return static_cast<int8_t>(DoubleToInt32(value));
1454 }
1455
1456
1457 template <>
1458 int16_t DataViewConvertValue<int16_t>(double value) {
1459 return static_cast<int16_t>(DoubleToInt32(value));
1460 }
1461
1462
1463 template <>
1464 int32_t DataViewConvertValue<int32_t>(double value) {
1465 return DoubleToInt32(value);
1466 }
1467
1468
1469 template <>
1470 uint8_t DataViewConvertValue<uint8_t>(double value) {
1471 return static_cast<uint8_t>(DoubleToUint32(value));
1472 }
1473
1474
1475 template <>
1476 uint16_t DataViewConvertValue<uint16_t>(double value) {
1477 return static_cast<uint16_t>(DoubleToUint32(value));
1478 }
1479
1480
1481 template <>
1482 uint32_t DataViewConvertValue<uint32_t>(double value) {
1483 return DoubleToUint32(value);
1484 }
1485
1486
1487 template <>
1488 float DataViewConvertValue<float>(double value) {
1489 return static_cast<float>(value);
1490 }
1491
1492
1493 template <>
1494 double DataViewConvertValue<double>(double value) {
1495 return value;
1496 }
1497
1498
1499 #define DATA_VIEW_SETTER(TypeName, Type) \
1500 RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) { \
1501 HandleScope scope(isolate); \
1502 DCHECK(args.length() == 4); \
1503 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
1504 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
1505 CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2); \
1506 CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \
1507 Type v = DataViewConvertValue<Type>(value->Number()); \
1508 if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \
1509 return isolate->heap()->undefined_value(); \
1510 } else { \
1511 THROW_NEW_ERROR_RETURN_FAILURE( \
1512 isolate, NewRangeError("invalid_data_view_accessor_offset", \
1513 HandleVector<Object>(NULL, 0))); \
1514 } \
1515 }
1516
1517 DATA_VIEW_SETTER(Uint8, uint8_t)
1518 DATA_VIEW_SETTER(Int8, int8_t)
1519 DATA_VIEW_SETTER(Uint16, uint16_t)
1520 DATA_VIEW_SETTER(Int16, int16_t)
1521 DATA_VIEW_SETTER(Uint32, uint32_t)
1522 DATA_VIEW_SETTER(Int32, int32_t)
1523 DATA_VIEW_SETTER(Float32, float)
1524 DATA_VIEW_SETTER(Float64, double)
1525
1526 #undef DATA_VIEW_SETTER
1527
1528
1529 RUNTIME_FUNCTION(Runtime_SetInitialize) {
1530 HandleScope scope(isolate);
1531 DCHECK(args.length() == 1);
1532 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1533 Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
1534 holder->set_table(*table);
1535 return *holder;
1536 }
1537
1538
1539 RUNTIME_FUNCTION(Runtime_SetAdd) {
1540 HandleScope scope(isolate);
1541 DCHECK(args.length() == 2);
1542 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1543 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1544 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1545 table = OrderedHashSet::Add(table, key);
1546 holder->set_table(*table);
1547 return *holder;
1548 }
1549
1550
1551 RUNTIME_FUNCTION(Runtime_SetHas) {
1552 HandleScope scope(isolate);
1553 DCHECK(args.length() == 2);
1554 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1555 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1556 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1557 return isolate->heap()->ToBoolean(table->Contains(key));
1558 }
1559
1560
1561 RUNTIME_FUNCTION(Runtime_SetDelete) {
1562 HandleScope scope(isolate);
1563 DCHECK(args.length() == 2);
1564 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1565 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1566 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1567 bool was_present = false;
1568 table = OrderedHashSet::Remove(table, key, &was_present);
1569 holder->set_table(*table);
1570 return isolate->heap()->ToBoolean(was_present);
1571 }
1572
1573
1574 RUNTIME_FUNCTION(Runtime_SetClear) {
1575 HandleScope scope(isolate);
1576 DCHECK(args.length() == 1);
1577 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1578 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1579 table = OrderedHashSet::Clear(table);
1580 holder->set_table(*table);
1581 return isolate->heap()->undefined_value();
1582 }
1583
1584
1585 RUNTIME_FUNCTION(Runtime_SetGetSize) {
1586 HandleScope scope(isolate);
1587 DCHECK(args.length() == 1);
1588 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1589 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1590 return Smi::FromInt(table->NumberOfElements());
1591 }
1592
1593
1594 RUNTIME_FUNCTION(Runtime_SetIteratorInitialize) {
1595 HandleScope scope(isolate);
1596 DCHECK(args.length() == 3);
1597 CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
1598 CONVERT_ARG_HANDLE_CHECKED(JSSet, set, 1);
1599 CONVERT_SMI_ARG_CHECKED(kind, 2)
1600 RUNTIME_ASSERT(kind == JSSetIterator::kKindValues ||
1601 kind == JSSetIterator::kKindEntries);
1602 Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
1603 holder->set_table(*table);
1604 holder->set_index(Smi::FromInt(0));
1605 holder->set_kind(Smi::FromInt(kind));
1606 return isolate->heap()->undefined_value();
1607 }
1608
1609
1610 RUNTIME_FUNCTION(Runtime_SetIteratorNext) {
1611 SealHandleScope shs(isolate);
1612 DCHECK(args.length() == 2);
1613 CONVERT_ARG_CHECKED(JSSetIterator, holder, 0);
1614 CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1615 return holder->Next(value_array);
1616 }
1617
1618
1619 RUNTIME_FUNCTION(Runtime_MapInitialize) {
1620 HandleScope scope(isolate);
1621 DCHECK(args.length() == 1);
1622 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1623 Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
1624 holder->set_table(*table);
1625 return *holder;
1626 }
1627
1628
1629 RUNTIME_FUNCTION(Runtime_MapGet) {
1630 HandleScope scope(isolate);
1631 DCHECK(args.length() == 2);
1632 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1633 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1634 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1635 Handle<Object> lookup(table->Lookup(key), isolate);
1636 return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1637 }
1638
1639
1640 RUNTIME_FUNCTION(Runtime_MapHas) {
1641 HandleScope scope(isolate);
1642 DCHECK(args.length() == 2);
1643 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1644 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1645 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1646 Handle<Object> lookup(table->Lookup(key), isolate);
1647 return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1648 }
1649
1650
1651 RUNTIME_FUNCTION(Runtime_MapDelete) {
1652 HandleScope scope(isolate);
1653 DCHECK(args.length() == 2);
1654 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1655 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1656 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1657 bool was_present = false;
1658 Handle<OrderedHashMap> new_table =
1659 OrderedHashMap::Remove(table, key, &was_present);
1660 holder->set_table(*new_table);
1661 return isolate->heap()->ToBoolean(was_present);
1662 }
1663
1664
1665 RUNTIME_FUNCTION(Runtime_MapClear) {
1666 HandleScope scope(isolate);
1667 DCHECK(args.length() == 1);
1668 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1669 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1670 table = OrderedHashMap::Clear(table);
1671 holder->set_table(*table);
1672 return isolate->heap()->undefined_value();
1673 }
1674
1675
1676 RUNTIME_FUNCTION(Runtime_MapSet) {
1677 HandleScope scope(isolate);
1678 DCHECK(args.length() == 3);
1679 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1680 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1681 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1682 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1683 Handle<OrderedHashMap> new_table = OrderedHashMap::Put(table, key, value);
1684 holder->set_table(*new_table);
1685 return *holder;
1686 }
1687
1688
1689 RUNTIME_FUNCTION(Runtime_MapGetSize) {
1690 HandleScope scope(isolate);
1691 DCHECK(args.length() == 1);
1692 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1693 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1694 return Smi::FromInt(table->NumberOfElements());
1695 }
1696
1697
1698 RUNTIME_FUNCTION(Runtime_MapIteratorInitialize) {
1699 HandleScope scope(isolate);
1700 DCHECK(args.length() == 3);
1701 CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
1702 CONVERT_ARG_HANDLE_CHECKED(JSMap, map, 1);
1703 CONVERT_SMI_ARG_CHECKED(kind, 2)
1704 RUNTIME_ASSERT(kind == JSMapIterator::kKindKeys
1705 || kind == JSMapIterator::kKindValues
1706 || kind == JSMapIterator::kKindEntries);
1707 Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
1708 holder->set_table(*table);
1709 holder->set_index(Smi::FromInt(0));
1710 holder->set_kind(Smi::FromInt(kind));
1711 return isolate->heap()->undefined_value();
1712 }
1713
1714
1715 RUNTIME_FUNCTION(Runtime_GetWeakMapEntries) {
1716 HandleScope scope(isolate);
1717 DCHECK(args.length() == 1);
1718 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1719 Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1720 Handle<FixedArray> entries =
1721 isolate->factory()->NewFixedArray(table->NumberOfElements() * 2);
1722 {
1723 DisallowHeapAllocation no_gc;
1724 int number_of_non_hole_elements = 0;
1725 for (int i = 0; i < table->Capacity(); i++) {
1726 Handle<Object> key(table->KeyAt(i), isolate);
1727 if (table->IsKey(*key)) {
1728 entries->set(number_of_non_hole_elements++, *key);
1729 Object* value = table->Lookup(key);
1730 entries->set(number_of_non_hole_elements++, value);
1731 }
1732 }
1733 DCHECK_EQ(table->NumberOfElements() * 2, number_of_non_hole_elements);
1734 }
1735 return *isolate->factory()->NewJSArrayWithElements(entries);
1736 }
1737
1738
1739 RUNTIME_FUNCTION(Runtime_MapIteratorNext) {
1740 SealHandleScope shs(isolate);
1741 DCHECK(args.length() == 2);
1742 CONVERT_ARG_CHECKED(JSMapIterator, holder, 0);
1743 CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1744 return holder->Next(value_array);
1745 }
1746
1747
1748 static Handle<JSWeakCollection> WeakCollectionInitialize(
1749 Isolate* isolate,
1750 Handle<JSWeakCollection> weak_collection) {
1751 DCHECK(weak_collection->map()->inobject_properties() == 0);
1752 Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
1753 weak_collection->set_table(*table);
1754 return weak_collection;
1755 }
1756
1757
1758 RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize) {
1759 HandleScope scope(isolate);
1760 DCHECK(args.length() == 1);
1761 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1762 return *WeakCollectionInitialize(isolate, weak_collection);
1763 }
1764
1765
1766 RUNTIME_FUNCTION(Runtime_WeakCollectionGet) {
1767 HandleScope scope(isolate);
1768 DCHECK(args.length() == 2);
1769 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1770 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1771 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1772 Handle<ObjectHashTable> table(
1773 ObjectHashTable::cast(weak_collection->table()));
1774 RUNTIME_ASSERT(table->IsKey(*key));
1775 Handle<Object> lookup(table->Lookup(key), isolate);
1776 return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1777 }
1778
1779
1780 RUNTIME_FUNCTION(Runtime_WeakCollectionHas) {
1781 HandleScope scope(isolate);
1782 DCHECK(args.length() == 2);
1783 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1784 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1785 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1786 Handle<ObjectHashTable> table(
1787 ObjectHashTable::cast(weak_collection->table()));
1788 RUNTIME_ASSERT(table->IsKey(*key));
1789 Handle<Object> lookup(table->Lookup(key), isolate);
1790 return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1791 }
1792
1793
1794 RUNTIME_FUNCTION(Runtime_WeakCollectionDelete) {
1795 HandleScope scope(isolate);
1796 DCHECK(args.length() == 2);
1797 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1798 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1799 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1800 Handle<ObjectHashTable> table(ObjectHashTable::cast(
1801 weak_collection->table()));
1802 RUNTIME_ASSERT(table->IsKey(*key));
1803 bool was_present = false;
1804 Handle<ObjectHashTable> new_table =
1805 ObjectHashTable::Remove(table, key, &was_present);
1806 weak_collection->set_table(*new_table);
1807 return isolate->heap()->ToBoolean(was_present);
1808 }
1809
1810
1811 RUNTIME_FUNCTION(Runtime_WeakCollectionSet) {
1812 HandleScope scope(isolate);
1813 DCHECK(args.length() == 3);
1814 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1815 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1816 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1817 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1818 Handle<ObjectHashTable> table(
1819 ObjectHashTable::cast(weak_collection->table()));
1820 RUNTIME_ASSERT(table->IsKey(*key));
1821 Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value);
1822 weak_collection->set_table(*new_table);
1823 return *weak_collection;
1824 }
1825
1826
1827 RUNTIME_FUNCTION(Runtime_GetWeakSetValues) {
1828 HandleScope scope(isolate);
1829 DCHECK(args.length() == 1);
1830 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1831 Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1832 Handle<FixedArray> values =
1833 isolate->factory()->NewFixedArray(table->NumberOfElements());
1834 {
1835 DisallowHeapAllocation no_gc;
1836 int number_of_non_hole_elements = 0;
1837 for (int i = 0; i < table->Capacity(); i++) {
1838 Handle<Object> key(table->KeyAt(i), isolate);
1839 if (table->IsKey(*key)) {
1840 values->set(number_of_non_hole_elements++, *key);
1841 }
1842 }
1843 DCHECK_EQ(table->NumberOfElements(), number_of_non_hole_elements);
1844 }
1845 return *isolate->factory()->NewJSArrayWithElements(values);
1846 }
1847
1848
1849 RUNTIME_FUNCTION(Runtime_GetPrototype) {
1850 HandleScope scope(isolate);
1851 DCHECK(args.length() == 1);
1852 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
1853 // We don't expect access checks to be needed on JSProxy objects.
1854 DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
1855 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
1856 do {
1857 if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
1858 !isolate->MayNamedAccess(
1859 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1860 isolate->factory()->proto_string(), v8::ACCESS_GET)) {
1861 isolate->ReportFailedAccessCheck(
1862 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1863 v8::ACCESS_GET);
1864 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1865 return isolate->heap()->undefined_value();
1866 }
1867 iter.AdvanceIgnoringProxies();
1868 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1869 return *PrototypeIterator::GetCurrent(iter);
1870 }
1871 } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
1872 return *PrototypeIterator::GetCurrent(iter);
1873 }
1874
1875
1876 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1877 Isolate* isolate, Handle<Object> receiver) {
1878 PrototypeIterator iter(isolate, receiver);
1879 while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
1880 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1881 return PrototypeIterator::GetCurrent(iter);
1882 }
1883 iter.Advance();
1884 }
1885 return PrototypeIterator::GetCurrent(iter);
1886 }
1887
1888
1889 RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
1890 HandleScope scope(isolate);
1891 DCHECK(args.length() == 2);
1892 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1893 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1894 DCHECK(!obj->IsAccessCheckNeeded());
1895 DCHECK(!obj->map()->is_observed());
1896 Handle<Object> result;
1897 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1898 isolate, result, JSObject::SetPrototype(obj, prototype, false));
1899 return *result;
1900 }
1901
1902
1903 RUNTIME_FUNCTION(Runtime_SetPrototype) {
1904 HandleScope scope(isolate);
1905 DCHECK(args.length() == 2);
1906 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1907 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1908 if (obj->IsAccessCheckNeeded() &&
1909 !isolate->MayNamedAccess(
1910 obj, isolate->factory()->proto_string(), v8::ACCESS_SET)) {
1911 isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
1912 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1913 return isolate->heap()->undefined_value();
1914 }
1915 if (obj->map()->is_observed()) {
1916 Handle<Object> old_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1917 Handle<Object> result;
1918 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1919 isolate, result,
1920 JSObject::SetPrototype(obj, prototype, true));
1921
1922 Handle<Object> new_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1923 if (!new_value->SameValue(*old_value)) {
1924 JSObject::EnqueueChangeRecord(obj, "setPrototype",
1925 isolate->factory()->proto_string(),
1926 old_value);
1927 }
1928 return *result;
1929 }
1930 Handle<Object> result;
1931 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1932 isolate, result,
1933 JSObject::SetPrototype(obj, prototype, true));
1934 return *result;
1935 }
1936
1937
1938 RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
1939 HandleScope shs(isolate);
1940 DCHECK(args.length() == 2);
1941 // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
1942 CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
1943 CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
1944 PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
1945 while (true) {
1946 iter.AdvanceIgnoringProxies();
1947 if (iter.IsAtEnd()) return isolate->heap()->false_value();
1948 if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
1949 }
1950 }
1951
1952
1953 // Enumerator used as indices into the array returned from GetOwnProperty
1954 enum PropertyDescriptorIndices {
1955 IS_ACCESSOR_INDEX,
1956 VALUE_INDEX,
1957 GETTER_INDEX,
1958 SETTER_INDEX,
1959 WRITABLE_INDEX,
1960 ENUMERABLE_INDEX,
1961 CONFIGURABLE_INDEX,
1962 DESCRIPTOR_SIZE
1963 };
1964
1965
1966 MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
1967 Handle<JSObject> obj,
1968 Handle<Name> name) {
1969 Heap* heap = isolate->heap();
1970 Factory* factory = isolate->factory();
1971
1972 PropertyAttributes attrs;
1973 uint32_t index = 0;
1974 Handle<Object> value;
1975 MaybeHandle<AccessorPair> maybe_accessors;
1976 // TODO(verwaest): Unify once indexed properties can be handled by the
1977 // LookupIterator.
1978 if (name->AsArrayIndex(&index)) {
1979 // Get attributes.
1980 Maybe<PropertyAttributes> maybe =
1981 JSReceiver::GetOwnElementAttribute(obj, index);
1982 if (!maybe.has_value) return MaybeHandle<Object>();
1983 attrs = maybe.value;
1984 if (attrs == ABSENT) return factory->undefined_value();
1985
1986 // Get AccessorPair if present.
1987 maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
1988
1989 // Get value if not an AccessorPair.
1990 if (maybe_accessors.is_null()) {
1991 ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
1992 Runtime::GetElementOrCharAt(isolate, obj, index), Object);
1993 }
1994 } else {
1995 // Get attributes.
1996 LookupIterator it(obj, name, LookupIterator::HIDDEN);
1997 Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
1998 if (!maybe.has_value) return MaybeHandle<Object>();
1999 attrs = maybe.value;
2000 if (attrs == ABSENT) return factory->undefined_value();
2001
2002 // Get AccessorPair if present.
2003 if (it.state() == LookupIterator::ACCESSOR &&
2004 it.GetAccessors()->IsAccessorPair()) {
2005 maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
2006 }
2007
2008 // Get value if not an AccessorPair.
2009 if (maybe_accessors.is_null()) {
2010 ASSIGN_RETURN_ON_EXCEPTION(
2011 isolate, value, Object::GetProperty(&it), Object);
2012 }
2013 }
2014 DCHECK(!isolate->has_pending_exception());
2015 Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
2016 elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
2017 elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
2018 elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
2019
2020 Handle<AccessorPair> accessors;
2021 if (maybe_accessors.ToHandle(&accessors)) {
2022 Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
2023 Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
2024 elms->set(GETTER_INDEX, *getter);
2025 elms->set(SETTER_INDEX, *setter);
2026 } else {
2027 elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
2028 elms->set(VALUE_INDEX, *value);
2029 }
2030
2031 return factory->NewJSArrayWithElements(elms);
2032 }
2033
2034
2035 // Returns an array with the property description:
2036 // if args[1] is not a property on args[0]
2037 // returns undefined
2038 // if args[1] is a data property on args[0]
2039 // [false, value, Writeable, Enumerable, Configurable]
2040 // if args[1] is an accessor on args[0]
2041 // [true, GetFunction, SetFunction, Enumerable, Configurable]
2042 RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
2043 HandleScope scope(isolate);
2044 DCHECK(args.length() == 2);
2045 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2046 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
2047 Handle<Object> result;
2048 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2049 isolate, result, GetOwnProperty(isolate, obj, name));
2050 return *result;
2051 }
2052
2053
2054 RUNTIME_FUNCTION(Runtime_PreventExtensions) {
2055 HandleScope scope(isolate);
2056 DCHECK(args.length() == 1);
2057 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2058 Handle<Object> result;
2059 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2060 isolate, result, JSObject::PreventExtensions(obj));
2061 return *result;
2062 }
2063
2064
2065 RUNTIME_FUNCTION(Runtime_ToMethod) {
2066 HandleScope scope(isolate);
2067 DCHECK(args.length() == 2);
2068 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2069 CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
2070 Handle<JSFunction> clone = JSFunction::CloneClosure(fun);
2071 Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
2072 JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol,
2073 home_object, DONT_ENUM).Assert();
2074 return *clone;
2075 }
2076
2077
2078 RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) {
2079 DCHECK(args.length() == 0);
2080 return isolate->heap()->home_object_symbol();
2081 }
2082
2083
2084 RUNTIME_FUNCTION(Runtime_LoadFromSuper) {
2085 HandleScope scope(isolate);
2086 DCHECK(args.length() == 3);
2087 CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 0);
2088 CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
2089 CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
2090
2091 if (home_object->IsAccessCheckNeeded() &&
2092 !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) {
2093 isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
2094 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
2095 }
2096
2097 PrototypeIterator iter(isolate, home_object);
2098 Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
2099 if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
2100
2101 LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
2102 Handle<Object> result;
2103 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
2104 return *result;
2105 }
2106
2107
2108 RUNTIME_FUNCTION(Runtime_IsExtensible) {
2109 SealHandleScope shs(isolate);
2110 DCHECK(args.length() == 1);
2111 CONVERT_ARG_CHECKED(JSObject, obj, 0);
2112 if (obj->IsJSGlobalProxy()) {
2113 PrototypeIterator iter(isolate, obj);
2114 if (iter.IsAtEnd()) return isolate->heap()->false_value();
2115 DCHECK(iter.GetCurrent()->IsJSGlobalObject());
2116 obj = JSObject::cast(iter.GetCurrent());
2117 }
2118 return isolate->heap()->ToBoolean(obj->map()->is_extensible());
2119 }
2120
2121
2122 RUNTIME_FUNCTION(Runtime_RegExpCompile) {
2123 HandleScope scope(isolate);
2124 DCHECK(args.length() == 3);
2125 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0);
2126 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
2127 CONVERT_ARG_HANDLE_CHECKED(String, flags, 2);
2128 Handle<Object> result;
2129 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2130 isolate, result, RegExpImpl::Compile(re, pattern, flags));
2131 return *result;
2132 }
2133
2134
2135 RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
2136 HandleScope scope(isolate);
2137 DCHECK(args.length() == 2);
2138 CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
2139 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
2140 return *isolate->factory()->CreateApiFunction(data, prototype);
2141 }
2142
2143
2144 RUNTIME_FUNCTION(Runtime_IsTemplate) {
2145 SealHandleScope shs(isolate);
2146 DCHECK(args.length() == 1);
2147 CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
2148 bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
2149 return isolate->heap()->ToBoolean(result);
2150 }
2151
2152
2153 RUNTIME_FUNCTION(Runtime_GetTemplateField) {
2154 SealHandleScope shs(isolate);
2155 DCHECK(args.length() == 2);
2156 CONVERT_ARG_CHECKED(HeapObject, templ, 0);
2157 CONVERT_SMI_ARG_CHECKED(index, 1);
2158 int offset = index * kPointerSize + HeapObject::kHeaderSize;
2159 InstanceType type = templ->map()->instance_type();
2160 RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
2161 type == OBJECT_TEMPLATE_INFO_TYPE);
2162 RUNTIME_ASSERT(offset > 0);
2163 if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
2164 RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
2165 } else {
2166 RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
2167 }
2168 return *HeapObject::RawField(templ, offset);
2169 }
2170
2171
2172 RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
2173 HandleScope scope(isolate);
2174 DCHECK(args.length() == 1);
2175 CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
2176 Handle<Map> old_map(object->map());
2177 bool needs_access_checks = old_map->is_access_check_needed();
2178 if (needs_access_checks) {
2179 // Copy map so it won't interfere constructor's initial map.
2180 Handle<Map> new_map = Map::Copy(old_map);
2181 new_map->set_is_access_check_needed(false);
2182 JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
2183 }
2184 return isolate->heap()->ToBoolean(needs_access_checks);
2185 }
2186
2187
2188 RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
2189 HandleScope scope(isolate);
2190 DCHECK(args.length() == 1);
2191 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2192 Handle<Map> old_map(object->map());
2193 RUNTIME_ASSERT(!old_map->is_access_check_needed());
2194 // Copy map so it won't interfere constructor's initial map.
2195 Handle<Map> new_map = Map::Copy(old_map);
2196 new_map->set_is_access_check_needed(true);
2197 JSObject::MigrateToMap(object, new_map);
2198 return isolate->heap()->undefined_value();
2199 }
2200
2201
2202 static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) {
2203 HandleScope scope(isolate);
2204 Handle<Object> args[1] = { name };
2205 THROW_NEW_ERROR_RETURN_FAILURE(
2206 isolate, NewTypeError("var_redeclaration", HandleVector(args, 1)));
2207 }
2208
2209
2210 // May throw a RedeclarationError.
2211 static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global,
2212 Handle<String> name, Handle<Object> value,
2213 PropertyAttributes attr, bool is_var,
2214 bool is_const, bool is_function) {
2215 // Do the lookup own properties only, see ES5 erratum.
2216 LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2217 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2218 if (!maybe.has_value) return isolate->heap()->exception();
2219
2220 if (it.IsFound()) {
2221 PropertyAttributes old_attributes = maybe.value;
2222 // The name was declared before; check for conflicting re-declarations.
2223 if (is_const) return ThrowRedeclarationError(isolate, name);
2224
2225 // Skip var re-declarations.
2226 if (is_var) return isolate->heap()->undefined_value();
2227
2228 DCHECK(is_function);
2229 if ((old_attributes & DONT_DELETE) != 0) {
2230 // Only allow reconfiguring globals to functions in user code (no
2231 // natives, which are marked as read-only).
2232 DCHECK((attr & READ_ONLY) == 0);
2233
2234 // Check whether we can reconfigure the existing property into a
2235 // function.
2236 PropertyDetails old_details = it.property_details();
2237 // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo,
2238 // which are actually data properties, not accessor properties.
2239 if (old_details.IsReadOnly() || old_details.IsDontEnum() ||
2240 old_details.type() == CALLBACKS) {
2241 return ThrowRedeclarationError(isolate, name);
2242 }
2243 // If the existing property is not configurable, keep its attributes. Do
2244 attr = old_attributes;
2245 }
2246 }
2247
2248 // Define or redefine own property.
2249 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2250 global, name, value, attr));
2251
2252 return isolate->heap()->undefined_value();
2253 }
2254
2255
2256 RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
2257 HandleScope scope(isolate);
2258 DCHECK(args.length() == 3);
2259 Handle<GlobalObject> global(isolate->global_object());
2260
2261 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
2262 CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
2263 CONVERT_SMI_ARG_CHECKED(flags, 2);
2264
2265 // Traverse the name/value pairs and set the properties.
2266 int length = pairs->length();
2267 for (int i = 0; i < length; i += 2) {
2268 HandleScope scope(isolate);
2269 Handle<String> name(String::cast(pairs->get(i)));
2270 Handle<Object> initial_value(pairs->get(i + 1), isolate);
2271
2272 // We have to declare a global const property. To capture we only
2273 // assign to it when evaluating the assignment for "const x =
2274 // <expr>" the initial value is the hole.
2275 bool is_var = initial_value->IsUndefined();
2276 bool is_const = initial_value->IsTheHole();
2277 bool is_function = initial_value->IsSharedFunctionInfo();
2278 DCHECK(is_var + is_const + is_function == 1);
2279
2280 Handle<Object> value;
2281 if (is_function) {
2282 // Copy the function and update its context. Use it as value.
2283 Handle<SharedFunctionInfo> shared =
2284 Handle<SharedFunctionInfo>::cast(initial_value);
2285 Handle<JSFunction> function =
2286 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
2287 TENURED);
2288 value = function;
2289 } else {
2290 value = isolate->factory()->undefined_value();
2291 }
2292
2293 // Compute the property attributes. According to ECMA-262,
2294 // the property must be non-configurable except in eval.
2295 bool is_native = DeclareGlobalsNativeFlag::decode(flags);
2296 bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
2297 int attr = NONE;
2298 if (is_const) attr |= READ_ONLY;
2299 if (is_function && is_native) attr |= READ_ONLY;
2300 if (!is_const && !is_eval) attr |= DONT_DELETE;
2301
2302 Object* result = DeclareGlobals(isolate, global, name, value,
2303 static_cast<PropertyAttributes>(attr),
2304 is_var, is_const, is_function);
2305 if (isolate->has_pending_exception()) return result;
2306 }
2307
2308 return isolate->heap()->undefined_value();
2309 }
2310
2311
2312 RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) {
2313 HandleScope scope(isolate);
2314 // args[0] == name
2315 // args[1] == language_mode
2316 // args[2] == value (optional)
2317
2318 // Determine if we need to assign to the variable if it already
2319 // exists (based on the number of arguments).
2320 RUNTIME_ASSERT(args.length() == 3);
2321
2322 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2323 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1);
2324 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
2325
2326 Handle<GlobalObject> global(isolate->context()->global_object());
2327 Handle<Object> result;
2328 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2329 isolate, result, Object::SetProperty(global, name, value, strict_mode));
2330 return *result;
2331 }
2332
2333
2334 RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) {
2335 HandleScope handle_scope(isolate);
2336 // All constants are declared with an initial value. The name
2337 // of the constant is the first argument and the initial value
2338 // is the second.
2339 RUNTIME_ASSERT(args.length() == 2);
2340 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2341 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2342
2343 Handle<GlobalObject> global = isolate->global_object();
2344
2345 // Lookup the property as own on the global object.
2346 LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2347 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2348 DCHECK(maybe.has_value);
2349 PropertyAttributes old_attributes = maybe.value;
2350
2351 PropertyAttributes attr =
2352 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2353 // Set the value if the property is either missing, or the property attributes
2354 // allow setting the value without invoking an accessor.
2355 if (it.IsFound()) {
2356 // Ignore if we can't reconfigure the value.
2357 if ((old_attributes & DONT_DELETE) != 0) {
2358 if ((old_attributes & READ_ONLY) != 0 ||
2359 it.state() == LookupIterator::ACCESSOR) {
2360 return *value;
2361 }
2362 attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2363 }
2364 }
2365
2366 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2367 global, name, value, attr));
2368
2369 return *value;
2370 }
2371
2372
2373 RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) {
2374 HandleScope scope(isolate);
2375 DCHECK(args.length() == 4);
2376
2377 // Declarations are always made in a function, native, or global context. In
2378 // the case of eval code, the context passed is the context of the caller,
2379 // which may be some nested context and not the declaration context.
2380 CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0);
2381 Handle<Context> context(context_arg->declaration_context());
2382 CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
2383 CONVERT_SMI_ARG_CHECKED(attr_arg, 2);
2384 PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg);
2385 RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE);
2386 CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3);
2387
2388 // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals.
2389 bool is_var = *initial_value == NULL;
2390 bool is_const = initial_value->IsTheHole();
2391 bool is_function = initial_value->IsJSFunction();
2392 DCHECK(is_var + is_const + is_function == 1);
2393
2394 int index;
2395 PropertyAttributes attributes;
2396 ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2397 BindingFlags binding_flags;
2398 Handle<Object> holder =
2399 context->Lookup(name, flags, &index, &attributes, &binding_flags);
2400
2401 Handle<JSObject> object;
2402 Handle<Object> value =
2403 is_function ? initial_value
2404 : Handle<Object>::cast(isolate->factory()->undefined_value());
2405
2406 // TODO(verwaest): This case should probably not be covered by this function,
2407 // but by DeclareGlobals instead.
2408 if ((attributes != ABSENT && holder->IsJSGlobalObject()) ||
2409 (context_arg->has_extension() &&
2410 context_arg->extension()->IsJSGlobalObject())) {
2411 return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name,
2412 value, attr, is_var, is_const, is_function);
2413 }
2414
2415 if (attributes != ABSENT) {
2416 // The name was declared before; check for conflicting re-declarations.
2417 if (is_const || (attributes & READ_ONLY) != 0) {
2418 return ThrowRedeclarationError(isolate, name);
2419 }
2420
2421 // Skip var re-declarations.
2422 if (is_var) return isolate->heap()->undefined_value();
2423
2424 DCHECK(is_function);
2425 if (index >= 0) {
2426 DCHECK(holder.is_identical_to(context));
2427 context->set(index, *initial_value);
2428 return isolate->heap()->undefined_value();
2429 }
2430
2431 object = Handle<JSObject>::cast(holder);
2432
2433 } else if (context->has_extension()) {
2434 object = handle(JSObject::cast(context->extension()));
2435 DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject());
2436 } else {
2437 DCHECK(context->IsFunctionContext());
2438 object =
2439 isolate->factory()->NewJSObject(isolate->context_extension_function());
2440 context->set_extension(*object);
2441 }
2442
2443 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2444 object, name, value, attr));
2445
2446 return isolate->heap()->undefined_value();
2447 }
2448
2449
2450 RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) {
2451 HandleScope scope(isolate);
2452 DCHECK(args.length() == 3);
2453
2454 CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
2455 DCHECK(!value->IsTheHole());
2456 // Initializations are always done in a function or native context.
2457 CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1);
2458 Handle<Context> context(context_arg->declaration_context());
2459 CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
2460
2461 int index;
2462 PropertyAttributes attributes;
2463 ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2464 BindingFlags binding_flags;
2465 Handle<Object> holder =
2466 context->Lookup(name, flags, &index, &attributes, &binding_flags);
2467
2468 if (index >= 0) {
2469 DCHECK(holder->IsContext());
2470 // Property was found in a context. Perform the assignment if the constant
2471 // was uninitialized.
2472 Handle<Context> context = Handle<Context>::cast(holder);
2473 DCHECK((attributes & READ_ONLY) != 0);
2474 if (context->get(index)->IsTheHole()) context->set(index, *value);
2475 return *value;
2476 }
2477
2478 PropertyAttributes attr =
2479 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2480
2481 // Strict mode handling not needed (legacy const is disallowed in strict
2482 // mode).
2483
2484 // The declared const was configurable, and may have been deleted in the
2485 // meanwhile. If so, re-introduce the variable in the context extension.
2486 DCHECK(context_arg->has_extension());
2487 if (attributes == ABSENT) {
2488 holder = handle(context_arg->extension(), isolate);
2489 } else {
2490 // For JSContextExtensionObjects, the initializer can be run multiple times
2491 // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the
2492 // first assignment should go through. For JSGlobalObjects, additionally any
2493 // code can run in between that modifies the declared property.
2494 DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject());
2495
2496 LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2497 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2498 if (!maybe.has_value) return isolate->heap()->exception();
2499 PropertyAttributes old_attributes = maybe.value;
2500
2501 // Ignore if we can't reconfigure the value.
2502 if ((old_attributes & DONT_DELETE) != 0) {
2503 if ((old_attributes & READ_ONLY) != 0 ||
2504 it.state() == LookupIterator::ACCESSOR) {
2505 return *value;
2506 }
2507 attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2508 }
2509 }
2510
2511 RETURN_FAILURE_ON_EXCEPTION(
2512 isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2513 Handle<JSObject>::cast(holder), name, value, attr));
2514
2515 return *value;
2516 }
2517
2518
2519 RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
2520 HandleScope scope(isolate);
2521 DCHECK(args.length() == 2);
2522 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2523 CONVERT_SMI_ARG_CHECKED(properties, 1);
2524 // Conservative upper limit to prevent fuzz tests from going OOM.
2525 RUNTIME_ASSERT(properties <= 100000);
2526 if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
2527 JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
2528 }
2529 return *object;
2530 }
2531
2532
2533 RUNTIME_FUNCTION(Runtime_RegExpExecRT) {
2534 HandleScope scope(isolate);
2535 DCHECK(args.length() == 4);
2536 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2537 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
2538 CONVERT_INT32_ARG_CHECKED(index, 2);
2539 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
2540 // Due to the way the JS calls are constructed this must be less than the
2541 // length of a string, i.e. it is always a Smi. We check anyway for security.
2542 RUNTIME_ASSERT(index >= 0);
2543 RUNTIME_ASSERT(index <= subject->length());
2544 isolate->counters()->regexp_entry_runtime()->Increment();
2545 Handle<Object> result;
2546 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2547 isolate, result,
2548 RegExpImpl::Exec(regexp, subject, index, last_match_info));
2549 return *result;
2550 }
2551
2552
2553 RUNTIME_FUNCTION(Runtime_RegExpConstructResult) {
2554 HandleScope handle_scope(isolate);
2555 DCHECK(args.length() == 3);
2556 CONVERT_SMI_ARG_CHECKED(size, 0);
2557 RUNTIME_ASSERT(size >= 0 && size <= FixedArray::kMaxLength);
2558 CONVERT_ARG_HANDLE_CHECKED(Object, index, 1);
2559 CONVERT_ARG_HANDLE_CHECKED(Object, input, 2);
2560 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(size);
2561 Handle<Map> regexp_map(isolate->native_context()->regexp_result_map());
2562 Handle<JSObject> object =
2563 isolate->factory()->NewJSObjectFromMap(regexp_map, NOT_TENURED, false);
2564 Handle<JSArray> array = Handle<JSArray>::cast(object);
2565 array->set_elements(*elements);
2566 array->set_length(Smi::FromInt(size));
2567 // Write in-object properties after the length of the array.
2568 array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, *index);
2569 array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, *input);
2570 return *array;
2571 }
2572
2573
2574 RUNTIME_FUNCTION(Runtime_RegExpInitializeObject) {
2575 HandleScope scope(isolate);
2576 DCHECK(args.length() == 6);
2577 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2578 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
2579 // If source is the empty string we set it to "(?:)" instead as
2580 // suggested by ECMA-262, 5th, section 15.10.4.1.
2581 if (source->length() == 0) source = isolate->factory()->query_colon_string();
2582
2583 CONVERT_ARG_HANDLE_CHECKED(Object, global, 2);
2584 if (!global->IsTrue()) global = isolate->factory()->false_value();
2585
2586 CONVERT_ARG_HANDLE_CHECKED(Object, ignoreCase, 3);
2587 if (!ignoreCase->IsTrue()) ignoreCase = isolate->factory()->false_value();
2588
2589 CONVERT_ARG_HANDLE_CHECKED(Object, multiline, 4);
2590 if (!multiline->IsTrue()) multiline = isolate->factory()->false_value();
2591
2592 CONVERT_ARG_HANDLE_CHECKED(Object, sticky, 5);
2593 if (!sticky->IsTrue()) sticky = isolate->factory()->false_value();
2594
2595 Map* map = regexp->map();
2596 Object* constructor = map->constructor();
2597 if (!FLAG_harmony_regexps &&
2598 constructor->IsJSFunction() &&
2599 JSFunction::cast(constructor)->initial_map() == map) {
2600 // If we still have the original map, set in-object properties directly.
2601 regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, *source);
2602 // Both true and false are immovable immortal objects so no need for write
2603 // barrier.
2604 regexp->InObjectPropertyAtPut(
2605 JSRegExp::kGlobalFieldIndex, *global, SKIP_WRITE_BARRIER);
2606 regexp->InObjectPropertyAtPut(
2607 JSRegExp::kIgnoreCaseFieldIndex, *ignoreCase, SKIP_WRITE_BARRIER);
2608 regexp->InObjectPropertyAtPut(
2609 JSRegExp::kMultilineFieldIndex, *multiline, SKIP_WRITE_BARRIER);
2610 regexp->InObjectPropertyAtPut(
2611 JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER);
2612 return *regexp;
2613 }
2614
2615 // Map has changed, so use generic, but slower, method. We also end here if
2616 // the --harmony-regexp flag is set, because the initial map does not have
2617 // space for the 'sticky' flag, since it is from the snapshot, but must work
2618 // both with and without --harmony-regexp. When sticky comes out from under
2619 // the flag, we will be able to use the fast initial map.
2620 PropertyAttributes final =
2621 static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
2622 PropertyAttributes writable =
2623 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
2624 Handle<Object> zero(Smi::FromInt(0), isolate);
2625 Factory* factory = isolate->factory();
2626 JSObject::SetOwnPropertyIgnoreAttributes(
2627 regexp, factory->source_string(), source, final).Check();
2628 JSObject::SetOwnPropertyIgnoreAttributes(
2629 regexp, factory->global_string(), global, final).Check();
2630 JSObject::SetOwnPropertyIgnoreAttributes(
2631 regexp, factory->ignore_case_string(), ignoreCase, final).Check();
2632 JSObject::SetOwnPropertyIgnoreAttributes(
2633 regexp, factory->multiline_string(), multiline, final).Check();
2634 if (FLAG_harmony_regexps) {
2635 JSObject::SetOwnPropertyIgnoreAttributes(
2636 regexp, factory->sticky_string(), sticky, final).Check();
2637 }
2638 JSObject::SetOwnPropertyIgnoreAttributes(
2639 regexp, factory->last_index_string(), zero, writable).Check();
2640 return *regexp;
2641 }
2642
2643
2644 RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
2645 HandleScope scope(isolate);
2646 DCHECK(args.length() == 1);
2647 CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
2648 Object* length = prototype->length();
2649 RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
2650 RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
2651 // This is necessary to enable fast checks for absence of elements
2652 // on Array.prototype and below.
2653 prototype->set_elements(isolate->heap()->empty_fixed_array());
2654 return Smi::FromInt(0);
2655 }
2656
2657
2658 static void InstallBuiltin(Isolate* isolate,
2659 Handle<JSObject> holder,
2660 const char* name,
2661 Builtins::Name builtin_name) {
2662 Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
2663 Handle<Code> code(isolate->builtins()->builtin(builtin_name));
2664 Handle<JSFunction> optimized =
2665 isolate->factory()->NewFunctionWithoutPrototype(key, code);
2666 optimized->shared()->DontAdaptArguments();
2667 JSObject::AddProperty(holder, key, optimized, NONE);
2668 }
2669
2670
2671 RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
2672 HandleScope scope(isolate);
2673 DCHECK(args.length() == 0);
2674 Handle<JSObject> holder =
2675 isolate->factory()->NewJSObject(isolate->object_function());
2676
2677 InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
2678 InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
2679 InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
2680 InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
2681 InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
2682 InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
2683 InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
2684
2685 return *holder;
2686 }
2687
2688
2689 RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) {
2690 SealHandleScope shs(isolate);
2691 DCHECK(args.length() == 1);
2692 CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2693 if (!callable->IsJSFunction()) {
2694 HandleScope scope(isolate);
2695 Handle<Object> delegate;
2696 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2697 isolate, delegate,
2698 Execution::TryGetFunctionDelegate(
2699 isolate, Handle<JSReceiver>(callable)));
2700 callable = JSFunction::cast(*delegate);
2701 }
2702 JSFunction* function = JSFunction::cast(callable);
2703 SharedFunctionInfo* shared = function->shared();
2704 return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY);
2705 }
2706
2707
2708 RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) {
2709 SealHandleScope shs(isolate);
2710 DCHECK(args.length() == 1);
2711 CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2712
2713 if (!callable->IsJSFunction()) {
2714 HandleScope scope(isolate);
2715 Handle<Object> delegate;
2716 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2717 isolate, delegate,
2718 Execution::TryGetFunctionDelegate(
2719 isolate, Handle<JSReceiver>(callable)));
2720 callable = JSFunction::cast(*delegate);
2721 }
2722 JSFunction* function = JSFunction::cast(callable);
2723
2724 SharedFunctionInfo* shared = function->shared();
2725 if (shared->native() || shared->strict_mode() == STRICT) {
2726 return isolate->heap()->undefined_value();
2727 }
2728 // Returns undefined for strict or native functions, or
2729 // the associated global receiver for "normal" functions.
2730
2731 return function->global_proxy();
2732 }
2733
2734
2735 RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral) {
2736 HandleScope scope(isolate);
2737 DCHECK(args.length() == 4);
2738 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
2739 CONVERT_SMI_ARG_CHECKED(index, 1);
2740 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 2);
2741 CONVERT_ARG_HANDLE_CHECKED(String, flags, 3);
2742
2743 // Get the RegExp function from the context in the literals array.
2744 // This is the RegExp function from the context in which the
2745 // function was created. We do not use the RegExp function from the
2746 // current native context because this might be the RegExp function
2747 // from another context which we should not have access to.
2748 Handle<JSFunction> constructor =
2749 Handle<JSFunction>(
2750 JSFunction::NativeContextFromLiterals(*literals)->regexp_function());
2751 // Compute the regular expression literal.
2752 Handle<Object> regexp;
2753 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2754 isolate, regexp,
2755 RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags));
2756 literals->set(index, *regexp);
2757 return *regexp;
2758 }
2759
2760
2761 RUNTIME_FUNCTION(Runtime_FunctionGetName) {
2762 SealHandleScope shs(isolate);
2763 DCHECK(args.length() == 1);
2764
2765 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2766 return f->shared()->name();
2767 }
2768
2769
2770 RUNTIME_FUNCTION(Runtime_FunctionSetName) {
2771 SealHandleScope shs(isolate);
2772 DCHECK(args.length() == 2);
2773
2774 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2775 CONVERT_ARG_CHECKED(String, name, 1);
2776 f->shared()->set_name(name);
2777 return isolate->heap()->undefined_value();
2778 }
2779
2780
2781 RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) {
2782 SealHandleScope shs(isolate);
2783 DCHECK(args.length() == 1);
2784 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2785 return isolate->heap()->ToBoolean(
2786 f->shared()->name_should_print_as_anonymous());
2787 }
2788
2789
2790 RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
2791 SealHandleScope shs(isolate);
2792 DCHECK(args.length() == 1);
2793 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2794 f->shared()->set_name_should_print_as_anonymous(true);
2795 return isolate->heap()->undefined_value();
2796 }
2797
2798
2799 RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) {
2800 SealHandleScope shs(isolate);
2801 DCHECK(args.length() == 1);
2802 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2803 return isolate->heap()->ToBoolean(f->shared()->is_generator());
2804 }
2805
2806
2807 RUNTIME_FUNCTION(Runtime_FunctionIsArrow) {
2808 SealHandleScope shs(isolate);
2809 DCHECK(args.length() == 1);
2810 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2811 return isolate->heap()->ToBoolean(f->shared()->is_arrow());
2812 }
2813
2814
2815 RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) {
2816 SealHandleScope shs(isolate);
2817 DCHECK(args.length() == 1);
2818 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2819 return isolate->heap()->ToBoolean(f->shared()->is_concise_method());
2820 }
2821
2822
2823 RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) {
2824 SealHandleScope shs(isolate);
2825 DCHECK(args.length() == 1);
2826
2827 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2828 RUNTIME_ASSERT(f->RemovePrototype());
2829
2830 return isolate->heap()->undefined_value();
2831 }
2832
2833
2834 RUNTIME_FUNCTION(Runtime_FunctionGetScript) {
2835 HandleScope scope(isolate);
2836 DCHECK(args.length() == 1);
2837
2838 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2839 Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
2840 if (!script->IsScript()) return isolate->heap()->undefined_value();
2841
2842 return *Script::GetWrapper(Handle<Script>::cast(script));
2843 }
2844
2845
2846 RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) {
2847 HandleScope scope(isolate);
2848 DCHECK(args.length() == 1);
2849
2850 CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
2851 Handle<SharedFunctionInfo> shared(f->shared());
2852 return *shared->GetSourceCode();
2853 }
2854
2855
2856 RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) {
2857 SealHandleScope shs(isolate);
2858 DCHECK(args.length() == 1);
2859
2860 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2861 int pos = fun->shared()->start_position();
2862 return Smi::FromInt(pos);
2863 }
2864
2865
2866 RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) {
2867 SealHandleScope shs(isolate);
2868 DCHECK(args.length() == 2);
2869
2870 CONVERT_ARG_CHECKED(Code, code, 0);
2871 CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
2872
2873 RUNTIME_ASSERT(0 <= offset && offset < code->Size());
2874
2875 Address pc = code->address() + offset;
2876 return Smi::FromInt(code->SourcePosition(pc));
2877 }
2878
2879
2880 RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) {
2881 SealHandleScope shs(isolate);
2882 DCHECK(args.length() == 2);
2883
2884 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2885 CONVERT_ARG_CHECKED(String, name, 1);
2886 fun->SetInstanceClassName(name);
2887 return isolate->heap()->undefined_value();
2888 }
2889
2890
2891 RUNTIME_FUNCTION(Runtime_FunctionSetLength) {
2892 SealHandleScope shs(isolate);
2893 DCHECK(args.length() == 2);
2894
2895 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2896 CONVERT_SMI_ARG_CHECKED(length, 1);
2897 RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 ||
2898 (length & 0xC0000000) == 0x0);
2899 fun->shared()->set_length(length);
2900 return isolate->heap()->undefined_value();
2901 }
2902
2903
2904 RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) {
2905 HandleScope scope(isolate);
2906 DCHECK(args.length() == 2);
2907
2908 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2909 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2910 RUNTIME_ASSERT(fun->should_have_prototype());
2911 Accessors::FunctionSetPrototype(fun, value);
2912 return args[0]; // return TOS
2913 }
2914
2915
2916 RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) {
2917 SealHandleScope shs(isolate);
2918 DCHECK(args.length() == 1);
2919
2920 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2921 return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
2922 }
2923
2924
2925 RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) {
2926 SealHandleScope shs(isolate);
2927 DCHECK(args.length() == 1);
2928
2929 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2930 return isolate->heap()->ToBoolean(f->IsBuiltin());
2931 }
2932
2933
2934 RUNTIME_FUNCTION(Runtime_SetCode) {
2935 HandleScope scope(isolate);
2936 DCHECK(args.length() == 2);
2937
2938 CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
2939 CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1);
2940
2941 Handle<SharedFunctionInfo> target_shared(target->shared());
2942 Handle<SharedFunctionInfo> source_shared(source->shared());
2943 RUNTIME_ASSERT(!source_shared->bound());
2944
2945 if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) {
2946 return isolate->heap()->exception();
2947 }
2948
2949 // Mark both, the source and the target, as un-flushable because the
2950 // shared unoptimized code makes them impossible to enqueue in a list.
2951 DCHECK(target_shared->code()->gc_metadata() == NULL);
2952 DCHECK(source_shared->code()->gc_metadata() == NULL);
2953 target_shared->set_dont_flush(true);
2954 source_shared->set_dont_flush(true);
2955
2956 // Set the code, scope info, formal parameter count, and the length
2957 // of the target shared function info.
2958 target_shared->ReplaceCode(source_shared->code());
2959 target_shared->set_scope_info(source_shared->scope_info());
2960 target_shared->set_length(source_shared->length());
2961 target_shared->set_feedback_vector(source_shared->feedback_vector());
2962 target_shared->set_formal_parameter_count(
2963 source_shared->formal_parameter_count());
2964 target_shared->set_script(source_shared->script());
2965 target_shared->set_start_position_and_type(
2966 source_shared->start_position_and_type());
2967 target_shared->set_end_position(source_shared->end_position());
2968 bool was_native = target_shared->native();
2969 target_shared->set_compiler_hints(source_shared->compiler_hints());
2970 target_shared->set_native(was_native);
2971 target_shared->set_profiler_ticks(source_shared->profiler_ticks());
2972
2973 // Set the code of the target function.
2974 target->ReplaceCode(source_shared->code());
2975 DCHECK(target->next_function_link()->IsUndefined());
2976
2977 // Make sure we get a fresh copy of the literal vector to avoid cross
2978 // context contamination.
2979 Handle<Context> context(source->context());
2980 int number_of_literals = source->NumberOfLiterals();
2981 Handle<FixedArray> literals =
2982 isolate->factory()->NewFixedArray(number_of_literals, TENURED);
2983 if (number_of_literals > 0) {
2984 literals->set(JSFunction::kLiteralNativeContextIndex,
2985 context->native_context());
2986 }
2987 target->set_context(*context);
2988 target->set_literals(*literals);
2989
2990 if (isolate->logger()->is_logging_code_events() ||
2991 isolate->cpu_profiler()->is_profiling()) {
2992 isolate->logger()->LogExistingFunction(
2993 source_shared, Handle<Code>(source_shared->code()));
2994 }
2995
2996 return *target;
2997 }
2998
2999
3000 RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) {
3001 HandleScope scope(isolate);
3002 DCHECK(args.length() == 0);
3003
3004 JavaScriptFrameIterator it(isolate);
3005 JavaScriptFrame* frame = it.frame();
3006 Handle<JSFunction> function(frame->function());
3007 RUNTIME_ASSERT(function->shared()->is_generator());
3008
3009 Handle<JSGeneratorObject> generator;
3010 if (frame->IsConstructor()) {
3011 generator = handle(JSGeneratorObject::cast(frame->receiver()));
3012 } else {
3013 generator = isolate->factory()->NewJSGeneratorObject(function);
3014 }
3015 generator->set_function(*function);
3016 generator->set_context(Context::cast(frame->context()));
3017 generator->set_receiver(frame->receiver());
3018 generator->set_continuation(0);
3019 generator->set_operand_stack(isolate->heap()->empty_fixed_array());
3020 generator->set_stack_handler_index(-1);
3021
3022 return *generator;
3023 }
3024
3025
3026 RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) {
3027 HandleScope handle_scope(isolate);
3028 DCHECK(args.length() == 1);
3029 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0);
3030
3031 JavaScriptFrameIterator stack_iterator(isolate);
3032 JavaScriptFrame* frame = stack_iterator.frame();
3033 RUNTIME_ASSERT(frame->function()->shared()->is_generator());
3034 DCHECK_EQ(frame->function(), generator_object->function());
3035
3036 // The caller should have saved the context and continuation already.
3037 DCHECK_EQ(generator_object->context(), Context::cast(frame->context()));
3038 DCHECK_LT(0, generator_object->continuation());
3039
3040 // We expect there to be at least two values on the operand stack: the return
3041 // value of the yield expression, and the argument to this runtime call.
3042 // Neither of those should be saved.
3043 int operands_count = frame->ComputeOperandsCount();
3044 DCHECK_GE(operands_count, 2);
3045 operands_count -= 2;
3046
3047 if (operands_count == 0) {
3048 // Although it's semantically harmless to call this function with an
3049 // operands_count of zero, it is also unnecessary.
3050 DCHECK_EQ(generator_object->operand_stack(),
3051 isolate->heap()->empty_fixed_array());
3052 DCHECK_EQ(generator_object->stack_handler_index(), -1);
3053 // If there are no operands on the stack, there shouldn't be a handler
3054 // active either.
3055 DCHECK(!frame->HasHandler());
3056 } else {
3057 int stack_handler_index = -1;
3058 Handle<FixedArray> operand_stack =
3059 isolate->factory()->NewFixedArray(operands_count);
3060 frame->SaveOperandStack(*operand_stack, &stack_handler_index);
3061 generator_object->set_operand_stack(*operand_stack);
3062 generator_object->set_stack_handler_index(stack_handler_index);
3063 }
3064
3065 return isolate->heap()->undefined_value();
3066 }
3067
3068
3069 // Note that this function is the slow path for resuming generators. It is only
3070 // called if the suspended activation had operands on the stack, stack handlers
3071 // needing rewinding, or if the resume should throw an exception. The fast path
3072 // is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
3073 // inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is
3074 // called in any case, as it needs to reconstruct the stack frame and make space
3075 // for arguments and operands.
3076 RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) {
3077 SealHandleScope shs(isolate);
3078 DCHECK(args.length() == 3);
3079 CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
3080 CONVERT_ARG_CHECKED(Object, value, 1);
3081 CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
3082 JavaScriptFrameIterator stack_iterator(isolate);
3083 JavaScriptFrame* frame = stack_iterator.frame();
3084
3085 DCHECK_EQ(frame->function(), generator_object->function());
3086 DCHECK(frame->function()->is_compiled());
3087
3088 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
3089 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
3090
3091 Address pc = generator_object->function()->code()->instruction_start();
3092 int offset = generator_object->continuation();
3093 DCHECK(offset > 0);
3094 frame->set_pc(pc + offset);
3095 if (FLAG_enable_ool_constant_pool) {
3096 frame->set_constant_pool(
3097 generator_object->function()->code()->constant_pool());
3098 }
3099 generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
3100
3101 FixedArray* operand_stack = generator_object->operand_stack();
3102 int operands_count = operand_stack->length();
3103 if (operands_count != 0) {
3104 frame->RestoreOperandStack(operand_stack,
3105 generator_object->stack_handler_index());
3106 generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
3107 generator_object->set_stack_handler_index(-1);
3108 }
3109
3110 JSGeneratorObject::ResumeMode resume_mode =
3111 static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
3112 switch (resume_mode) {
3113 case JSGeneratorObject::NEXT:
3114 return value;
3115 case JSGeneratorObject::THROW:
3116 return isolate->Throw(value);
3117 }
3118
3119 UNREACHABLE();
3120 return isolate->ThrowIllegalOperation();
3121 }
3122
3123
3124 RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError) {
3125 HandleScope scope(isolate);
3126 DCHECK(args.length() == 1);
3127 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
3128 int continuation = generator->continuation();
3129 const char* message = continuation == JSGeneratorObject::kGeneratorClosed ?
3130 "generator_finished" : "generator_running";
3131 Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0);
3132 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewError(message, argv));
3133 }
3134
3135
3136 RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
3137 HandleScope scope(isolate);
3138 DCHECK(args.length() == 1);
3139 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
3140
3141 // %ObjectFreeze is a fast path and these cases are handled elsewhere.
3142 RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
3143 !object->map()->is_observed() &&
3144 !object->IsJSProxy());
3145
3146 Handle<Object> result;
3147 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
3148 return *result;
3149 }
3150
3151
3152 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
3153 HandleScope handle_scope(isolate);
3154 DCHECK(args.length() == 2);
3155
3156 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
3157 CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
3158
3159 // Flatten the string. If someone wants to get a char at an index
3160 // in a cons string, it is likely that more indices will be
3161 // accessed.
3162 subject = String::Flatten(subject);
3163
3164 if (i >= static_cast<uint32_t>(subject->length())) {
3165 return isolate->heap()->nan_value();
3166 }
3167
3168 return Smi::FromInt(subject->Get(i));
3169 }
3170
3171
3172 RUNTIME_FUNCTION(Runtime_CharFromCode) {
3173 HandleScope handlescope(isolate);
3174 DCHECK(args.length() == 1);
3175 if (args[0]->IsNumber()) {
3176 CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
3177 code &= 0xffff;
3178 return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
3179 }
3180 return isolate->heap()->empty_string();
3181 }
3182
3183
3184 class FixedArrayBuilder {
3185 public:
3186 explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
3187 : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
3188 length_(0),
3189 has_non_smi_elements_(false) {
3190 // Require a non-zero initial size. Ensures that doubling the size to
3191 // extend the array will work.
3192 DCHECK(initial_capacity > 0);
3193 }
3194
3195 explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
3196 : array_(backing_store),
3197 length_(0),
3198 has_non_smi_elements_(false) {
3199 // Require a non-zero initial size. Ensures that doubling the size to
3200 // extend the array will work.
3201 DCHECK(backing_store->length() > 0);
3202 }
3203
3204 bool HasCapacity(int elements) {
3205 int length = array_->length();
3206 int required_length = length_ + elements;
3207 return (length >= required_length);
3208 }
3209
3210 void EnsureCapacity(int elements) {
3211 int length = array_->length();
3212 int required_length = length_ + elements;
3213 if (length < required_length) {
3214 int new_length = length;
3215 do {
3216 new_length *= 2;
3217 } while (new_length < required_length);
3218 Handle<FixedArray> extended_array =
3219 array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
3220 array_->CopyTo(0, *extended_array, 0, length_);
3221 array_ = extended_array;
3222 }
3223 }
3224
3225 void Add(Object* value) {
3226 DCHECK(!value->IsSmi());
3227 DCHECK(length_ < capacity());
3228 array_->set(length_, value);
3229 length_++;
3230 has_non_smi_elements_ = true;
3231 }
3232
3233 void Add(Smi* value) {
3234 DCHECK(value->IsSmi());
3235 DCHECK(length_ < capacity());
3236 array_->set(length_, value);
3237 length_++;
3238 }
3239
3240 Handle<FixedArray> array() {
3241 return array_;
3242 }
3243
3244 int length() {
3245 return length_;
3246 }
3247
3248 int capacity() {
3249 return array_->length();
3250 }
3251
3252 Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
3253 JSArray::SetContent(target_array, array_);
3254 target_array->set_length(Smi::FromInt(length_));
3255 return target_array;
3256 }
3257
3258
3259 private:
3260 Handle<FixedArray> array_;
3261 int length_;
3262 bool has_non_smi_elements_;
3263 };
3264
3265
3266 // Forward declarations.
3267 const int kStringBuilderConcatHelperLengthBits = 11;
3268 const int kStringBuilderConcatHelperPositionBits = 19;
3269
3270 template <typename schar>
3271 static inline void StringBuilderConcatHelper(String*,
3272 schar*,
3273 FixedArray*,
3274 int);
3275
3276 typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
3277 StringBuilderSubstringLength;
3278 typedef BitField<int,
3279 kStringBuilderConcatHelperLengthBits,
3280 kStringBuilderConcatHelperPositionBits>
3281 StringBuilderSubstringPosition;
3282
3283
3284 class ReplacementStringBuilder {
3285 public:
3286 ReplacementStringBuilder(Heap* heap, Handle<String> subject,
3287 int estimated_part_count)
3288 : heap_(heap),
3289 array_builder_(heap->isolate(), estimated_part_count),
3290 subject_(subject),
3291 character_count_(0),
3292 is_one_byte_(subject->IsOneByteRepresentation()) {
3293 // Require a non-zero initial size. Ensures that doubling the size to
3294 // extend the array will work.
3295 DCHECK(estimated_part_count > 0);
3296 }
3297
3298 static inline void AddSubjectSlice(FixedArrayBuilder* builder,
3299 int from,
3300 int to) {
3301 DCHECK(from >= 0);
3302 int length = to - from;
3303 DCHECK(length > 0);
3304 if (StringBuilderSubstringLength::is_valid(length) &&
3305 StringBuilderSubstringPosition::is_valid(from)) {
3306 int encoded_slice = StringBuilderSubstringLength::encode(length) |
3307 StringBuilderSubstringPosition::encode(from);
3308 builder->Add(Smi::FromInt(encoded_slice));
3309 } else {
3310 // Otherwise encode as two smis.
3311 builder->Add(Smi::FromInt(-length));
3312 builder->Add(Smi::FromInt(from));
3313 }
3314 }
3315
3316
3317 void EnsureCapacity(int elements) {
3318 array_builder_.EnsureCapacity(elements);
3319 }
3320
3321
3322 void AddSubjectSlice(int from, int to) {
3323 AddSubjectSlice(&array_builder_, from, to);
3324 IncrementCharacterCount(to - from);
3325 }
3326
3327
3328 void AddString(Handle<String> string) {
3329 int length = string->length();
3330 DCHECK(length > 0);
3331 AddElement(*string);
3332 if (!string->IsOneByteRepresentation()) {
3333 is_one_byte_ = false;
3334 }
3335 IncrementCharacterCount(length);
3336 }
3337
3338
3339 MaybeHandle<String> ToString() {
3340 Isolate* isolate = heap_->isolate();
3341 if (array_builder_.length() == 0) {
3342 return isolate->factory()->empty_string();
3343 }
3344
3345 Handle<String> joined_string;
3346 if (is_one_byte_) {
3347 Handle<SeqOneByteString> seq;
3348 ASSIGN_RETURN_ON_EXCEPTION(
3349 isolate, seq,
3350 isolate->factory()->NewRawOneByteString(character_count_),
3351 String);
3352
3353 DisallowHeapAllocation no_gc;
3354 uint8_t* char_buffer = seq->GetChars();
3355 StringBuilderConcatHelper(*subject_,
3356 char_buffer,
3357 *array_builder_.array(),
3358 array_builder_.length());
3359 joined_string = Handle<String>::cast(seq);
3360 } else {
3361 // Two-byte.
3362 Handle<SeqTwoByteString> seq;
3363 ASSIGN_RETURN_ON_EXCEPTION(
3364 isolate, seq,
3365 isolate->factory()->NewRawTwoByteString(character_count_),
3366 String);
3367
3368 DisallowHeapAllocation no_gc;
3369 uc16* char_buffer = seq->GetChars();
3370 StringBuilderConcatHelper(*subject_,
3371 char_buffer,
3372 *array_builder_.array(),
3373 array_builder_.length());
3374 joined_string = Handle<String>::cast(seq);
3375 }
3376 return joined_string;
3377 }
3378
3379
3380 void IncrementCharacterCount(int by) {
3381 if (character_count_ > String::kMaxLength - by) {
3382 STATIC_ASSERT(String::kMaxLength < kMaxInt);
3383 character_count_ = kMaxInt;
3384 } else {
3385 character_count_ += by;
3386 }
3387 }
3388
3389 private:
3390 void AddElement(Object* element) {
3391 DCHECK(element->IsSmi() || element->IsString());
3392 DCHECK(array_builder_.capacity() > array_builder_.length());
3393 array_builder_.Add(element);
3394 }
3395
3396 Heap* heap_;
3397 FixedArrayBuilder array_builder_;
3398 Handle<String> subject_;
3399 int character_count_;
3400 bool is_one_byte_;
3401 };
3402
3403
3404 class CompiledReplacement {
3405 public:
3406 explicit CompiledReplacement(Zone* zone)
3407 : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
3408
3409 // Return whether the replacement is simple.
3410 bool Compile(Handle<String> replacement,
3411 int capture_count,
3412 int subject_length);
3413
3414 // Use Apply only if Compile returned false.
3415 void Apply(ReplacementStringBuilder* builder,
3416 int match_from,
3417 int match_to,
3418 int32_t* match);
3419
3420 // Number of distinct parts of the replacement pattern.
3421 int parts() {
3422 return parts_.length();
3423 }
3424
3425 Zone* zone() const { return zone_; }
3426
3427 private:
3428 enum PartType {
3429 SUBJECT_PREFIX = 1,
3430 SUBJECT_SUFFIX,
3431 SUBJECT_CAPTURE,
3432 REPLACEMENT_SUBSTRING,
3433 REPLACEMENT_STRING,
3434
3435 NUMBER_OF_PART_TYPES
3436 };
3437
3438 struct ReplacementPart {
3439 static inline ReplacementPart SubjectMatch() {
3440 return ReplacementPart(SUBJECT_CAPTURE, 0);
3441 }
3442 static inline ReplacementPart SubjectCapture(int capture_index) {
3443 return ReplacementPart(SUBJECT_CAPTURE, capture_index);
3444 }
3445 static inline ReplacementPart SubjectPrefix() {
3446 return ReplacementPart(SUBJECT_PREFIX, 0);
3447 }
3448 static inline ReplacementPart SubjectSuffix(int subject_length) {
3449 return ReplacementPart(SUBJECT_SUFFIX, subject_length);
3450 }
3451 static inline ReplacementPart ReplacementString() {
3452 return ReplacementPart(REPLACEMENT_STRING, 0);
3453 }
3454 static inline ReplacementPart ReplacementSubString(int from, int to) {
3455 DCHECK(from >= 0);
3456 DCHECK(to > from);
3457 return ReplacementPart(-from, to);
3458 }
3459
3460 // If tag <= 0 then it is the negation of a start index of a substring of
3461 // the replacement pattern, otherwise it's a value from PartType.
3462 ReplacementPart(int tag, int data)
3463 : tag(tag), data(data) {
3464 // Must be non-positive or a PartType value.
3465 DCHECK(tag < NUMBER_OF_PART_TYPES);
3466 }
3467 // Either a value of PartType or a non-positive number that is
3468 // the negation of an index into the replacement string.
3469 int tag;
3470 // The data value's interpretation depends on the value of tag:
3471 // tag == SUBJECT_PREFIX ||
3472 // tag == SUBJECT_SUFFIX: data is unused.
3473 // tag == SUBJECT_CAPTURE: data is the number of the capture.
3474 // tag == REPLACEMENT_SUBSTRING ||
3475 // tag == REPLACEMENT_STRING: data is index into array of substrings
3476 // of the replacement string.
3477 // tag <= 0: Temporary representation of the substring of the replacement
3478 // string ranging over -tag .. data.
3479 // Is replaced by REPLACEMENT_{SUB,}STRING when we create the
3480 // substring objects.
3481 int data;
3482 };
3483
3484 template<typename Char>
3485 bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
3486 Vector<Char> characters,
3487 int capture_count,
3488 int subject_length,
3489 Zone* zone) {
3490 int length = characters.length();
3491 int last = 0;
3492 for (int i = 0; i < length; i++) {
3493 Char c = characters[i];
3494 if (c == '$') {
3495 int next_index = i + 1;
3496 if (next_index == length) { // No next character!
3497 break;
3498 }
3499 Char c2 = characters[next_index];
3500 switch (c2) {
3501 case '$':
3502 if (i > last) {
3503 // There is a substring before. Include the first "$".
3504 parts->Add(ReplacementPart::ReplacementSubString(last, next_index),
3505 zone);
3506 last = next_index + 1; // Continue after the second "$".
3507 } else {
3508 // Let the next substring start with the second "$".
3509 last = next_index;
3510 }
3511 i = next_index;
3512 break;
3513 case '`':
3514 if (i > last) {
3515 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3516 }
3517 parts->Add(ReplacementPart::SubjectPrefix(), zone);
3518 i = next_index;
3519 last = i + 1;
3520 break;
3521 case '\'':
3522 if (i > last) {
3523 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3524 }
3525 parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone);
3526 i = next_index;
3527 last = i + 1;
3528 break;
3529 case '&':
3530 if (i > last) {
3531 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3532 }
3533 parts->Add(ReplacementPart::SubjectMatch(), zone);
3534 i = next_index;
3535 last = i + 1;
3536 break;
3537 case '0':
3538 case '1':
3539 case '2':
3540 case '3':
3541 case '4':
3542 case '5':
3543 case '6':
3544 case '7':
3545 case '8':
3546 case '9': {
3547 int capture_ref = c2 - '0';
3548 if (capture_ref > capture_count) {
3549 i = next_index;
3550 continue;
3551 }
3552 int second_digit_index = next_index + 1;
3553 if (second_digit_index < length) {
3554 // Peek ahead to see if we have two digits.
3555 Char c3 = characters[second_digit_index];
3556 if ('0' <= c3 && c3 <= '9') { // Double digits.
3557 int double_digit_ref = capture_ref * 10 + c3 - '0';
3558 if (double_digit_ref <= capture_count) {
3559 next_index = second_digit_index;
3560 capture_ref = double_digit_ref;
3561 }
3562 }
3563 }
3564 if (capture_ref > 0) {
3565 if (i > last) {
3566 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3567 }
3568 DCHECK(capture_ref <= capture_count);
3569 parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone);
3570 last = next_index + 1;
3571 }
3572 i = next_index;
3573 break;
3574 }
3575 default:
3576 i = next_index;
3577 break;
3578 }
3579 }
3580 }
3581 if (length > last) {
3582 if (last == 0) {
3583 // Replacement is simple. Do not use Apply to do the replacement.
3584 return true;
3585 } else {
3586 parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
3587 }
3588 }
3589 return false;
3590 }
3591
3592 ZoneList<ReplacementPart> parts_;
3593 ZoneList<Handle<String> > replacement_substrings_;
3594 Zone* zone_;
3595 };
3596
3597
3598 bool CompiledReplacement::Compile(Handle<String> replacement,
3599 int capture_count,
3600 int subject_length) {
3601 {
3602 DisallowHeapAllocation no_gc;
3603 String::FlatContent content = replacement->GetFlatContent();
3604 DCHECK(content.IsFlat());
3605 bool simple = false;
3606 if (content.IsOneByte()) {
3607 simple = ParseReplacementPattern(&parts_,
3608 content.ToOneByteVector(),
3609 capture_count,
3610 subject_length,
3611 zone());
3612 } else {
3613 DCHECK(content.IsTwoByte());
3614 simple = ParseReplacementPattern(&parts_,
3615 content.ToUC16Vector(),
3616 capture_count,
3617 subject_length,
3618 zone());
3619 }
3620 if (simple) return true;
3621 }
3622
3623 Isolate* isolate = replacement->GetIsolate();
3624 // Find substrings of replacement string and create them as String objects.
3625 int substring_index = 0;
3626 for (int i = 0, n = parts_.length(); i < n; i++) {
3627 int tag = parts_[i].tag;
3628 if (tag <= 0) { // A replacement string slice.
3629 int from = -tag;
3630 int to = parts_[i].data;
3631 replacement_substrings_.Add(
3632 isolate->factory()->NewSubString(replacement, from, to), zone());
3633 parts_[i].tag = REPLACEMENT_SUBSTRING;
3634 parts_[i].data = substring_index;
3635 substring_index++;
3636 } else if (tag == REPLACEMENT_STRING) {
3637 replacement_substrings_.Add(replacement, zone());
3638 parts_[i].data = substring_index;
3639 substring_index++;
3640 }
3641 }
3642 return false;
3643 }
3644
3645
3646 void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
3647 int match_from,
3648 int match_to,
3649 int32_t* match) {
3650 DCHECK_LT(0, parts_.length());
3651 for (int i = 0, n = parts_.length(); i < n; i++) {
3652 ReplacementPart part = parts_[i];
3653 switch (part.tag) {
3654 case SUBJECT_PREFIX:
3655 if (match_from > 0) builder->AddSubjectSlice(0, match_from);
3656 break;
3657 case SUBJECT_SUFFIX: {
3658 int subject_length = part.data;
3659 if (match_to < subject_length) {
3660 builder->AddSubjectSlice(match_to, subject_length);
3661 }
3662 break;
3663 }
3664 case SUBJECT_CAPTURE: {
3665 int capture = part.data;
3666 int from = match[capture * 2];
3667 int to = match[capture * 2 + 1];
3668 if (from >= 0 && to > from) {
3669 builder->AddSubjectSlice(from, to);
3670 }
3671 break;
3672 }
3673 case REPLACEMENT_SUBSTRING:
3674 case REPLACEMENT_STRING:
3675 builder->AddString(replacement_substrings_[part.data]);
3676 break;
3677 default:
3678 UNREACHABLE();
3679 }
3680 }
3681 }
3682
3683
3684 void FindOneByteStringIndices(Vector<const uint8_t> subject, char pattern,
3685 ZoneList<int>* indices, unsigned int limit,
3686 Zone* zone) {
3687 DCHECK(limit > 0);
3688 // Collect indices of pattern in subject using memchr.
3689 // Stop after finding at most limit values.
3690 const uint8_t* subject_start = subject.start();
3691 const uint8_t* subject_end = subject_start + subject.length();
3692 const uint8_t* pos = subject_start;
3693 while (limit > 0) {
3694 pos = reinterpret_cast<const uint8_t*>(
3695 memchr(pos, pattern, subject_end - pos));
3696 if (pos == NULL) return;
3697 indices->Add(static_cast<int>(pos - subject_start), zone);
3698 pos++;
3699 limit--;
3700 }
3701 }
3702
3703
3704 void FindTwoByteStringIndices(const Vector<const uc16> subject,
3705 uc16 pattern,
3706 ZoneList<int>* indices,
3707 unsigned int limit,
3708 Zone* zone) {
3709 DCHECK(limit > 0);
3710 const uc16* subject_start = subject.start();
3711 const uc16* subject_end = subject_start + subject.length();
3712 for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) {
3713 if (*pos == pattern) {
3714 indices->Add(static_cast<int>(pos - subject_start), zone);
3715 limit--;
3716 }
3717 }
3718 }
3719
3720
3721 template <typename SubjectChar, typename PatternChar>
3722 void FindStringIndices(Isolate* isolate,
3723 Vector<const SubjectChar> subject,
3724 Vector<const PatternChar> pattern,
3725 ZoneList<int>* indices,
3726 unsigned int limit,
3727 Zone* zone) {
3728 DCHECK(limit > 0);
3729 // Collect indices of pattern in subject.
3730 // Stop after finding at most limit values.
3731 int pattern_length = pattern.length();
3732 int index = 0;
3733 StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
3734 while (limit > 0) {
3735 index = search.Search(subject, index);
3736 if (index < 0) return;
3737 indices->Add(index, zone);
3738 index += pattern_length;
3739 limit--;
3740 }
3741 }
3742
3743
3744 void FindStringIndicesDispatch(Isolate* isolate,
3745 String* subject,
3746 String* pattern,
3747 ZoneList<int>* indices,
3748 unsigned int limit,
3749 Zone* zone) {
3750 {
3751 DisallowHeapAllocation no_gc;
3752 String::FlatContent subject_content = subject->GetFlatContent();
3753 String::FlatContent pattern_content = pattern->GetFlatContent();
3754 DCHECK(subject_content.IsFlat());
3755 DCHECK(pattern_content.IsFlat());
3756 if (subject_content.IsOneByte()) {
3757 Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
3758 if (pattern_content.IsOneByte()) {
3759 Vector<const uint8_t> pattern_vector =
3760 pattern_content.ToOneByteVector();
3761 if (pattern_vector.length() == 1) {
3762 FindOneByteStringIndices(subject_vector, pattern_vector[0], indices,
3763 limit, zone);
3764 } else {
3765 FindStringIndices(isolate,
3766 subject_vector,
3767 pattern_vector,
3768 indices,
3769 limit,
3770 zone);
3771 }
3772 } else {
3773 FindStringIndices(isolate,
3774 subject_vector,
3775 pattern_content.ToUC16Vector(),
3776 indices,
3777 limit,
3778 zone);
3779 }
3780 } else {
3781 Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
3782 if (pattern_content.IsOneByte()) {
3783 Vector<const uint8_t> pattern_vector =
3784 pattern_content.ToOneByteVector();
3785 if (pattern_vector.length() == 1) {
3786 FindTwoByteStringIndices(subject_vector,
3787 pattern_vector[0],
3788 indices,
3789 limit,
3790 zone);
3791 } else {
3792 FindStringIndices(isolate,
3793 subject_vector,
3794 pattern_vector,
3795 indices,
3796 limit,
3797 zone);
3798 }
3799 } else {
3800 Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector();
3801 if (pattern_vector.length() == 1) {
3802 FindTwoByteStringIndices(subject_vector,
3803 pattern_vector[0],
3804 indices,
3805 limit,
3806 zone);
3807 } else {
3808 FindStringIndices(isolate,
3809 subject_vector,
3810 pattern_vector,
3811 indices,
3812 limit,
3813 zone);
3814 }
3815 }
3816 }
3817 }
3818 }
3819
3820
3821 template<typename ResultSeqString>
3822 MUST_USE_RESULT static Object* StringReplaceGlobalAtomRegExpWithString(
3823 Isolate* isolate,
3824 Handle<String> subject,
3825 Handle<JSRegExp> pattern_regexp,
3826 Handle<String> replacement,
3827 Handle<JSArray> last_match_info) {
3828 DCHECK(subject->IsFlat());
3829 DCHECK(replacement->IsFlat());
3830
3831 ZoneScope zone_scope(isolate->runtime_zone());
3832 ZoneList<int> indices(8, zone_scope.zone());
3833 DCHECK_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
3834 String* pattern =
3835 String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
3836 int subject_len = subject->length();
3837 int pattern_len = pattern->length();
3838 int replacement_len = replacement->length();
3839
3840 FindStringIndicesDispatch(
3841 isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone());
3842
3843 int matches = indices.length();
3844 if (matches == 0) return *subject;
3845
3846 // Detect integer overflow.
3847 int64_t result_len_64 =
3848 (static_cast<int64_t>(replacement_len) -
3849 static_cast<int64_t>(pattern_len)) *
3850 static_cast<int64_t>(matches) +
3851 static_cast<int64_t>(subject_len);
3852 int result_len;
3853 if (result_len_64 > static_cast<int64_t>(String::kMaxLength)) {
3854 STATIC_ASSERT(String::kMaxLength < kMaxInt);
3855 result_len = kMaxInt; // Provoke exception.
3856 } else {
3857 result_len = static_cast<int>(result_len_64);
3858 }
3859
3860 int subject_pos = 0;
3861 int result_pos = 0;
3862
3863 MaybeHandle<SeqString> maybe_res;
3864 if (ResultSeqString::kHasOneByteEncoding) {
3865 maybe_res = isolate->factory()->NewRawOneByteString(result_len);
3866 } else {
3867 maybe_res = isolate->factory()->NewRawTwoByteString(result_len);
3868 }
3869 Handle<SeqString> untyped_res;
3870 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, untyped_res, maybe_res);
3871 Handle<ResultSeqString> result = Handle<ResultSeqString>::cast(untyped_res);
3872
3873 for (int i = 0; i < matches; i++) {
3874 // Copy non-matched subject content.
3875 if (subject_pos < indices.at(i)) {
3876 String::WriteToFlat(*subject,
3877 result->GetChars() + result_pos,
3878 subject_pos,
3879 indices.at(i));
3880 result_pos += indices.at(i) - subject_pos;
3881 }
3882
3883 // Replace match.
3884 if (replacement_len > 0) {
3885 String::WriteToFlat(*replacement,
3886 result->GetChars() + result_pos,
3887 0,
3888 replacement_len);
3889 result_pos += replacement_len;
3890 }
3891
3892 subject_pos = indices.at(i) + pattern_len;
3893 }
3894 // Add remaining subject content at the end.
3895 if (subject_pos < subject_len) {
3896 String::WriteToFlat(*subject,
3897 result->GetChars() + result_pos,
3898 subject_pos,
3899 subject_len);
3900 }
3901
3902 int32_t match_indices[] = { indices.at(matches - 1),
3903 indices.at(matches - 1) + pattern_len };
3904 RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
3905
3906 return *result;
3907 }
3908
3909
3910 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithString(
3911 Isolate* isolate,
3912 Handle<String> subject,
3913 Handle<JSRegExp> regexp,
3914 Handle<String> replacement,
3915 Handle<JSArray> last_match_info) {
3916 DCHECK(subject->IsFlat());
3917 DCHECK(replacement->IsFlat());
3918
3919 int capture_count = regexp->CaptureCount();
3920 int subject_length = subject->length();
3921
3922 // CompiledReplacement uses zone allocation.
3923 ZoneScope zone_scope(isolate->runtime_zone());
3924 CompiledReplacement compiled_replacement(zone_scope.zone());
3925 bool simple_replace = compiled_replacement.Compile(replacement,
3926 capture_count,
3927 subject_length);
3928
3929 // Shortcut for simple non-regexp global replacements
3930 if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) {
3931 if (subject->HasOnlyOneByteChars() &&
3932 replacement->HasOnlyOneByteChars()) {
3933 return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
3934 isolate, subject, regexp, replacement, last_match_info);
3935 } else {
3936 return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
3937 isolate, subject, regexp, replacement, last_match_info);
3938 }
3939 }
3940
3941 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
3942 if (global_cache.HasException()) return isolate->heap()->exception();
3943
3944 int32_t* current_match = global_cache.FetchNext();
3945 if (current_match == NULL) {
3946 if (global_cache.HasException()) return isolate->heap()->exception();
3947 return *subject;
3948 }
3949
3950 // Guessing the number of parts that the final result string is built
3951 // from. Global regexps can match any number of times, so we guess
3952 // conservatively.
3953 int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1;
3954 ReplacementStringBuilder builder(isolate->heap(),
3955 subject,
3956 expected_parts);
3957
3958 // Number of parts added by compiled replacement plus preceeding
3959 // string and possibly suffix after last match. It is possible for
3960 // all components to use two elements when encoded as two smis.
3961 const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
3962
3963 int prev = 0;
3964
3965 do {
3966 builder.EnsureCapacity(parts_added_per_loop);
3967
3968 int start = current_match[0];
3969 int end = current_match[1];
3970
3971 if (prev < start) {
3972 builder.AddSubjectSlice(prev, start);
3973 }
3974
3975 if (simple_replace) {
3976 builder.AddString(replacement);
3977 } else {
3978 compiled_replacement.Apply(&builder,
3979 start,
3980 end,
3981 current_match);
3982 }
3983 prev = end;
3984
3985 current_match = global_cache.FetchNext();
3986 } while (current_match != NULL);
3987
3988 if (global_cache.HasException()) return isolate->heap()->exception();
3989
3990 if (prev < subject_length) {
3991 builder.EnsureCapacity(2);
3992 builder.AddSubjectSlice(prev, subject_length);
3993 }
3994
3995 RegExpImpl::SetLastMatchInfo(last_match_info,
3996 subject,
3997 capture_count,
3998 global_cache.LastSuccessfulMatch());
3999
4000 Handle<String> result;
4001 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, builder.ToString());
4002 return *result;
4003 }
4004
4005
4006 template <typename ResultSeqString>
4007 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithEmptyString(
4008 Isolate* isolate,
4009 Handle<String> subject,
4010 Handle<JSRegExp> regexp,
4011 Handle<JSArray> last_match_info) {
4012 DCHECK(subject->IsFlat());
4013
4014 // Shortcut for simple non-regexp global replacements
4015 if (regexp->TypeTag() == JSRegExp::ATOM) {
4016 Handle<String> empty_string = isolate->factory()->empty_string();
4017 if (subject->IsOneByteRepresentation()) {
4018 return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
4019 isolate, subject, regexp, empty_string, last_match_info);
4020 } else {
4021 return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
4022 isolate, subject, regexp, empty_string, last_match_info);
4023 }
4024 }
4025
4026 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4027 if (global_cache.HasException()) return isolate->heap()->exception();
4028
4029 int32_t* current_match = global_cache.FetchNext();
4030 if (current_match == NULL) {
4031 if (global_cache.HasException()) return isolate->heap()->exception();
4032 return *subject;
4033 }
4034
4035 int start = current_match[0];
4036 int end = current_match[1];
4037 int capture_count = regexp->CaptureCount();
4038 int subject_length = subject->length();
4039
4040 int new_length = subject_length - (end - start);
4041 if (new_length == 0) return isolate->heap()->empty_string();
4042
4043 Handle<ResultSeqString> answer;
4044 if (ResultSeqString::kHasOneByteEncoding) {
4045 answer = Handle<ResultSeqString>::cast(
4046 isolate->factory()->NewRawOneByteString(new_length).ToHandleChecked());
4047 } else {
4048 answer = Handle<ResultSeqString>::cast(
4049 isolate->factory()->NewRawTwoByteString(new_length).ToHandleChecked());
4050 }
4051
4052 int prev = 0;
4053 int position = 0;
4054
4055 do {
4056 start = current_match[0];
4057 end = current_match[1];
4058 if (prev < start) {
4059 // Add substring subject[prev;start] to answer string.
4060 String::WriteToFlat(*subject, answer->GetChars() + position, prev, start);
4061 position += start - prev;
4062 }
4063 prev = end;
4064
4065 current_match = global_cache.FetchNext();
4066 } while (current_match != NULL);
4067
4068 if (global_cache.HasException()) return isolate->heap()->exception();
4069
4070 RegExpImpl::SetLastMatchInfo(last_match_info,
4071 subject,
4072 capture_count,
4073 global_cache.LastSuccessfulMatch());
4074
4075 if (prev < subject_length) {
4076 // Add substring subject[prev;length] to answer string.
4077 String::WriteToFlat(
4078 *subject, answer->GetChars() + position, prev, subject_length);
4079 position += subject_length - prev;
4080 }
4081
4082 if (position == 0) return isolate->heap()->empty_string();
4083
4084 // Shorten string and fill
4085 int string_size = ResultSeqString::SizeFor(position);
4086 int allocated_string_size = ResultSeqString::SizeFor(new_length);
4087 int delta = allocated_string_size - string_size;
4088
4089 answer->set_length(position);
4090 if (delta == 0) return *answer;
4091
4092 Address end_of_string = answer->address() + string_size;
4093 Heap* heap = isolate->heap();
4094
4095 // The trimming is performed on a newly allocated object, which is on a
4096 // fresly allocated page or on an already swept page. Hence, the sweeper
4097 // thread can not get confused with the filler creation. No synchronization
4098 // needed.
4099 heap->CreateFillerObjectAt(end_of_string, delta);
4100 heap->AdjustLiveBytes(answer->address(), -delta, Heap::FROM_MUTATOR);
4101 return *answer;
4102 }
4103
4104
4105 RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString) {
4106 HandleScope scope(isolate);
4107 DCHECK(args.length() == 4);
4108
4109 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4110 CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
4111 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4112 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
4113
4114 RUNTIME_ASSERT(regexp->GetFlags().is_global());
4115 RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4116
4117 subject = String::Flatten(subject);
4118
4119 if (replacement->length() == 0) {
4120 if (subject->HasOnlyOneByteChars()) {
4121 return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>(
4122 isolate, subject, regexp, last_match_info);
4123 } else {
4124 return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>(
4125 isolate, subject, regexp, last_match_info);
4126 }
4127 }
4128
4129 replacement = String::Flatten(replacement);
4130
4131 return StringReplaceGlobalRegExpWithString(
4132 isolate, subject, regexp, replacement, last_match_info);
4133 }
4134
4135
4136 // This may return an empty MaybeHandle if an exception is thrown or
4137 // we abort due to reaching the recursion limit.
4138 MaybeHandle<String> StringReplaceOneCharWithString(Isolate* isolate,
4139 Handle<String> subject,
4140 Handle<String> search,
4141 Handle<String> replace,
4142 bool* found,
4143 int recursion_limit) {
4144 StackLimitCheck stackLimitCheck(isolate);
4145 if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
4146 return MaybeHandle<String>();
4147 }
4148 recursion_limit--;
4149 if (subject->IsConsString()) {
4150 ConsString* cons = ConsString::cast(*subject);
4151 Handle<String> first = Handle<String>(cons->first());
4152 Handle<String> second = Handle<String>(cons->second());
4153 Handle<String> new_first;
4154 if (!StringReplaceOneCharWithString(
4155 isolate, first, search, replace, found, recursion_limit)
4156 .ToHandle(&new_first)) {
4157 return MaybeHandle<String>();
4158 }
4159 if (*found) return isolate->factory()->NewConsString(new_first, second);
4160
4161 Handle<String> new_second;
4162 if (!StringReplaceOneCharWithString(
4163 isolate, second, search, replace, found, recursion_limit)
4164 .ToHandle(&new_second)) {
4165 return MaybeHandle<String>();
4166 }
4167 if (*found) return isolate->factory()->NewConsString(first, new_second);
4168
4169 return subject;
4170 } else {
4171 int index = Runtime::StringMatch(isolate, subject, search, 0);
4172 if (index == -1) return subject;
4173 *found = true;
4174 Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
4175 Handle<String> cons1;
4176 ASSIGN_RETURN_ON_EXCEPTION(
4177 isolate, cons1,
4178 isolate->factory()->NewConsString(first, replace),
4179 String);
4180 Handle<String> second =
4181 isolate->factory()->NewSubString(subject, index + 1, subject->length());
4182 return isolate->factory()->NewConsString(cons1, second);
4183 }
4184 }
4185
4186
4187 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
4188 HandleScope scope(isolate);
4189 DCHECK(args.length() == 3);
4190 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4191 CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
4192 CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
4193
4194 // If the cons string tree is too deep, we simply abort the recursion and
4195 // retry with a flattened subject string.
4196 const int kRecursionLimit = 0x1000;
4197 bool found = false;
4198 Handle<String> result;
4199 if (StringReplaceOneCharWithString(
4200 isolate, subject, search, replace, &found, kRecursionLimit)
4201 .ToHandle(&result)) {
4202 return *result;
4203 }
4204 if (isolate->has_pending_exception()) return isolate->heap()->exception();
4205
4206 subject = String::Flatten(subject);
4207 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4208 isolate, result,
4209 StringReplaceOneCharWithString(
4210 isolate, subject, search, replace, &found, kRecursionLimit));
4211 return *result;
4212 }
4213
4214
4215 // Perform string match of pattern on subject, starting at start index.
4216 // Caller must ensure that 0 <= start_index <= sub->length(),
4217 // and should check that pat->length() + start_index <= sub->length().
4218 int Runtime::StringMatch(Isolate* isolate,
4219 Handle<String> sub,
4220 Handle<String> pat,
4221 int start_index) {
4222 DCHECK(0 <= start_index);
4223 DCHECK(start_index <= sub->length());
4224
4225 int pattern_length = pat->length();
4226 if (pattern_length == 0) return start_index;
4227
4228 int subject_length = sub->length();
4229 if (start_index + pattern_length > subject_length) return -1;
4230
4231 sub = String::Flatten(sub);
4232 pat = String::Flatten(pat);
4233
4234 DisallowHeapAllocation no_gc; // ensure vectors stay valid
4235 // Extract flattened substrings of cons strings before getting encoding.
4236 String::FlatContent seq_sub = sub->GetFlatContent();
4237 String::FlatContent seq_pat = pat->GetFlatContent();
4238
4239 // dispatch on type of strings
4240 if (seq_pat.IsOneByte()) {
4241 Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
4242 if (seq_sub.IsOneByte()) {
4243 return SearchString(isolate,
4244 seq_sub.ToOneByteVector(),
4245 pat_vector,
4246 start_index);
4247 }
4248 return SearchString(isolate,
4249 seq_sub.ToUC16Vector(),
4250 pat_vector,
4251 start_index);
4252 }
4253 Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
4254 if (seq_sub.IsOneByte()) {
4255 return SearchString(isolate,
4256 seq_sub.ToOneByteVector(),
4257 pat_vector,
4258 start_index);
4259 }
4260 return SearchString(isolate,
4261 seq_sub.ToUC16Vector(),
4262 pat_vector,
4263 start_index);
4264 }
4265
4266
4267 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
4268 HandleScope scope(isolate);
4269 DCHECK(args.length() == 3);
4270
4271 CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4272 CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4273 CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4274
4275 uint32_t start_index;
4276 if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4277
4278 RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
4279 int position = Runtime::StringMatch(isolate, sub, pat, start_index);
4280 return Smi::FromInt(position);
4281 }
4282
4283
4284 template <typename schar, typename pchar>
4285 static int StringMatchBackwards(Vector<const schar> subject,
4286 Vector<const pchar> pattern,
4287 int idx) {
4288 int pattern_length = pattern.length();
4289 DCHECK(pattern_length >= 1);
4290 DCHECK(idx + pattern_length <= subject.length());
4291
4292 if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
4293 for (int i = 0; i < pattern_length; i++) {
4294 uc16 c = pattern[i];
4295 if (c > String::kMaxOneByteCharCode) {
4296 return -1;
4297 }
4298 }
4299 }
4300
4301 pchar pattern_first_char = pattern[0];
4302 for (int i = idx; i >= 0; i--) {
4303 if (subject[i] != pattern_first_char) continue;
4304 int j = 1;
4305 while (j < pattern_length) {
4306 if (pattern[j] != subject[i+j]) {
4307 break;
4308 }
4309 j++;
4310 }
4311 if (j == pattern_length) {
4312 return i;
4313 }
4314 }
4315 return -1;
4316 }
4317
4318
4319 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
4320 HandleScope scope(isolate);
4321 DCHECK(args.length() == 3);
4322
4323 CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4324 CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4325 CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4326
4327 uint32_t start_index;
4328 if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4329
4330 uint32_t pat_length = pat->length();
4331 uint32_t sub_length = sub->length();
4332
4333 if (start_index + pat_length > sub_length) {
4334 start_index = sub_length - pat_length;
4335 }
4336
4337 if (pat_length == 0) {
4338 return Smi::FromInt(start_index);
4339 }
4340
4341 sub = String::Flatten(sub);
4342 pat = String::Flatten(pat);
4343
4344 int position = -1;
4345 DisallowHeapAllocation no_gc; // ensure vectors stay valid
4346
4347 String::FlatContent sub_content = sub->GetFlatContent();
4348 String::FlatContent pat_content = pat->GetFlatContent();
4349
4350 if (pat_content.IsOneByte()) {
4351 Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
4352 if (sub_content.IsOneByte()) {
4353 position = StringMatchBackwards(sub_content.ToOneByteVector(),
4354 pat_vector,
4355 start_index);
4356 } else {
4357 position = StringMatchBackwards(sub_content.ToUC16Vector(),
4358 pat_vector,
4359 start_index);
4360 }
4361 } else {
4362 Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
4363 if (sub_content.IsOneByte()) {
4364 position = StringMatchBackwards(sub_content.ToOneByteVector(),
4365 pat_vector,
4366 start_index);
4367 } else {
4368 position = StringMatchBackwards(sub_content.ToUC16Vector(),
4369 pat_vector,
4370 start_index);
4371 }
4372 }
4373
4374 return Smi::FromInt(position);
4375 }
4376
4377
4378 RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
4379 HandleScope handle_scope(isolate);
4380 DCHECK(args.length() == 2);
4381
4382 CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
4383 CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
4384
4385 if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal.
4386 int str1_length = str1->length();
4387 int str2_length = str2->length();
4388
4389 // Decide trivial cases without flattening.
4390 if (str1_length == 0) {
4391 if (str2_length == 0) return Smi::FromInt(0); // Equal.
4392 return Smi::FromInt(-str2_length);
4393 } else {
4394 if (str2_length == 0) return Smi::FromInt(str1_length);
4395 }
4396
4397 int end = str1_length < str2_length ? str1_length : str2_length;
4398
4399 // No need to flatten if we are going to find the answer on the first
4400 // character. At this point we know there is at least one character
4401 // in each string, due to the trivial case handling above.
4402 int d = str1->Get(0) - str2->Get(0);
4403 if (d != 0) return Smi::FromInt(d);
4404
4405 str1 = String::Flatten(str1);
4406 str2 = String::Flatten(str2);
4407
4408 DisallowHeapAllocation no_gc;
4409 String::FlatContent flat1 = str1->GetFlatContent();
4410 String::FlatContent flat2 = str2->GetFlatContent();
4411
4412 for (int i = 0; i < end; i++) {
4413 if (flat1.Get(i) != flat2.Get(i)) {
4414 return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
4415 }
4416 }
4417
4418 return Smi::FromInt(str1_length - str2_length);
4419 }
4420
4421
4422 RUNTIME_FUNCTION(Runtime_SubString) {
4423 HandleScope scope(isolate);
4424 DCHECK(args.length() == 3);
4425
4426 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4427 int start, end;
4428 // We have a fast integer-only case here to avoid a conversion to double in
4429 // the common case where from and to are Smis.
4430 if (args[1]->IsSmi() && args[2]->IsSmi()) {
4431 CONVERT_SMI_ARG_CHECKED(from_number, 1);
4432 CONVERT_SMI_ARG_CHECKED(to_number, 2);
4433 start = from_number;
4434 end = to_number;
4435 } else {
4436 CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
4437 CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
4438 start = FastD2IChecked(from_number);
4439 end = FastD2IChecked(to_number);
4440 }
4441 RUNTIME_ASSERT(end >= start);
4442 RUNTIME_ASSERT(start >= 0);
4443 RUNTIME_ASSERT(end <= string->length());
4444 isolate->counters()->sub_string_runtime()->Increment();
4445
4446 return *isolate->factory()->NewSubString(string, start, end);
4447 }
4448
4449
4450 RUNTIME_FUNCTION(Runtime_InternalizeString) {
4451 HandleScope handles(isolate);
4452 RUNTIME_ASSERT(args.length() == 1);
4453 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4454 return *isolate->factory()->InternalizeString(string);
4455 }
4456
4457
4458 RUNTIME_FUNCTION(Runtime_StringMatch) {
4459 HandleScope handles(isolate);
4460 DCHECK(args.length() == 3);
4461
4462 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4463 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4464 CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
4465
4466 RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
4467
4468 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4469 if (global_cache.HasException()) return isolate->heap()->exception();
4470
4471 int capture_count = regexp->CaptureCount();
4472
4473 ZoneScope zone_scope(isolate->runtime_zone());
4474 ZoneList<int> offsets(8, zone_scope.zone());
4475
4476 while (true) {
4477 int32_t* match = global_cache.FetchNext();
4478 if (match == NULL) break;
4479 offsets.Add(match[0], zone_scope.zone()); // start
4480 offsets.Add(match[1], zone_scope.zone()); // end
4481 }
4482
4483 if (global_cache.HasException()) return isolate->heap()->exception();
4484
4485 if (offsets.length() == 0) {
4486 // Not a single match.
4487 return isolate->heap()->null_value();
4488 }
4489
4490 RegExpImpl::SetLastMatchInfo(regexp_info,
4491 subject,
4492 capture_count,
4493 global_cache.LastSuccessfulMatch());
4494
4495 int matches = offsets.length() / 2;
4496 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
4497 Handle<String> substring =
4498 isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
4499 elements->set(0, *substring);
4500 for (int i = 1; i < matches; i++) {
4501 HandleScope temp_scope(isolate);
4502 int from = offsets.at(i * 2);
4503 int to = offsets.at(i * 2 + 1);
4504 Handle<String> substring =
4505 isolate->factory()->NewProperSubString(subject, from, to);
4506 elements->set(i, *substring);
4507 }
4508 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
4509 result->set_length(Smi::FromInt(matches));
4510 return *result;
4511 }
4512
4513
4514 // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
4515 // separate last match info. See comment on that function.
4516 template<bool has_capture>
4517 static Object* SearchRegExpMultiple(
4518 Isolate* isolate,
4519 Handle<String> subject,
4520 Handle<JSRegExp> regexp,
4521 Handle<JSArray> last_match_array,
4522 Handle<JSArray> result_array) {
4523 DCHECK(subject->IsFlat());
4524 DCHECK_NE(has_capture, regexp->CaptureCount() == 0);
4525
4526 int capture_count = regexp->CaptureCount();
4527 int subject_length = subject->length();
4528
4529 static const int kMinLengthToCache = 0x1000;
4530
4531 if (subject_length > kMinLengthToCache) {
4532 Handle<Object> cached_answer(RegExpResultsCache::Lookup(
4533 isolate->heap(),
4534 *subject,
4535 regexp->data(),
4536 RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate);
4537 if (*cached_answer != Smi::FromInt(0)) {
4538 Handle<FixedArray> cached_fixed_array =
4539 Handle<FixedArray>(FixedArray::cast(*cached_answer));
4540 // The cache FixedArray is a COW-array and can therefore be reused.
4541 JSArray::SetContent(result_array, cached_fixed_array);
4542 // The actual length of the result array is stored in the last element of
4543 // the backing store (the backing FixedArray may have a larger capacity).
4544 Object* cached_fixed_array_last_element =
4545 cached_fixed_array->get(cached_fixed_array->length() - 1);
4546 Smi* js_array_length = Smi::cast(cached_fixed_array_last_element);
4547 result_array->set_length(js_array_length);
4548 RegExpImpl::SetLastMatchInfo(
4549 last_match_array, subject, capture_count, NULL);
4550 return *result_array;
4551 }
4552 }
4553
4554 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4555 if (global_cache.HasException()) return isolate->heap()->exception();
4556
4557 // Ensured in Runtime_RegExpExecMultiple.
4558 DCHECK(result_array->HasFastObjectElements());
4559 Handle<FixedArray> result_elements(
4560 FixedArray::cast(result_array->elements()));
4561 if (result_elements->length() < 16) {
4562 result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
4563 }
4564
4565 FixedArrayBuilder builder(result_elements);
4566
4567 // Position to search from.
4568 int match_start = -1;
4569 int match_end = 0;
4570 bool first = true;
4571
4572 // Two smis before and after the match, for very long strings.
4573 static const int kMaxBuilderEntriesPerRegExpMatch = 5;
4574
4575 while (true) {
4576 int32_t* current_match = global_cache.FetchNext();
4577 if (current_match == NULL) break;
4578 match_start = current_match[0];
4579 builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
4580 if (match_end < match_start) {
4581 ReplacementStringBuilder::AddSubjectSlice(&builder,
4582 match_end,
4583 match_start);
4584 }
4585 match_end = current_match[1];
4586 {
4587 // Avoid accumulating new handles inside loop.
4588 HandleScope temp_scope(isolate);
4589 Handle<String> match;
4590 if (!first) {
4591 match = isolate->factory()->NewProperSubString(subject,
4592 match_start,
4593 match_end);
4594 } else {
4595 match = isolate->factory()->NewSubString(subject,
4596 match_start,
4597 match_end);
4598 first = false;
4599 }
4600
4601 if (has_capture) {
4602 // Arguments array to replace function is match, captures, index and
4603 // subject, i.e., 3 + capture count in total.
4604 Handle<FixedArray> elements =
4605 isolate->factory()->NewFixedArray(3 + capture_count);
4606
4607 elements->set(0, *match);
4608 for (int i = 1; i <= capture_count; i++) {
4609 int start = current_match[i * 2];
4610 if (start >= 0) {
4611 int end = current_match[i * 2 + 1];
4612 DCHECK(start <= end);
4613 Handle<String> substring =
4614 isolate->factory()->NewSubString(subject, start, end);
4615 elements->set(i, *substring);
4616 } else {
4617 DCHECK(current_match[i * 2 + 1] < 0);
4618 elements->set(i, isolate->heap()->undefined_value());
4619 }
4620 }
4621 elements->set(capture_count + 1, Smi::FromInt(match_start));
4622 elements->set(capture_count + 2, *subject);
4623 builder.Add(*isolate->factory()->NewJSArrayWithElements(elements));
4624 } else {
4625 builder.Add(*match);
4626 }
4627 }
4628 }
4629
4630 if (global_cache.HasException()) return isolate->heap()->exception();
4631
4632 if (match_start >= 0) {
4633 // Finished matching, with at least one match.
4634 if (match_end < subject_length) {
4635 ReplacementStringBuilder::AddSubjectSlice(&builder,
4636 match_end,
4637 subject_length);
4638 }
4639
4640 RegExpImpl::SetLastMatchInfo(
4641 last_match_array, subject, capture_count, NULL);
4642
4643 if (subject_length > kMinLengthToCache) {
4644 // Store the length of the result array into the last element of the
4645 // backing FixedArray.
4646 builder.EnsureCapacity(1);
4647 Handle<FixedArray> fixed_array = builder.array();
4648 fixed_array->set(fixed_array->length() - 1,
4649 Smi::FromInt(builder.length()));
4650 // Cache the result and turn the FixedArray into a COW array.
4651 RegExpResultsCache::Enter(isolate,
4652 subject,
4653 handle(regexp->data(), isolate),
4654 fixed_array,
4655 RegExpResultsCache::REGEXP_MULTIPLE_INDICES);
4656 }
4657 return *builder.ToJSArray(result_array);
4658 } else {
4659 return isolate->heap()->null_value(); // No matches at all.
4660 }
4661 }
4662
4663
4664 // This is only called for StringReplaceGlobalRegExpWithFunction. This sets
4665 // lastMatchInfoOverride to maintain the last match info, so we don't need to
4666 // set any other last match array info.
4667 RUNTIME_FUNCTION(Runtime_RegExpExecMultiple) {
4668 HandleScope handles(isolate);
4669 DCHECK(args.length() == 4);
4670
4671 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
4672 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
4673 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
4674 CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
4675 RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4676 RUNTIME_ASSERT(result_array->HasFastObjectElements());
4677
4678 subject = String::Flatten(subject);
4679 RUNTIME_ASSERT(regexp->GetFlags().is_global());
4680
4681 if (regexp->CaptureCount() == 0) {
4682 return SearchRegExpMultiple<false>(
4683 isolate, subject, regexp, last_match_info, result_array);
4684 } else {
4685 return SearchRegExpMultiple<true>(
4686 isolate, subject, regexp, last_match_info, result_array);
4687 }
4688 }
4689
4690
4691 RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
4692 HandleScope scope(isolate);
4693 DCHECK(args.length() == 2);
4694 CONVERT_SMI_ARG_CHECKED(radix, 1);
4695 RUNTIME_ASSERT(2 <= radix && radix <= 36);
4696
4697 // Fast case where the result is a one character string.
4698 if (args[0]->IsSmi()) {
4699 int value = args.smi_at(0);
4700 if (value >= 0 && value < radix) {
4701 // Character array used for conversion.
4702 static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
4703 return *isolate->factory()->
4704 LookupSingleCharacterStringFromCode(kCharTable[value]);
4705 }
4706 }
4707
4708 // Slow case.
4709 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4710 if (std::isnan(value)) {
4711 return isolate->heap()->nan_string();
4712 }
4713 if (std::isinf(value)) {
4714 if (value < 0) {
4715 return isolate->heap()->minus_infinity_string();
4716 }
4717 return isolate->heap()->infinity_string();
4718 }
4719 char* str = DoubleToRadixCString(value, radix);
4720 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4721 DeleteArray(str);
4722 return *result;
4723 }
4724
4725
4726 RUNTIME_FUNCTION(Runtime_NumberToFixed) {
4727 HandleScope scope(isolate);
4728 DCHECK(args.length() == 2);
4729
4730 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4731 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4732 int f = FastD2IChecked(f_number);
4733 // See DoubleToFixedCString for these constants:
4734 RUNTIME_ASSERT(f >= 0 && f <= 20);
4735 RUNTIME_ASSERT(!Double(value).IsSpecial());
4736 char* str = DoubleToFixedCString(value, f);
4737 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4738 DeleteArray(str);
4739 return *result;
4740 }
4741
4742
4743 RUNTIME_FUNCTION(Runtime_NumberToExponential) {
4744 HandleScope scope(isolate);
4745 DCHECK(args.length() == 2);
4746
4747 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4748 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4749 int f = FastD2IChecked(f_number);
4750 RUNTIME_ASSERT(f >= -1 && f <= 20);
4751 RUNTIME_ASSERT(!Double(value).IsSpecial());
4752 char* str = DoubleToExponentialCString(value, f);
4753 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4754 DeleteArray(str);
4755 return *result;
4756 }
4757
4758
4759 RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
4760 HandleScope scope(isolate);
4761 DCHECK(args.length() == 2);
4762
4763 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4764 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4765 int f = FastD2IChecked(f_number);
4766 RUNTIME_ASSERT(f >= 1 && f <= 21);
4767 RUNTIME_ASSERT(!Double(value).IsSpecial());
4768 char* str = DoubleToPrecisionCString(value, f);
4769 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4770 DeleteArray(str);
4771 return *result;
4772 }
4773
4774
4775 RUNTIME_FUNCTION(Runtime_IsValidSmi) {
4776 SealHandleScope shs(isolate);
4777 DCHECK(args.length() == 1);
4778
4779 CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
4780 return isolate->heap()->ToBoolean(Smi::IsValid(number));
4781 }
4782
4783
4784 // Returns a single character string where first character equals
4785 // string->Get(index).
4786 static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
4787 if (index < static_cast<uint32_t>(string->length())) {
4788 Factory* factory = string->GetIsolate()->factory();
4789 return factory->LookupSingleCharacterStringFromCode(
4790 String::Flatten(string)->Get(index));
4791 }
4792 return Execution::CharAt(string, index);
4793 }
4794
4795
4796 MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
4797 Handle<Object> object,
4798 uint32_t index) {
4799 // Handle [] indexing on Strings
4800 if (object->IsString()) {
4801 Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
4802 if (!result->IsUndefined()) return result;
4803 }
4804
4805 // Handle [] indexing on String objects
4806 if (object->IsStringObjectWithCharacterAt(index)) {
4807 Handle<JSValue> js_value = Handle<JSValue>::cast(object);
4808 Handle<Object> result =
4809 GetCharAt(Handle<String>(String::cast(js_value->value())), index);
4810 if (!result->IsUndefined()) return result;
4811 }
4812
4813 Handle<Object> result;
4814 if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
4815 PrototypeIterator iter(isolate, object);
4816 return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
4817 index);
4818 } else {
4819 return Object::GetElement(isolate, object, index);
4820 }
4821 }
4822
4823
4824 MUST_USE_RESULT
4825 static MaybeHandle<Name> ToName(Isolate* isolate, Handle<Object> key) {
4826 if (key->IsName()) {
4827 return Handle<Name>::cast(key);
4828 } else {
4829 Handle<Object> converted;
4830 ASSIGN_RETURN_ON_EXCEPTION(
4831 isolate, converted, Execution::ToString(isolate, key), Name);
4832 return Handle<Name>::cast(converted);
4833 }
4834 }
4835
4836
4837 MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate,
4838 Handle<JSReceiver> object,
4839 Handle<Object> key) {
4840 Maybe<bool> maybe;
4841 // Check if the given key is an array index.
4842 uint32_t index;
4843 if (key->ToArrayIndex(&index)) {
4844 maybe = JSReceiver::HasElement(object, index);
4845 } else {
4846 // Convert the key to a name - possibly by calling back into JavaScript.
4847 Handle<Name> name;
4848 ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4849
4850 maybe = JSReceiver::HasProperty(object, name);
4851 }
4852
4853 if (!maybe.has_value) return MaybeHandle<Object>();
4854 return isolate->factory()->ToBoolean(maybe.value);
4855 }
4856
4857
4858 MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
4859 Handle<Object> object,
4860 Handle<Object> key) {
4861 if (object->IsUndefined() || object->IsNull()) {
4862 Handle<Object> args[2] = { key, object };
4863 THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
4864 HandleVector(args, 2)),
4865 Object);
4866 }
4867
4868 // Check if the given key is an array index.
4869 uint32_t index;
4870 if (key->ToArrayIndex(&index)) {
4871 return GetElementOrCharAt(isolate, object, index);
4872 }
4873
4874 // Convert the key to a name - possibly by calling back into JavaScript.
4875 Handle<Name> name;
4876 ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4877
4878 // Check if the name is trivially convertible to an index and get
4879 // the element if so.
4880 if (name->AsArrayIndex(&index)) {
4881 return GetElementOrCharAt(isolate, object, index);
4882 } else {
4883 return Object::GetProperty(object, name);
4884 }
4885 }
4886
4887
4888 RUNTIME_FUNCTION(Runtime_GetProperty) {
4889 HandleScope scope(isolate);
4890 DCHECK(args.length() == 2);
4891
4892 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
4893 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
4894 Handle<Object> result;
4895 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4896 isolate, result,
4897 Runtime::GetObjectProperty(isolate, object, key));
4898 return *result;
4899 }
4900
4901
4902 // KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
4903 RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
4904 HandleScope scope(isolate);
4905 DCHECK(args.length() == 2);
4906
4907 CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
4908 CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
4909
4910 // Fast cases for getting named properties of the receiver JSObject
4911 // itself.
4912 //
4913 // The global proxy objects has to be excluded since LookupOwn on
4914 // the global proxy object can return a valid result even though the
4915 // global proxy object never has properties. This is the case
4916 // because the global proxy object forwards everything to its hidden
4917 // prototype including own lookups.
4918 //
4919 // Additionally, we need to make sure that we do not cache results
4920 // for objects that require access checks.
4921 if (receiver_obj->IsJSObject()) {
4922 if (!receiver_obj->IsJSGlobalProxy() &&
4923 !receiver_obj->IsAccessCheckNeeded() &&
4924 key_obj->IsName()) {
4925 DisallowHeapAllocation no_allocation;
4926 Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
4927 Handle<Name> key = Handle<Name>::cast(key_obj);
4928 if (receiver->HasFastProperties()) {
4929 // Attempt to use lookup cache.
4930 Handle<Map> receiver_map(receiver->map(), isolate);
4931 KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
4932 int index = keyed_lookup_cache->Lookup(receiver_map, key);
4933 if (index != -1) {
4934 // Doubles are not cached, so raw read the value.
4935 return receiver->RawFastPropertyAt(
4936 FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
4937 }
4938 // Lookup cache miss. Perform lookup and update the cache if
4939 // appropriate.
4940 LookupIterator it(receiver, key, LookupIterator::OWN);
4941 if (it.state() == LookupIterator::DATA &&
4942 it.property_details().type() == FIELD) {
4943 FieldIndex field_index = it.GetFieldIndex();
4944 // Do not track double fields in the keyed lookup cache. Reading
4945 // double values requires boxing.
4946 if (!it.representation().IsDouble()) {
4947 keyed_lookup_cache->Update(receiver_map, key,
4948 field_index.GetKeyedLookupCacheIndex());
4949 }
4950 AllowHeapAllocation allow_allocation;
4951 return *JSObject::FastPropertyAt(receiver, it.representation(),
4952 field_index);
4953 }
4954 } else {
4955 // Attempt dictionary lookup.
4956 NameDictionary* dictionary = receiver->property_dictionary();
4957 int entry = dictionary->FindEntry(key);
4958 if ((entry != NameDictionary::kNotFound) &&
4959 (dictionary->DetailsAt(entry).type() == NORMAL)) {
4960 Object* value = dictionary->ValueAt(entry);
4961 if (!receiver->IsGlobalObject()) return value;
4962 value = PropertyCell::cast(value)->value();
4963 if (!value->IsTheHole()) return value;
4964 // If value is the hole (meaning, absent) do the general lookup.
4965 }
4966 }
4967 } else if (key_obj->IsSmi()) {
4968 // JSObject without a name key. If the key is a Smi, check for a
4969 // definite out-of-bounds access to elements, which is a strong indicator
4970 // that subsequent accesses will also call the runtime. Proactively
4971 // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
4972 // doubles for those future calls in the case that the elements would
4973 // become FAST_DOUBLE_ELEMENTS.
4974 Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
4975 ElementsKind elements_kind = js_object->GetElementsKind();
4976 if (IsFastDoubleElementsKind(elements_kind)) {
4977 Handle<Smi> key = Handle<Smi>::cast(key_obj);
4978 if (key->value() >= js_object->elements()->length()) {
4979 if (IsFastHoleyElementsKind(elements_kind)) {
4980 elements_kind = FAST_HOLEY_ELEMENTS;
4981 } else {
4982 elements_kind = FAST_ELEMENTS;
4983 }
4984 RETURN_FAILURE_ON_EXCEPTION(
4985 isolate, TransitionElements(js_object, elements_kind, isolate));
4986 }
4987 } else {
4988 DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
4989 !IsFastElementsKind(elements_kind));
4990 }
4991 }
4992 } else if (receiver_obj->IsString() && key_obj->IsSmi()) {
4993 // Fast case for string indexing using [] with a smi index.
4994 Handle<String> str = Handle<String>::cast(receiver_obj);
4995 int index = args.smi_at(1);
4996 if (index >= 0 && index < str->length()) {
4997 return *GetCharAt(str, index);
4998 }
4999 }
5000
5001 // Fall back to GetObjectProperty.
5002 Handle<Object> result;
5003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5004 isolate, result,
5005 Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
5006 return *result;
5007 }
5008
5009
5010 static bool IsValidAccessor(Handle<Object> obj) {
5011 return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
5012 }
5013
5014
5015 // Transform getter or setter into something DefineAccessor can handle.
5016 static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
5017 Handle<Object> component) {
5018 if (component->IsUndefined()) return isolate->factory()->undefined_value();
5019 Handle<FunctionTemplateInfo> info =
5020 Handle<FunctionTemplateInfo>::cast(component);
5021 return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
5022 }
5023
5024
5025 RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
5026 HandleScope scope(isolate);
5027 DCHECK(args.length() == 5);
5028 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5029 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5030 CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5031 CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5032 CONVERT_SMI_ARG_CHECKED(attribute, 4);
5033 RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
5034 RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
5035 RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
5036 static_cast<PropertyAttributes>(attribute)));
5037 RETURN_FAILURE_ON_EXCEPTION(
5038 isolate, JSObject::DefineAccessor(
5039 object, name, InstantiateAccessorComponent(isolate, getter),
5040 InstantiateAccessorComponent(isolate, setter),
5041 static_cast<PropertyAttributes>(attribute)));
5042 return isolate->heap()->undefined_value();
5043 }
5044
5045
5046 // Implements part of 8.12.9 DefineOwnProperty.
5047 // There are 3 cases that lead here:
5048 // Step 4b - define a new accessor property.
5049 // Steps 9c & 12 - replace an existing data property with an accessor property.
5050 // Step 12 - update an existing accessor property with an accessor or generic
5051 // descriptor.
5052 RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
5053 HandleScope scope(isolate);
5054 DCHECK(args.length() == 5);
5055 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5056 RUNTIME_ASSERT(!obj->IsNull());
5057 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5058 CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5059 RUNTIME_ASSERT(IsValidAccessor(getter));
5060 CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5061 RUNTIME_ASSERT(IsValidAccessor(setter));
5062 CONVERT_SMI_ARG_CHECKED(unchecked, 4);
5063 RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5064 PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5065
5066 bool fast = obj->HasFastProperties();
5067 RETURN_FAILURE_ON_EXCEPTION(
5068 isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
5069 if (fast) JSObject::MigrateSlowToFast(obj, 0);
5070 return isolate->heap()->undefined_value();
5071 }
5072
5073
5074 // Implements part of 8.12.9 DefineOwnProperty.
5075 // There are 3 cases that lead here:
5076 // Step 4a - define a new data property.
5077 // Steps 9b & 12 - replace an existing accessor property with a data property.
5078 // Step 12 - update an existing data property with a data or generic
5079 // descriptor.
5080 RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
5081 HandleScope scope(isolate);
5082 DCHECK(args.length() == 4);
5083 CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
5084 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5085 CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
5086 CONVERT_SMI_ARG_CHECKED(unchecked, 3);
5087 RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5088 PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5089
5090 LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
5091 if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
5092 if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
5093 return isolate->heap()->undefined_value();
5094 }
5095 it.Next();
5096 }
5097
5098 // Take special care when attributes are different and there is already
5099 // a property.
5100 if (it.state() == LookupIterator::ACCESSOR) {
5101 // Use IgnoreAttributes version since a readonly property may be
5102 // overridden and SetProperty does not allow this.
5103 Handle<Object> result;
5104 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5105 isolate, result,
5106 JSObject::SetOwnPropertyIgnoreAttributes(
5107 js_object, name, obj_value, attr,
5108 JSObject::DONT_FORCE_FIELD));
5109 return *result;
5110 }
5111
5112 Handle<Object> result;
5113 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5114 isolate, result,
5115 Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
5116 return *result;
5117 }
5118
5119
5120 // Return property without being observable by accessors or interceptors.
5121 RUNTIME_FUNCTION(Runtime_GetDataProperty) {
5122 HandleScope scope(isolate);
5123 DCHECK(args.length() == 2);
5124 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5125 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5126 return *JSObject::GetDataProperty(object, key);
5127 }
5128
5129
5130 MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
5131 Handle<Object> object,
5132 Handle<Object> key,
5133 Handle<Object> value,
5134 StrictMode strict_mode) {
5135 if (object->IsUndefined() || object->IsNull()) {
5136 Handle<Object> args[2] = { key, object };
5137 THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
5138 HandleVector(args, 2)),
5139 Object);
5140 }
5141
5142 if (object->IsJSProxy()) {
5143 Handle<Object> name_object;
5144 if (key->IsSymbol()) {
5145 name_object = key;
5146 } else {
5147 ASSIGN_RETURN_ON_EXCEPTION(
5148 isolate, name_object, Execution::ToString(isolate, key), Object);
5149 }
5150 Handle<Name> name = Handle<Name>::cast(name_object);
5151 return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
5152 strict_mode);
5153 }
5154
5155 // Check if the given key is an array index.
5156 uint32_t index;
5157 if (key->ToArrayIndex(&index)) {
5158 // TODO(verwaest): Support non-JSObject receivers.
5159 if (!object->IsJSObject()) return value;
5160 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5161
5162 // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5163 // of a string using [] notation. We need to support this too in
5164 // JavaScript.
5165 // In the case of a String object we just need to redirect the assignment to
5166 // the underlying string if the index is in range. Since the underlying
5167 // string does nothing with the assignment then we can ignore such
5168 // assignments.
5169 if (js_object->IsStringObjectWithCharacterAt(index)) {
5170 return value;
5171 }
5172
5173 JSObject::ValidateElements(js_object);
5174 if (js_object->HasExternalArrayElements() ||
5175 js_object->HasFixedTypedArrayElements()) {
5176 if (!value->IsNumber() && !value->IsUndefined()) {
5177 ASSIGN_RETURN_ON_EXCEPTION(
5178 isolate, value, Execution::ToNumber(isolate, value), Object);
5179 }
5180 }
5181
5182 MaybeHandle<Object> result = JSObject::SetElement(
5183 js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
5184 JSObject::ValidateElements(js_object);
5185
5186 return result.is_null() ? result : value;
5187 }
5188
5189 if (key->IsName()) {
5190 Handle<Name> name = Handle<Name>::cast(key);
5191 if (name->AsArrayIndex(&index)) {
5192 // TODO(verwaest): Support non-JSObject receivers.
5193 if (!object->IsJSObject()) return value;
5194 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5195 if (js_object->HasExternalArrayElements()) {
5196 if (!value->IsNumber() && !value->IsUndefined()) {
5197 ASSIGN_RETURN_ON_EXCEPTION(
5198 isolate, value, Execution::ToNumber(isolate, value), Object);
5199 }
5200 }
5201 return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5202 true, SET_PROPERTY);
5203 } else {
5204 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5205 return Object::SetProperty(object, name, value, strict_mode);
5206 }
5207 }
5208
5209 // Call-back into JavaScript to convert the key to a string.
5210 Handle<Object> converted;
5211 ASSIGN_RETURN_ON_EXCEPTION(
5212 isolate, converted, Execution::ToString(isolate, key), Object);
5213 Handle<String> name = Handle<String>::cast(converted);
5214
5215 if (name->AsArrayIndex(&index)) {
5216 // TODO(verwaest): Support non-JSObject receivers.
5217 if (!object->IsJSObject()) return value;
5218 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5219 return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5220 true, SET_PROPERTY);
5221 }
5222 return Object::SetProperty(object, name, value, strict_mode);
5223 }
5224
5225
5226 MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
5227 Handle<Object> key,
5228 Handle<Object> value,
5229 PropertyAttributes attr) {
5230 Isolate* isolate = js_object->GetIsolate();
5231 // Check if the given key is an array index.
5232 uint32_t index;
5233 if (key->ToArrayIndex(&index)) {
5234 // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5235 // of a string using [] notation. We need to support this too in
5236 // JavaScript.
5237 // In the case of a String object we just need to redirect the assignment to
5238 // the underlying string if the index is in range. Since the underlying
5239 // string does nothing with the assignment then we can ignore such
5240 // assignments.
5241 if (js_object->IsStringObjectWithCharacterAt(index)) {
5242 return value;
5243 }
5244
5245 return JSObject::SetElement(js_object, index, value, attr,
5246 SLOPPY, false, DEFINE_PROPERTY);
5247 }
5248
5249 if (key->IsName()) {
5250 Handle<Name> name = Handle<Name>::cast(key);
5251 if (name->AsArrayIndex(&index)) {
5252 return JSObject::SetElement(js_object, index, value, attr,
5253 SLOPPY, false, DEFINE_PROPERTY);
5254 } else {
5255 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5256 return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5257 attr);
5258 }
5259 }
5260
5261 // Call-back into JavaScript to convert the key to a string.
5262 Handle<Object> converted;
5263 ASSIGN_RETURN_ON_EXCEPTION(
5264 isolate, converted, Execution::ToString(isolate, key), Object);
5265 Handle<String> name = Handle<String>::cast(converted);
5266
5267 if (name->AsArrayIndex(&index)) {
5268 return JSObject::SetElement(js_object, index, value, attr,
5269 SLOPPY, false, DEFINE_PROPERTY);
5270 } else {
5271 return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5272 attr);
5273 }
5274 }
5275
5276
5277 MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate,
5278 Handle<JSReceiver> receiver,
5279 Handle<Object> key,
5280 JSReceiver::DeleteMode mode) {
5281 // Check if the given key is an array index.
5282 uint32_t index;
5283 if (key->ToArrayIndex(&index)) {
5284 // In Firefox/SpiderMonkey, Safari and Opera you can access the
5285 // characters of a string using [] notation. In the case of a
5286 // String object we just need to redirect the deletion to the
5287 // underlying string if the index is in range. Since the
5288 // underlying string does nothing with the deletion, we can ignore
5289 // such deletions.
5290 if (receiver->IsStringObjectWithCharacterAt(index)) {
5291 return isolate->factory()->true_value();
5292 }
5293
5294 return JSReceiver::DeleteElement(receiver, index, mode);
5295 }
5296
5297 Handle<Name> name;
5298 if (key->IsName()) {
5299 name = Handle<Name>::cast(key);
5300 } else {
5301 // Call-back into JavaScript to convert the key to a string.
5302 Handle<Object> converted;
5303 ASSIGN_RETURN_ON_EXCEPTION(
5304 isolate, converted, Execution::ToString(isolate, key), Object);
5305 name = Handle<String>::cast(converted);
5306 }
5307
5308 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5309 return JSReceiver::DeleteProperty(receiver, name, mode);
5310 }
5311
5312
5313 RUNTIME_FUNCTION(Runtime_SetHiddenProperty) {
5314 HandleScope scope(isolate);
5315 RUNTIME_ASSERT(args.length() == 3);
5316
5317 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5318 CONVERT_ARG_HANDLE_CHECKED(String, key, 1);
5319 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5320 RUNTIME_ASSERT(key->IsUniqueName());
5321 return *JSObject::SetHiddenProperty(object, key, value);
5322 }
5323
5324
5325 RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
5326 HandleScope scope(isolate);
5327 RUNTIME_ASSERT(args.length() == 4);
5328
5329 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5330 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5331 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5332 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5333 RUNTIME_ASSERT(
5334 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5335 // Compute attributes.
5336 PropertyAttributes attributes =
5337 static_cast<PropertyAttributes>(unchecked_attributes);
5338
5339 #ifdef DEBUG
5340 uint32_t index = 0;
5341 DCHECK(!key->ToArrayIndex(&index));
5342 LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
5343 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5344 if (!maybe.has_value) return isolate->heap()->exception();
5345 RUNTIME_ASSERT(!it.IsFound());
5346 #endif
5347
5348 Handle<Object> result;
5349 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5350 isolate, result,
5351 JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
5352 return *result;
5353 }
5354
5355
5356 RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
5357 HandleScope scope(isolate);
5358 RUNTIME_ASSERT(args.length() == 4);
5359
5360 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5361 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5362 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5363 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5364 RUNTIME_ASSERT(
5365 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5366 // Compute attributes.
5367 PropertyAttributes attributes =
5368 static_cast<PropertyAttributes>(unchecked_attributes);
5369
5370 #ifdef DEBUG
5371 bool duplicate;
5372 if (key->IsName()) {
5373 LookupIterator it(object, Handle<Name>::cast(key),
5374 LookupIterator::OWN_SKIP_INTERCEPTOR);
5375 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5376 DCHECK(maybe.has_value);
5377 duplicate = it.IsFound();
5378 } else {
5379 uint32_t index = 0;
5380 RUNTIME_ASSERT(key->ToArrayIndex(&index));
5381 Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
5382 if (!maybe.has_value) return isolate->heap()->exception();
5383 duplicate = maybe.value;
5384 }
5385 if (duplicate) {
5386 Handle<Object> args[1] = { key };
5387 THROW_NEW_ERROR_RETURN_FAILURE(
5388 isolate,
5389 NewTypeError("duplicate_template_property", HandleVector(args, 1)));
5390 }
5391 #endif
5392
5393 Handle<Object> result;
5394 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5395 isolate, result,
5396 Runtime::DefineObjectProperty(object, key, value, attributes));
5397 return *result;
5398 }
5399
5400
5401 RUNTIME_FUNCTION(Runtime_SetProperty) {
5402 HandleScope scope(isolate);
5403 RUNTIME_ASSERT(args.length() == 4);
5404
5405 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5406 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5407 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5408 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
5409 StrictMode strict_mode = strict_mode_arg;
5410
5411 Handle<Object> result;
5412 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5413 isolate, result,
5414 Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
5415 return *result;
5416 }
5417
5418
5419 // Adds an element to an array.
5420 // This is used to create an indexed data property into an array.
5421 RUNTIME_FUNCTION(Runtime_AddElement) {
5422 HandleScope scope(isolate);
5423 RUNTIME_ASSERT(args.length() == 4);
5424
5425 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5426 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5427 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5428 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5429 RUNTIME_ASSERT(
5430 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5431 // Compute attributes.
5432 PropertyAttributes attributes =
5433 static_cast<PropertyAttributes>(unchecked_attributes);
5434
5435 uint32_t index = 0;
5436 key->ToArrayIndex(&index);
5437
5438 Handle<Object> result;
5439 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5440 isolate, result, JSObject::SetElement(object, index, value, attributes,
5441 SLOPPY, false, DEFINE_PROPERTY));
5442 return *result;
5443 }
5444
5445
5446 RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
5447 HandleScope scope(isolate);
5448 RUNTIME_ASSERT(args.length() == 2);
5449 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
5450 CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
5451 JSObject::TransitionElementsKind(array, map->elements_kind());
5452 return *array;
5453 }
5454
5455
5456 // Set the native flag on the function.
5457 // This is used to decide if we should transform null and undefined
5458 // into the global object when doing call and apply.
5459 RUNTIME_FUNCTION(Runtime_SetNativeFlag) {
5460 SealHandleScope shs(isolate);
5461 RUNTIME_ASSERT(args.length() == 1);
5462
5463 CONVERT_ARG_CHECKED(Object, object, 0);
5464
5465 if (object->IsJSFunction()) {
5466 JSFunction* func = JSFunction::cast(object);
5467 func->shared()->set_native(true);
5468 }
5469 return isolate->heap()->undefined_value();
5470 }
5471
5472
5473 RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) {
5474 SealHandleScope shs(isolate);
5475 RUNTIME_ASSERT(args.length() == 1);
5476 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5477
5478 if (object->IsJSFunction()) {
5479 JSFunction* func = JSFunction::cast(*object);
5480 func->shared()->set_inline_builtin(true);
5481 }
5482 return isolate->heap()->undefined_value();
5483 }
5484
5485
5486 RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) {
5487 HandleScope scope(isolate);
5488 RUNTIME_ASSERT(args.length() == 5);
5489 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5490 CONVERT_SMI_ARG_CHECKED(store_index, 1);
5491 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5492 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
5493 CONVERT_SMI_ARG_CHECKED(literal_index, 4);
5494
5495 Object* raw_literal_cell = literals->get(literal_index);
5496 JSArray* boilerplate = NULL;
5497 if (raw_literal_cell->IsAllocationSite()) {
5498 AllocationSite* site = AllocationSite::cast(raw_literal_cell);
5499 boilerplate = JSArray::cast(site->transition_info());
5500 } else {
5501 boilerplate = JSArray::cast(raw_literal_cell);
5502 }
5503 Handle<JSArray> boilerplate_object(boilerplate);
5504 ElementsKind elements_kind = object->GetElementsKind();
5505 DCHECK(IsFastElementsKind(elements_kind));
5506 // Smis should never trigger transitions.
5507 DCHECK(!value->IsSmi());
5508
5509 if (value->IsNumber()) {
5510 DCHECK(IsFastSmiElementsKind(elements_kind));
5511 ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5512 ? FAST_HOLEY_DOUBLE_ELEMENTS
5513 : FAST_DOUBLE_ELEMENTS;
5514 if (IsMoreGeneralElementsKindTransition(
5515 boilerplate_object->GetElementsKind(),
5516 transitioned_kind)) {
5517 JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5518 }
5519 JSObject::TransitionElementsKind(object, transitioned_kind);
5520 DCHECK(IsFastDoubleElementsKind(object->GetElementsKind()));
5521 FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
5522 HeapNumber* number = HeapNumber::cast(*value);
5523 double_array->set(store_index, number->Number());
5524 } else {
5525 if (!IsFastObjectElementsKind(elements_kind)) {
5526 ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5527 ? FAST_HOLEY_ELEMENTS
5528 : FAST_ELEMENTS;
5529 JSObject::TransitionElementsKind(object, transitioned_kind);
5530 ElementsKind boilerplate_elements_kind =
5531 boilerplate_object->GetElementsKind();
5532 if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind,
5533 transitioned_kind)) {
5534 JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5535 }
5536 }
5537 FixedArray* object_array = FixedArray::cast(object->elements());
5538 object_array->set(store_index, *value);
5539 }
5540 return *object;
5541 }
5542
5543
5544 // Check whether debugger and is about to step into the callback that is passed
5545 // to a built-in function such as Array.forEach.
5546 RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) {
5547 DCHECK(args.length() == 1);
5548 if (!isolate->debug()->is_active() || !isolate->debug()->StepInActive()) {
5549 return isolate->heap()->false_value();
5550 }
5551 CONVERT_ARG_CHECKED(Object, callback, 0);
5552 // We do not step into the callback if it's a builtin or not even a function.
5553 return isolate->heap()->ToBoolean(
5554 callback->IsJSFunction() && !JSFunction::cast(callback)->IsBuiltin());
5555 }
5556
5557
5558 // Set one shot breakpoints for the callback function that is passed to a
5559 // built-in function such as Array.forEach to enable stepping into the callback.
5560 RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) {
5561 DCHECK(args.length() == 1);
5562 Debug* debug = isolate->debug();
5563 if (!debug->IsStepping()) return isolate->heap()->undefined_value();
5564
5565 HandleScope scope(isolate);
5566 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5567 RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject());
5568 Handle<JSFunction> fun;
5569 if (object->IsJSFunction()) {
5570 fun = Handle<JSFunction>::cast(object);
5571 } else {
5572 fun = Handle<JSFunction>(
5573 Handle<JSGeneratorObject>::cast(object)->function(), isolate);
5574 }
5575 // When leaving the function, step out has been activated, but not performed
5576 // if we do not leave the builtin. To be able to step into the function
5577 // again, we need to clear the step out at this point.
5578 debug->ClearStepOut();
5579 debug->FloodWithOneShot(fun);
5580 return isolate->heap()->undefined_value();
5581 }
5582
5583
5584 RUNTIME_FUNCTION(Runtime_DebugPushPromise) {
5585 DCHECK(args.length() == 1);
5586 HandleScope scope(isolate);
5587 CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5588 isolate->PushPromise(promise);
5589 return isolate->heap()->undefined_value();
5590 }
5591
5592
5593 RUNTIME_FUNCTION(Runtime_DebugPopPromise) {
5594 DCHECK(args.length() == 0);
5595 SealHandleScope shs(isolate);
5596 isolate->PopPromise();
5597 return isolate->heap()->undefined_value();
5598 }
5599
5600
5601 RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) {
5602 DCHECK(args.length() == 1);
5603 HandleScope scope(isolate);
5604 CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5605 isolate->debug()->OnPromiseEvent(data);
5606 return isolate->heap()->undefined_value();
5607 }
5608
5609
5610 RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent) {
5611 DCHECK(args.length() == 2);
5612 HandleScope scope(isolate);
5613 CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5614 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
5615 isolate->debug()->OnPromiseReject(promise, value);
5616 return isolate->heap()->undefined_value();
5617 }
5618
5619
5620 RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) {
5621 DCHECK(args.length() == 1);
5622 HandleScope scope(isolate);
5623 CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5624 isolate->debug()->OnAsyncTaskEvent(data);
5625 return isolate->heap()->undefined_value();
5626 }
5627
5628
5629 RUNTIME_FUNCTION(Runtime_DeleteProperty) {
5630 HandleScope scope(isolate);
5631 DCHECK(args.length() == 3);
5632 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5633 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5634 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
5635 JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
5636 ? JSReceiver::STRICT_DELETION : JSReceiver::NORMAL_DELETION;
5637 Handle<Object> result;
5638 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5639 isolate, result,
5640 JSReceiver::DeleteProperty(object, key, delete_mode));
5641 return *result;
5642 }
5643
5644
5645 static Object* HasOwnPropertyImplementation(Isolate* isolate,
5646 Handle<JSObject> object,
5647 Handle<Name> key) {
5648 Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
5649 if (!maybe.has_value) return isolate->heap()->exception();
5650 if (maybe.value) return isolate->heap()->true_value();
5651 // Handle hidden prototypes. If there's a hidden prototype above this thing
5652 // then we have to check it for properties, because they are supposed to
5653 // look like they are on this object.
5654 PrototypeIterator iter(isolate, object);
5655 if (!iter.IsAtEnd() &&
5656 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
5657 ->map()
5658 ->is_hidden_prototype()) {
5659 // TODO(verwaest): The recursion is not necessary for keys that are array
5660 // indices. Removing this.
5661 return HasOwnPropertyImplementation(
5662 isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
5663 key);
5664 }
5665 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5666 return isolate->heap()->false_value();
5667 }
5668
5669
5670 RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
5671 HandleScope scope(isolate);
5672 DCHECK(args.length() == 2);
5673 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
5674 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5675
5676 uint32_t index;
5677 const bool key_is_array_index = key->AsArrayIndex(&index);
5678
5679 // Only JS objects can have properties.
5680 if (object->IsJSObject()) {
5681 Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
5682 // Fast case: either the key is a real named property or it is not
5683 // an array index and there are no interceptors or hidden
5684 // prototypes.
5685 Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key);
5686 if (!maybe.has_value) return isolate->heap()->exception();
5687 DCHECK(!isolate->has_pending_exception());
5688 if (maybe.value) {
5689 return isolate->heap()->true_value();
5690 }
5691 Map* map = js_obj->map();
5692 if (!key_is_array_index &&
5693 !map->has_named_interceptor() &&
5694 !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
5695 return isolate->heap()->false_value();
5696 }
5697 // Slow case.
5698 return HasOwnPropertyImplementation(isolate,
5699 Handle<JSObject>(js_obj),
5700 Handle<Name>(key));
5701 } else if (object->IsString() && key_is_array_index) {
5702 // Well, there is one exception: Handle [] on strings.
5703 Handle<String> string = Handle<String>::cast(object);
5704 if (index < static_cast<uint32_t>(string->length())) {
5705 return isolate->heap()->true_value();
5706 }
5707 }
5708 return isolate->heap()->false_value();
5709 }
5710
5711
5712 RUNTIME_FUNCTION(Runtime_HasProperty) {
5713 HandleScope scope(isolate);
5714 DCHECK(args.length() == 2);
5715 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5716 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5717
5718 Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
5719 if (!maybe.has_value) return isolate->heap()->exception();
5720 return isolate->heap()->ToBoolean(maybe.value);
5721 }
5722
5723
5724 RUNTIME_FUNCTION(Runtime_HasElement) {
5725 HandleScope scope(isolate);
5726 DCHECK(args.length() == 2);
5727 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5728 CONVERT_SMI_ARG_CHECKED(index, 1);
5729
5730 Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
5731 if (!maybe.has_value) return isolate->heap()->exception();
5732 return isolate->heap()->ToBoolean(maybe.value);
5733 }
5734
5735
5736 RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
5737 HandleScope scope(isolate);
5738 DCHECK(args.length() == 2);
5739
5740 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5741 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5742
5743 Maybe<PropertyAttributes> maybe =
5744 JSReceiver::GetOwnPropertyAttributes(object, key);
5745 if (!maybe.has_value) return isolate->heap()->exception();
5746 if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
5747 return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
5748 }
5749
5750
5751 RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
5752 HandleScope scope(isolate);
5753 DCHECK(args.length() == 1);
5754 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5755 Handle<JSArray> result;
5756
5757 isolate->counters()->for_in()->Increment();
5758 Handle<FixedArray> elements;
5759 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5760 isolate, elements,
5761 JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5762 return *isolate->factory()->NewJSArrayWithElements(elements);
5763 }
5764
5765
5766 // Returns either a FixedArray as Runtime_GetPropertyNames,
5767 // or, if the given object has an enum cache that contains
5768 // all enumerable properties of the object and its prototypes
5769 // have none, the map of the object. This is used to speed up
5770 // the check for deletions during a for-in.
5771 RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
5772 SealHandleScope shs(isolate);
5773 DCHECK(args.length() == 1);
5774
5775 CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
5776
5777 if (raw_object->IsSimpleEnum()) return raw_object->map();
5778
5779 HandleScope scope(isolate);
5780 Handle<JSReceiver> object(raw_object);
5781 Handle<FixedArray> content;
5782 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5783 isolate, content,
5784 JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5785
5786 // Test again, since cache may have been built by preceding call.
5787 if (object->IsSimpleEnum()) return object->map();
5788
5789 return *content;
5790 }
5791
5792
5793 // Find the length of the prototype chain that is to be handled as one. If a
5794 // prototype object is hidden it is to be viewed as part of the the object it
5795 // is prototype for.
5796 static int OwnPrototypeChainLength(JSObject* obj) {
5797 int count = 1;
5798 for (PrototypeIterator iter(obj->GetIsolate(), obj);
5799 !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
5800 count++;
5801 }
5802 return count;
5803 }
5804
5805
5806 // Return the names of the own named properties.
5807 // args[0]: object
5808 // args[1]: PropertyAttributes as int
5809 RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
5810 HandleScope scope(isolate);
5811 DCHECK(args.length() == 2);
5812 if (!args[0]->IsJSObject()) {
5813 return isolate->heap()->undefined_value();
5814 }
5815 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5816 CONVERT_SMI_ARG_CHECKED(filter_value, 1);
5817 PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
5818
5819 // Skip the global proxy as it has no properties and always delegates to the
5820 // real global object.
5821 if (obj->IsJSGlobalProxy()) {
5822 // Only collect names if access is permitted.
5823 if (obj->IsAccessCheckNeeded() &&
5824 !isolate->MayNamedAccess(
5825 obj, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
5826 isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
5827 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5828 return *isolate->factory()->NewJSArray(0);
5829 }
5830 PrototypeIterator iter(isolate, obj);
5831 obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5832 }
5833
5834 // Find the number of objects making up this.
5835 int length = OwnPrototypeChainLength(*obj);
5836
5837 // Find the number of own properties for each of the objects.
5838 ScopedVector<int> own_property_count(length);
5839 int total_property_count = 0;
5840 {
5841 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5842 for (int i = 0; i < length; i++) {
5843 DCHECK(!iter.IsAtEnd());
5844 Handle<JSObject> jsproto =
5845 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5846 // Only collect names if access is permitted.
5847 if (jsproto->IsAccessCheckNeeded() &&
5848 !isolate->MayNamedAccess(jsproto,
5849 isolate->factory()->undefined_value(),
5850 v8::ACCESS_KEYS)) {
5851 isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
5852 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5853 return *isolate->factory()->NewJSArray(0);
5854 }
5855 int n;
5856 n = jsproto->NumberOfOwnProperties(filter);
5857 own_property_count[i] = n;
5858 total_property_count += n;
5859 iter.Advance();
5860 }
5861 }
5862
5863 // Allocate an array with storage for all the property names.
5864 Handle<FixedArray> names =
5865 isolate->factory()->NewFixedArray(total_property_count);
5866
5867 // Get the property names.
5868 int next_copy_index = 0;
5869 int hidden_strings = 0;
5870 {
5871 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5872 for (int i = 0; i < length; i++) {
5873 DCHECK(!iter.IsAtEnd());
5874 Handle<JSObject> jsproto =
5875 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5876 jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
5877 if (i > 0) {
5878 // Names from hidden prototypes may already have been added
5879 // for inherited function template instances. Count the duplicates
5880 // and stub them out; the final copy pass at the end ignores holes.
5881 for (int j = next_copy_index;
5882 j < next_copy_index + own_property_count[i]; j++) {
5883 Object* name_from_hidden_proto = names->get(j);
5884 for (int k = 0; k < next_copy_index; k++) {
5885 if (names->get(k) != isolate->heap()->hidden_string()) {
5886 Object* name = names->get(k);
5887 if (name_from_hidden_proto == name) {
5888 names->set(j, isolate->heap()->hidden_string());
5889 hidden_strings++;
5890 break;
5891 }
5892 }
5893 }
5894 }
5895 }
5896 next_copy_index += own_property_count[i];
5897
5898 // Hidden properties only show up if the filter does not skip strings.
5899 if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) {
5900 hidden_strings++;
5901 }
5902 iter.Advance();
5903 }
5904 }
5905
5906 // Filter out name of hidden properties object and
5907 // hidden prototype duplicates.
5908 if (hidden_strings > 0) {
5909 Handle<FixedArray> old_names = names;
5910 names = isolate->factory()->NewFixedArray(
5911 names->length() - hidden_strings);
5912 int dest_pos = 0;
5913 for (int i = 0; i < total_property_count; i++) {
5914 Object* name = old_names->get(i);
5915 if (name == isolate->heap()->hidden_string()) {
5916 hidden_strings--;
5917 continue;
5918 }
5919 names->set(dest_pos++, name);
5920 }
5921 DCHECK_EQ(0, hidden_strings);
5922 }
5923
5924 return *isolate->factory()->NewJSArrayWithElements(names);
5925 }
5926
5927
5928 // Return the names of the own indexed properties.
5929 // args[0]: object
5930 RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
5931 HandleScope scope(isolate);
5932 DCHECK(args.length() == 1);
5933 if (!args[0]->IsJSObject()) {
5934 return isolate->heap()->undefined_value();
5935 }
5936 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5937
5938 int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
5939 Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
5940 obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
5941 return *isolate->factory()->NewJSArrayWithElements(names);
5942 }
5943
5944
5945 // Return information on whether an object has a named or indexed interceptor.
5946 // args[0]: object
5947 RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
5948 HandleScope scope(isolate);
5949 DCHECK(args.length() == 1);
5950 if (!args[0]->IsJSObject()) {
5951 return Smi::FromInt(0);
5952 }
5953 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5954
5955 int result = 0;
5956 if (obj->HasNamedInterceptor()) result |= 2;
5957 if (obj->HasIndexedInterceptor()) result |= 1;
5958
5959 return Smi::FromInt(result);
5960 }
5961
5962
5963 // Return property names from named interceptor.
5964 // args[0]: object
5965 RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
5966 HandleScope scope(isolate);
5967 DCHECK(args.length() == 1);
5968 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5969
5970 if (obj->HasNamedInterceptor()) {
5971 Handle<JSObject> result;
5972 if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
5973 return *result;
5974 }
5975 }
5976 return isolate->heap()->undefined_value();
5977 }
5978
5979
5980 // Return element names from indexed interceptor.
5981 // args[0]: object
5982 RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
5983 HandleScope scope(isolate);
5984 DCHECK(args.length() == 1);
5985 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5986
5987 if (obj->HasIndexedInterceptor()) {
5988 Handle<JSObject> result;
5989 if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
5990 return *result;
5991 }
5992 }
5993 return isolate->heap()->undefined_value();
5994 }
5995
5996
5997 RUNTIME_FUNCTION(Runtime_OwnKeys) {
5998 HandleScope scope(isolate);
5999 DCHECK(args.length() == 1);
6000 CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
6001 Handle<JSObject> object(raw_object);
6002
6003 if (object->IsJSGlobalProxy()) {
6004 // Do access checks before going to the global object.
6005 if (object->IsAccessCheckNeeded() &&
6006 !isolate->MayNamedAccess(
6007 object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
6008 isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
6009 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
6010 return *isolate->factory()->NewJSArray(0);
6011 }
6012
6013 PrototypeIterator iter(isolate, object);
6014 // If proxy is detached we simply return an empty array.
6015 if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
6016 object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
6017 }
6018
6019 Handle<FixedArray> contents;
6020 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6021 isolate, contents,
6022 JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
6023
6024 // Some fast paths through GetKeysInFixedArrayFor reuse a cached
6025 // property array and since the result is mutable we have to create
6026 // a fresh clone on each invocation.
6027 int length = contents->length();
6028 Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
6029 for (int i = 0; i < length; i++) {
6030 Object* entry = contents->get(i);
6031 if (entry->IsString()) {
6032 copy->set(i, entry);
6033 } else {
6034 DCHECK(entry->IsNumber());
6035 HandleScope scope(isolate);
6036 Handle<Object> entry_handle(entry, isolate);
6037 Handle<Object> entry_str =
6038 isolate->factory()->NumberToString(entry_handle);
6039 copy->set(i, *entry_str);
6040 }
6041 }
6042 return *isolate->factory()->NewJSArrayWithElements(copy);
6043 }
6044
6045
6046 RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) {
6047 SealHandleScope shs(isolate);
6048 DCHECK(args.length() == 1);
6049 CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0);
6050
6051 // Compute the frame holding the arguments.
6052 JavaScriptFrameIterator it(isolate);
6053 it.AdvanceToArgumentsFrame();
6054 JavaScriptFrame* frame = it.frame();
6055
6056 // Get the actual number of provided arguments.
6057 const uint32_t n = frame->ComputeParametersCount();
6058
6059 // Try to convert the key to an index. If successful and within
6060 // index return the the argument from the frame.
6061 uint32_t index;
6062 if (raw_key->ToArrayIndex(&index) && index < n) {
6063 return frame->GetParameter(index);
6064 }
6065
6066 HandleScope scope(isolate);
6067 if (raw_key->IsSymbol()) {
6068 Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key);
6069 if (symbol->Equals(isolate->native_context()->iterator_symbol())) {
6070 return isolate->native_context()->array_values_iterator();
6071 }
6072 // Lookup in the initial Object.prototype object.
6073 Handle<Object> result;
6074 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6075 isolate, result,
6076 Object::GetProperty(isolate->initial_object_prototype(),
6077 Handle<Symbol>::cast(raw_key)));
6078 return *result;
6079 }
6080
6081 // Convert the key to a string.
6082 Handle<Object> converted;
6083 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6084 isolate, converted, Execution::ToString(isolate, raw_key));
6085 Handle<String> key = Handle<String>::cast(converted);
6086
6087 // Try to convert the string key into an array index.
6088 if (key->AsArrayIndex(&index)) {
6089 if (index < n) {
6090 return frame->GetParameter(index);
6091 } else {
6092 Handle<Object> initial_prototype(isolate->initial_object_prototype());
6093 Handle<Object> result;
6094 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6095 isolate, result,
6096 Object::GetElement(isolate, initial_prototype, index));
6097 return *result;
6098 }
6099 }
6100
6101 // Handle special arguments properties.
6102 if (String::Equals(isolate->factory()->length_string(), key)) {
6103 return Smi::FromInt(n);
6104 }
6105 if (String::Equals(isolate->factory()->callee_string(), key)) {
6106 JSFunction* function = frame->function();
6107 if (function->shared()->strict_mode() == STRICT) {
6108 THROW_NEW_ERROR_RETURN_FAILURE(
6109 isolate, NewTypeError("strict_arguments_callee",
6110 HandleVector<Object>(NULL, 0)));
6111 }
6112 return function;
6113 }
6114
6115 // Lookup in the initial Object.prototype object.
6116 Handle<Object> result;
6117 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6118 isolate, result,
6119 Object::GetProperty(isolate->initial_object_prototype(), key));
6120 return *result;
6121 }
6122
6123
6124 RUNTIME_FUNCTION(Runtime_ToFastProperties) {
6125 HandleScope scope(isolate);
6126 DCHECK(args.length() == 1);
6127 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6128 if (object->IsJSObject() && !object->IsGlobalObject()) {
6129 JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0);
6130 }
6131 return *object;
6132 }
6133
6134
6135 RUNTIME_FUNCTION(Runtime_ToBool) {
6136 SealHandleScope shs(isolate);
6137 DCHECK(args.length() == 1);
6138 CONVERT_ARG_CHECKED(Object, object, 0);
6139
6140 return isolate->heap()->ToBoolean(object->BooleanValue());
6141 }
6142
6143
6144 // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
6145 // Possible optimizations: put the type string into the oddballs.
6146 RUNTIME_FUNCTION(Runtime_Typeof) {
6147 SealHandleScope shs(isolate);
6148 DCHECK(args.length() == 1);
6149 CONVERT_ARG_CHECKED(Object, obj, 0);
6150 if (obj->IsNumber()) return isolate->heap()->number_string();
6151 HeapObject* heap_obj = HeapObject::cast(obj);
6152
6153 // typeof an undetectable object is 'undefined'
6154 if (heap_obj->map()->is_undetectable()) {
6155 return isolate->heap()->undefined_string();
6156 }
6157
6158 InstanceType instance_type = heap_obj->map()->instance_type();
6159 if (instance_type < FIRST_NONSTRING_TYPE) {
6160 return isolate->heap()->string_string();
6161 }
6162
6163 switch (instance_type) {
6164 case ODDBALL_TYPE:
6165 if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
6166 return isolate->heap()->boolean_string();
6167 }
6168 if (heap_obj->IsNull()) {
6169 return isolate->heap()->object_string();
6170 }
6171 DCHECK(heap_obj->IsUndefined());
6172 return isolate->heap()->undefined_string();
6173 case SYMBOL_TYPE:
6174 return isolate->heap()->symbol_string();
6175 case JS_FUNCTION_TYPE:
6176 case JS_FUNCTION_PROXY_TYPE:
6177 return isolate->heap()->function_string();
6178 default:
6179 // For any kind of object not handled above, the spec rule for
6180 // host objects gives that it is okay to return "object"
6181 return isolate->heap()->object_string();
6182 }
6183 }
6184
6185
6186 RUNTIME_FUNCTION(Runtime_Booleanize) {
6187 SealHandleScope shs(isolate);
6188 DCHECK(args.length() == 2);
6189 CONVERT_ARG_CHECKED(Object, value_raw, 0);
6190 CONVERT_SMI_ARG_CHECKED(token_raw, 1);
6191 intptr_t value = reinterpret_cast<intptr_t>(value_raw);
6192 Token::Value token = static_cast<Token::Value>(token_raw);
6193 switch (token) {
6194 case Token::EQ:
6195 case Token::EQ_STRICT:
6196 return isolate->heap()->ToBoolean(value == 0);
6197 case Token::NE:
6198 case Token::NE_STRICT:
6199 return isolate->heap()->ToBoolean(value != 0);
6200 case Token::LT:
6201 return isolate->heap()->ToBoolean(value < 0);
6202 case Token::GT:
6203 return isolate->heap()->ToBoolean(value > 0);
6204 case Token::LTE:
6205 return isolate->heap()->ToBoolean(value <= 0);
6206 case Token::GTE:
6207 return isolate->heap()->ToBoolean(value >= 0);
6208 default:
6209 // This should only happen during natives fuzzing.
6210 return isolate->heap()->undefined_value();
6211 }
6212 }
6213
6214
6215 static bool AreDigits(const uint8_t*s, int from, int to) {
6216 for (int i = from; i < to; i++) {
6217 if (s[i] < '0' || s[i] > '9') return false;
6218 }
6219
6220 return true;
6221 }
6222
6223
6224 static int ParseDecimalInteger(const uint8_t*s, int from, int to) {
6225 DCHECK(to - from < 10); // Overflow is not possible.
6226 DCHECK(from < to);
6227 int d = s[from] - '0';
6228
6229 for (int i = from + 1; i < to; i++) {
6230 d = 10 * d + (s[i] - '0');
6231 }
6232
6233 return d;
6234 }
6235
6236
6237 RUNTIME_FUNCTION(Runtime_StringToNumber) {
6238 HandleScope handle_scope(isolate);
6239 DCHECK(args.length() == 1);
6240 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6241 subject = String::Flatten(subject);
6242
6243 // Fast case: short integer or some sorts of junk values.
6244 if (subject->IsSeqOneByteString()) {
6245 int len = subject->length();
6246 if (len == 0) return Smi::FromInt(0);
6247
6248 DisallowHeapAllocation no_gc;
6249 uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
6250 bool minus = (data[0] == '-');
6251 int start_pos = (minus ? 1 : 0);
6252
6253 if (start_pos == len) {
6254 return isolate->heap()->nan_value();
6255 } else if (data[start_pos] > '9') {
6256 // Fast check for a junk value. A valid string may start from a
6257 // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
6258 // or the 'I' character ('Infinity'). All of that have codes not greater
6259 // than '9' except 'I' and &nbsp;.
6260 if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
6261 return isolate->heap()->nan_value();
6262 }
6263 } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
6264 // The maximal/minimal smi has 10 digits. If the string has less digits
6265 // we know it will fit into the smi-data type.
6266 int d = ParseDecimalInteger(data, start_pos, len);
6267 if (minus) {
6268 if (d == 0) return isolate->heap()->minus_zero_value();
6269 d = -d;
6270 } else if (!subject->HasHashCode() &&
6271 len <= String::kMaxArrayIndexSize &&
6272 (len == 1 || data[0] != '0')) {
6273 // String hash is not calculated yet but all the data are present.
6274 // Update the hash field to speed up sequential convertions.
6275 uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
6276 #ifdef DEBUG
6277 subject->Hash(); // Force hash calculation.
6278 DCHECK_EQ(static_cast<int>(subject->hash_field()),
6279 static_cast<int>(hash));
6280 #endif
6281 subject->set_hash_field(hash);
6282 }
6283 return Smi::FromInt(d);
6284 }
6285 }
6286
6287 // Slower case.
6288 int flags = ALLOW_HEX;
6289 if (FLAG_harmony_numeric_literals) {
6290 // The current spec draft has not updated "ToNumber Applied to the String
6291 // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
6292 flags |= ALLOW_OCTAL | ALLOW_BINARY;
6293 }
6294
6295 return *isolate->factory()->NewNumber(StringToDouble(
6296 isolate->unicode_cache(), *subject, flags));
6297 }
6298
6299
6300 RUNTIME_FUNCTION(Runtime_NewString) {
6301 HandleScope scope(isolate);
6302 DCHECK(args.length() == 2);
6303 CONVERT_INT32_ARG_CHECKED(length, 0);
6304 CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
6305 if (length == 0) return isolate->heap()->empty_string();
6306 Handle<String> result;
6307 if (is_one_byte) {
6308 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6309 isolate, result, isolate->factory()->NewRawOneByteString(length));
6310 } else {
6311 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6312 isolate, result, isolate->factory()->NewRawTwoByteString(length));
6313 }
6314 return *result;
6315 }
6316
6317
6318 RUNTIME_FUNCTION(Runtime_TruncateString) {
6319 HandleScope scope(isolate);
6320 DCHECK(args.length() == 2);
6321 CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
6322 CONVERT_INT32_ARG_CHECKED(new_length, 1);
6323 RUNTIME_ASSERT(new_length >= 0);
6324 return *SeqString::Truncate(string, new_length);
6325 }
6326
6327
6328 RUNTIME_FUNCTION(Runtime_URIEscape) {
6329 HandleScope scope(isolate);
6330 DCHECK(args.length() == 1);
6331 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6332 Handle<String> string = String::Flatten(source);
6333 DCHECK(string->IsFlat());
6334 Handle<String> result;
6335 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6336 isolate, result,
6337 string->IsOneByteRepresentationUnderneath()
6338 ? URIEscape::Escape<uint8_t>(isolate, source)
6339 : URIEscape::Escape<uc16>(isolate, source));
6340 return *result;
6341 }
6342
6343
6344 RUNTIME_FUNCTION(Runtime_URIUnescape) {
6345 HandleScope scope(isolate);
6346 DCHECK(args.length() == 1);
6347 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6348 Handle<String> string = String::Flatten(source);
6349 DCHECK(string->IsFlat());
6350 Handle<String> result;
6351 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6352 isolate, result,
6353 string->IsOneByteRepresentationUnderneath()
6354 ? URIUnescape::Unescape<uint8_t>(isolate, source)
6355 : URIUnescape::Unescape<uc16>(isolate, source));
6356 return *result;
6357 }
6358
6359
6360 RUNTIME_FUNCTION(Runtime_QuoteJSONString) {
6361 HandleScope scope(isolate);
6362 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6363 DCHECK(args.length() == 1);
6364 Handle<Object> result;
6365 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6366 isolate, result, BasicJsonStringifier::StringifyString(isolate, string));
6367 return *result;
6368 }
6369
6370
6371 RUNTIME_FUNCTION(Runtime_BasicJSONStringify) {
6372 HandleScope scope(isolate);
6373 DCHECK(args.length() == 1);
6374 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6375 BasicJsonStringifier stringifier(isolate);
6376 Handle<Object> result;
6377 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6378 isolate, result, stringifier.Stringify(object));
6379 return *result;
6380 }
6381
6382
6383 RUNTIME_FUNCTION(Runtime_StringParseInt) {
6384 HandleScope handle_scope(isolate);
6385 DCHECK(args.length() == 2);
6386 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6387 CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
6388 RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
6389
6390 subject = String::Flatten(subject);
6391 double value;
6392
6393 { DisallowHeapAllocation no_gc;
6394 String::FlatContent flat = subject->GetFlatContent();
6395
6396 // ECMA-262 section 15.1.2.3, empty string is NaN
6397 if (flat.IsOneByte()) {
6398 value = StringToInt(
6399 isolate->unicode_cache(), flat.ToOneByteVector(), radix);
6400 } else {
6401 value = StringToInt(
6402 isolate->unicode_cache(), flat.ToUC16Vector(), radix);
6403 }
6404 }
6405
6406 return *isolate->factory()->NewNumber(value);
6407 }
6408
6409
6410 RUNTIME_FUNCTION(Runtime_StringParseFloat) {
6411 HandleScope shs(isolate);
6412 DCHECK(args.length() == 1);
6413 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6414
6415 subject = String::Flatten(subject);
6416 double value = StringToDouble(isolate->unicode_cache(), *subject,
6417 ALLOW_TRAILING_JUNK, base::OS::nan_value());
6418
6419 return *isolate->factory()->NewNumber(value);
6420 }
6421
6422
6423 static inline bool ToUpperOverflows(uc32 character) {
6424 // y with umlauts and the micro sign are the only characters that stop
6425 // fitting into one-byte when converting to uppercase.
6426 static const uc32 yuml_code = 0xff;
6427 static const uc32 micro_code = 0xb5;
6428 return (character == yuml_code || character == micro_code);
6429 }
6430
6431
6432 template <class Converter>
6433 MUST_USE_RESULT static Object* ConvertCaseHelper(
6434 Isolate* isolate,
6435 String* string,
6436 SeqString* result,
6437 int result_length,
6438 unibrow::Mapping<Converter, 128>* mapping) {
6439 DisallowHeapAllocation no_gc;
6440 // We try this twice, once with the assumption that the result is no longer
6441 // than the input and, if that assumption breaks, again with the exact
6442 // length. This may not be pretty, but it is nicer than what was here before
6443 // and I hereby claim my vaffel-is.
6444 //
6445 // NOTE: This assumes that the upper/lower case of an ASCII
6446 // character is also ASCII. This is currently the case, but it
6447 // might break in the future if we implement more context and locale
6448 // dependent upper/lower conversions.
6449 bool has_changed_character = false;
6450
6451 // Convert all characters to upper case, assuming that they will fit
6452 // in the buffer
6453 Access<ConsStringIteratorOp> op(
6454 isolate->runtime_state()->string_iterator());
6455 StringCharacterStream stream(string, op.value());
6456 unibrow::uchar chars[Converter::kMaxWidth];
6457 // We can assume that the string is not empty
6458 uc32 current = stream.GetNext();
6459 bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
6460 for (int i = 0; i < result_length;) {
6461 bool has_next = stream.HasMore();
6462 uc32 next = has_next ? stream.GetNext() : 0;
6463 int char_length = mapping->get(current, next, chars);
6464 if (char_length == 0) {
6465 // The case conversion of this character is the character itself.
6466 result->Set(i, current);
6467 i++;
6468 } else if (char_length == 1 &&
6469 (ignore_overflow || !ToUpperOverflows(current))) {
6470 // Common case: converting the letter resulted in one character.
6471 DCHECK(static_cast<uc32>(chars[0]) != current);
6472 result->Set(i, chars[0]);
6473 has_changed_character = true;
6474 i++;
6475 } else if (result_length == string->length()) {
6476 bool overflows = ToUpperOverflows(current);
6477 // We've assumed that the result would be as long as the
6478 // input but here is a character that converts to several
6479 // characters. No matter, we calculate the exact length
6480 // of the result and try the whole thing again.
6481 //
6482 // Note that this leaves room for optimization. We could just
6483 // memcpy what we already have to the result string. Also,
6484 // the result string is the last object allocated we could
6485 // "realloc" it and probably, in the vast majority of cases,
6486 // extend the existing string to be able to hold the full
6487 // result.
6488 int next_length = 0;
6489 if (has_next) {
6490 next_length = mapping->get(next, 0, chars);
6491 if (next_length == 0) next_length = 1;
6492 }
6493 int current_length = i + char_length + next_length;
6494 while (stream.HasMore()) {
6495 current = stream.GetNext();
6496 overflows |= ToUpperOverflows(current);
6497 // NOTE: we use 0 as the next character here because, while
6498 // the next character may affect what a character converts to,
6499 // it does not in any case affect the length of what it convert
6500 // to.
6501 int char_length = mapping->get(current, 0, chars);
6502 if (char_length == 0) char_length = 1;
6503 current_length += char_length;
6504 if (current_length > String::kMaxLength) {
6505 AllowHeapAllocation allocate_error_and_return;
6506 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
6507 NewInvalidStringLengthError());
6508 }
6509 }
6510 // Try again with the real length. Return signed if we need
6511 // to allocate a two-byte string for to uppercase.
6512 return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
6513 : Smi::FromInt(current_length);
6514 } else {
6515 for (int j = 0; j < char_length; j++) {
6516 result->Set(i, chars[j]);
6517 i++;
6518 }
6519 has_changed_character = true;
6520 }
6521 current = next;
6522 }
6523 if (has_changed_character) {
6524 return result;
6525 } else {
6526 // If we didn't actually change anything in doing the conversion
6527 // we simple return the result and let the converted string
6528 // become garbage; there is no reason to keep two identical strings
6529 // alive.
6530 return string;
6531 }
6532 }
6533
6534
6535 namespace {
6536
6537 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
6538 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
6539
6540 // Given a word and two range boundaries returns a word with high bit
6541 // set in every byte iff the corresponding input byte was strictly in
6542 // the range (m, n). All the other bits in the result are cleared.
6543 // This function is only useful when it can be inlined and the
6544 // boundaries are statically known.
6545 // Requires: all bytes in the input word and the boundaries must be
6546 // ASCII (less than 0x7F).
6547 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
6548 // Use strict inequalities since in edge cases the function could be
6549 // further simplified.
6550 DCHECK(0 < m && m < n);
6551 // Has high bit set in every w byte less than n.
6552 uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
6553 // Has high bit set in every w byte greater than m.
6554 uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
6555 return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
6556 }
6557
6558
6559 #ifdef DEBUG
6560 static bool CheckFastAsciiConvert(char* dst,
6561 const char* src,
6562 int length,
6563 bool changed,
6564 bool is_to_lower) {
6565 bool expected_changed = false;
6566 for (int i = 0; i < length; i++) {
6567 if (dst[i] == src[i]) continue;
6568 expected_changed = true;
6569 if (is_to_lower) {
6570 DCHECK('A' <= src[i] && src[i] <= 'Z');
6571 DCHECK(dst[i] == src[i] + ('a' - 'A'));
6572 } else {
6573 DCHECK('a' <= src[i] && src[i] <= 'z');
6574 DCHECK(dst[i] == src[i] - ('a' - 'A'));
6575 }
6576 }
6577 return (expected_changed == changed);
6578 }
6579 #endif
6580
6581
6582 template<class Converter>
6583 static bool FastAsciiConvert(char* dst,
6584 const char* src,
6585 int length,
6586 bool* changed_out) {
6587 #ifdef DEBUG
6588 char* saved_dst = dst;
6589 const char* saved_src = src;
6590 #endif
6591 DisallowHeapAllocation no_gc;
6592 // We rely on the distance between upper and lower case letters
6593 // being a known power of 2.
6594 DCHECK('a' - 'A' == (1 << 5));
6595 // Boundaries for the range of input characters than require conversion.
6596 static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
6597 static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
6598 bool changed = false;
6599 uintptr_t or_acc = 0;
6600 const char* const limit = src + length;
6601
6602 // dst is newly allocated and always aligned.
6603 DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
6604 // Only attempt processing one word at a time if src is also aligned.
6605 if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
6606 // Process the prefix of the input that requires no conversion one aligned
6607 // (machine) word at a time.
6608 while (src <= limit - sizeof(uintptr_t)) {
6609 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6610 or_acc |= w;
6611 if (AsciiRangeMask(w, lo, hi) != 0) {
6612 changed = true;
6613 break;
6614 }
6615 *reinterpret_cast<uintptr_t*>(dst) = w;
6616 src += sizeof(uintptr_t);
6617 dst += sizeof(uintptr_t);
6618 }
6619 // Process the remainder of the input performing conversion when
6620 // required one word at a time.
6621 while (src <= limit - sizeof(uintptr_t)) {
6622 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6623 or_acc |= w;
6624 uintptr_t m = AsciiRangeMask(w, lo, hi);
6625 // The mask has high (7th) bit set in every byte that needs
6626 // conversion and we know that the distance between cases is
6627 // 1 << 5.
6628 *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
6629 src += sizeof(uintptr_t);
6630 dst += sizeof(uintptr_t);
6631 }
6632 }
6633 // Process the last few bytes of the input (or the whole input if
6634 // unaligned access is not supported).
6635 while (src < limit) {
6636 char c = *src;
6637 or_acc |= c;
6638 if (lo < c && c < hi) {
6639 c ^= (1 << 5);
6640 changed = true;
6641 }
6642 *dst = c;
6643 ++src;
6644 ++dst;
6645 }
6646
6647 if ((or_acc & kAsciiMask) != 0) return false;
6648
6649 DCHECK(CheckFastAsciiConvert(
6650 saved_dst, saved_src, length, changed, Converter::kIsToLower));
6651
6652 *changed_out = changed;
6653 return true;
6654 }
6655
6656 } // namespace
6657
6658
6659 template <class Converter>
6660 MUST_USE_RESULT static Object* ConvertCase(
6661 Handle<String> s,
6662 Isolate* isolate,
6663 unibrow::Mapping<Converter, 128>* mapping) {
6664 s = String::Flatten(s);
6665 int length = s->length();
6666 // Assume that the string is not empty; we need this assumption later
6667 if (length == 0) return *s;
6668
6669 // Simpler handling of ASCII strings.
6670 //
6671 // NOTE: This assumes that the upper/lower case of an ASCII
6672 // character is also ASCII. This is currently the case, but it
6673 // might break in the future if we implement more context and locale
6674 // dependent upper/lower conversions.
6675 if (s->IsOneByteRepresentationUnderneath()) {
6676 // Same length as input.
6677 Handle<SeqOneByteString> result =
6678 isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6679 DisallowHeapAllocation no_gc;
6680 String::FlatContent flat_content = s->GetFlatContent();
6681 DCHECK(flat_content.IsFlat());
6682 bool has_changed_character = false;
6683 bool is_ascii = FastAsciiConvert<Converter>(
6684 reinterpret_cast<char*>(result->GetChars()),
6685 reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
6686 length,
6687 &has_changed_character);
6688 // If not ASCII, we discard the result and take the 2 byte path.
6689 if (is_ascii) return has_changed_character ? *result : *s;
6690 }
6691
6692 Handle<SeqString> result; // Same length as input.
6693 if (s->IsOneByteRepresentation()) {
6694 result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6695 } else {
6696 result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
6697 }
6698
6699 Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
6700 if (answer->IsException() || answer->IsString()) return answer;
6701
6702 DCHECK(answer->IsSmi());
6703 length = Smi::cast(answer)->value();
6704 if (s->IsOneByteRepresentation() && length > 0) {
6705 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6706 isolate, result, isolate->factory()->NewRawOneByteString(length));
6707 } else {
6708 if (length < 0) length = -length;
6709 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6710 isolate, result, isolate->factory()->NewRawTwoByteString(length));
6711 }
6712 return ConvertCaseHelper(isolate, *s, *result, length, mapping);
6713 }
6714
6715
6716 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
6717 HandleScope scope(isolate);
6718 DCHECK(args.length() == 1);
6719 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6720 return ConvertCase(
6721 s, isolate, isolate->runtime_state()->to_lower_mapping());
6722 }
6723
6724
6725 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
6726 HandleScope scope(isolate);
6727 DCHECK(args.length() == 1);
6728 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6729 return ConvertCase(
6730 s, isolate, isolate->runtime_state()->to_upper_mapping());
6731 }
6732
6733
6734 RUNTIME_FUNCTION(Runtime_StringTrim) {
6735 HandleScope scope(isolate);
6736 DCHECK(args.length() == 3);
6737
6738 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6739 CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
6740 CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
6741
6742 string = String::Flatten(string);
6743 int length = string->length();
6744
6745 int left = 0;
6746 UnicodeCache* unicode_cache = isolate->unicode_cache();
6747 if (trimLeft) {
6748 while (left < length &&
6749 unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
6750 left++;
6751 }
6752 }
6753
6754 int right = length;
6755 if (trimRight) {
6756 while (right > left &&
6757 unicode_cache->IsWhiteSpaceOrLineTerminator(
6758 string->Get(right - 1))) {
6759 right--;
6760 }
6761 }
6762
6763 return *isolate->factory()->NewSubString(string, left, right);
6764 }
6765
6766
6767 RUNTIME_FUNCTION(Runtime_StringSplit) {
6768 HandleScope handle_scope(isolate);
6769 DCHECK(args.length() == 3);
6770 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6771 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
6772 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
6773 RUNTIME_ASSERT(limit > 0);
6774
6775 int subject_length = subject->length();
6776 int pattern_length = pattern->length();
6777 RUNTIME_ASSERT(pattern_length > 0);
6778
6779 if (limit == 0xffffffffu) {
6780 Handle<Object> cached_answer(
6781 RegExpResultsCache::Lookup(isolate->heap(),
6782 *subject,
6783 *pattern,
6784 RegExpResultsCache::STRING_SPLIT_SUBSTRINGS),
6785 isolate);
6786 if (*cached_answer != Smi::FromInt(0)) {
6787 // The cache FixedArray is a COW-array and can therefore be reused.
6788 Handle<JSArray> result =
6789 isolate->factory()->NewJSArrayWithElements(
6790 Handle<FixedArray>::cast(cached_answer));
6791 return *result;
6792 }
6793 }
6794
6795 // The limit can be very large (0xffffffffu), but since the pattern
6796 // isn't empty, we can never create more parts than ~half the length
6797 // of the subject.
6798
6799 subject = String::Flatten(subject);
6800 pattern = String::Flatten(pattern);
6801
6802 static const int kMaxInitialListCapacity = 16;
6803
6804 ZoneScope zone_scope(isolate->runtime_zone());
6805
6806 // Find (up to limit) indices of separator and end-of-string in subject
6807 int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
6808 ZoneList<int> indices(initial_capacity, zone_scope.zone());
6809
6810 FindStringIndicesDispatch(isolate, *subject, *pattern,
6811 &indices, limit, zone_scope.zone());
6812
6813 if (static_cast<uint32_t>(indices.length()) < limit) {
6814 indices.Add(subject_length, zone_scope.zone());
6815 }
6816
6817 // The list indices now contains the end of each part to create.
6818
6819 // Create JSArray of substrings separated by separator.
6820 int part_count = indices.length();
6821
6822 Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
6823 JSObject::EnsureCanContainHeapObjectElements(result);
6824 result->set_length(Smi::FromInt(part_count));
6825
6826 DCHECK(result->HasFastObjectElements());
6827
6828 if (part_count == 1 && indices.at(0) == subject_length) {
6829 FixedArray::cast(result->elements())->set(0, *subject);
6830 return *result;
6831 }
6832
6833 Handle<FixedArray> elements(FixedArray::cast(result->elements()));
6834 int part_start = 0;
6835 for (int i = 0; i < part_count; i++) {
6836 HandleScope local_loop_handle(isolate);
6837 int part_end = indices.at(i);
6838 Handle<String> substring =
6839 isolate->factory()->NewProperSubString(subject, part_start, part_end);
6840 elements->set(i, *substring);
6841 part_start = part_end + pattern_length;
6842 }
6843
6844 if (limit == 0xffffffffu) {
6845 if (result->HasFastObjectElements()) {
6846 RegExpResultsCache::Enter(isolate,
6847 subject,
6848 pattern,
6849 elements,
6850 RegExpResultsCache::STRING_SPLIT_SUBSTRINGS);
6851 }
6852 }
6853
6854 return *result;
6855 }
6856
6857
6858 // Copies Latin1 characters to the given fixed array looking up
6859 // one-char strings in the cache. Gives up on the first char that is
6860 // not in the cache and fills the remainder with smi zeros. Returns
6861 // the length of the successfully copied prefix.
6862 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
6863 FixedArray* elements, int length) {
6864 DisallowHeapAllocation no_gc;
6865 FixedArray* one_byte_cache = heap->single_character_string_cache();
6866 Object* undefined = heap->undefined_value();
6867 int i;
6868 WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
6869 for (i = 0; i < length; ++i) {
6870 Object* value = one_byte_cache->get(chars[i]);
6871 if (value == undefined) break;
6872 elements->set(i, value, mode);
6873 }
6874 if (i < length) {
6875 DCHECK(Smi::FromInt(0) == 0);
6876 memset(elements->data_start() + i, 0, kPointerSize * (length - i));
6877 }
6878 #ifdef DEBUG
6879 for (int j = 0; j < length; ++j) {
6880 Object* element = elements->get(j);
6881 DCHECK(element == Smi::FromInt(0) ||
6882 (element->IsString() && String::cast(element)->LooksValid()));
6883 }
6884 #endif
6885 return i;
6886 }
6887
6888
6889 // Converts a String to JSArray.
6890 // For example, "foo" => ["f", "o", "o"].
6891 RUNTIME_FUNCTION(Runtime_StringToArray) {
6892 HandleScope scope(isolate);
6893 DCHECK(args.length() == 2);
6894 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6895 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
6896
6897 s = String::Flatten(s);
6898 const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
6899
6900 Handle<FixedArray> elements;
6901 int position = 0;
6902 if (s->IsFlat() && s->IsOneByteRepresentation()) {
6903 // Try using cached chars where possible.
6904 elements = isolate->factory()->NewUninitializedFixedArray(length);
6905
6906 DisallowHeapAllocation no_gc;
6907 String::FlatContent content = s->GetFlatContent();
6908 if (content.IsOneByte()) {
6909 Vector<const uint8_t> chars = content.ToOneByteVector();
6910 // Note, this will initialize all elements (not only the prefix)
6911 // to prevent GC from seeing partially initialized array.
6912 position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
6913 *elements, length);
6914 } else {
6915 MemsetPointer(elements->data_start(),
6916 isolate->heap()->undefined_value(),
6917 length);
6918 }
6919 } else {
6920 elements = isolate->factory()->NewFixedArray(length);
6921 }
6922 for (int i = position; i < length; ++i) {
6923 Handle<Object> str =
6924 isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
6925 elements->set(i, *str);
6926 }
6927
6928 #ifdef DEBUG
6929 for (int i = 0; i < length; ++i) {
6930 DCHECK(String::cast(elements->get(i))->length() == 1);
6931 }
6932 #endif
6933
6934 return *isolate->factory()->NewJSArrayWithElements(elements);
6935 }
6936
6937
6938 RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
6939 HandleScope scope(isolate);
6940 DCHECK(args.length() == 1);
6941 CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
6942 return *Object::ToObject(isolate, value).ToHandleChecked();
6943 }
6944
6945
6946 bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) {
6947 unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
6948 int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars);
6949 return char_length == 0;
6950 }
6951
6952
6953 RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
6954 HandleScope scope(isolate);
6955 DCHECK(args.length() == 1);
6956 CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6957
6958 return *isolate->factory()->NumberToString(number);
6959 }
6960
6961
6962 RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
6963 HandleScope scope(isolate);
6964 DCHECK(args.length() == 1);
6965 CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6966
6967 return *isolate->factory()->NumberToString(number, false);
6968 }
6969
6970
6971 RUNTIME_FUNCTION(Runtime_NumberToInteger) {
6972 HandleScope scope(isolate);
6973 DCHECK(args.length() == 1);
6974
6975 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6976 return *isolate->factory()->NewNumber(DoubleToInteger(number));
6977 }
6978
6979
6980 RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
6981 HandleScope scope(isolate);
6982 DCHECK(args.length() == 1);
6983
6984 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6985 double double_value = DoubleToInteger(number);
6986 // Map both -0 and +0 to +0.
6987 if (double_value == 0) double_value = 0;
6988
6989 return *isolate->factory()->NewNumber(double_value);
6990 }
6991
6992
6993 RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
6994 HandleScope scope(isolate);
6995 DCHECK(args.length() == 1);
6996
6997 CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
6998 return *isolate->factory()->NewNumberFromUint(number);
6999 }
7000
7001
7002 RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
7003 HandleScope scope(isolate);
7004 DCHECK(args.length() == 1);
7005
7006 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
7007 return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
7008 }
7009
7010
7011 // Converts a Number to a Smi, if possible. Returns NaN if the number is not
7012 // a small integer.
7013 RUNTIME_FUNCTION(Runtime_NumberToSmi) {
7014 SealHandleScope shs(isolate);
7015 DCHECK(args.length() == 1);
7016 CONVERT_ARG_CHECKED(Object, obj, 0);
7017 if (obj->IsSmi()) {
7018 return obj;
7019 }
7020 if (obj->IsHeapNumber()) {
7021 double value = HeapNumber::cast(obj)->value();
7022 int int_value = FastD2I(value);
7023 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
7024 return Smi::FromInt(int_value);
7025 }
7026 }
7027 return isolate->heap()->nan_value();
7028 }
7029
7030
7031 RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
7032 HandleScope scope(isolate);
7033 DCHECK(args.length() == 0);
7034 return *isolate->factory()->NewHeapNumber(0);
7035 }
7036
7037
7038 RUNTIME_FUNCTION(Runtime_NumberAdd) {
7039 HandleScope scope(isolate);
7040 DCHECK(args.length() == 2);
7041
7042 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7043 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7044 return *isolate->factory()->NewNumber(x + y);
7045 }
7046
7047
7048 RUNTIME_FUNCTION(Runtime_NumberSub) {
7049 HandleScope scope(isolate);
7050 DCHECK(args.length() == 2);
7051
7052 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7053 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7054 return *isolate->factory()->NewNumber(x - y);
7055 }
7056
7057
7058 RUNTIME_FUNCTION(Runtime_NumberMul) {
7059 HandleScope scope(isolate);
7060 DCHECK(args.length() == 2);
7061
7062 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7063 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7064 return *isolate->factory()->NewNumber(x * y);
7065 }
7066
7067
7068 RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
7069 HandleScope scope(isolate);
7070 DCHECK(args.length() == 1);
7071
7072 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7073 return *isolate->factory()->NewNumber(-x);
7074 }
7075
7076
7077 RUNTIME_FUNCTION(Runtime_NumberDiv) {
7078 HandleScope scope(isolate);
7079 DCHECK(args.length() == 2);
7080
7081 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7082 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7083 return *isolate->factory()->NewNumber(x / y);
7084 }
7085
7086
7087 RUNTIME_FUNCTION(Runtime_NumberMod) {
7088 HandleScope scope(isolate);
7089 DCHECK(args.length() == 2);
7090
7091 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7092 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7093 return *isolate->factory()->NewNumber(modulo(x, y));
7094 }
7095
7096
7097 RUNTIME_FUNCTION(Runtime_NumberImul) {
7098 HandleScope scope(isolate);
7099 DCHECK(args.length() == 2);
7100
7101 // We rely on implementation-defined behavior below, but at least not on
7102 // undefined behavior.
7103 CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
7104 CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
7105 int32_t product = static_cast<int32_t>(x * y);
7106 return *isolate->factory()->NewNumberFromInt(product);
7107 }
7108
7109
7110 RUNTIME_FUNCTION(Runtime_StringAdd) {
7111 HandleScope scope(isolate);
7112 DCHECK(args.length() == 2);
7113 CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
7114 CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
7115 isolate->counters()->string_add_runtime()->Increment();
7116 Handle<String> result;
7117 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7118 isolate, result, isolate->factory()->NewConsString(str1, str2));
7119 return *result;
7120 }
7121
7122
7123 template <typename sinkchar>
7124 static inline void StringBuilderConcatHelper(String* special,
7125 sinkchar* sink,
7126 FixedArray* fixed_array,
7127 int array_length) {
7128 DisallowHeapAllocation no_gc;
7129 int position = 0;
7130 for (int i = 0; i < array_length; i++) {
7131 Object* element = fixed_array->get(i);
7132 if (element->IsSmi()) {
7133 // Smi encoding of position and length.
7134 int encoded_slice = Smi::cast(element)->value();
7135 int pos;
7136 int len;
7137 if (encoded_slice > 0) {
7138 // Position and length encoded in one smi.
7139 pos = StringBuilderSubstringPosition::decode(encoded_slice);
7140 len = StringBuilderSubstringLength::decode(encoded_slice);
7141 } else {
7142 // Position and length encoded in two smis.
7143 Object* obj = fixed_array->get(++i);
7144 DCHECK(obj->IsSmi());
7145 pos = Smi::cast(obj)->value();
7146 len = -encoded_slice;
7147 }
7148 String::WriteToFlat(special,
7149 sink + position,
7150 pos,
7151 pos + len);
7152 position += len;
7153 } else {
7154 String* string = String::cast(element);
7155 int element_length = string->length();
7156 String::WriteToFlat(string, sink + position, 0, element_length);
7157 position += element_length;
7158 }
7159 }
7160 }
7161
7162
7163 // Returns the result length of the concatenation.
7164 // On illegal argument, -1 is returned.
7165 static inline int StringBuilderConcatLength(int special_length,
7166 FixedArray* fixed_array,
7167 int array_length,
7168 bool* one_byte) {
7169 DisallowHeapAllocation no_gc;
7170 int position = 0;
7171 for (int i = 0; i < array_length; i++) {
7172 int increment = 0;
7173 Object* elt = fixed_array->get(i);
7174 if (elt->IsSmi()) {
7175 // Smi encoding of position and length.
7176 int smi_value = Smi::cast(elt)->value();
7177 int pos;
7178 int len;
7179 if (smi_value > 0) {
7180 // Position and length encoded in one smi.
7181 pos = StringBuilderSubstringPosition::decode(smi_value);
7182 len = StringBuilderSubstringLength::decode(smi_value);
7183 } else {
7184 // Position and length encoded in two smis.
7185 len = -smi_value;
7186 // Get the position and check that it is a positive smi.
7187 i++;
7188 if (i >= array_length) return -1;
7189 Object* next_smi = fixed_array->get(i);
7190 if (!next_smi->IsSmi()) return -1;
7191 pos = Smi::cast(next_smi)->value();
7192 if (pos < 0) return -1;
7193 }
7194 DCHECK(pos >= 0);
7195 DCHECK(len >= 0);
7196 if (pos > special_length || len > special_length - pos) return -1;
7197 increment = len;
7198 } else if (elt->IsString()) {
7199 String* element = String::cast(elt);
7200 int element_length = element->length();
7201 increment = element_length;
7202 if (*one_byte && !element->HasOnlyOneByteChars()) {
7203 *one_byte = false;
7204 }
7205 } else {
7206 return -1;
7207 }
7208 if (increment > String::kMaxLength - position) {
7209 return kMaxInt; // Provoke throw on allocation.
7210 }
7211 position += increment;
7212 }
7213 return position;
7214 }
7215
7216
7217 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
7218 HandleScope scope(isolate);
7219 DCHECK(args.length() == 3);
7220 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7221 int32_t array_length;
7222 if (!args[1]->ToInt32(&array_length)) {
7223 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7224 }
7225 CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
7226
7227 size_t actual_array_length = 0;
7228 RUNTIME_ASSERT(
7229 TryNumberToSize(isolate, array->length(), &actual_array_length));
7230 RUNTIME_ASSERT(array_length >= 0);
7231 RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
7232
7233 // This assumption is used by the slice encoding in one or two smis.
7234 DCHECK(Smi::kMaxValue >= String::kMaxLength);
7235
7236 RUNTIME_ASSERT(array->HasFastElements());
7237 JSObject::EnsureCanContainHeapObjectElements(array);
7238
7239 int special_length = special->length();
7240 if (!array->HasFastObjectElements()) {
7241 return isolate->Throw(isolate->heap()->illegal_argument_string());
7242 }
7243
7244 int length;
7245 bool one_byte = special->HasOnlyOneByteChars();
7246
7247 { DisallowHeapAllocation no_gc;
7248 FixedArray* fixed_array = FixedArray::cast(array->elements());
7249 if (fixed_array->length() < array_length) {
7250 array_length = fixed_array->length();
7251 }
7252
7253 if (array_length == 0) {
7254 return isolate->heap()->empty_string();
7255 } else if (array_length == 1) {
7256 Object* first = fixed_array->get(0);
7257 if (first->IsString()) return first;
7258 }
7259 length = StringBuilderConcatLength(
7260 special_length, fixed_array, array_length, &one_byte);
7261 }
7262
7263 if (length == -1) {
7264 return isolate->Throw(isolate->heap()->illegal_argument_string());
7265 }
7266
7267 if (one_byte) {
7268 Handle<SeqOneByteString> answer;
7269 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7270 isolate, answer,
7271 isolate->factory()->NewRawOneByteString(length));
7272 StringBuilderConcatHelper(*special,
7273 answer->GetChars(),
7274 FixedArray::cast(array->elements()),
7275 array_length);
7276 return *answer;
7277 } else {
7278 Handle<SeqTwoByteString> answer;
7279 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7280 isolate, answer,
7281 isolate->factory()->NewRawTwoByteString(length));
7282 StringBuilderConcatHelper(*special,
7283 answer->GetChars(),
7284 FixedArray::cast(array->elements()),
7285 array_length);
7286 return *answer;
7287 }
7288 }
7289
7290
7291 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
7292 HandleScope scope(isolate);
7293 DCHECK(args.length() == 3);
7294 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7295 int32_t array_length;
7296 if (!args[1]->ToInt32(&array_length)) {
7297 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7298 }
7299 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7300 RUNTIME_ASSERT(array->HasFastObjectElements());
7301 RUNTIME_ASSERT(array_length >= 0);
7302
7303 Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
7304 if (fixed_array->length() < array_length) {
7305 array_length = fixed_array->length();
7306 }
7307
7308 if (array_length == 0) {
7309 return isolate->heap()->empty_string();
7310 } else if (array_length == 1) {
7311 Object* first = fixed_array->get(0);
7312 RUNTIME_ASSERT(first->IsString());
7313 return first;
7314 }
7315
7316 int separator_length = separator->length();
7317 RUNTIME_ASSERT(separator_length > 0);
7318 int max_nof_separators =
7319 (String::kMaxLength + separator_length - 1) / separator_length;
7320 if (max_nof_separators < (array_length - 1)) {
7321 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7322 }
7323 int length = (array_length - 1) * separator_length;
7324 for (int i = 0; i < array_length; i++) {
7325 Object* element_obj = fixed_array->get(i);
7326 RUNTIME_ASSERT(element_obj->IsString());
7327 String* element = String::cast(element_obj);
7328 int increment = element->length();
7329 if (increment > String::kMaxLength - length) {
7330 STATIC_ASSERT(String::kMaxLength < kMaxInt);
7331 length = kMaxInt; // Provoke exception;
7332 break;
7333 }
7334 length += increment;
7335 }
7336
7337 Handle<SeqTwoByteString> answer;
7338 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7339 isolate, answer,
7340 isolate->factory()->NewRawTwoByteString(length));
7341
7342 DisallowHeapAllocation no_gc;
7343
7344 uc16* sink = answer->GetChars();
7345 #ifdef DEBUG
7346 uc16* end = sink + length;
7347 #endif
7348
7349 RUNTIME_ASSERT(fixed_array->get(0)->IsString());
7350 String* first = String::cast(fixed_array->get(0));
7351 String* separator_raw = *separator;
7352 int first_length = first->length();
7353 String::WriteToFlat(first, sink, 0, first_length);
7354 sink += first_length;
7355
7356 for (int i = 1; i < array_length; i++) {
7357 DCHECK(sink + separator_length <= end);
7358 String::WriteToFlat(separator_raw, sink, 0, separator_length);
7359 sink += separator_length;
7360
7361 RUNTIME_ASSERT(fixed_array->get(i)->IsString());
7362 String* element = String::cast(fixed_array->get(i));
7363 int element_length = element->length();
7364 DCHECK(sink + element_length <= end);
7365 String::WriteToFlat(element, sink, 0, element_length);
7366 sink += element_length;
7367 }
7368 DCHECK(sink == end);
7369
7370 // Use %_FastOneByteArrayJoin instead.
7371 DCHECK(!answer->IsOneByteRepresentation());
7372 return *answer;
7373 }
7374
7375 template <typename Char>
7376 static void JoinSparseArrayWithSeparator(FixedArray* elements,
7377 int elements_length,
7378 uint32_t array_length,
7379 String* separator,
7380 Vector<Char> buffer) {
7381 DisallowHeapAllocation no_gc;
7382 int previous_separator_position = 0;
7383 int separator_length = separator->length();
7384 int cursor = 0;
7385 for (int i = 0; i < elements_length; i += 2) {
7386 int position = NumberToInt32(elements->get(i));
7387 String* string = String::cast(elements->get(i + 1));
7388 int string_length = string->length();
7389 if (string->length() > 0) {
7390 while (previous_separator_position < position) {
7391 String::WriteToFlat<Char>(separator, &buffer[cursor],
7392 0, separator_length);
7393 cursor += separator_length;
7394 previous_separator_position++;
7395 }
7396 String::WriteToFlat<Char>(string, &buffer[cursor],
7397 0, string_length);
7398 cursor += string->length();
7399 }
7400 }
7401 if (separator_length > 0) {
7402 // Array length must be representable as a signed 32-bit number,
7403 // otherwise the total string length would have been too large.
7404 DCHECK(array_length <= 0x7fffffff); // Is int32_t.
7405 int last_array_index = static_cast<int>(array_length - 1);
7406 while (previous_separator_position < last_array_index) {
7407 String::WriteToFlat<Char>(separator, &buffer[cursor],
7408 0, separator_length);
7409 cursor += separator_length;
7410 previous_separator_position++;
7411 }
7412 }
7413 DCHECK(cursor <= buffer.length());
7414 }
7415
7416
7417 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
7418 HandleScope scope(isolate);
7419 DCHECK(args.length() == 3);
7420 CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
7421 CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
7422 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7423 // elements_array is fast-mode JSarray of alternating positions
7424 // (increasing order) and strings.
7425 RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
7426 // array_length is length of original array (used to add separators);
7427 // separator is string to put between elements. Assumed to be non-empty.
7428 RUNTIME_ASSERT(array_length > 0);
7429
7430 // Find total length of join result.
7431 int string_length = 0;
7432 bool is_one_byte = separator->IsOneByteRepresentation();
7433 bool overflow = false;
7434 CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
7435 RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
7436 RUNTIME_ASSERT((elements_length & 1) == 0); // Even length.
7437 FixedArray* elements = FixedArray::cast(elements_array->elements());
7438 for (int i = 0; i < elements_length; i += 2) {
7439 RUNTIME_ASSERT(elements->get(i)->IsNumber());
7440 CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
7441 RUNTIME_ASSERT(position < array_length);
7442 RUNTIME_ASSERT(elements->get(i + 1)->IsString());
7443 }
7444
7445 { DisallowHeapAllocation no_gc;
7446 for (int i = 0; i < elements_length; i += 2) {
7447 String* string = String::cast(elements->get(i + 1));
7448 int length = string->length();
7449 if (is_one_byte && !string->IsOneByteRepresentation()) {
7450 is_one_byte = false;
7451 }
7452 if (length > String::kMaxLength ||
7453 String::kMaxLength - length < string_length) {
7454 overflow = true;
7455 break;
7456 }
7457 string_length += length;
7458 }
7459 }
7460
7461 int separator_length = separator->length();
7462 if (!overflow && separator_length > 0) {
7463 if (array_length <= 0x7fffffffu) {
7464 int separator_count = static_cast<int>(array_length) - 1;
7465 int remaining_length = String::kMaxLength - string_length;
7466 if ((remaining_length / separator_length) >= separator_count) {
7467 string_length += separator_length * (array_length - 1);
7468 } else {
7469 // Not room for the separators within the maximal string length.
7470 overflow = true;
7471 }
7472 } else {
7473 // Nonempty separator and at least 2^31-1 separators necessary
7474 // means that the string is too large to create.
7475 STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
7476 overflow = true;
7477 }
7478 }
7479 if (overflow) {
7480 // Throw an exception if the resulting string is too large. See
7481 // https://code.google.com/p/chromium/issues/detail?id=336820
7482 // for details.
7483 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7484 }
7485
7486 if (is_one_byte) {
7487 Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString(
7488 string_length).ToHandleChecked();
7489 JoinSparseArrayWithSeparator<uint8_t>(
7490 FixedArray::cast(elements_array->elements()),
7491 elements_length,
7492 array_length,
7493 *separator,
7494 Vector<uint8_t>(result->GetChars(), string_length));
7495 return *result;
7496 } else {
7497 Handle<SeqTwoByteString> result = isolate->factory()->NewRawTwoByteString(
7498 string_length).ToHandleChecked();
7499 JoinSparseArrayWithSeparator<uc16>(
7500 FixedArray::cast(elements_array->elements()),
7501 elements_length,
7502 array_length,
7503 *separator,
7504 Vector<uc16>(result->GetChars(), string_length));
7505 return *result;
7506 }
7507 }
7508
7509
7510 RUNTIME_FUNCTION(Runtime_NumberOr) {
7511 HandleScope scope(isolate);
7512 DCHECK(args.length() == 2);
7513
7514 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7515 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7516 return *isolate->factory()->NewNumberFromInt(x | y);
7517 }
7518
7519
7520 RUNTIME_FUNCTION(Runtime_NumberAnd) {
7521 HandleScope scope(isolate);
7522 DCHECK(args.length() == 2);
7523
7524 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7525 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7526 return *isolate->factory()->NewNumberFromInt(x & y);
7527 }
7528
7529
7530 RUNTIME_FUNCTION(Runtime_NumberXor) {
7531 HandleScope scope(isolate);
7532 DCHECK(args.length() == 2);
7533
7534 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7535 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7536 return *isolate->factory()->NewNumberFromInt(x ^ y);
7537 }
7538
7539
7540 RUNTIME_FUNCTION(Runtime_NumberShl) {
7541 HandleScope scope(isolate);
7542 DCHECK(args.length() == 2);
7543
7544 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7545 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7546 return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
7547 }
7548
7549
7550 RUNTIME_FUNCTION(Runtime_NumberShr) {
7551 HandleScope scope(isolate);
7552 DCHECK(args.length() == 2);
7553
7554 CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
7555 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7556 return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
7557 }
7558
7559
7560 RUNTIME_FUNCTION(Runtime_NumberSar) {
7561 HandleScope scope(isolate);
7562 DCHECK(args.length() == 2);
7563
7564 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7565 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7566 return *isolate->factory()->NewNumberFromInt(
7567 ArithmeticShiftRight(x, y & 0x1f));
7568 }
7569
7570
7571 RUNTIME_FUNCTION(Runtime_NumberEquals) {
7572 SealHandleScope shs(isolate);
7573 DCHECK(args.length() == 2);
7574
7575 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7576 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7577 if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
7578 if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
7579 if (x == y) return Smi::FromInt(EQUAL);
7580 Object* result;
7581 if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
7582 result = Smi::FromInt(EQUAL);
7583 } else {
7584 result = Smi::FromInt(NOT_EQUAL);
7585 }
7586 return result;
7587 }
7588
7589
7590 RUNTIME_FUNCTION(Runtime_StringEquals) {
7591 HandleScope handle_scope(isolate);
7592 DCHECK(args.length() == 2);
7593
7594 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7595 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7596
7597 bool not_equal = !String::Equals(x, y);
7598 // This is slightly convoluted because the value that signifies
7599 // equality is 0 and inequality is 1 so we have to negate the result
7600 // from String::Equals.
7601 DCHECK(not_equal == 0 || not_equal == 1);
7602 STATIC_ASSERT(EQUAL == 0);
7603 STATIC_ASSERT(NOT_EQUAL == 1);
7604 return Smi::FromInt(not_equal);
7605 }
7606
7607
7608 RUNTIME_FUNCTION(Runtime_NumberCompare) {
7609 SealHandleScope shs(isolate);
7610 DCHECK(args.length() == 3);
7611
7612 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7613 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7614 CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
7615 if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
7616 if (x == y) return Smi::FromInt(EQUAL);
7617 if (isless(x, y)) return Smi::FromInt(LESS);
7618 return Smi::FromInt(GREATER);
7619 }
7620
7621
7622 // Compare two Smis as if they were converted to strings and then
7623 // compared lexicographically.
7624 RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
7625 SealHandleScope shs(isolate);
7626 DCHECK(args.length() == 2);
7627 CONVERT_SMI_ARG_CHECKED(x_value, 0);
7628 CONVERT_SMI_ARG_CHECKED(y_value, 1);
7629
7630 // If the integers are equal so are the string representations.
7631 if (x_value == y_value) return Smi::FromInt(EQUAL);
7632
7633 // If one of the integers is zero the normal integer order is the
7634 // same as the lexicographic order of the string representations.
7635 if (x_value == 0 || y_value == 0)
7636 return Smi::FromInt(x_value < y_value ? LESS : GREATER);
7637
7638 // If only one of the integers is negative the negative number is
7639 // smallest because the char code of '-' is less than the char code
7640 // of any digit. Otherwise, we make both values positive.
7641
7642 // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
7643 // architectures using 32-bit Smis.
7644 uint32_t x_scaled = x_value;
7645 uint32_t y_scaled = y_value;
7646 if (x_value < 0 || y_value < 0) {
7647 if (y_value >= 0) return Smi::FromInt(LESS);
7648 if (x_value >= 0) return Smi::FromInt(GREATER);
7649 x_scaled = -x_value;
7650 y_scaled = -y_value;
7651 }
7652
7653 static const uint32_t kPowersOf10[] = {
7654 1, 10, 100, 1000, 10*1000, 100*1000,
7655 1000*1000, 10*1000*1000, 100*1000*1000,
7656 1000*1000*1000
7657 };
7658
7659 // If the integers have the same number of decimal digits they can be
7660 // compared directly as the numeric order is the same as the
7661 // lexicographic order. If one integer has fewer digits, it is scaled
7662 // by some power of 10 to have the same number of digits as the longer
7663 // integer. If the scaled integers are equal it means the shorter
7664 // integer comes first in the lexicographic order.
7665
7666 // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
7667 int x_log2 = IntegerLog2(x_scaled);
7668 int x_log10 = ((x_log2 + 1) * 1233) >> 12;
7669 x_log10 -= x_scaled < kPowersOf10[x_log10];
7670
7671 int y_log2 = IntegerLog2(y_scaled);
7672 int y_log10 = ((y_log2 + 1) * 1233) >> 12;
7673 y_log10 -= y_scaled < kPowersOf10[y_log10];
7674
7675 int tie = EQUAL;
7676
7677 if (x_log10 < y_log10) {
7678 // X has fewer digits. We would like to simply scale up X but that
7679 // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
7680 // be scaled up to 9_000_000_000. So we scale up by the next
7681 // smallest power and scale down Y to drop one digit. It is OK to
7682 // drop one digit from the longer integer since the final digit is
7683 // past the length of the shorter integer.
7684 x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
7685 y_scaled /= 10;
7686 tie = LESS;
7687 } else if (y_log10 < x_log10) {
7688 y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
7689 x_scaled /= 10;
7690 tie = GREATER;
7691 }
7692
7693 if (x_scaled < y_scaled) return Smi::FromInt(LESS);
7694 if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
7695 return Smi::FromInt(tie);
7696 }
7697
7698
7699 RUNTIME_FUNCTION(Runtime_StringCompare) {
7700 HandleScope handle_scope(isolate);
7701 DCHECK(args.length() == 2);
7702
7703 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7704 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7705
7706 isolate->counters()->string_compare_runtime()->Increment();
7707
7708 // A few fast case tests before we flatten.
7709 if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
7710 if (y->length() == 0) {
7711 if (x->length() == 0) return Smi::FromInt(EQUAL);
7712 return Smi::FromInt(GREATER);
7713 } else if (x->length() == 0) {
7714 return Smi::FromInt(LESS);
7715 }
7716
7717 int d = x->Get(0) - y->Get(0);
7718 if (d < 0) return Smi::FromInt(LESS);
7719 else if (d > 0) return Smi::FromInt(GREATER);
7720
7721 // Slow case.
7722 x = String::Flatten(x);
7723 y = String::Flatten(y);
7724
7725 DisallowHeapAllocation no_gc;
7726 Object* equal_prefix_result = Smi::FromInt(EQUAL);
7727 int prefix_length = x->length();
7728 if (y->length() < prefix_length) {
7729 prefix_length = y->length();
7730 equal_prefix_result = Smi::FromInt(GREATER);
7731 } else if (y->length() > prefix_length) {
7732 equal_prefix_result = Smi::FromInt(LESS);
7733 }
7734 int r;
7735 String::FlatContent x_content = x->GetFlatContent();
7736 String::FlatContent y_content = y->GetFlatContent();
7737 if (x_content.IsOneByte()) {
7738 Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
7739 if (y_content.IsOneByte()) {
7740 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7741 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7742 } else {
7743 Vector<const uc16> y_chars = y_content.ToUC16Vector();
7744 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7745 }
7746 } else {
7747 Vector<const uc16> x_chars = x_content.ToUC16Vector();
7748 if (y_content.IsOneByte()) {
7749 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7750 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7751 } else {
7752 Vector<const uc16> y_chars = y_content.ToUC16Vector();
7753 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7754 }
7755 }
7756 Object* result;
7757 if (r == 0) {
7758 result = equal_prefix_result;
7759 } else {
7760 result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
7761 }
7762 return result;
7763 }
7764
7765
7766 #define RUNTIME_UNARY_MATH(Name, name) \
7767 RUNTIME_FUNCTION(Runtime_Math##Name) { \
7768 HandleScope scope(isolate); \
7769 DCHECK(args.length() == 1); \
7770 isolate->counters()->math_##name()->Increment(); \
7771 CONVERT_DOUBLE_ARG_CHECKED(x, 0); \
7772 return *isolate->factory()->NewHeapNumber(std::name(x)); \
7773 }
7774
7775 RUNTIME_UNARY_MATH(Acos, acos)
7776 RUNTIME_UNARY_MATH(Asin, asin)
7777 RUNTIME_UNARY_MATH(Atan, atan)
7778 RUNTIME_UNARY_MATH(LogRT, log)
7779 #undef RUNTIME_UNARY_MATH
7780
7781
7782 RUNTIME_FUNCTION(Runtime_DoubleHi) {
7783 HandleScope scope(isolate);
7784 DCHECK(args.length() == 1);
7785 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7786 uint64_t integer = double_to_uint64(x);
7787 integer = (integer >> 32) & 0xFFFFFFFFu;
7788 return *isolate->factory()->NewNumber(static_cast<int32_t>(integer));
7789 }
7790
7791
7792 RUNTIME_FUNCTION(Runtime_DoubleLo) {
7793 HandleScope scope(isolate);
7794 DCHECK(args.length() == 1);
7795 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7796 return *isolate->factory()->NewNumber(
7797 static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu));
7798 }
7799
7800
7801 RUNTIME_FUNCTION(Runtime_ConstructDouble) {
7802 HandleScope scope(isolate);
7803 DCHECK(args.length() == 2);
7804 CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]);
7805 CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]);
7806 uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo;
7807 return *isolate->factory()->NewNumber(uint64_to_double(result));
7808 }
7809
7810
7811 RUNTIME_FUNCTION(Runtime_RemPiO2) {
7812 HandleScope handle_scope(isolate);
7813 DCHECK(args.length() == 1);
7814 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7815 Factory* factory = isolate->factory();
7816 double y[2];
7817 int n = fdlibm::rempio2(x, y);
7818 Handle<FixedArray> array = factory->NewFixedArray(3);
7819 Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]);
7820 Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]);
7821 array->set(0, Smi::FromInt(n));
7822 array->set(1, *y0);
7823 array->set(2, *y1);
7824 return *factory->NewJSArrayWithElements(array);
7825 }
7826
7827
7828 static const double kPiDividedBy4 = 0.78539816339744830962;
7829
7830
7831 RUNTIME_FUNCTION(Runtime_MathAtan2) {
7832 HandleScope scope(isolate);
7833 DCHECK(args.length() == 2);
7834 isolate->counters()->math_atan2()->Increment();
7835
7836 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7837 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7838 double result;
7839 if (std::isinf(x) && std::isinf(y)) {
7840 // Make sure that the result in case of two infinite arguments
7841 // is a multiple of Pi / 4. The sign of the result is determined
7842 // by the first argument (x) and the sign of the second argument
7843 // determines the multiplier: one or three.
7844 int multiplier = (x < 0) ? -1 : 1;
7845 if (y < 0) multiplier *= 3;
7846 result = multiplier * kPiDividedBy4;
7847 } else {
7848 result = std::atan2(x, y);
7849 }
7850 return *isolate->factory()->NewNumber(result);
7851 }
7852
7853
7854 RUNTIME_FUNCTION(Runtime_MathExpRT) {
7855 HandleScope scope(isolate);
7856 DCHECK(args.length() == 1);
7857 isolate->counters()->math_exp()->Increment();
7858
7859 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7860 lazily_initialize_fast_exp();
7861 return *isolate->factory()->NewNumber(fast_exp(x));
7862 }
7863
7864
7865 RUNTIME_FUNCTION(Runtime_MathFloorRT) {
7866 HandleScope scope(isolate);
7867 DCHECK(args.length() == 1);
7868 isolate->counters()->math_floor()->Increment();
7869
7870 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7871 return *isolate->factory()->NewNumber(Floor(x));
7872 }
7873
7874
7875 // Slow version of Math.pow. We check for fast paths for special cases.
7876 // Used if VFP3 is not available.
7877 RUNTIME_FUNCTION(Runtime_MathPowSlow) {
7878 HandleScope scope(isolate);
7879 DCHECK(args.length() == 2);
7880 isolate->counters()->math_pow()->Increment();
7881
7882 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7883
7884 // If the second argument is a smi, it is much faster to call the
7885 // custom powi() function than the generic pow().
7886 if (args[1]->IsSmi()) {
7887 int y = args.smi_at(1);
7888 return *isolate->factory()->NewNumber(power_double_int(x, y));
7889 }
7890
7891 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7892 double result = power_helper(x, y);
7893 if (std::isnan(result)) return isolate->heap()->nan_value();
7894 return *isolate->factory()->NewNumber(result);
7895 }
7896
7897
7898 // Fast version of Math.pow if we know that y is not an integer and y is not
7899 // -0.5 or 0.5. Used as slow case from full codegen.
7900 RUNTIME_FUNCTION(Runtime_MathPowRT) {
7901 HandleScope scope(isolate);
7902 DCHECK(args.length() == 2);
7903 isolate->counters()->math_pow()->Increment();
7904
7905 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7906 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7907 if (y == 0) {
7908 return Smi::FromInt(1);
7909 } else {
7910 double result = power_double_double(x, y);
7911 if (std::isnan(result)) return isolate->heap()->nan_value();
7912 return *isolate->factory()->NewNumber(result);
7913 }
7914 }
7915
7916
7917 RUNTIME_FUNCTION(Runtime_RoundNumber) {
7918 HandleScope scope(isolate);
7919 DCHECK(args.length() == 1);
7920 CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0);
7921 isolate->counters()->math_round()->Increment();
7922
7923 if (!input->IsHeapNumber()) {
7924 DCHECK(input->IsSmi());
7925 return *input;
7926 }
7927
7928 Handle<HeapNumber> number = Handle<HeapNumber>::cast(input);
7929
7930 double value = number->value();
7931 int exponent = number->get_exponent();
7932 int sign = number->get_sign();
7933
7934 if (exponent < -1) {
7935 // Number in range ]-0.5..0.5[. These always round to +/-zero.
7936 if (sign) return isolate->heap()->minus_zero_value();
7937 return Smi::FromInt(0);
7938 }
7939
7940 // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
7941 // should be rounded to 2^30, which is not smi (for 31-bit smis, similar
7942 // argument holds for 32-bit smis).
7943 if (!sign && exponent < kSmiValueSize - 2) {
7944 return Smi::FromInt(static_cast<int>(value + 0.5));
7945 }
7946
7947 // If the magnitude is big enough, there's no place for fraction part. If we
7948 // try to add 0.5 to this number, 1.0 will be added instead.
7949 if (exponent >= 52) {
7950 return *number;
7951 }
7952
7953 if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
7954
7955 // Do not call NumberFromDouble() to avoid extra checks.
7956 return *isolate->factory()->NewNumber(Floor(value + 0.5));
7957 }
7958
7959
7960 RUNTIME_FUNCTION(Runtime_MathSqrtRT) {
7961 HandleScope scope(isolate);
7962 DCHECK(args.length() == 1);
7963 isolate->counters()->math_sqrt()->Increment();
7964
7965 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7966 return *isolate->factory()->NewNumber(fast_sqrt(x));
7967 }
7968
7969
7970 RUNTIME_FUNCTION(Runtime_MathFround) {
7971 HandleScope scope(isolate);
7972 DCHECK(args.length() == 1);
7973
7974 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7975 float xf = DoubleToFloat32(x);
7976 return *isolate->factory()->NewNumber(xf);
7977 }
7978
7979
7980 RUNTIME_FUNCTION(Runtime_DateMakeDay) {
7981 SealHandleScope shs(isolate);
7982 DCHECK(args.length() == 2);
7983
7984 CONVERT_SMI_ARG_CHECKED(year, 0);
7985 CONVERT_SMI_ARG_CHECKED(month, 1);
7986
7987 int days = isolate->date_cache()->DaysFromYearMonth(year, month);
7988 RUNTIME_ASSERT(Smi::IsValid(days));
7989 return Smi::FromInt(days);
7990 }
7991
7992
7993 RUNTIME_FUNCTION(Runtime_DateSetValue) {
7994 HandleScope scope(isolate);
7995 DCHECK(args.length() == 3);
7996
7997 CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
7998 CONVERT_DOUBLE_ARG_CHECKED(time, 1);
7999 CONVERT_SMI_ARG_CHECKED(is_utc, 2);
8000
8001 DateCache* date_cache = isolate->date_cache();
8002
8003 Handle<Object> value;;
8004 bool is_value_nan = false;
8005 if (std::isnan(time)) {
8006 value = isolate->factory()->nan_value();
8007 is_value_nan = true;
8008 } else if (!is_utc &&
8009 (time < -DateCache::kMaxTimeBeforeUTCInMs ||
8010 time > DateCache::kMaxTimeBeforeUTCInMs)) {
8011 value = isolate->factory()->nan_value();
8012 is_value_nan = true;
8013 } else {
8014 time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
8015 if (time < -DateCache::kMaxTimeInMs ||
8016 time > DateCache::kMaxTimeInMs) {
8017 value = isolate->factory()->nan_value();
8018 is_value_nan = true;
8019 } else {
8020 value = isolate->factory()->NewNumber(DoubleToInteger(time));
8021 }
8022 }
8023 date->SetValue(*value, is_value_nan);
8024 return *value;
8025 }
8026
8027
8028 static Handle<JSObject> NewSloppyArguments(Isolate* isolate,
8029 Handle<JSFunction> callee,
8030 Object** parameters,
8031 int argument_count) {
8032 Handle<JSObject> result =
8033 isolate->factory()->NewArgumentsObject(callee, argument_count);
8034
8035 // Allocate the elements if needed.
8036 int parameter_count = callee->shared()->formal_parameter_count();
8037 if (argument_count > 0) {
8038 if (parameter_count > 0) {
8039 int mapped_count = Min(argument_count, parameter_count);
8040 Handle<FixedArray> parameter_map =
8041 isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
8042 parameter_map->set_map(
8043 isolate->heap()->sloppy_arguments_elements_map());
8044
8045 Handle<Map> map = Map::Copy(handle(result->map()));
8046 map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS);
8047
8048 result->set_map(*map);
8049 result->set_elements(*parameter_map);
8050
8051 // Store the context and the arguments array at the beginning of the
8052 // parameter map.
8053 Handle<Context> context(isolate->context());
8054 Handle<FixedArray> arguments =
8055 isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8056 parameter_map->set(0, *context);
8057 parameter_map->set(1, *arguments);
8058
8059 // Loop over the actual parameters backwards.
8060 int index = argument_count - 1;
8061 while (index >= mapped_count) {
8062 // These go directly in the arguments array and have no
8063 // corresponding slot in the parameter map.
8064 arguments->set(index, *(parameters - index - 1));
8065 --index;
8066 }
8067
8068 Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
8069 while (index >= 0) {
8070 // Detect duplicate names to the right in the parameter list.
8071 Handle<String> name(scope_info->ParameterName(index));
8072 int context_local_count = scope_info->ContextLocalCount();
8073 bool duplicate = false;
8074 for (int j = index + 1; j < parameter_count; ++j) {
8075 if (scope_info->ParameterName(j) == *name) {
8076 duplicate = true;
8077 break;
8078 }
8079 }
8080
8081 if (duplicate) {
8082 // This goes directly in the arguments array with a hole in the
8083 // parameter map.
8084 arguments->set(index, *(parameters - index - 1));
8085 parameter_map->set_the_hole(index + 2);
8086 } else {
8087 // The context index goes in the parameter map with a hole in the
8088 // arguments array.
8089 int context_index = -1;
8090 for (int j = 0; j < context_local_count; ++j) {
8091 if (scope_info->ContextLocalName(j) == *name) {
8092 context_index = j;
8093 break;
8094 }
8095 }
8096 DCHECK(context_index >= 0);
8097 arguments->set_the_hole(index);
8098 parameter_map->set(index + 2, Smi::FromInt(
8099 Context::MIN_CONTEXT_SLOTS + context_index));
8100 }
8101
8102 --index;
8103 }
8104 } else {
8105 // If there is no aliasing, the arguments object elements are not
8106 // special in any way.
8107 Handle<FixedArray> elements =
8108 isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8109 result->set_elements(*elements);
8110 for (int i = 0; i < argument_count; ++i) {
8111 elements->set(i, *(parameters - i - 1));
8112 }
8113 }
8114 }
8115 return result;
8116 }
8117
8118
8119 static Handle<JSObject> NewStrictArguments(Isolate* isolate,
8120 Handle<JSFunction> callee,
8121 Object** parameters,
8122 int argument_count) {
8123 Handle<JSObject> result =
8124 isolate->factory()->NewArgumentsObject(callee, argument_count);
8125
8126 if (argument_count > 0) {
8127 Handle<FixedArray> array =
8128 isolate->factory()->NewUninitializedFixedArray(argument_count);
8129 DisallowHeapAllocation no_gc;
8130 WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
8131 for (int i = 0; i < argument_count; i++) {
8132 array->set(i, *--parameters, mode);
8133 }
8134 result->set_elements(*array);
8135 }
8136 return result;
8137 }
8138
8139
8140 RUNTIME_FUNCTION(Runtime_NewArguments) {
8141 HandleScope scope(isolate);
8142 DCHECK(args.length() == 1);
8143 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8144 JavaScriptFrameIterator it(isolate);
8145
8146 // Find the frame that holds the actual arguments passed to the function.
8147 it.AdvanceToArgumentsFrame();
8148 JavaScriptFrame* frame = it.frame();
8149
8150 // Determine parameter location on the stack and dispatch on language mode.
8151 int argument_count = frame->GetArgumentsLength();
8152 Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1));
8153 return callee->shared()->strict_mode() == STRICT
8154 ? *NewStrictArguments(isolate, callee, parameters, argument_count)
8155 : *NewSloppyArguments(isolate, callee, parameters, argument_count);
8156 }
8157
8158
8159 RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
8160 HandleScope scope(isolate);
8161 DCHECK(args.length() == 3);
8162 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8163 Object** parameters = reinterpret_cast<Object**>(args[1]);
8164 CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8165 return *NewSloppyArguments(isolate, callee, parameters, argument_count);
8166 }
8167
8168
8169 RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
8170 HandleScope scope(isolate);
8171 DCHECK(args.length() == 3);
8172 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
8173 Object** parameters = reinterpret_cast<Object**>(args[1]);
8174 CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8175 return *NewStrictArguments(isolate, callee, parameters, argument_count);
8176 }
8177
8178
8179 RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) {
8180 HandleScope scope(isolate);
8181 DCHECK(args.length() == 1);
8182 CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
8183 Handle<Context> context(isolate->context());
8184 PretenureFlag pretenure_flag = NOT_TENURED;
8185 return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
8186 pretenure_flag);
8187 }
8188
8189
8190 RUNTIME_FUNCTION(Runtime_NewClosure) {
8191 HandleScope scope(isolate);
8192 DCHECK(args.length() == 3);
8193 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
8194 CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
8195 CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
8196
8197 // The caller ensures that we pretenure closures that are assigned
8198 // directly to properties.
8199 PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
8200 return *isolate->factory()->NewFunctionFromSharedFunctionInfo(
8201 shared, context, pretenure_flag);
8202 }
8203
8204
8205 // Find the arguments of the JavaScript function invocation that called
8206 // into C++ code. Collect these in a newly allocated array of handles (possibly
8207 // prefixed by a number of empty handles).
8208 static SmartArrayPointer<Handle<Object> > GetCallerArguments(
8209 Isolate* isolate,
8210 int prefix_argc,
8211 int* total_argc) {
8212 // Find frame containing arguments passed to the caller.
8213 JavaScriptFrameIterator it(isolate);
8214 JavaScriptFrame* frame = it.frame();
8215 List<JSFunction*> functions(2);
8216 frame->GetFunctions(&functions);
8217 if (functions.length() > 1) {
8218 int inlined_jsframe_index = functions.length() - 1;
8219 JSFunction* inlined_function = functions[inlined_jsframe_index];
8220 SlotRefValueBuilder slot_refs(
8221 frame,
8222 inlined_jsframe_index,
8223 inlined_function->shared()->formal_parameter_count());
8224
8225 int args_count = slot_refs.args_length();
8226
8227 *total_argc = prefix_argc + args_count;
8228 SmartArrayPointer<Handle<Object> > param_data(
8229 NewArray<Handle<Object> >(*total_argc));
8230 slot_refs.Prepare(isolate);
8231 for (int i = 0; i < args_count; i++) {
8232 Handle<Object> val = slot_refs.GetNext(isolate, 0);
8233 param_data[prefix_argc + i] = val;
8234 }
8235 slot_refs.Finish(isolate);
8236
8237 return param_data;
8238 } else {
8239 it.AdvanceToArgumentsFrame();
8240 frame = it.frame();
8241 int args_count = frame->ComputeParametersCount();
8242
8243 *total_argc = prefix_argc + args_count;
8244 SmartArrayPointer<Handle<Object> > param_data(
8245 NewArray<Handle<Object> >(*total_argc));
8246 for (int i = 0; i < args_count; i++) {
8247 Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
8248 param_data[prefix_argc + i] = val;
8249 }
8250 return param_data;
8251 }
8252 }
8253
8254
8255 RUNTIME_FUNCTION(Runtime_FunctionBindArguments) {
8256 HandleScope scope(isolate);
8257 DCHECK(args.length() == 4);
8258 CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
8259 CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1);
8260 CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2);
8261 CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
8262
8263 // TODO(lrn): Create bound function in C++ code from premade shared info.
8264 bound_function->shared()->set_bound(true);
8265 // Get all arguments of calling function (Function.prototype.bind).
8266 int argc = 0;
8267 SmartArrayPointer<Handle<Object> > arguments =
8268 GetCallerArguments(isolate, 0, &argc);
8269 // Don't count the this-arg.
8270 if (argc > 0) {
8271 RUNTIME_ASSERT(arguments[0].is_identical_to(this_object));
8272 argc--;
8273 } else {
8274 RUNTIME_ASSERT(this_object->IsUndefined());
8275 }
8276 // Initialize array of bindings (function, this, and any existing arguments
8277 // if the function was already bound).
8278 Handle<FixedArray> new_bindings;
8279 int i;
8280 if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
8281 Handle<FixedArray> old_bindings(
8282 JSFunction::cast(*bindee)->function_bindings());
8283 RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex);
8284 new_bindings =
8285 isolate->factory()->NewFixedArray(old_bindings->length() + argc);
8286 bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
8287 isolate);
8288 i = 0;
8289 for (int n = old_bindings->length(); i < n; i++) {
8290 new_bindings->set(i, old_bindings->get(i));
8291 }
8292 } else {
8293 int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
8294 new_bindings = isolate->factory()->NewFixedArray(array_size);
8295 new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
8296 new_bindings->set(JSFunction::kBoundThisIndex, *this_object);
8297 i = 2;
8298 }
8299 // Copy arguments, skipping the first which is "this_arg".
8300 for (int j = 0; j < argc; j++, i++) {
8301 new_bindings->set(i, *arguments[j + 1]);
8302 }
8303 new_bindings->set_map_no_write_barrier(
8304 isolate->heap()->fixed_cow_array_map());
8305 bound_function->set_function_bindings(*new_bindings);
8306
8307 // Update length. Have to remove the prototype first so that map migration
8308 // is happy about the number of fields.
8309 RUNTIME_ASSERT(bound_function->RemovePrototype());
8310 Handle<Map> bound_function_map(
8311 isolate->native_context()->bound_function_map());
8312 JSObject::MigrateToMap(bound_function, bound_function_map);
8313 Handle<String> length_string = isolate->factory()->length_string();
8314 PropertyAttributes attr =
8315 static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
8316 RETURN_FAILURE_ON_EXCEPTION(
8317 isolate,
8318 JSObject::SetOwnPropertyIgnoreAttributes(
8319 bound_function, length_string, new_length, attr));
8320 return *bound_function;
8321 }
8322
8323
8324 RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) {
8325 HandleScope handles(isolate);
8326 DCHECK(args.length() == 1);
8327 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
8328 if (callable->IsJSFunction()) {
8329 Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
8330 if (function->shared()->bound()) {
8331 Handle<FixedArray> bindings(function->function_bindings());
8332 RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
8333 return *isolate->factory()->NewJSArrayWithElements(bindings);
8334 }
8335 }
8336 return isolate->heap()->undefined_value();
8337 }
8338
8339
8340 RUNTIME_FUNCTION(Runtime_NewObjectFromBound) {
8341 HandleScope scope(isolate);
8342 DCHECK(args.length() == 1);
8343 // First argument is a function to use as a constructor.
8344 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8345 RUNTIME_ASSERT(function->shared()->bound());
8346
8347 // The argument is a bound function. Extract its bound arguments
8348 // and callable.
8349 Handle<FixedArray> bound_args =
8350 Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
8351 int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
8352 Handle<Object> bound_function(
8353 JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
8354 isolate);
8355 DCHECK(!bound_function->IsJSFunction() ||
8356 !Handle<JSFunction>::cast(bound_function)->shared()->bound());
8357
8358 int total_argc = 0;
8359 SmartArrayPointer<Handle<Object> > param_data =
8360 GetCallerArguments(isolate, bound_argc, &total_argc);
8361 for (int i = 0; i < bound_argc; i++) {
8362 param_data[i] = Handle<Object>(bound_args->get(
8363 JSFunction::kBoundArgumentsStartIndex + i), isolate);
8364 }
8365
8366 if (!bound_function->IsJSFunction()) {
8367 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8368 isolate, bound_function,
8369 Execution::TryGetConstructorDelegate(isolate, bound_function));
8370 }
8371 DCHECK(bound_function->IsJSFunction());
8372
8373 Handle<Object> result;
8374 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8375 isolate, result,
8376 Execution::New(Handle<JSFunction>::cast(bound_function),
8377 total_argc, param_data.get()));
8378 return *result;
8379 }
8380
8381
8382 static Object* Runtime_NewObjectHelper(Isolate* isolate,
8383 Handle<Object> constructor,
8384 Handle<AllocationSite> site) {
8385 // If the constructor isn't a proper function we throw a type error.
8386 if (!constructor->IsJSFunction()) {
8387 Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8388 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8389 NewTypeError("not_constructor", arguments));
8390 }
8391
8392 Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
8393
8394 // If function should not have prototype, construction is not allowed. In this
8395 // case generated code bailouts here, since function has no initial_map.
8396 if (!function->should_have_prototype() && !function->shared()->bound()) {
8397 Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8398 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8399 NewTypeError("not_constructor", arguments));
8400 }
8401
8402 Debug* debug = isolate->debug();
8403 // Handle stepping into constructors if step into is active.
8404 if (debug->StepInActive()) {
8405 debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
8406 }
8407
8408 if (function->has_initial_map()) {
8409 if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
8410 // The 'Function' function ignores the receiver object when
8411 // called using 'new' and creates a new JSFunction object that
8412 // is returned. The receiver object is only used for error
8413 // reporting if an error occurs when constructing the new
8414 // JSFunction. Factory::NewJSObject() should not be used to
8415 // allocate JSFunctions since it does not properly initialize
8416 // the shared part of the function. Since the receiver is
8417 // ignored anyway, we use the global object as the receiver
8418 // instead of a new JSFunction object. This way, errors are
8419 // reported the same way whether or not 'Function' is called
8420 // using 'new'.
8421 return isolate->global_proxy();
8422 }
8423 }
8424
8425 // The function should be compiled for the optimization hints to be
8426 // available.
8427 Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
8428
8429 Handle<JSObject> result;
8430 if (site.is_null()) {
8431 result = isolate->factory()->NewJSObject(function);
8432 } else {
8433 result = isolate->factory()->NewJSObjectWithMemento(function, site);
8434 }
8435
8436 isolate->counters()->constructed_objects()->Increment();
8437 isolate->counters()->constructed_objects_runtime()->Increment();
8438
8439 return *result;
8440 }
8441
8442
8443 RUNTIME_FUNCTION(Runtime_NewObject) {
8444 HandleScope scope(isolate);
8445 DCHECK(args.length() == 1);
8446 CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
8447 return Runtime_NewObjectHelper(isolate,
8448 constructor,
8449 Handle<AllocationSite>::null());
8450 }
8451
8452
8453 RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
8454 HandleScope scope(isolate);
8455 DCHECK(args.length() == 2);
8456 CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
8457 CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
8458 Handle<AllocationSite> site;
8459 if (feedback->IsAllocationSite()) {
8460 // The feedback can be an AllocationSite or undefined.
8461 site = Handle<AllocationSite>::cast(feedback);
8462 }
8463 return Runtime_NewObjectHelper(isolate, constructor, site);
8464 }
8465
8466
8467 RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
8468 HandleScope scope(isolate);
8469 DCHECK(args.length() == 1);
8470
8471 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8472 function->CompleteInobjectSlackTracking();
8473
8474 return isolate->heap()->undefined_value();
8475 }
8476
8477
8478 RUNTIME_FUNCTION(Runtime_CompileLazy) {
8479 HandleScope scope(isolate);
8480 DCHECK(args.length() == 1);
8481 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8482 #ifdef DEBUG
8483 if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
8484 PrintF("[unoptimized: ");
8485 function->PrintName();
8486 PrintF("]\n");
8487 }
8488 #endif
8489
8490 // Compile the target function.
8491 DCHECK(function->shared()->allows_lazy_compilation());
8492
8493 Handle<Code> code;
8494 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, code,
8495 Compiler::GetLazyCode(function));
8496 DCHECK(code->kind() == Code::FUNCTION ||
8497 code->kind() == Code::OPTIMIZED_FUNCTION);
8498 function->ReplaceCode(*code);
8499 return *code;
8500 }
8501
8502
8503 RUNTIME_FUNCTION(Runtime_CompileOptimized) {
8504 HandleScope scope(isolate);
8505 DCHECK(args.length() == 2);
8506 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8507 CONVERT_BOOLEAN_ARG_CHECKED(concurrent, 1);
8508
8509 Handle<Code> unoptimized(function->shared()->code());
8510 if (!isolate->use_crankshaft() ||
8511 function->shared()->optimization_disabled() ||
8512 isolate->DebuggerHasBreakPoints()) {
8513 // If the function is not optimizable or debugger is active continue
8514 // using the code from the full compiler.
8515 if (FLAG_trace_opt) {
8516 PrintF("[failed to optimize ");
8517 function->PrintName();
8518 PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
8519 function->shared()->optimization_disabled() ? "F" : "T",
8520 isolate->DebuggerHasBreakPoints() ? "T" : "F");
8521 }
8522 function->ReplaceCode(*unoptimized);
8523 return function->code();
8524 }
8525
8526 Compiler::ConcurrencyMode mode =
8527 concurrent ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT;
8528 Handle<Code> code;
8529 if (Compiler::GetOptimizedCode(function, unoptimized, mode).ToHandle(&code)) {
8530 function->ReplaceCode(*code);
8531 } else {
8532 function->ReplaceCode(function->shared()->code());
8533 }
8534
8535 DCHECK(function->code()->kind() == Code::FUNCTION ||
8536 function->code()->kind() == Code::OPTIMIZED_FUNCTION ||
8537 function->IsInOptimizationQueue());
8538 return function->code();
8539 }
8540
8541
8542 class ActivationsFinder : public ThreadVisitor {
8543 public:
8544 Code* code_;
8545 bool has_code_activations_;
8546
8547 explicit ActivationsFinder(Code* code)
8548 : code_(code),
8549 has_code_activations_(false) { }
8550
8551 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
8552 JavaScriptFrameIterator it(isolate, top);
8553 VisitFrames(&it);
8554 }
8555
8556 void VisitFrames(JavaScriptFrameIterator* it) {
8557 for (; !it->done(); it->Advance()) {
8558 JavaScriptFrame* frame = it->frame();
8559 if (code_->contains(frame->pc())) has_code_activations_ = true;
8560 }
8561 }
8562 };
8563
8564
8565 RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
8566 HandleScope scope(isolate);
8567 DCHECK(args.length() == 0);
8568 Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8569 DCHECK(AllowHeapAllocation::IsAllowed());
8570 delete deoptimizer;
8571 return isolate->heap()->undefined_value();
8572 }
8573
8574
8575 RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
8576 HandleScope scope(isolate);
8577 DCHECK(args.length() == 1);
8578 CONVERT_SMI_ARG_CHECKED(type_arg, 0);
8579 Deoptimizer::BailoutType type =
8580 static_cast<Deoptimizer::BailoutType>(type_arg);
8581 Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8582 DCHECK(AllowHeapAllocation::IsAllowed());
8583
8584 Handle<JSFunction> function = deoptimizer->function();
8585 Handle<Code> optimized_code = deoptimizer->compiled_code();
8586
8587 DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
8588 DCHECK(type == deoptimizer->bailout_type());
8589
8590 // Make sure to materialize objects before causing any allocation.
8591 JavaScriptFrameIterator it(isolate);
8592 deoptimizer->MaterializeHeapObjects(&it);
8593 delete deoptimizer;
8594
8595 JavaScriptFrame* frame = it.frame();
8596 RUNTIME_ASSERT(frame->function()->IsJSFunction());
8597 DCHECK(frame->function() == *function);
8598
8599 // Avoid doing too much work when running with --always-opt and keep
8600 // the optimized code around.
8601 if (FLAG_always_opt || type == Deoptimizer::LAZY) {
8602 return isolate->heap()->undefined_value();
8603 }
8604
8605 // Search for other activations of the same function and code.
8606 ActivationsFinder activations_finder(*optimized_code);
8607 activations_finder.VisitFrames(&it);
8608 isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
8609
8610 if (!activations_finder.has_code_activations_) {
8611 if (function->code() == *optimized_code) {
8612 if (FLAG_trace_deopt) {
8613 PrintF("[removing optimized code for: ");
8614 function->PrintName();
8615 PrintF("]\n");
8616 }
8617 function->ReplaceCode(function->shared()->code());
8618 // Evict optimized code for this function from the cache so that it
8619 // doesn't get used for new closures.
8620 function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
8621 "notify deoptimized");
8622 }
8623 } else {
8624 // TODO(titzer): we should probably do DeoptimizeCodeList(code)
8625 // unconditionally if the code is not already marked for deoptimization.
8626 // If there is an index by shared function info, all the better.
8627 Deoptimizer::DeoptimizeFunction(*function);
8628 }
8629
8630 return isolate->heap()->undefined_value();
8631 }
8632
8633
8634 RUNTIME_FUNCTION(Runtime_DeoptimizeFunction) {
8635 HandleScope scope(isolate);
8636 DCHECK(args.length() == 1);
8637 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8638 if (!function->IsOptimized()) return isolate->heap()->undefined_value();
8639
8640 // TODO(turbofan): Deoptimization is not supported yet.
8641 if (function->code()->is_turbofanned() && !FLAG_turbo_deoptimization) {
8642 return isolate->heap()->undefined_value();
8643 }
8644
8645 Deoptimizer::DeoptimizeFunction(*function);
8646
8647 return isolate->heap()->undefined_value();
8648 }
8649
8650
8651 RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback) {
8652 HandleScope scope(isolate);
8653 DCHECK(args.length() == 1);
8654 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8655 function->shared()->ClearTypeFeedbackInfo();
8656 Code* unoptimized = function->shared()->code();
8657 if (unoptimized->kind() == Code::FUNCTION) {
8658 unoptimized->ClearInlineCaches();
8659 }
8660 return isolate->heap()->undefined_value();
8661 }
8662
8663
8664 RUNTIME_FUNCTION(Runtime_RunningInSimulator) {
8665 SealHandleScope shs(isolate);
8666 DCHECK(args.length() == 0);
8667 #if defined(USE_SIMULATOR)
8668 return isolate->heap()->true_value();
8669 #else
8670 return isolate->heap()->false_value();
8671 #endif
8672 }
8673
8674
8675 RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported) {
8676 SealHandleScope shs(isolate);
8677 DCHECK(args.length() == 0);
8678 return isolate->heap()->ToBoolean(
8679 isolate->concurrent_recompilation_enabled());
8680 }
8681
8682
8683 RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall) {
8684 HandleScope scope(isolate);
8685 RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8686 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8687 // The following two assertions are lifted from the DCHECKs inside
8688 // JSFunction::MarkForOptimization().
8689 RUNTIME_ASSERT(!function->shared()->is_generator());
8690 RUNTIME_ASSERT(function->shared()->allows_lazy_compilation() ||
8691 (function->code()->kind() == Code::FUNCTION &&
8692 function->code()->optimizable()));
8693
8694 // If the function is optimized, just return.
8695 if (function->IsOptimized()) return isolate->heap()->undefined_value();
8696
8697 function->MarkForOptimization();
8698
8699 Code* unoptimized = function->shared()->code();
8700 if (args.length() == 2 &&
8701 unoptimized->kind() == Code::FUNCTION) {
8702 CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
8703 if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("osr")) && FLAG_use_osr) {
8704 // Start patching from the currently patched loop nesting level.
8705 DCHECK(BackEdgeTable::Verify(isolate, unoptimized));
8706 isolate->runtime_profiler()->AttemptOnStackReplacement(
8707 *function, Code::kMaxLoopNestingMarker);
8708 } else if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("concurrent")) &&
8709 isolate->concurrent_recompilation_enabled()) {
8710 function->MarkForConcurrentOptimization();
8711 }
8712 }
8713
8714 return isolate->heap()->undefined_value();
8715 }
8716
8717
8718 RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction) {
8719 HandleScope scope(isolate);
8720 DCHECK(args.length() == 1);
8721 CONVERT_ARG_CHECKED(JSFunction, function, 0);
8722 function->shared()->set_optimization_disabled(true);
8723 return isolate->heap()->undefined_value();
8724 }
8725
8726
8727 RUNTIME_FUNCTION(Runtime_GetOptimizationStatus) {
8728 HandleScope scope(isolate);
8729 RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8730 if (!isolate->use_crankshaft()) {
8731 return Smi::FromInt(4); // 4 == "never".
8732 }
8733 bool sync_with_compiler_thread = true;
8734 if (args.length() == 2) {
8735 CONVERT_ARG_HANDLE_CHECKED(String, sync, 1);
8736 if (sync->IsOneByteEqualTo(STATIC_CHAR_VECTOR("no sync"))) {
8737 sync_with_compiler_thread = false;
8738 }
8739 }
8740 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8741 if (isolate->concurrent_recompilation_enabled() &&
8742 sync_with_compiler_thread) {
8743 while (function->IsInOptimizationQueue()) {
8744 isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
8745 base::OS::Sleep(50);
8746 }
8747 }
8748 if (FLAG_always_opt) {
8749 // We may have always opt, but that is more best-effort than a real
8750 // promise, so we still say "no" if it is not optimized.
8751 return function->IsOptimized() ? Smi::FromInt(3) // 3 == "always".
8752 : Smi::FromInt(2); // 2 == "no".
8753 }
8754 if (FLAG_deopt_every_n_times) {
8755 return Smi::FromInt(6); // 6 == "maybe deopted".
8756 }
8757 if (function->IsOptimized() && function->code()->is_turbofanned()) {
8758 return Smi::FromInt(7); // 7 == "TurboFan compiler".
8759 }
8760 return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes".
8761 : Smi::FromInt(2); // 2 == "no".
8762 }
8763
8764
8765 RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation) {
8766 DCHECK(args.length() == 0);
8767 RUNTIME_ASSERT(FLAG_block_concurrent_recompilation);
8768 RUNTIME_ASSERT(isolate->concurrent_recompilation_enabled());
8769 isolate->optimizing_compiler_thread()->Unblock();
8770 return isolate->heap()->undefined_value();
8771 }
8772
8773
8774 RUNTIME_FUNCTION(Runtime_GetOptimizationCount) {
8775 HandleScope scope(isolate);
8776 DCHECK(args.length() == 1);
8777 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8778 return Smi::FromInt(function->shared()->opt_count());
8779 }
8780
8781
8782 static bool IsSuitableForOnStackReplacement(Isolate* isolate,
8783 Handle<JSFunction> function,
8784 Handle<Code> current_code) {
8785 // Keep track of whether we've succeeded in optimizing.
8786 if (!isolate->use_crankshaft() || !current_code->optimizable()) return false;
8787 // If we are trying to do OSR when there are already optimized
8788 // activations of the function, it means (a) the function is directly or
8789 // indirectly recursive and (b) an optimized invocation has been
8790 // deoptimized so that we are currently in an unoptimized activation.
8791 // Check for optimized activations of this function.
8792 for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
8793 JavaScriptFrame* frame = it.frame();
8794 if (frame->is_optimized() && frame->function() == *function) return false;
8795 }
8796
8797 return true;
8798 }
8799
8800
8801 RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
8802 HandleScope scope(isolate);
8803 DCHECK(args.length() == 1);
8804 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8805 Handle<Code> caller_code(function->shared()->code());
8806
8807 // We're not prepared to handle a function with arguments object.
8808 DCHECK(!function->shared()->uses_arguments());
8809
8810 RUNTIME_ASSERT(FLAG_use_osr);
8811
8812 // Passing the PC in the javascript frame from the caller directly is
8813 // not GC safe, so we walk the stack to get it.
8814 JavaScriptFrameIterator it(isolate);
8815 JavaScriptFrame* frame = it.frame();
8816 if (!caller_code->contains(frame->pc())) {
8817 // Code on the stack may not be the code object referenced by the shared
8818 // function info. It may have been replaced to include deoptimization data.
8819 caller_code = Handle<Code>(frame->LookupCode());
8820 }
8821
8822 uint32_t pc_offset = static_cast<uint32_t>(
8823 frame->pc() - caller_code->instruction_start());
8824
8825 #ifdef DEBUG
8826 DCHECK_EQ(frame->function(), *function);
8827 DCHECK_EQ(frame->LookupCode(), *caller_code);
8828 DCHECK(caller_code->contains(frame->pc()));
8829 #endif // DEBUG
8830
8831
8832 BailoutId ast_id = caller_code->TranslatePcOffsetToAstId(pc_offset);
8833 DCHECK(!ast_id.IsNone());
8834
8835 Compiler::ConcurrencyMode mode =
8836 isolate->concurrent_osr_enabled() &&
8837 (function->shared()->ast_node_count() > 512) ? Compiler::CONCURRENT
8838 : Compiler::NOT_CONCURRENT;
8839 Handle<Code> result = Handle<Code>::null();
8840
8841 OptimizedCompileJob* job = NULL;
8842 if (mode == Compiler::CONCURRENT) {
8843 // Gate the OSR entry with a stack check.
8844 BackEdgeTable::AddStackCheck(caller_code, pc_offset);
8845 // Poll already queued compilation jobs.
8846 OptimizingCompilerThread* thread = isolate->optimizing_compiler_thread();
8847 if (thread->IsQueuedForOSR(function, ast_id)) {
8848 if (FLAG_trace_osr) {
8849 PrintF("[OSR - Still waiting for queued: ");
8850 function->PrintName();
8851 PrintF(" at AST id %d]\n", ast_id.ToInt());
8852 }
8853 return NULL;
8854 }
8855
8856 job = thread->FindReadyOSRCandidate(function, ast_id);
8857 }
8858
8859 if (job != NULL) {
8860 if (FLAG_trace_osr) {
8861 PrintF("[OSR - Found ready: ");
8862 function->PrintName();
8863 PrintF(" at AST id %d]\n", ast_id.ToInt());
8864 }
8865 result = Compiler::GetConcurrentlyOptimizedCode(job);
8866 } else if (IsSuitableForOnStackReplacement(isolate, function, caller_code)) {
8867 if (FLAG_trace_osr) {
8868 PrintF("[OSR - Compiling: ");
8869 function->PrintName();
8870 PrintF(" at AST id %d]\n", ast_id.ToInt());
8871 }
8872 MaybeHandle<Code> maybe_result = Compiler::GetOptimizedCode(
8873 function, caller_code, mode, ast_id);
8874 if (maybe_result.ToHandle(&result) &&
8875 result.is_identical_to(isolate->builtins()->InOptimizationQueue())) {
8876 // Optimization is queued. Return to check later.
8877 return NULL;
8878 }
8879 }
8880
8881 // Revert the patched back edge table, regardless of whether OSR succeeds.
8882 BackEdgeTable::Revert(isolate, *caller_code);
8883
8884 // Check whether we ended up with usable optimized code.
8885 if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) {
8886 DeoptimizationInputData* data =
8887 DeoptimizationInputData::cast(result->deoptimization_data());
8888
8889 if (data->OsrPcOffset()->value() >= 0) {
8890 DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
8891 if (FLAG_trace_osr) {
8892 PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
8893 ast_id.ToInt(), data->OsrPcOffset()->value());
8894 }
8895 // TODO(titzer): this is a massive hack to make the deopt counts
8896 // match. Fix heuristics for reenabling optimizations!
8897 function->shared()->increment_deopt_count();
8898
8899 // TODO(titzer): Do not install code into the function.
8900 function->ReplaceCode(*result);
8901 return *result;
8902 }
8903 }
8904
8905 // Failed.
8906 if (FLAG_trace_osr) {
8907 PrintF("[OSR - Failed: ");
8908 function->PrintName();
8909 PrintF(" at AST id %d]\n", ast_id.ToInt());
8910 }
8911
8912 if (!function->IsOptimized()) {
8913 function->ReplaceCode(function->shared()->code());
8914 }
8915 return NULL;
8916 }
8917
8918
8919 RUNTIME_FUNCTION(Runtime_SetAllocationTimeout) {
8920 SealHandleScope shs(isolate);
8921 DCHECK(args.length() == 2 || args.length() == 3);
8922 #ifdef DEBUG
8923 CONVERT_SMI_ARG_CHECKED(interval, 0);
8924 CONVERT_SMI_ARG_CHECKED(timeout, 1);
8925 isolate->heap()->set_allocation_timeout(timeout);
8926 FLAG_gc_interval = interval;
8927 if (args.length() == 3) {
8928 // Enable/disable inline allocation if requested.
8929 CONVERT_BOOLEAN_ARG_CHECKED(inline_allocation, 2);
8930 if (inline_allocation) {
8931 isolate->heap()->EnableInlineAllocation();
8932 } else {
8933 isolate->heap()->DisableInlineAllocation();
8934 }
8935 }
8936 #endif
8937 return isolate->heap()->undefined_value();
8938 }
8939
8940
8941 RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
8942 SealHandleScope shs(isolate);
8943 DCHECK(args.length() == 0);
8944 RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8945 return isolate->heap()->undefined_value();
8946 }
8947
8948
8949 RUNTIME_FUNCTION(Runtime_GetRootNaN) {
8950 SealHandleScope shs(isolate);
8951 DCHECK(args.length() == 0);
8952 RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8953 return isolate->heap()->nan_value();
8954 }
8955
8956
8957 RUNTIME_FUNCTION(Runtime_Call) {
8958 HandleScope scope(isolate);
8959 DCHECK(args.length() >= 2);
8960 int argc = args.length() - 2;
8961 CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
8962 Object* receiver = args[0];
8963
8964 // If there are too many arguments, allocate argv via malloc.
8965 const int argv_small_size = 10;
8966 Handle<Object> argv_small_buffer[argv_small_size];
8967 SmartArrayPointer<Handle<Object> > argv_large_buffer;
8968 Handle<Object>* argv = argv_small_buffer;
8969 if (argc > argv_small_size) {
8970 argv = new Handle<Object>[argc];
8971 if (argv == NULL) return isolate->StackOverflow();
8972 argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
8973 }
8974
8975 for (int i = 0; i < argc; ++i) {
8976 argv[i] = Handle<Object>(args[1 + i], isolate);
8977 }
8978
8979 Handle<JSReceiver> hfun(fun);
8980 Handle<Object> hreceiver(receiver, isolate);
8981 Handle<Object> result;
8982 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8983 isolate, result,
8984 Execution::Call(isolate, hfun, hreceiver, argc, argv, true));
8985 return *result;
8986 }
8987
8988
8989 RUNTIME_FUNCTION(Runtime_Apply) {
8990 HandleScope scope(isolate);
8991 DCHECK(args.length() == 5);
8992 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
8993 CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
8994 CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
8995 CONVERT_INT32_ARG_CHECKED(offset, 3);
8996 CONVERT_INT32_ARG_CHECKED(argc, 4);
8997 RUNTIME_ASSERT(offset >= 0);
8998 // Loose upper bound to allow fuzzing. We'll most likely run out of
8999 // stack space before hitting this limit.
9000 static int kMaxArgc = 1000000;
9001 RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
9002
9003 // If there are too many arguments, allocate argv via malloc.
9004 const int argv_small_size = 10;
9005 Handle<Object> argv_small_buffer[argv_small_size];
9006 SmartArrayPointer<Handle<Object> > argv_large_buffer;
9007 Handle<Object>* argv = argv_small_buffer;
9008 if (argc > argv_small_size) {
9009 argv = new Handle<Object>[argc];
9010 if (argv == NULL) return isolate->StackOverflow();
9011 argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
9012 }
9013
9014 for (int i = 0; i < argc; ++i) {
9015 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9016 isolate, argv[i],
9017 Object::GetElement(isolate, arguments, offset + i));
9018 }
9019
9020 Handle<Object> result;
9021 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9022 isolate, result,
9023 Execution::Call(isolate, fun, receiver, argc, argv, true));
9024 return *result;
9025 }
9026
9027
9028 RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) {
9029 HandleScope scope(isolate);
9030 DCHECK(args.length() == 1);
9031 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9032 RUNTIME_ASSERT(!object->IsJSFunction());
9033 return *Execution::GetFunctionDelegate(isolate, object);
9034 }
9035
9036
9037 RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) {
9038 HandleScope scope(isolate);
9039 DCHECK(args.length() == 1);
9040 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9041 RUNTIME_ASSERT(!object->IsJSFunction());
9042 return *Execution::GetConstructorDelegate(isolate, object);
9043 }
9044
9045
9046 RUNTIME_FUNCTION(Runtime_NewGlobalContext) {
9047 HandleScope scope(isolate);
9048 DCHECK(args.length() == 2);
9049
9050 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9051 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9052 Handle<Context> result =
9053 isolate->factory()->NewGlobalContext(function, scope_info);
9054
9055 DCHECK(function->context() == isolate->context());
9056 DCHECK(function->context()->global_object() == result->global_object());
9057 result->global_object()->set_global_context(*result);
9058 return *result;
9059 }
9060
9061
9062 RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
9063 HandleScope scope(isolate);
9064 DCHECK(args.length() == 1);
9065
9066 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9067
9068 DCHECK(function->context() == isolate->context());
9069 int length = function->shared()->scope_info()->ContextLength();
9070 return *isolate->factory()->NewFunctionContext(length, function);
9071 }
9072
9073
9074 RUNTIME_FUNCTION(Runtime_PushWithContext) {
9075 HandleScope scope(isolate);
9076 DCHECK(args.length() == 2);
9077 Handle<JSReceiver> extension_object;
9078 if (args[0]->IsJSReceiver()) {
9079 extension_object = args.at<JSReceiver>(0);
9080 } else {
9081 // Try to convert the object to a proper JavaScript object.
9082 MaybeHandle<JSReceiver> maybe_object =
9083 Object::ToObject(isolate, args.at<Object>(0));
9084 if (!maybe_object.ToHandle(&extension_object)) {
9085 Handle<Object> handle = args.at<Object>(0);
9086 THROW_NEW_ERROR_RETURN_FAILURE(
9087 isolate, NewTypeError("with_expression", HandleVector(&handle, 1)));
9088 }
9089 }
9090
9091 Handle<JSFunction> function;
9092 if (args[1]->IsSmi()) {
9093 // A smi sentinel indicates a context nested inside global code rather
9094 // than some function. There is a canonical empty function that can be
9095 // gotten from the native context.
9096 function = handle(isolate->native_context()->closure());
9097 } else {
9098 function = args.at<JSFunction>(1);
9099 }
9100
9101 Handle<Context> current(isolate->context());
9102 Handle<Context> context = isolate->factory()->NewWithContext(
9103 function, current, extension_object);
9104 isolate->set_context(*context);
9105 return *context;
9106 }
9107
9108
9109 RUNTIME_FUNCTION(Runtime_PushCatchContext) {
9110 HandleScope scope(isolate);
9111 DCHECK(args.length() == 3);
9112 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
9113 CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1);
9114 Handle<JSFunction> function;
9115 if (args[2]->IsSmi()) {
9116 // A smi sentinel indicates a context nested inside global code rather
9117 // than some function. There is a canonical empty function that can be
9118 // gotten from the native context.
9119 function = handle(isolate->native_context()->closure());
9120 } else {
9121 function = args.at<JSFunction>(2);
9122 }
9123 Handle<Context> current(isolate->context());
9124 Handle<Context> context = isolate->factory()->NewCatchContext(
9125 function, current, name, thrown_object);
9126 isolate->set_context(*context);
9127 return *context;
9128 }
9129
9130
9131 RUNTIME_FUNCTION(Runtime_PushBlockContext) {
9132 HandleScope scope(isolate);
9133 DCHECK(args.length() == 2);
9134 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
9135 Handle<JSFunction> function;
9136 if (args[1]->IsSmi()) {
9137 // A smi sentinel indicates a context nested inside global code rather
9138 // than some function. There is a canonical empty function that can be
9139 // gotten from the native context.
9140 function = handle(isolate->native_context()->closure());
9141 } else {
9142 function = args.at<JSFunction>(1);
9143 }
9144 Handle<Context> current(isolate->context());
9145 Handle<Context> context = isolate->factory()->NewBlockContext(
9146 function, current, scope_info);
9147 isolate->set_context(*context);
9148 return *context;
9149 }
9150
9151
9152 RUNTIME_FUNCTION(Runtime_IsJSModule) {
9153 SealHandleScope shs(isolate);
9154 DCHECK(args.length() == 1);
9155 CONVERT_ARG_CHECKED(Object, obj, 0);
9156 return isolate->heap()->ToBoolean(obj->IsJSModule());
9157 }
9158
9159
9160 RUNTIME_FUNCTION(Runtime_PushModuleContext) {
9161 SealHandleScope shs(isolate);
9162 DCHECK(args.length() == 2);
9163 CONVERT_SMI_ARG_CHECKED(index, 0);
9164
9165 if (!args[1]->IsScopeInfo()) {
9166 // Module already initialized. Find hosting context and retrieve context.
9167 Context* host = Context::cast(isolate->context())->global_context();
9168 Context* context = Context::cast(host->get(index));
9169 DCHECK(context->previous() == isolate->context());
9170 isolate->set_context(context);
9171 return context;
9172 }
9173
9174 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9175
9176 // Allocate module context.
9177 HandleScope scope(isolate);
9178 Factory* factory = isolate->factory();
9179 Handle<Context> context = factory->NewModuleContext(scope_info);
9180 Handle<JSModule> module = factory->NewJSModule(context, scope_info);
9181 context->set_module(*module);
9182 Context* previous = isolate->context();
9183 context->set_previous(previous);
9184 context->set_closure(previous->closure());
9185 context->set_global_object(previous->global_object());
9186 isolate->set_context(*context);
9187
9188 // Find hosting scope and initialize internal variable holding module there.
9189 previous->global_context()->set(index, *context);
9190
9191 return *context;
9192 }
9193
9194
9195 RUNTIME_FUNCTION(Runtime_DeclareModules) {
9196 HandleScope scope(isolate);
9197 DCHECK(args.length() == 1);
9198 CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
9199 Context* host_context = isolate->context();
9200
9201 for (int i = 0; i < descriptions->length(); ++i) {
9202 Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
9203 int host_index = description->host_index();
9204 Handle<Context> context(Context::cast(host_context->get(host_index)));
9205 Handle<JSModule> module(context->module());
9206
9207 for (int j = 0; j < description->length(); ++j) {
9208 Handle<String> name(description->name(j));
9209 VariableMode mode = description->mode(j);
9210 int index = description->index(j);
9211 switch (mode) {
9212 case VAR:
9213 case LET:
9214 case CONST:
9215 case CONST_LEGACY: {
9216 PropertyAttributes attr =
9217 IsImmutableVariableMode(mode) ? FROZEN : SEALED;
9218 Handle<AccessorInfo> info =
9219 Accessors::MakeModuleExport(name, index, attr);
9220 Handle<Object> result =
9221 JSObject::SetAccessor(module, info).ToHandleChecked();
9222 DCHECK(!result->IsUndefined());
9223 USE(result);
9224 break;
9225 }
9226 case MODULE: {
9227 Object* referenced_context = Context::cast(host_context)->get(index);
9228 Handle<JSModule> value(Context::cast(referenced_context)->module());
9229 JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN)
9230 .Assert();
9231 break;
9232 }
9233 case INTERNAL:
9234 case TEMPORARY:
9235 case DYNAMIC:
9236 case DYNAMIC_GLOBAL:
9237 case DYNAMIC_LOCAL:
9238 UNREACHABLE();
9239 }
9240 }
9241
9242 JSObject::PreventExtensions(module).Assert();
9243 }
9244
9245 DCHECK(!isolate->has_pending_exception());
9246 return isolate->heap()->undefined_value();
9247 }
9248
9249
9250 RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
9251 HandleScope scope(isolate);
9252 DCHECK(args.length() == 2);
9253
9254 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
9255 CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
9256
9257 int index;
9258 PropertyAttributes attributes;
9259 ContextLookupFlags flags = FOLLOW_CHAINS;
9260 BindingFlags binding_flags;
9261 Handle<Object> holder = context->Lookup(name,
9262 flags,
9263 &index,
9264 &attributes,
9265 &binding_flags);
9266
9267 // If the slot was not found the result is true.
9268 if (holder.is_null()) {
9269 return isolate->heap()->true_value();
9270 }
9271
9272 // If the slot was found in a context, it should be DONT_DELETE.
9273 if (holder->IsContext()) {
9274 return isolate->heap()->false_value();
9275 }
9276
9277 // The slot was found in a JSObject, either a context extension object,
9278 // the global object, or the subject of a with. Try to delete it
9279 // (respecting DONT_DELETE).
9280 Handle<JSObject> object = Handle<JSObject>::cast(holder);
9281 Handle<Object> result;
9282 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9283 isolate, result,
9284 JSReceiver::DeleteProperty(object, name));
9285 return *result;
9286 }
9287
9288
9289 // A mechanism to return a pair of Object pointers in registers (if possible).
9290 // How this is achieved is calling convention-dependent.
9291 // All currently supported x86 compiles uses calling conventions that are cdecl
9292 // variants where a 64-bit value is returned in two 32-bit registers
9293 // (edx:eax on ia32, r1:r0 on ARM).
9294 // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
9295 // In Win64 calling convention, a struct of two pointers is returned in memory,
9296 // allocated by the caller, and passed as a pointer in a hidden first parameter.
9297 #ifdef V8_HOST_ARCH_64_BIT
9298 struct ObjectPair {
9299 Object* x;
9300 Object* y;
9301 };
9302
9303
9304 static inline ObjectPair MakePair(Object* x, Object* y) {
9305 ObjectPair result = {x, y};
9306 // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
9307 // In Win64 they are assigned to a hidden first argument.
9308 return result;
9309 }
9310 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
9311 // For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair
9312 // are used in the full codegen and Crankshaft compiler. An alternative is
9313 // using uint64_t and modifying full codegen and Crankshaft compiler.
9314 struct ObjectPair {
9315 Object* x;
9316 uint32_t x_upper;
9317 Object* y;
9318 uint32_t y_upper;
9319 };
9320
9321
9322 static inline ObjectPair MakePair(Object* x, Object* y) {
9323 ObjectPair result = {x, 0, y, 0};
9324 // Pointers x and y returned in rax and rdx, in x32-abi.
9325 return result;
9326 }
9327 #else
9328 typedef uint64_t ObjectPair;
9329 static inline ObjectPair MakePair(Object* x, Object* y) {
9330 #if defined(V8_TARGET_LITTLE_ENDIAN)
9331 return reinterpret_cast<uint32_t>(x) |
9332 (reinterpret_cast<ObjectPair>(y) << 32);
9333 #elif defined(V8_TARGET_BIG_ENDIAN)
9334 return reinterpret_cast<uint32_t>(y) |
9335 (reinterpret_cast<ObjectPair>(x) << 32);
9336 #else
9337 #error Unknown endianness
9338 #endif
9339 }
9340 #endif
9341
9342
9343 static Object* ComputeReceiverForNonGlobal(Isolate* isolate,
9344 JSObject* holder) {
9345 DCHECK(!holder->IsGlobalObject());
9346 Context* top = isolate->context();
9347 // Get the context extension function.
9348 JSFunction* context_extension_function =
9349 top->native_context()->context_extension_function();
9350 // If the holder isn't a context extension object, we just return it
9351 // as the receiver. This allows arguments objects to be used as
9352 // receivers, but only if they are put in the context scope chain
9353 // explicitly via a with-statement.
9354 Object* constructor = holder->map()->constructor();
9355 if (constructor != context_extension_function) return holder;
9356 // Fall back to using the global object as the implicit receiver if
9357 // the property turns out to be a local variable allocated in a
9358 // context extension object - introduced via eval.
9359 return isolate->heap()->undefined_value();
9360 }
9361
9362
9363 static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate,
9364 bool throw_error) {
9365 HandleScope scope(isolate);
9366 DCHECK_EQ(2, args.length());
9367
9368 if (!args[0]->IsContext() || !args[1]->IsString()) {
9369 return MakePair(isolate->ThrowIllegalOperation(), NULL);
9370 }
9371 Handle<Context> context = args.at<Context>(0);
9372 Handle<String> name = args.at<String>(1);
9373
9374 int index;
9375 PropertyAttributes attributes;
9376 ContextLookupFlags flags = FOLLOW_CHAINS;
9377 BindingFlags binding_flags;
9378 Handle<Object> holder = context->Lookup(name,
9379 flags,
9380 &index,
9381 &attributes,
9382 &binding_flags);
9383 if (isolate->has_pending_exception()) {
9384 return MakePair(isolate->heap()->exception(), NULL);
9385 }
9386
9387 // If the index is non-negative, the slot has been found in a context.
9388 if (index >= 0) {
9389 DCHECK(holder->IsContext());
9390 // If the "property" we were looking for is a local variable, the
9391 // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
9392 Handle<Object> receiver = isolate->factory()->undefined_value();
9393 Object* value = Context::cast(*holder)->get(index);
9394 // Check for uninitialized bindings.
9395 switch (binding_flags) {
9396 case MUTABLE_CHECK_INITIALIZED:
9397 case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
9398 if (value->IsTheHole()) {
9399 Handle<Object> error;
9400 MaybeHandle<Object> maybe_error =
9401 isolate->factory()->NewReferenceError("not_defined",
9402 HandleVector(&name, 1));
9403 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9404 return MakePair(isolate->heap()->exception(), NULL);
9405 }
9406 // FALLTHROUGH
9407 case MUTABLE_IS_INITIALIZED:
9408 case IMMUTABLE_IS_INITIALIZED:
9409 case IMMUTABLE_IS_INITIALIZED_HARMONY:
9410 DCHECK(!value->IsTheHole());
9411 return MakePair(value, *receiver);
9412 case IMMUTABLE_CHECK_INITIALIZED:
9413 if (value->IsTheHole()) {
9414 DCHECK((attributes & READ_ONLY) != 0);
9415 value = isolate->heap()->undefined_value();
9416 }
9417 return MakePair(value, *receiver);
9418 case MISSING_BINDING:
9419 UNREACHABLE();
9420 return MakePair(NULL, NULL);
9421 }
9422 }
9423
9424 // Otherwise, if the slot was found the holder is a context extension
9425 // object, subject of a with, or a global object. We read the named
9426 // property from it.
9427 if (!holder.is_null()) {
9428 Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
9429 #ifdef DEBUG
9430 if (!object->IsJSProxy()) {
9431 Maybe<bool> maybe = JSReceiver::HasProperty(object, name);
9432 DCHECK(maybe.has_value);
9433 DCHECK(maybe.value);
9434 }
9435 #endif
9436 // GetProperty below can cause GC.
9437 Handle<Object> receiver_handle(
9438 object->IsGlobalObject()
9439 ? Object::cast(isolate->heap()->undefined_value())
9440 : object->IsJSProxy() ? static_cast<Object*>(*object)
9441 : ComputeReceiverForNonGlobal(isolate, JSObject::cast(*object)),
9442 isolate);
9443
9444 // No need to unhole the value here. This is taken care of by the
9445 // GetProperty function.
9446 Handle<Object> value;
9447 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9448 isolate, value,
9449 Object::GetProperty(object, name),
9450 MakePair(isolate->heap()->exception(), NULL));
9451 return MakePair(*value, *receiver_handle);
9452 }
9453
9454 if (throw_error) {
9455 // The property doesn't exist - throw exception.
9456 Handle<Object> error;
9457 MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError(
9458 "not_defined", HandleVector(&name, 1));
9459 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9460 return MakePair(isolate->heap()->exception(), NULL);
9461 } else {
9462 // The property doesn't exist - return undefined.
9463 return MakePair(isolate->heap()->undefined_value(),
9464 isolate->heap()->undefined_value());
9465 }
9466 }
9467
9468
9469 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) {
9470 return LoadLookupSlotHelper(args, isolate, true);
9471 }
9472
9473
9474 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) {
9475 return LoadLookupSlotHelper(args, isolate, false);
9476 }
9477
9478
9479 RUNTIME_FUNCTION(Runtime_StoreLookupSlot) {
9480 HandleScope scope(isolate);
9481 DCHECK(args.length() == 4);
9482
9483 CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
9484 CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
9485 CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
9486 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3);
9487
9488 int index;
9489 PropertyAttributes attributes;
9490 ContextLookupFlags flags = FOLLOW_CHAINS;
9491 BindingFlags binding_flags;
9492 Handle<Object> holder = context->Lookup(name,
9493 flags,
9494 &index,
9495 &attributes,
9496 &binding_flags);
9497 // In case of JSProxy, an exception might have been thrown.
9498 if (isolate->has_pending_exception()) return isolate->heap()->exception();
9499
9500 // The property was found in a context slot.
9501 if (index >= 0) {
9502 if ((attributes & READ_ONLY) == 0) {
9503 Handle<Context>::cast(holder)->set(index, *value);
9504 } else if (strict_mode == STRICT) {
9505 // Setting read only property in strict mode.
9506 THROW_NEW_ERROR_RETURN_FAILURE(
9507 isolate,
9508 NewTypeError("strict_cannot_assign", HandleVector(&name, 1)));
9509 }
9510 return *value;
9511 }
9512
9513 // Slow case: The property is not in a context slot. It is either in a
9514 // context extension object, a property of the subject of a with, or a
9515 // property of the global object.
9516 Handle<JSReceiver> object;
9517 if (attributes != ABSENT) {
9518 // The property exists on the holder.
9519 object = Handle<JSReceiver>::cast(holder);
9520 } else if (strict_mode == STRICT) {
9521 // If absent in strict mode: throw.
9522 THROW_NEW_ERROR_RETURN_FAILURE(
9523 isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9524 } else {
9525 // If absent in sloppy mode: add the property to the global object.
9526 object = Handle<JSReceiver>(context->global_object());
9527 }
9528
9529 RETURN_FAILURE_ON_EXCEPTION(
9530 isolate, Object::SetProperty(object, name, value, strict_mode));
9531
9532 return *value;
9533 }
9534
9535
9536 RUNTIME_FUNCTION(Runtime_Throw) {
9537 HandleScope scope(isolate);
9538 DCHECK(args.length() == 1);
9539
9540 return isolate->Throw(args[0]);
9541 }
9542
9543
9544 RUNTIME_FUNCTION(Runtime_ReThrow) {
9545 HandleScope scope(isolate);
9546 DCHECK(args.length() == 1);
9547
9548 return isolate->ReThrow(args[0]);
9549 }
9550
9551
9552 RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
9553 SealHandleScope shs(isolate);
9554 DCHECK(args.length() == 0);
9555 return isolate->PromoteScheduledException();
9556 }
9557
9558
9559 RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
9560 HandleScope scope(isolate);
9561 DCHECK(args.length() == 1);
9562 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
9563 THROW_NEW_ERROR_RETURN_FAILURE(
9564 isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9565 }
9566
9567
9568 RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) {
9569 HandleScope scope(isolate);
9570 DCHECK(args.length() == 0);
9571 THROW_NEW_ERROR_RETURN_FAILURE(
9572 isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0)));
9573 }
9574
9575
9576 RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) {
9577 HandleScope scope(isolate);
9578 DCHECK(args.length() == 0);
9579 THROW_NEW_ERROR_RETURN_FAILURE(
9580 isolate,
9581 NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0)));
9582 }
9583
9584
9585 RUNTIME_FUNCTION(Runtime_ThrowNotDateError) {
9586 HandleScope scope(isolate);
9587 DCHECK(args.length() == 0);
9588 THROW_NEW_ERROR_RETURN_FAILURE(
9589 isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
9590 }
9591
9592
9593 RUNTIME_FUNCTION(Runtime_StackGuard) {
9594 SealHandleScope shs(isolate);
9595 DCHECK(args.length() == 0);
9596
9597 // First check if this is a real stack overflow.
9598 StackLimitCheck check(isolate);
9599 if (check.JsHasOverflowed()) {
9600 return isolate->StackOverflow();
9601 }
9602
9603 return isolate->stack_guard()->HandleInterrupts();
9604 }
9605
9606
9607 RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
9608 HandleScope scope(isolate);
9609 DCHECK(args.length() == 1);
9610 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9611
9612 // First check if this is a real stack overflow.
9613 StackLimitCheck check(isolate);
9614 if (check.JsHasOverflowed()) {
9615 SealHandleScope shs(isolate);
9616 return isolate->StackOverflow();
9617 }
9618
9619 isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
9620 return (function->IsOptimized()) ? function->code()
9621 : function->shared()->code();
9622 }
9623
9624
9625 RUNTIME_FUNCTION(Runtime_Interrupt) {
9626 SealHandleScope shs(isolate);
9627 DCHECK(args.length() == 0);
9628 return isolate->stack_guard()->HandleInterrupts();
9629 }
9630
9631
9632 static int StackSize(Isolate* isolate) {
9633 int n = 0;
9634 for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
9635 return n;
9636 }
9637
9638
9639 static void PrintTransition(Isolate* isolate, Object* result) {
9640 // indentation
9641 { const int nmax = 80;
9642 int n = StackSize(isolate);
9643 if (n <= nmax)
9644 PrintF("%4d:%*s", n, n, "");
9645 else
9646 PrintF("%4d:%*s", n, nmax, "...");
9647 }
9648
9649 if (result == NULL) {
9650 JavaScriptFrame::PrintTop(isolate, stdout, true, false);
9651 PrintF(" {\n");
9652 } else {
9653 // function result
9654 PrintF("} -> ");
9655 result->ShortPrint();
9656 PrintF("\n");
9657 }
9658 }
9659
9660
9661 RUNTIME_FUNCTION(Runtime_TraceEnter) {
9662 SealHandleScope shs(isolate);
9663 DCHECK(args.length() == 0);
9664 PrintTransition(isolate, NULL);
9665 return isolate->heap()->undefined_value();
9666 }
9667
9668
9669 RUNTIME_FUNCTION(Runtime_TraceExit) {
9670 SealHandleScope shs(isolate);
9671 DCHECK(args.length() == 1);
9672 CONVERT_ARG_CHECKED(Object, obj, 0);
9673 PrintTransition(isolate, obj);
9674 return obj; // return TOS
9675 }
9676
9677
9678 RUNTIME_FUNCTION(Runtime_DebugPrint) {
9679 SealHandleScope shs(isolate);
9680 DCHECK(args.length() == 1);
9681
9682 OFStream os(stdout);
9683 #ifdef DEBUG
9684 if (args[0]->IsString()) {
9685 // If we have a string, assume it's a code "marker"
9686 // and print some interesting cpu debugging info.
9687 JavaScriptFrameIterator it(isolate);
9688 JavaScriptFrame* frame = it.frame();
9689 os << "fp = " << frame->fp() << ", sp = " << frame->sp()
9690 << ", caller_sp = " << frame->caller_sp() << ": ";
9691 } else {
9692 os << "DebugPrint: ";
9693 }
9694 args[0]->Print(os);
9695 if (args[0]->IsHeapObject()) {
9696 os << "\n";
9697 HeapObject::cast(args[0])->map()->Print(os);
9698 }
9699 #else
9700 // ShortPrint is available in release mode. Print is not.
9701 os << Brief(args[0]);
9702 #endif
9703 os << endl;
9704
9705 return args[0]; // return TOS
9706 }
9707
9708
9709 RUNTIME_FUNCTION(Runtime_DebugTrace) {
9710 SealHandleScope shs(isolate);
9711 DCHECK(args.length() == 0);
9712 isolate->PrintStack(stdout);
9713 return isolate->heap()->undefined_value();
9714 }
9715
9716
9717 RUNTIME_FUNCTION(Runtime_DateCurrentTime) {
9718 HandleScope scope(isolate);
9719 DCHECK(args.length() == 0);
9720 if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent());
9721
9722 // According to ECMA-262, section 15.9.1, page 117, the precision of
9723 // the number in a Date object representing a particular instant in
9724 // time is milliseconds. Therefore, we floor the result of getting
9725 // the OS time.
9726 double millis;
9727 if (FLAG_verify_predictable) {
9728 millis = 1388534400000.0; // Jan 1 2014 00:00:00 GMT+0000
9729 millis += Floor(isolate->heap()->synthetic_time());
9730 } else {
9731 millis = Floor(base::OS::TimeCurrentMillis());
9732 }
9733 return *isolate->factory()->NewNumber(millis);
9734 }
9735
9736
9737 RUNTIME_FUNCTION(Runtime_DateParseString) {
9738 HandleScope scope(isolate);
9739 DCHECK(args.length() == 2);
9740 CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
9741 CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
9742
9743 RUNTIME_ASSERT(output->HasFastElements());
9744 JSObject::EnsureCanContainHeapObjectElements(output);
9745 RUNTIME_ASSERT(output->HasFastObjectElements());
9746 Handle<FixedArray> output_array(FixedArray::cast(output->elements()));
9747 RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
9748
9749 str = String::Flatten(str);
9750 DisallowHeapAllocation no_gc;
9751
9752 bool result;
9753 String::FlatContent str_content = str->GetFlatContent();
9754 if (str_content.IsOneByte()) {
9755 result = DateParser::Parse(str_content.ToOneByteVector(),
9756 *output_array,
9757 isolate->unicode_cache());
9758 } else {
9759 DCHECK(str_content.IsTwoByte());
9760 result = DateParser::Parse(str_content.ToUC16Vector(),
9761 *output_array,
9762 isolate->unicode_cache());
9763 }
9764
9765 if (result) {
9766 return *output;
9767 } else {
9768 return isolate->heap()->null_value();
9769 }
9770 }
9771
9772
9773 RUNTIME_FUNCTION(Runtime_DateLocalTimezone) {
9774 HandleScope scope(isolate);
9775 DCHECK(args.length() == 1);
9776
9777 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9778 RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9779 x <= DateCache::kMaxTimeBeforeUTCInMs);
9780 const char* zone =
9781 isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x));
9782 Handle<String> result = isolate->factory()->NewStringFromUtf8(
9783 CStrVector(zone)).ToHandleChecked();
9784 return *result;
9785 }
9786
9787
9788 RUNTIME_FUNCTION(Runtime_DateToUTC) {
9789 HandleScope scope(isolate);
9790 DCHECK(args.length() == 1);
9791
9792 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9793 RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9794 x <= DateCache::kMaxTimeBeforeUTCInMs);
9795 int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
9796
9797 return *isolate->factory()->NewNumber(static_cast<double>(time));
9798 }
9799
9800
9801 RUNTIME_FUNCTION(Runtime_DateCacheVersion) {
9802 HandleScope hs(isolate);
9803 DCHECK(args.length() == 0);
9804 if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) {
9805 Handle<FixedArray> date_cache_version =
9806 isolate->factory()->NewFixedArray(1, TENURED);
9807 date_cache_version->set(0, Smi::FromInt(0));
9808 isolate->eternal_handles()->CreateSingleton(
9809 isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION);
9810 }
9811 Handle<FixedArray> date_cache_version =
9812 Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton(
9813 EternalHandles::DATE_CACHE_VERSION));
9814 // Return result as a JS array.
9815 Handle<JSObject> result =
9816 isolate->factory()->NewJSObject(isolate->array_function());
9817 JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version);
9818 return *result;
9819 }
9820
9821
9822 RUNTIME_FUNCTION(Runtime_GlobalProxy) {
9823 SealHandleScope shs(isolate);
9824 DCHECK(args.length() == 1);
9825 CONVERT_ARG_CHECKED(Object, global, 0);
9826 if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
9827 return JSGlobalObject::cast(global)->global_proxy();
9828 }
9829
9830
9831 RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) {
9832 SealHandleScope shs(isolate);
9833 DCHECK(args.length() == 1);
9834 CONVERT_ARG_CHECKED(Object, global, 0);
9835 if (!global->IsJSGlobalObject()) return isolate->heap()->false_value();
9836 return isolate->heap()->ToBoolean(
9837 !JSGlobalObject::cast(global)->IsDetached());
9838 }
9839
9840
9841 RUNTIME_FUNCTION(Runtime_ParseJson) {
9842 HandleScope scope(isolate);
9843 DCHECK(args.length() == 1);
9844 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9845
9846 source = String::Flatten(source);
9847 // Optimized fast case where we only have Latin1 characters.
9848 Handle<Object> result;
9849 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9850 isolate, result,
9851 source->IsSeqOneByteString() ? JsonParser<true>::Parse(source)
9852 : JsonParser<false>::Parse(source));
9853 return *result;
9854 }
9855
9856
9857 bool CodeGenerationFromStringsAllowed(Isolate* isolate,
9858 Handle<Context> context) {
9859 DCHECK(context->allow_code_gen_from_strings()->IsFalse());
9860 // Check with callback if set.
9861 AllowCodeGenerationFromStringsCallback callback =
9862 isolate->allow_code_gen_callback();
9863 if (callback == NULL) {
9864 // No callback set and code generation disallowed.
9865 return false;
9866 } else {
9867 // Callback set. Let it decide if code generation is allowed.
9868 VMState<EXTERNAL> state(isolate);
9869 return callback(v8::Utils::ToLocal(context));
9870 }
9871 }
9872
9873
9874 RUNTIME_FUNCTION(Runtime_CompileString) {
9875 HandleScope scope(isolate);
9876 DCHECK(args.length() == 2);
9877 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9878 CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1);
9879
9880 // Extract native context.
9881 Handle<Context> context(isolate->native_context());
9882
9883 // Check if native context allows code generation from
9884 // strings. Throw an exception if it doesn't.
9885 if (context->allow_code_gen_from_strings()->IsFalse() &&
9886 !CodeGenerationFromStringsAllowed(isolate, context)) {
9887 Handle<Object> error_message =
9888 context->ErrorMessageForCodeGenerationFromStrings();
9889 THROW_NEW_ERROR_RETURN_FAILURE(
9890 isolate, NewEvalError("code_gen_from_strings",
9891 HandleVector<Object>(&error_message, 1)));
9892 }
9893
9894 // Compile source string in the native context.
9895 ParseRestriction restriction = function_literal_only
9896 ? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION;
9897 Handle<JSFunction> fun;
9898 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9899 isolate, fun,
9900 Compiler::GetFunctionFromEval(
9901 source, context, SLOPPY, restriction, RelocInfo::kNoPosition));
9902 return *fun;
9903 }
9904
9905
9906 static ObjectPair CompileGlobalEval(Isolate* isolate,
9907 Handle<String> source,
9908 Handle<Object> receiver,
9909 StrictMode strict_mode,
9910 int scope_position) {
9911 Handle<Context> context = Handle<Context>(isolate->context());
9912 Handle<Context> native_context = Handle<Context>(context->native_context());
9913
9914 // Check if native context allows code generation from
9915 // strings. Throw an exception if it doesn't.
9916 if (native_context->allow_code_gen_from_strings()->IsFalse() &&
9917 !CodeGenerationFromStringsAllowed(isolate, native_context)) {
9918 Handle<Object> error_message =
9919 native_context->ErrorMessageForCodeGenerationFromStrings();
9920 Handle<Object> error;
9921 MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
9922 "code_gen_from_strings", HandleVector<Object>(&error_message, 1));
9923 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9924 return MakePair(isolate->heap()->exception(), NULL);
9925 }
9926
9927 // Deal with a normal eval call with a string argument. Compile it
9928 // and return the compiled function bound in the local context.
9929 static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
9930 Handle<JSFunction> compiled;
9931 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9932 isolate, compiled,
9933 Compiler::GetFunctionFromEval(
9934 source, context, strict_mode, restriction, scope_position),
9935 MakePair(isolate->heap()->exception(), NULL));
9936 return MakePair(*compiled, *receiver);
9937 }
9938
9939
9940 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval) {
9941 HandleScope scope(isolate);
9942 DCHECK(args.length() == 5);
9943
9944 Handle<Object> callee = args.at<Object>(0);
9945
9946 // If "eval" didn't refer to the original GlobalEval, it's not a
9947 // direct call to eval.
9948 // (And even if it is, but the first argument isn't a string, just let
9949 // execution default to an indirect call to eval, which will also return
9950 // the first argument without doing anything).
9951 if (*callee != isolate->native_context()->global_eval_fun() ||
9952 !args[1]->IsString()) {
9953 return MakePair(*callee, isolate->heap()->undefined_value());
9954 }
9955
9956 DCHECK(args[3]->IsSmi());
9957 DCHECK(args.smi_at(3) == SLOPPY || args.smi_at(3) == STRICT);
9958 StrictMode strict_mode = static_cast<StrictMode>(args.smi_at(3));
9959 DCHECK(args[4]->IsSmi());
9960 return CompileGlobalEval(isolate,
9961 args.at<String>(1),
9962 args.at<Object>(2),
9963 strict_mode,
9964 args.smi_at(4));
9965 }
9966
9967
9968 RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
9969 HandleScope scope(isolate);
9970 DCHECK(args.length() == 1);
9971 CONVERT_SMI_ARG_CHECKED(size, 0);
9972 RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9973 RUNTIME_ASSERT(size > 0);
9974 RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9975 return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
9976 }
9977
9978
9979 RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
9980 HandleScope scope(isolate);
9981 DCHECK(args.length() == 2);
9982 CONVERT_SMI_ARG_CHECKED(size, 0);
9983 CONVERT_SMI_ARG_CHECKED(flags, 1);
9984 RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9985 RUNTIME_ASSERT(size > 0);
9986 RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9987 bool double_align = AllocateDoubleAlignFlag::decode(flags);
9988 AllocationSpace space = AllocateTargetSpace::decode(flags);
9989 return *isolate->factory()->NewFillerObject(size, double_align, space);
9990 }
9991
9992
9993 // Push an object unto an array of objects if it is not already in the
9994 // array. Returns true if the element was pushed on the stack and
9995 // false otherwise.
9996 RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
9997 HandleScope scope(isolate);
9998 DCHECK(args.length() == 2);
9999 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10000 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
10001 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
10002 int length = Smi::cast(array->length())->value();
10003 FixedArray* elements = FixedArray::cast(array->elements());
10004 for (int i = 0; i < length; i++) {
10005 if (elements->get(i) == *element) return isolate->heap()->false_value();
10006 }
10007
10008 // Strict not needed. Used for cycle detection in Array join implementation.
10009 RETURN_FAILURE_ON_EXCEPTION(
10010 isolate,
10011 JSObject::SetFastElement(array, length, element, SLOPPY, true));
10012 return isolate->heap()->true_value();
10013 }
10014
10015
10016 /**
10017 * A simple visitor visits every element of Array's.
10018 * The backend storage can be a fixed array for fast elements case,
10019 * or a dictionary for sparse array. Since Dictionary is a subtype
10020 * of FixedArray, the class can be used by both fast and slow cases.
10021 * The second parameter of the constructor, fast_elements, specifies
10022 * whether the storage is a FixedArray or Dictionary.
10023 *
10024 * An index limit is used to deal with the situation that a result array
10025 * length overflows 32-bit non-negative integer.
10026 */
10027 class ArrayConcatVisitor {
10028 public:
10029 ArrayConcatVisitor(Isolate* isolate,
10030 Handle<FixedArray> storage,
10031 bool fast_elements) :
10032 isolate_(isolate),
10033 storage_(Handle<FixedArray>::cast(
10034 isolate->global_handles()->Create(*storage))),
10035 index_offset_(0u),
10036 fast_elements_(fast_elements),
10037 exceeds_array_limit_(false) { }
10038
10039 ~ArrayConcatVisitor() {
10040 clear_storage();
10041 }
10042
10043 void visit(uint32_t i, Handle<Object> elm) {
10044 if (i > JSObject::kMaxElementCount - index_offset_) {
10045 exceeds_array_limit_ = true;
10046 return;
10047 }
10048 uint32_t index = index_offset_ + i;
10049
10050 if (fast_elements_) {
10051 if (index < static_cast<uint32_t>(storage_->length())) {
10052 storage_->set(index, *elm);
10053 return;
10054 }
10055 // Our initial estimate of length was foiled, possibly by
10056 // getters on the arrays increasing the length of later arrays
10057 // during iteration.
10058 // This shouldn't happen in anything but pathological cases.
10059 SetDictionaryMode();
10060 // Fall-through to dictionary mode.
10061 }
10062 DCHECK(!fast_elements_);
10063 Handle<SeededNumberDictionary> dict(
10064 SeededNumberDictionary::cast(*storage_));
10065 Handle<SeededNumberDictionary> result =
10066 SeededNumberDictionary::AtNumberPut(dict, index, elm);
10067 if (!result.is_identical_to(dict)) {
10068 // Dictionary needed to grow.
10069 clear_storage();
10070 set_storage(*result);
10071 }
10072 }
10073
10074 void increase_index_offset(uint32_t delta) {
10075 if (JSObject::kMaxElementCount - index_offset_ < delta) {
10076 index_offset_ = JSObject::kMaxElementCount;
10077 } else {
10078 index_offset_ += delta;
10079 }
10080 // If the initial length estimate was off (see special case in visit()),
10081 // but the array blowing the limit didn't contain elements beyond the
10082 // provided-for index range, go to dictionary mode now.
10083 if (fast_elements_ &&
10084 index_offset_ >
10085 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
10086 SetDictionaryMode();
10087 }
10088 }
10089
10090 bool exceeds_array_limit() {
10091 return exceeds_array_limit_;
10092 }
10093
10094 Handle<JSArray> ToArray() {
10095 Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
10096 Handle<Object> length =
10097 isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
10098 Handle<Map> map = JSObject::GetElementsTransitionMap(
10099 array,
10100 fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
10101 array->set_map(*map);
10102 array->set_length(*length);
10103 array->set_elements(*storage_);
10104 return array;
10105 }
10106
10107 private:
10108 // Convert storage to dictionary mode.
10109 void SetDictionaryMode() {
10110 DCHECK(fast_elements_);
10111 Handle<FixedArray> current_storage(*storage_);
10112 Handle<SeededNumberDictionary> slow_storage(
10113 SeededNumberDictionary::New(isolate_, current_storage->length()));
10114 uint32_t current_length = static_cast<uint32_t>(current_storage->length());
10115 for (uint32_t i = 0; i < current_length; i++) {
10116 HandleScope loop_scope(isolate_);
10117 Handle<Object> element(current_storage->get(i), isolate_);
10118 if (!element->IsTheHole()) {
10119 Handle<SeededNumberDictionary> new_storage =
10120 SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
10121 if (!new_storage.is_identical_to(slow_storage)) {
10122 slow_storage = loop_scope.CloseAndEscape(new_storage);
10123 }
10124 }
10125 }
10126 clear_storage();
10127 set_storage(*slow_storage);
10128 fast_elements_ = false;
10129 }
10130
10131 inline void clear_storage() {
10132 GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
10133 }
10134
10135 inline void set_storage(FixedArray* storage) {
10136 storage_ = Handle<FixedArray>::cast(
10137 isolate_->global_handles()->Create(storage));
10138 }
10139
10140 Isolate* isolate_;
10141 Handle<FixedArray> storage_; // Always a global handle.
10142 // Index after last seen index. Always less than or equal to
10143 // JSObject::kMaxElementCount.
10144 uint32_t index_offset_;
10145 bool fast_elements_ : 1;
10146 bool exceeds_array_limit_ : 1;
10147 };
10148
10149
10150 static uint32_t EstimateElementCount(Handle<JSArray> array) {
10151 uint32_t length = static_cast<uint32_t>(array->length()->Number());
10152 int element_count = 0;
10153 switch (array->GetElementsKind()) {
10154 case FAST_SMI_ELEMENTS:
10155 case FAST_HOLEY_SMI_ELEMENTS:
10156 case FAST_ELEMENTS:
10157 case FAST_HOLEY_ELEMENTS: {
10158 // Fast elements can't have lengths that are not representable by
10159 // a 32-bit signed integer.
10160 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
10161 int fast_length = static_cast<int>(length);
10162 Handle<FixedArray> elements(FixedArray::cast(array->elements()));
10163 for (int i = 0; i < fast_length; i++) {
10164 if (!elements->get(i)->IsTheHole()) element_count++;
10165 }
10166 break;
10167 }
10168 case FAST_DOUBLE_ELEMENTS:
10169 case FAST_HOLEY_DOUBLE_ELEMENTS: {
10170 // Fast elements can't have lengths that are not representable by
10171 // a 32-bit signed integer.
10172 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
10173 int fast_length = static_cast<int>(length);
10174 if (array->elements()->IsFixedArray()) {
10175 DCHECK(FixedArray::cast(array->elements())->length() == 0);
10176 break;
10177 }
10178 Handle<FixedDoubleArray> elements(
10179 FixedDoubleArray::cast(array->elements()));
10180 for (int i = 0; i < fast_length; i++) {
10181 if (!elements->is_the_hole(i)) element_count++;
10182 }
10183 break;
10184 }
10185 case DICTIONARY_ELEMENTS: {
10186 Handle<SeededNumberDictionary> dictionary(
10187 SeededNumberDictionary::cast(array->elements()));
10188 int capacity = dictionary->Capacity();
10189 for (int i = 0; i < capacity; i++) {
10190 Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
10191 if (dictionary->IsKey(*key)) {
10192 element_count++;
10193 }
10194 }
10195 break;
10196 }
10197 case SLOPPY_ARGUMENTS_ELEMENTS:
10198 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10199 case EXTERNAL_##TYPE##_ELEMENTS: \
10200 case TYPE##_ELEMENTS: \
10201
10202 TYPED_ARRAYS(TYPED_ARRAY_CASE)
10203 #undef TYPED_ARRAY_CASE
10204 // External arrays are always dense.
10205 return length;
10206 }
10207 // As an estimate, we assume that the prototype doesn't contain any
10208 // inherited elements.
10209 return element_count;
10210 }
10211
10212
10213
10214 template<class ExternalArrayClass, class ElementType>
10215 static void IterateExternalArrayElements(Isolate* isolate,
10216 Handle<JSObject> receiver,
10217 bool elements_are_ints,
10218 bool elements_are_guaranteed_smis,
10219 ArrayConcatVisitor* visitor) {
10220 Handle<ExternalArrayClass> array(
10221 ExternalArrayClass::cast(receiver->elements()));
10222 uint32_t len = static_cast<uint32_t>(array->length());
10223
10224 DCHECK(visitor != NULL);
10225 if (elements_are_ints) {
10226 if (elements_are_guaranteed_smis) {
10227 for (uint32_t j = 0; j < len; j++) {
10228 HandleScope loop_scope(isolate);
10229 Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
10230 isolate);
10231 visitor->visit(j, e);
10232 }
10233 } else {
10234 for (uint32_t j = 0; j < len; j++) {
10235 HandleScope loop_scope(isolate);
10236 int64_t val = static_cast<int64_t>(array->get_scalar(j));
10237 if (Smi::IsValid(static_cast<intptr_t>(val))) {
10238 Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
10239 visitor->visit(j, e);
10240 } else {
10241 Handle<Object> e =
10242 isolate->factory()->NewNumber(static_cast<ElementType>(val));
10243 visitor->visit(j, e);
10244 }
10245 }
10246 }
10247 } else {
10248 for (uint32_t j = 0; j < len; j++) {
10249 HandleScope loop_scope(isolate);
10250 Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
10251 visitor->visit(j, e);
10252 }
10253 }
10254 }
10255
10256
10257 // Used for sorting indices in a List<uint32_t>.
10258 static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
10259 uint32_t a = *ap;
10260 uint32_t b = *bp;
10261 return (a == b) ? 0 : (a < b) ? -1 : 1;
10262 }
10263
10264
10265 static void CollectElementIndices(Handle<JSObject> object,
10266 uint32_t range,
10267 List<uint32_t>* indices) {
10268 Isolate* isolate = object->GetIsolate();
10269 ElementsKind kind = object->GetElementsKind();
10270 switch (kind) {
10271 case FAST_SMI_ELEMENTS:
10272 case FAST_ELEMENTS:
10273 case FAST_HOLEY_SMI_ELEMENTS:
10274 case FAST_HOLEY_ELEMENTS: {
10275 Handle<FixedArray> elements(FixedArray::cast(object->elements()));
10276 uint32_t length = static_cast<uint32_t>(elements->length());
10277 if (range < length) length = range;
10278 for (uint32_t i = 0; i < length; i++) {
10279 if (!elements->get(i)->IsTheHole()) {
10280 indices->Add(i);
10281 }
10282 }
10283 break;
10284 }
10285 case FAST_HOLEY_DOUBLE_ELEMENTS:
10286 case FAST_DOUBLE_ELEMENTS: {
10287 if (object->elements()->IsFixedArray()) {
10288 DCHECK(object->elements()->length() == 0);
10289 break;
10290 }
10291 Handle<FixedDoubleArray> elements(
10292 FixedDoubleArray::cast(object->elements()));
10293 uint32_t length = static_cast<uint32_t>(elements->length());
10294 if (range < length) length = range;
10295 for (uint32_t i = 0; i < length; i++) {
10296 if (!elements->is_the_hole(i)) {
10297 indices->Add(i);
10298 }
10299 }
10300 break;
10301 }
10302 case DICTIONARY_ELEMENTS: {
10303 Handle<SeededNumberDictionary> dict(
10304 SeededNumberDictionary::cast(object->elements()));
10305 uint32_t capacity = dict->Capacity();
10306 for (uint32_t j = 0; j < capacity; j++) {
10307 HandleScope loop_scope(isolate);
10308 Handle<Object> k(dict->KeyAt(j), isolate);
10309 if (dict->IsKey(*k)) {
10310 DCHECK(k->IsNumber());
10311 uint32_t index = static_cast<uint32_t>(k->Number());
10312 if (index < range) {
10313 indices->Add(index);
10314 }
10315 }
10316 }
10317 break;
10318 }
10319 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10320 case TYPE##_ELEMENTS: \
10321 case EXTERNAL_##TYPE##_ELEMENTS:
10322
10323 TYPED_ARRAYS(TYPED_ARRAY_CASE)
10324 #undef TYPED_ARRAY_CASE
10325 {
10326 uint32_t length = static_cast<uint32_t>(
10327 FixedArrayBase::cast(object->elements())->length());
10328 if (range <= length) {
10329 length = range;
10330 // We will add all indices, so we might as well clear it first
10331 // and avoid duplicates.
10332 indices->Clear();
10333 }
10334 for (uint32_t i = 0; i < length; i++) {
10335 indices->Add(i);
10336 }
10337 if (length == range) return; // All indices accounted for already.
10338 break;
10339 }
10340 case SLOPPY_ARGUMENTS_ELEMENTS: {
10341 MaybeHandle<Object> length_obj =
10342 Object::GetProperty(object, isolate->factory()->length_string());
10343 double length_num = length_obj.ToHandleChecked()->Number();
10344 uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
10345 ElementsAccessor* accessor = object->GetElementsAccessor();
10346 for (uint32_t i = 0; i < length; i++) {
10347 if (accessor->HasElement(object, object, i)) {
10348 indices->Add(i);
10349 }
10350 }
10351 break;
10352 }
10353 }
10354
10355 PrototypeIterator iter(isolate, object);
10356 if (!iter.IsAtEnd()) {
10357 // The prototype will usually have no inherited element indices,
10358 // but we have to check.
10359 CollectElementIndices(
10360 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
10361 indices);
10362 }
10363 }
10364
10365
10366 /**
10367 * A helper function that visits elements of a JSArray in numerical
10368 * order.
10369 *
10370 * The visitor argument called for each existing element in the array
10371 * with the element index and the element's value.
10372 * Afterwards it increments the base-index of the visitor by the array
10373 * length.
10374 * Returns false if any access threw an exception, otherwise true.
10375 */
10376 static bool IterateElements(Isolate* isolate,
10377 Handle<JSArray> receiver,
10378 ArrayConcatVisitor* visitor) {
10379 uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
10380 switch (receiver->GetElementsKind()) {
10381 case FAST_SMI_ELEMENTS:
10382 case FAST_ELEMENTS:
10383 case FAST_HOLEY_SMI_ELEMENTS:
10384 case FAST_HOLEY_ELEMENTS: {
10385 // Run through the elements FixedArray and use HasElement and GetElement
10386 // to check the prototype for missing elements.
10387 Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
10388 int fast_length = static_cast<int>(length);
10389 DCHECK(fast_length <= elements->length());
10390 for (int j = 0; j < fast_length; j++) {
10391 HandleScope loop_scope(isolate);
10392 Handle<Object> element_value(elements->get(j), isolate);
10393 if (!element_value->IsTheHole()) {
10394 visitor->visit(j, element_value);
10395 } else {
10396 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10397 if (!maybe.has_value) return false;
10398 if (maybe.value) {
10399 // Call GetElement on receiver, not its prototype, or getters won't
10400 // have the correct receiver.
10401 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10402 isolate, element_value,
10403 Object::GetElement(isolate, receiver, j), false);
10404 visitor->visit(j, element_value);
10405 }
10406 }
10407 }
10408 break;
10409 }
10410 case FAST_HOLEY_DOUBLE_ELEMENTS:
10411 case FAST_DOUBLE_ELEMENTS: {
10412 // Empty array is FixedArray but not FixedDoubleArray.
10413 if (length == 0) break;
10414 // Run through the elements FixedArray and use HasElement and GetElement
10415 // to check the prototype for missing elements.
10416 if (receiver->elements()->IsFixedArray()) {
10417 DCHECK(receiver->elements()->length() == 0);
10418 break;
10419 }
10420 Handle<FixedDoubleArray> elements(
10421 FixedDoubleArray::cast(receiver->elements()));
10422 int fast_length = static_cast<int>(length);
10423 DCHECK(fast_length <= elements->length());
10424 for (int j = 0; j < fast_length; j++) {
10425 HandleScope loop_scope(isolate);
10426 if (!elements->is_the_hole(j)) {
10427 double double_value = elements->get_scalar(j);
10428 Handle<Object> element_value =
10429 isolate->factory()->NewNumber(double_value);
10430 visitor->visit(j, element_value);
10431 } else {
10432 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10433 if (!maybe.has_value) return false;
10434 if (maybe.value) {
10435 // Call GetElement on receiver, not its prototype, or getters won't
10436 // have the correct receiver.
10437 Handle<Object> element_value;
10438 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10439 isolate, element_value,
10440 Object::GetElement(isolate, receiver, j), false);
10441 visitor->visit(j, element_value);
10442 }
10443 }
10444 }
10445 break;
10446 }
10447 case DICTIONARY_ELEMENTS: {
10448 Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
10449 List<uint32_t> indices(dict->Capacity() / 2);
10450 // Collect all indices in the object and the prototypes less
10451 // than length. This might introduce duplicates in the indices list.
10452 CollectElementIndices(receiver, length, &indices);
10453 indices.Sort(&compareUInt32);
10454 int j = 0;
10455 int n = indices.length();
10456 while (j < n) {
10457 HandleScope loop_scope(isolate);
10458 uint32_t index = indices[j];
10459 Handle<Object> element;
10460 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10461 isolate, element,
10462 Object::GetElement(isolate, receiver, index),
10463 false);
10464 visitor->visit(index, element);
10465 // Skip to next different index (i.e., omit duplicates).
10466 do {
10467 j++;
10468 } while (j < n && indices[j] == index);
10469 }
10470 break;
10471 }
10472 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
10473 Handle<ExternalUint8ClampedArray> pixels(ExternalUint8ClampedArray::cast(
10474 receiver->elements()));
10475 for (uint32_t j = 0; j < length; j++) {
10476 Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
10477 visitor->visit(j, e);
10478 }
10479 break;
10480 }
10481 case EXTERNAL_INT8_ELEMENTS: {
10482 IterateExternalArrayElements<ExternalInt8Array, int8_t>(
10483 isolate, receiver, true, true, visitor);
10484 break;
10485 }
10486 case EXTERNAL_UINT8_ELEMENTS: {
10487 IterateExternalArrayElements<ExternalUint8Array, uint8_t>(
10488 isolate, receiver, true, true, visitor);
10489 break;
10490 }
10491 case EXTERNAL_INT16_ELEMENTS: {
10492 IterateExternalArrayElements<ExternalInt16Array, int16_t>(
10493 isolate, receiver, true, true, visitor);
10494 break;
10495 }
10496 case EXTERNAL_UINT16_ELEMENTS: {
10497 IterateExternalArrayElements<ExternalUint16Array, uint16_t>(
10498 isolate, receiver, true, true, visitor);
10499 break;
10500 }
10501 case EXTERNAL_INT32_ELEMENTS: {
10502 IterateExternalArrayElements<ExternalInt32Array, int32_t>(
10503 isolate, receiver, true, false, visitor);
10504 break;
10505 }
10506 case EXTERNAL_UINT32_ELEMENTS: {
10507 IterateExternalArrayElements<ExternalUint32Array, uint32_t>(
10508 isolate, receiver, true, false, visitor);
10509 break;
10510 }
10511 case EXTERNAL_FLOAT32_ELEMENTS: {
10512 IterateExternalArrayElements<ExternalFloat32Array, float>(
10513 isolate, receiver, false, false, visitor);
10514 break;
10515 }
10516 case EXTERNAL_FLOAT64_ELEMENTS: {
10517 IterateExternalArrayElements<ExternalFloat64Array, double>(
10518 isolate, receiver, false, false, visitor);
10519 break;
10520 }
10521 default:
10522 UNREACHABLE();
10523 break;
10524 }
10525 visitor->increase_index_offset(length);
10526 return true;
10527 }
10528
10529
10530 /**
10531 * Array::concat implementation.
10532 * See ECMAScript 262, 15.4.4.4.
10533 * TODO(581): Fix non-compliance for very large concatenations and update to
10534 * following the ECMAScript 5 specification.
10535 */
10536 RUNTIME_FUNCTION(Runtime_ArrayConcat) {
10537 HandleScope handle_scope(isolate);
10538 DCHECK(args.length() == 1);
10539
10540 CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
10541 int argument_count = static_cast<int>(arguments->length()->Number());
10542 RUNTIME_ASSERT(arguments->HasFastObjectElements());
10543 Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
10544
10545 // Pass 1: estimate the length and number of elements of the result.
10546 // The actual length can be larger if any of the arguments have getters
10547 // that mutate other arguments (but will otherwise be precise).
10548 // The number of elements is precise if there are no inherited elements.
10549
10550 ElementsKind kind = FAST_SMI_ELEMENTS;
10551
10552 uint32_t estimate_result_length = 0;
10553 uint32_t estimate_nof_elements = 0;
10554 for (int i = 0; i < argument_count; i++) {
10555 HandleScope loop_scope(isolate);
10556 Handle<Object> obj(elements->get(i), isolate);
10557 uint32_t length_estimate;
10558 uint32_t element_estimate;
10559 if (obj->IsJSArray()) {
10560 Handle<JSArray> array(Handle<JSArray>::cast(obj));
10561 length_estimate = static_cast<uint32_t>(array->length()->Number());
10562 if (length_estimate != 0) {
10563 ElementsKind array_kind =
10564 GetPackedElementsKind(array->map()->elements_kind());
10565 if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
10566 kind = array_kind;
10567 }
10568 }
10569 element_estimate = EstimateElementCount(array);
10570 } else {
10571 if (obj->IsHeapObject()) {
10572 if (obj->IsNumber()) {
10573 if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
10574 kind = FAST_DOUBLE_ELEMENTS;
10575 }
10576 } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
10577 kind = FAST_ELEMENTS;
10578 }
10579 }
10580 length_estimate = 1;
10581 element_estimate = 1;
10582 }
10583 // Avoid overflows by capping at kMaxElementCount.
10584 if (JSObject::kMaxElementCount - estimate_result_length <
10585 length_estimate) {
10586 estimate_result_length = JSObject::kMaxElementCount;
10587 } else {
10588 estimate_result_length += length_estimate;
10589 }
10590 if (JSObject::kMaxElementCount - estimate_nof_elements <
10591 element_estimate) {
10592 estimate_nof_elements = JSObject::kMaxElementCount;
10593 } else {
10594 estimate_nof_elements += element_estimate;
10595 }
10596 }
10597
10598 // If estimated number of elements is more than half of length, a
10599 // fixed array (fast case) is more time and space-efficient than a
10600 // dictionary.
10601 bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
10602
10603 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
10604 Handle<FixedArrayBase> storage =
10605 isolate->factory()->NewFixedDoubleArray(estimate_result_length);
10606 int j = 0;
10607 bool failure = false;
10608 if (estimate_result_length > 0) {
10609 Handle<FixedDoubleArray> double_storage =
10610 Handle<FixedDoubleArray>::cast(storage);
10611 for (int i = 0; i < argument_count; i++) {
10612 Handle<Object> obj(elements->get(i), isolate);
10613 if (obj->IsSmi()) {
10614 double_storage->set(j, Smi::cast(*obj)->value());
10615 j++;
10616 } else if (obj->IsNumber()) {
10617 double_storage->set(j, obj->Number());
10618 j++;
10619 } else {
10620 JSArray* array = JSArray::cast(*obj);
10621 uint32_t length = static_cast<uint32_t>(array->length()->Number());
10622 switch (array->map()->elements_kind()) {
10623 case FAST_HOLEY_DOUBLE_ELEMENTS:
10624 case FAST_DOUBLE_ELEMENTS: {
10625 // Empty array is FixedArray but not FixedDoubleArray.
10626 if (length == 0) break;
10627 FixedDoubleArray* elements =
10628 FixedDoubleArray::cast(array->elements());
10629 for (uint32_t i = 0; i < length; i++) {
10630 if (elements->is_the_hole(i)) {
10631 // TODO(jkummerow/verwaest): We could be a bit more clever
10632 // here: Check if there are no elements/getters on the
10633 // prototype chain, and if so, allow creation of a holey
10634 // result array.
10635 // Same thing below (holey smi case).
10636 failure = true;
10637 break;
10638 }
10639 double double_value = elements->get_scalar(i);
10640 double_storage->set(j, double_value);
10641 j++;
10642 }
10643 break;
10644 }
10645 case FAST_HOLEY_SMI_ELEMENTS:
10646 case FAST_SMI_ELEMENTS: {
10647 FixedArray* elements(
10648 FixedArray::cast(array->elements()));
10649 for (uint32_t i = 0; i < length; i++) {
10650 Object* element = elements->get(i);
10651 if (element->IsTheHole()) {
10652 failure = true;
10653 break;
10654 }
10655 int32_t int_value = Smi::cast(element)->value();
10656 double_storage->set(j, int_value);
10657 j++;
10658 }
10659 break;
10660 }
10661 case FAST_HOLEY_ELEMENTS:
10662 case FAST_ELEMENTS:
10663 DCHECK_EQ(0, length);
10664 break;
10665 default:
10666 UNREACHABLE();
10667 }
10668 }
10669 if (failure) break;
10670 }
10671 }
10672 if (!failure) {
10673 Handle<JSArray> array = isolate->factory()->NewJSArray(0);
10674 Smi* length = Smi::FromInt(j);
10675 Handle<Map> map;
10676 map = JSObject::GetElementsTransitionMap(array, kind);
10677 array->set_map(*map);
10678 array->set_length(length);
10679 array->set_elements(*storage);
10680 return *array;
10681 }
10682 // In case of failure, fall through.
10683 }
10684
10685 Handle<FixedArray> storage;
10686 if (fast_case) {
10687 // The backing storage array must have non-existing elements to preserve
10688 // holes across concat operations.
10689 storage = isolate->factory()->NewFixedArrayWithHoles(
10690 estimate_result_length);
10691 } else {
10692 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
10693 uint32_t at_least_space_for = estimate_nof_elements +
10694 (estimate_nof_elements >> 2);
10695 storage = Handle<FixedArray>::cast(
10696 SeededNumberDictionary::New(isolate, at_least_space_for));
10697 }
10698
10699 ArrayConcatVisitor visitor(isolate, storage, fast_case);
10700
10701 for (int i = 0; i < argument_count; i++) {
10702 Handle<Object> obj(elements->get(i), isolate);
10703 if (obj->IsJSArray()) {
10704 Handle<JSArray> array = Handle<JSArray>::cast(obj);
10705 if (!IterateElements(isolate, array, &visitor)) {
10706 return isolate->heap()->exception();
10707 }
10708 } else {
10709 visitor.visit(0, obj);
10710 visitor.increase_index_offset(1);
10711 }
10712 }
10713
10714 if (visitor.exceeds_array_limit()) {
10715 THROW_NEW_ERROR_RETURN_FAILURE(
10716 isolate,
10717 NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
10718 }
10719 return *visitor.ToArray();
10720 }
10721
10722
10723 // This will not allocate (flatten the string), but it may run
10724 // very slowly for very deeply nested ConsStrings. For debugging use only.
10725 RUNTIME_FUNCTION(Runtime_GlobalPrint) {
10726 SealHandleScope shs(isolate);
10727 DCHECK(args.length() == 1);
10728
10729 CONVERT_ARG_CHECKED(String, string, 0);
10730 ConsStringIteratorOp op;
10731 StringCharacterStream stream(string, &op);
10732 while (stream.HasMore()) {
10733 uint16_t character = stream.GetNext();
10734 PrintF("%c", character);
10735 }
10736 return string;
10737 }
10738
10739
10740 // Moves all own elements of an object, that are below a limit, to positions
10741 // starting at zero. All undefined values are placed after non-undefined values,
10742 // and are followed by non-existing element. Does not change the length
10743 // property.
10744 // Returns the number of non-undefined elements collected.
10745 // Returns -1 if hole removal is not supported by this method.
10746 RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
10747 HandleScope scope(isolate);
10748 DCHECK(args.length() == 2);
10749 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
10750 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
10751 return *JSObject::PrepareElementsForSort(object, limit);
10752 }
10753
10754
10755 // Move contents of argument 0 (an array) to argument 1 (an array)
10756 RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
10757 HandleScope scope(isolate);
10758 DCHECK(args.length() == 2);
10759 CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
10760 CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
10761 JSObject::ValidateElements(from);
10762 JSObject::ValidateElements(to);
10763
10764 Handle<FixedArrayBase> new_elements(from->elements());
10765 ElementsKind from_kind = from->GetElementsKind();
10766 Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
10767 JSObject::SetMapAndElements(to, new_map, new_elements);
10768 to->set_length(from->length());
10769
10770 JSObject::ResetElements(from);
10771 from->set_length(Smi::FromInt(0));
10772
10773 JSObject::ValidateElements(to);
10774 return *to;
10775 }
10776
10777
10778 // How many elements does this object/array have?
10779 RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
10780 HandleScope scope(isolate);
10781 DCHECK(args.length() == 1);
10782 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10783 Handle<FixedArrayBase> elements(array->elements(), isolate);
10784 SealHandleScope shs(isolate);
10785 if (elements->IsDictionary()) {
10786 int result =
10787 Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
10788 return Smi::FromInt(result);
10789 } else {
10790 DCHECK(array->length()->IsSmi());
10791 // For packed elements, we know the exact number of elements
10792 int length = elements->length();
10793 ElementsKind kind = array->GetElementsKind();
10794 if (IsFastPackedElementsKind(kind)) {
10795 return Smi::FromInt(length);
10796 }
10797 // For holey elements, take samples from the buffer checking for holes
10798 // to generate the estimate.
10799 const int kNumberOfHoleCheckSamples = 97;
10800 int increment = (length < kNumberOfHoleCheckSamples)
10801 ? 1
10802 : static_cast<int>(length / kNumberOfHoleCheckSamples);
10803 ElementsAccessor* accessor = array->GetElementsAccessor();
10804 int holes = 0;
10805 for (int i = 0; i < length; i += increment) {
10806 if (!accessor->HasElement(array, array, i, elements)) {
10807 ++holes;
10808 }
10809 }
10810 int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
10811 kNumberOfHoleCheckSamples * length);
10812 return Smi::FromInt(estimate);
10813 }
10814 }
10815
10816
10817 // Returns an array that tells you where in the [0, length) interval an array
10818 // might have elements. Can either return an array of keys (positive integers
10819 // or undefined) or a number representing the positive length of an interval
10820 // starting at index 0.
10821 // Intervals can span over some keys that are not in the object.
10822 RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
10823 HandleScope scope(isolate);
10824 DCHECK(args.length() == 2);
10825 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
10826 CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
10827 if (array->elements()->IsDictionary()) {
10828 Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
10829 for (PrototypeIterator iter(isolate, array,
10830 PrototypeIterator::START_AT_RECEIVER);
10831 !iter.IsAtEnd(); iter.Advance()) {
10832 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
10833 JSObject::cast(*PrototypeIterator::GetCurrent(iter))
10834 ->HasIndexedInterceptor()) {
10835 // Bail out if we find a proxy or interceptor, likely not worth
10836 // collecting keys in that case.
10837 return *isolate->factory()->NewNumberFromUint(length);
10838 }
10839 Handle<JSObject> current =
10840 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
10841 Handle<FixedArray> current_keys =
10842 isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
10843 current->GetOwnElementKeys(*current_keys, NONE);
10844 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10845 isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
10846 }
10847 // Erase any keys >= length.
10848 // TODO(adamk): Remove this step when the contract of %GetArrayKeys
10849 // is changed to let this happen on the JS side.
10850 for (int i = 0; i < keys->length(); i++) {
10851 if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
10852 }
10853 return *isolate->factory()->NewJSArrayWithElements(keys);
10854 } else {
10855 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
10856 array->HasFastDoubleElements());
10857 uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
10858 return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
10859 }
10860 }
10861
10862
10863 RUNTIME_FUNCTION(Runtime_LookupAccessor) {
10864 HandleScope scope(isolate);
10865 DCHECK(args.length() == 3);
10866 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
10867 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10868 CONVERT_SMI_ARG_CHECKED(flag, 2);
10869 AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
10870 if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
10871 Handle<Object> result;
10872 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10873 isolate, result,
10874 JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
10875 return *result;
10876 }
10877
10878
10879 RUNTIME_FUNCTION(Runtime_DebugBreak) {
10880 SealHandleScope shs(isolate);
10881 DCHECK(args.length() == 0);
10882 isolate->debug()->HandleDebugBreak();
10883 return isolate->heap()->undefined_value();
10884 }
10885
10886
10887 // Helper functions for wrapping and unwrapping stack frame ids.
10888 static Smi* WrapFrameId(StackFrame::Id id) {
10889 DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
10890 return Smi::FromInt(id >> 2);
10891 }
10892
10893
10894 static StackFrame::Id UnwrapFrameId(int wrapped) {
10895 return static_cast<StackFrame::Id>(wrapped << 2);
10896 }
10897
10898
10899 // Adds a JavaScript function as a debug event listener.
10900 // args[0]: debug event listener function to set or null or undefined for
10901 // clearing the event listener function
10902 // args[1]: object supplied during callback
10903 RUNTIME_FUNCTION(Runtime_SetDebugEventListener) {
10904 SealHandleScope shs(isolate);
10905 DCHECK(args.length() == 2);
10906 RUNTIME_ASSERT(args[0]->IsJSFunction() ||
10907 args[0]->IsUndefined() ||
10908 args[0]->IsNull());
10909 CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0);
10910 CONVERT_ARG_HANDLE_CHECKED(Object, data, 1);
10911 isolate->debug()->SetEventListener(callback, data);
10912
10913 return isolate->heap()->undefined_value();
10914 }
10915
10916
10917 RUNTIME_FUNCTION(Runtime_Break) {
10918 SealHandleScope shs(isolate);
10919 DCHECK(args.length() == 0);
10920 isolate->stack_guard()->RequestDebugBreak();
10921 return isolate->heap()->undefined_value();
10922 }
10923
10924
10925 static Handle<Object> DebugGetProperty(LookupIterator* it,
10926 bool* has_caught = NULL) {
10927 for (; it->IsFound(); it->Next()) {
10928 switch (it->state()) {
10929 case LookupIterator::NOT_FOUND:
10930 case LookupIterator::TRANSITION:
10931 UNREACHABLE();
10932 case LookupIterator::ACCESS_CHECK:
10933 // Ignore access checks.
10934 break;
10935 case LookupIterator::INTERCEPTOR:
10936 case LookupIterator::JSPROXY:
10937 return it->isolate()->factory()->undefined_value();
10938 case LookupIterator::ACCESSOR: {
10939 Handle<Object> accessors = it->GetAccessors();
10940 if (!accessors->IsAccessorInfo()) {
10941 return it->isolate()->factory()->undefined_value();
10942 }
10943 MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor(
10944 it->GetReceiver(), it->name(), it->GetHolder<JSObject>(),
10945 accessors);
10946 Handle<Object> result;
10947 if (!maybe_result.ToHandle(&result)) {
10948 result = handle(it->isolate()->pending_exception(), it->isolate());
10949 it->isolate()->clear_pending_exception();
10950 if (has_caught != NULL) *has_caught = true;
10951 }
10952 return result;
10953 }
10954
10955 case LookupIterator::DATA:
10956 return it->GetDataValue();
10957 }
10958 }
10959
10960 return it->isolate()->factory()->undefined_value();
10961 }
10962
10963
10964 // Get debugger related details for an object property, in the following format:
10965 // 0: Property value
10966 // 1: Property details
10967 // 2: Property value is exception
10968 // 3: Getter function if defined
10969 // 4: Setter function if defined
10970 // Items 2-4 are only filled if the property has either a getter or a setter.
10971 RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) {
10972 HandleScope scope(isolate);
10973
10974 DCHECK(args.length() == 2);
10975
10976 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
10977 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10978
10979 // Make sure to set the current context to the context before the debugger was
10980 // entered (if the debugger is entered). The reason for switching context here
10981 // is that for some property lookups (accessors and interceptors) callbacks
10982 // into the embedding application can occour, and the embedding application
10983 // could have the assumption that its own native context is the current
10984 // context and not some internal debugger context.
10985 SaveContext save(isolate);
10986 if (isolate->debug()->in_debug_scope()) {
10987 isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
10988 }
10989
10990 // Check if the name is trivially convertible to an index and get the element
10991 // if so.
10992 uint32_t index;
10993 if (name->AsArrayIndex(&index)) {
10994 Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
10995 Handle<Object> element_or_char;
10996 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10997 isolate, element_or_char,
10998 Runtime::GetElementOrCharAt(isolate, obj, index));
10999 details->set(0, *element_or_char);
11000 details->set(
11001 1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi());
11002 return *isolate->factory()->NewJSArrayWithElements(details);
11003 }
11004
11005 LookupIterator it(obj, name, LookupIterator::HIDDEN);
11006 bool has_caught = false;
11007 Handle<Object> value = DebugGetProperty(&it, &has_caught);
11008 if (!it.IsFound()) return isolate->heap()->undefined_value();
11009
11010 Handle<Object> maybe_pair;
11011 if (it.state() == LookupIterator::ACCESSOR) {
11012 maybe_pair = it.GetAccessors();
11013 }
11014
11015 // If the callback object is a fixed array then it contains JavaScript
11016 // getter and/or setter.
11017 bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair();
11018 Handle<FixedArray> details =
11019 isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3);
11020 details->set(0, *value);
11021 // TODO(verwaest): Get rid of this random way of handling interceptors.
11022 PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR
11023 ? PropertyDetails(NONE, NORMAL, 0)
11024 : it.property_details();
11025 details->set(1, d.AsSmi());
11026 details->set(
11027 2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR));
11028 if (has_js_accessors) {
11029 AccessorPair* accessors = AccessorPair::cast(*maybe_pair);
11030 details->set(3, isolate->heap()->ToBoolean(has_caught));
11031 details->set(4, accessors->GetComponent(ACCESSOR_GETTER));
11032 details->set(5, accessors->GetComponent(ACCESSOR_SETTER));
11033 }
11034
11035 return *isolate->factory()->NewJSArrayWithElements(details);
11036 }
11037
11038
11039 RUNTIME_FUNCTION(Runtime_DebugGetProperty) {
11040 HandleScope scope(isolate);
11041
11042 DCHECK(args.length() == 2);
11043
11044 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11045 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11046
11047 LookupIterator it(obj, name);
11048 return *DebugGetProperty(&it);
11049 }
11050
11051
11052 // Return the property type calculated from the property details.
11053 // args[0]: smi with property details.
11054 RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) {
11055 SealHandleScope shs(isolate);
11056 DCHECK(args.length() == 1);
11057 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11058 return Smi::FromInt(static_cast<int>(details.type()));
11059 }
11060
11061
11062 // Return the property attribute calculated from the property details.
11063 // args[0]: smi with property details.
11064 RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) {
11065 SealHandleScope shs(isolate);
11066 DCHECK(args.length() == 1);
11067 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11068 return Smi::FromInt(static_cast<int>(details.attributes()));
11069 }
11070
11071
11072 // Return the property insertion index calculated from the property details.
11073 // args[0]: smi with property details.
11074 RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) {
11075 SealHandleScope shs(isolate);
11076 DCHECK(args.length() == 1);
11077 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11078 // TODO(verwaest): Depends on the type of details.
11079 return Smi::FromInt(details.dictionary_index());
11080 }
11081
11082
11083 // Return property value from named interceptor.
11084 // args[0]: object
11085 // args[1]: property name
11086 RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) {
11087 HandleScope scope(isolate);
11088 DCHECK(args.length() == 2);
11089 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11090 RUNTIME_ASSERT(obj->HasNamedInterceptor());
11091 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11092
11093 Handle<Object> result;
11094 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11095 isolate, result, JSObject::GetProperty(obj, name));
11096 return *result;
11097 }
11098
11099
11100 // Return element value from indexed interceptor.
11101 // args[0]: object
11102 // args[1]: index
11103 RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) {
11104 HandleScope scope(isolate);
11105 DCHECK(args.length() == 2);
11106 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11107 RUNTIME_ASSERT(obj->HasIndexedInterceptor());
11108 CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
11109 Handle<Object> result;
11110 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11111 isolate, result, JSObject::GetElementWithInterceptor(obj, obj, index));
11112 return *result;
11113 }
11114
11115
11116 static bool CheckExecutionState(Isolate* isolate, int break_id) {
11117 return !isolate->debug()->debug_context().is_null() &&
11118 isolate->debug()->break_id() != 0 &&
11119 isolate->debug()->break_id() == break_id;
11120 }
11121
11122
11123 RUNTIME_FUNCTION(Runtime_CheckExecutionState) {
11124 SealHandleScope shs(isolate);
11125 DCHECK(args.length() == 1);
11126 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11127 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11128 return isolate->heap()->true_value();
11129 }
11130
11131
11132 RUNTIME_FUNCTION(Runtime_GetFrameCount) {
11133 HandleScope scope(isolate);
11134 DCHECK(args.length() == 1);
11135 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11136 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11137
11138 // Count all frames which are relevant to debugging stack trace.
11139 int n = 0;
11140 StackFrame::Id id = isolate->debug()->break_frame_id();
11141 if (id == StackFrame::NO_ID) {
11142 // If there is no JavaScript stack frame count is 0.
11143 return Smi::FromInt(0);
11144 }
11145
11146 for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
11147 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11148 it.frame()->Summarize(&frames);
11149 for (int i = frames.length() - 1; i >= 0; i--) {
11150 // Omit functions from native scripts.
11151 if (!frames[i].function()->IsFromNativeScript()) n++;
11152 }
11153 }
11154 return Smi::FromInt(n);
11155 }
11156
11157
11158 class FrameInspector {
11159 public:
11160 FrameInspector(JavaScriptFrame* frame,
11161 int inlined_jsframe_index,
11162 Isolate* isolate)
11163 : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
11164 // Calculate the deoptimized frame.
11165 if (frame->is_optimized()) {
11166 deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
11167 frame, inlined_jsframe_index, isolate);
11168 }
11169 has_adapted_arguments_ = frame_->has_adapted_arguments();
11170 is_bottommost_ = inlined_jsframe_index == 0;
11171 is_optimized_ = frame_->is_optimized();
11172 }
11173
11174 ~FrameInspector() {
11175 // Get rid of the calculated deoptimized frame if any.
11176 if (deoptimized_frame_ != NULL) {
11177 Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_,
11178 isolate_);
11179 }
11180 }
11181
11182 int GetParametersCount() {
11183 return is_optimized_
11184 ? deoptimized_frame_->parameters_count()
11185 : frame_->ComputeParametersCount();
11186 }
11187 int expression_count() { return deoptimized_frame_->expression_count(); }
11188 Object* GetFunction() {
11189 return is_optimized_
11190 ? deoptimized_frame_->GetFunction()
11191 : frame_->function();
11192 }
11193 Object* GetParameter(int index) {
11194 return is_optimized_
11195 ? deoptimized_frame_->GetParameter(index)
11196 : frame_->GetParameter(index);
11197 }
11198 Object* GetExpression(int index) {
11199 return is_optimized_
11200 ? deoptimized_frame_->GetExpression(index)
11201 : frame_->GetExpression(index);
11202 }
11203 int GetSourcePosition() {
11204 return is_optimized_
11205 ? deoptimized_frame_->GetSourcePosition()
11206 : frame_->LookupCode()->SourcePosition(frame_->pc());
11207 }
11208 bool IsConstructor() {
11209 return is_optimized_ && !is_bottommost_
11210 ? deoptimized_frame_->HasConstructStub()
11211 : frame_->IsConstructor();
11212 }
11213 Object* GetContext() {
11214 return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context();
11215 }
11216
11217 // To inspect all the provided arguments the frame might need to be
11218 // replaced with the arguments frame.
11219 void SetArgumentsFrame(JavaScriptFrame* frame) {
11220 DCHECK(has_adapted_arguments_);
11221 frame_ = frame;
11222 is_optimized_ = frame_->is_optimized();
11223 DCHECK(!is_optimized_);
11224 }
11225
11226 private:
11227 JavaScriptFrame* frame_;
11228 DeoptimizedFrameInfo* deoptimized_frame_;
11229 Isolate* isolate_;
11230 bool is_optimized_;
11231 bool is_bottommost_;
11232 bool has_adapted_arguments_;
11233
11234 DISALLOW_COPY_AND_ASSIGN(FrameInspector);
11235 };
11236
11237
11238 static const int kFrameDetailsFrameIdIndex = 0;
11239 static const int kFrameDetailsReceiverIndex = 1;
11240 static const int kFrameDetailsFunctionIndex = 2;
11241 static const int kFrameDetailsArgumentCountIndex = 3;
11242 static const int kFrameDetailsLocalCountIndex = 4;
11243 static const int kFrameDetailsSourcePositionIndex = 5;
11244 static const int kFrameDetailsConstructCallIndex = 6;
11245 static const int kFrameDetailsAtReturnIndex = 7;
11246 static const int kFrameDetailsFlagsIndex = 8;
11247 static const int kFrameDetailsFirstDynamicIndex = 9;
11248
11249
11250 static SaveContext* FindSavedContextForFrame(Isolate* isolate,
11251 JavaScriptFrame* frame) {
11252 SaveContext* save = isolate->save_context();
11253 while (save != NULL && !save->IsBelowFrame(frame)) {
11254 save = save->prev();
11255 }
11256 DCHECK(save != NULL);
11257 return save;
11258 }
11259
11260
11261 // Advances the iterator to the frame that matches the index and returns the
11262 // inlined frame index, or -1 if not found. Skips native JS functions.
11263 static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) {
11264 int count = -1;
11265 for (; !it->done(); it->Advance()) {
11266 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11267 it->frame()->Summarize(&frames);
11268 for (int i = frames.length() - 1; i >= 0; i--) {
11269 // Omit functions from native scripts.
11270 if (frames[i].function()->IsFromNativeScript()) continue;
11271 if (++count == index) return i;
11272 }
11273 }
11274 return -1;
11275 }
11276
11277
11278 // Return an array with frame details
11279 // args[0]: number: break id
11280 // args[1]: number: frame index
11281 //
11282 // The array returned contains the following information:
11283 // 0: Frame id
11284 // 1: Receiver
11285 // 2: Function
11286 // 3: Argument count
11287 // 4: Local count
11288 // 5: Source position
11289 // 6: Constructor call
11290 // 7: Is at return
11291 // 8: Flags
11292 // Arguments name, value
11293 // Locals name, value
11294 // Return value if any
11295 RUNTIME_FUNCTION(Runtime_GetFrameDetails) {
11296 HandleScope scope(isolate);
11297 DCHECK(args.length() == 2);
11298 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11299 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11300
11301 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
11302 Heap* heap = isolate->heap();
11303
11304 // Find the relevant frame with the requested index.
11305 StackFrame::Id id = isolate->debug()->break_frame_id();
11306 if (id == StackFrame::NO_ID) {
11307 // If there are no JavaScript stack frames return undefined.
11308 return heap->undefined_value();
11309 }
11310
11311 JavaScriptFrameIterator it(isolate, id);
11312 // Inlined frame index in optimized frame, starting from outer function.
11313 int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
11314 if (inlined_jsframe_index == -1) return heap->undefined_value();
11315
11316 FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
11317 bool is_optimized = it.frame()->is_optimized();
11318
11319 // Traverse the saved contexts chain to find the active context for the
11320 // selected frame.
11321 SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
11322
11323 // Get the frame id.
11324 Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
11325
11326 // Find source position in unoptimized code.
11327 int position = frame_inspector.GetSourcePosition();
11328
11329 // Check for constructor frame.
11330 bool constructor = frame_inspector.IsConstructor();
11331
11332 // Get scope info and read from it for local variable information.
11333 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11334 Handle<SharedFunctionInfo> shared(function->shared());
11335 Handle<ScopeInfo> scope_info(shared->scope_info());
11336 DCHECK(*scope_info != ScopeInfo::Empty(isolate));
11337
11338 // Get the locals names and values into a temporary array.
11339 int local_count = scope_info->LocalCount();
11340 for (int slot = 0; slot < scope_info->LocalCount(); ++slot) {
11341 // Hide compiler-introduced temporary variables, whether on the stack or on
11342 // the context.
11343 if (scope_info->LocalIsSynthetic(slot))
11344 local_count--;
11345 }
11346
11347 Handle<FixedArray> locals =
11348 isolate->factory()->NewFixedArray(local_count * 2);
11349
11350 // Fill in the values of the locals.
11351 int local = 0;
11352 int i = 0;
11353 for (; i < scope_info->StackLocalCount(); ++i) {
11354 // Use the value from the stack.
11355 if (scope_info->LocalIsSynthetic(i))
11356 continue;
11357 locals->set(local * 2, scope_info->LocalName(i));
11358 locals->set(local * 2 + 1, frame_inspector.GetExpression(i));
11359 local++;
11360 }
11361 if (local < local_count) {
11362 // Get the context containing declarations.
11363 Handle<Context> context(
11364 Context::cast(frame_inspector.GetContext())->declaration_context());
11365 for (; i < scope_info->LocalCount(); ++i) {
11366 if (scope_info->LocalIsSynthetic(i))
11367 continue;
11368 Handle<String> name(scope_info->LocalName(i));
11369 VariableMode mode;
11370 InitializationFlag init_flag;
11371 MaybeAssignedFlag maybe_assigned_flag;
11372 locals->set(local * 2, *name);
11373 int context_slot_index = ScopeInfo::ContextSlotIndex(
11374 scope_info, name, &mode, &init_flag, &maybe_assigned_flag);
11375 Object* value = context->get(context_slot_index);
11376 locals->set(local * 2 + 1, value);
11377 local++;
11378 }
11379 }
11380
11381 // Check whether this frame is positioned at return. If not top
11382 // frame or if the frame is optimized it cannot be at a return.
11383 bool at_return = false;
11384 if (!is_optimized && index == 0) {
11385 at_return = isolate->debug()->IsBreakAtReturn(it.frame());
11386 }
11387
11388 // If positioned just before return find the value to be returned and add it
11389 // to the frame information.
11390 Handle<Object> return_value = isolate->factory()->undefined_value();
11391 if (at_return) {
11392 StackFrameIterator it2(isolate);
11393 Address internal_frame_sp = NULL;
11394 while (!it2.done()) {
11395 if (it2.frame()->is_internal()) {
11396 internal_frame_sp = it2.frame()->sp();
11397 } else {
11398 if (it2.frame()->is_java_script()) {
11399 if (it2.frame()->id() == it.frame()->id()) {
11400 // The internal frame just before the JavaScript frame contains the
11401 // value to return on top. A debug break at return will create an
11402 // internal frame to store the return value (eax/rax/r0) before
11403 // entering the debug break exit frame.
11404 if (internal_frame_sp != NULL) {
11405 return_value =
11406 Handle<Object>(Memory::Object_at(internal_frame_sp),
11407 isolate);
11408 break;
11409 }
11410 }
11411 }
11412
11413 // Indicate that the previous frame was not an internal frame.
11414 internal_frame_sp = NULL;
11415 }
11416 it2.Advance();
11417 }
11418 }
11419
11420 // Now advance to the arguments adapter frame (if any). It contains all
11421 // the provided parameters whereas the function frame always have the number
11422 // of arguments matching the functions parameters. The rest of the
11423 // information (except for what is collected above) is the same.
11424 if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
11425 it.AdvanceToArgumentsFrame();
11426 frame_inspector.SetArgumentsFrame(it.frame());
11427 }
11428
11429 // Find the number of arguments to fill. At least fill the number of
11430 // parameters for the function and fill more if more parameters are provided.
11431 int argument_count = scope_info->ParameterCount();
11432 if (argument_count < frame_inspector.GetParametersCount()) {
11433 argument_count = frame_inspector.GetParametersCount();
11434 }
11435
11436 // Calculate the size of the result.
11437 int details_size = kFrameDetailsFirstDynamicIndex +
11438 2 * (argument_count + local_count) +
11439 (at_return ? 1 : 0);
11440 Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
11441
11442 // Add the frame id.
11443 details->set(kFrameDetailsFrameIdIndex, *frame_id);
11444
11445 // Add the function (same as in function frame).
11446 details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
11447
11448 // Add the arguments count.
11449 details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
11450
11451 // Add the locals count
11452 details->set(kFrameDetailsLocalCountIndex,
11453 Smi::FromInt(local_count));
11454
11455 // Add the source position.
11456 if (position != RelocInfo::kNoPosition) {
11457 details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
11458 } else {
11459 details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
11460 }
11461
11462 // Add the constructor information.
11463 details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
11464
11465 // Add the at return information.
11466 details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
11467
11468 // Add flags to indicate information on whether this frame is
11469 // bit 0: invoked in the debugger context.
11470 // bit 1: optimized frame.
11471 // bit 2: inlined in optimized frame
11472 int flags = 0;
11473 if (*save->context() == *isolate->debug()->debug_context()) {
11474 flags |= 1 << 0;
11475 }
11476 if (is_optimized) {
11477 flags |= 1 << 1;
11478 flags |= inlined_jsframe_index << 2;
11479 }
11480 details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
11481
11482 // Fill the dynamic part.
11483 int details_index = kFrameDetailsFirstDynamicIndex;
11484
11485 // Add arguments name and value.
11486 for (int i = 0; i < argument_count; i++) {
11487 // Name of the argument.
11488 if (i < scope_info->ParameterCount()) {
11489 details->set(details_index++, scope_info->ParameterName(i));
11490 } else {
11491 details->set(details_index++, heap->undefined_value());
11492 }
11493
11494 // Parameter value.
11495 if (i < frame_inspector.GetParametersCount()) {
11496 // Get the value from the stack.
11497 details->set(details_index++, frame_inspector.GetParameter(i));
11498 } else {
11499 details->set(details_index++, heap->undefined_value());
11500 }
11501 }
11502
11503 // Add locals name and value from the temporary copy from the function frame.
11504 for (int i = 0; i < local_count * 2; i++) {
11505 details->set(details_index++, locals->get(i));
11506 }
11507
11508 // Add the value being returned.
11509 if (at_return) {
11510 details->set(details_index++, *return_value);
11511 }
11512
11513 // Add the receiver (same as in function frame).
11514 // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
11515 // THE FRAME ITERATOR TO WRAP THE RECEIVER.
11516 Handle<Object> receiver(it.frame()->receiver(), isolate);
11517 if (!receiver->IsJSObject() &&
11518 shared->strict_mode() == SLOPPY &&
11519 !function->IsBuiltin()) {
11520 // If the receiver is not a JSObject and the function is not a
11521 // builtin or strict-mode we have hit an optimization where a
11522 // value object is not converted into a wrapped JS objects. To
11523 // hide this optimization from the debugger, we wrap the receiver
11524 // by creating correct wrapper object based on the calling frame's
11525 // native context.
11526 it.Advance();
11527 if (receiver->IsUndefined()) {
11528 receiver = handle(function->global_proxy());
11529 } else {
11530 Context* context = Context::cast(it.frame()->context());
11531 Handle<Context> native_context(Context::cast(context->native_context()));
11532 if (!Object::ToObject(isolate, receiver, native_context)
11533 .ToHandle(&receiver)) {
11534 // This only happens if the receiver is forcibly set in %_CallFunction.
11535 return heap->undefined_value();
11536 }
11537 }
11538 }
11539 details->set(kFrameDetailsReceiverIndex, *receiver);
11540
11541 DCHECK_EQ(details_size, details_index);
11542 return *isolate->factory()->NewJSArrayWithElements(details);
11543 }
11544
11545
11546 static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,
11547 Handle<String> parameter_name) {
11548 VariableMode mode;
11549 InitializationFlag init_flag;
11550 MaybeAssignedFlag maybe_assigned_flag;
11551 return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag,
11552 &maybe_assigned_flag) != -1;
11553 }
11554
11555
11556 // Create a plain JSObject which materializes the local scope for the specified
11557 // frame.
11558 MUST_USE_RESULT
11559 static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector(
11560 Isolate* isolate,
11561 Handle<JSObject> target,
11562 Handle<JSFunction> function,
11563 FrameInspector* frame_inspector) {
11564 Handle<SharedFunctionInfo> shared(function->shared());
11565 Handle<ScopeInfo> scope_info(shared->scope_info());
11566
11567 // First fill all parameters.
11568 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11569 // Do not materialize the parameter if it is shadowed by a context local.
11570 Handle<String> name(scope_info->ParameterName(i));
11571 if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11572
11573 HandleScope scope(isolate);
11574 Handle<Object> value(i < frame_inspector->GetParametersCount()
11575 ? frame_inspector->GetParameter(i)
11576 : isolate->heap()->undefined_value(),
11577 isolate);
11578 DCHECK(!value->IsTheHole());
11579
11580 RETURN_ON_EXCEPTION(
11581 isolate,
11582 Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11583 JSObject);
11584 }
11585
11586 // Second fill all stack locals.
11587 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11588 if (scope_info->LocalIsSynthetic(i)) continue;
11589 Handle<String> name(scope_info->StackLocalName(i));
11590 Handle<Object> value(frame_inspector->GetExpression(i), isolate);
11591 if (value->IsTheHole()) continue;
11592
11593 RETURN_ON_EXCEPTION(
11594 isolate,
11595 Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11596 JSObject);
11597 }
11598
11599 return target;
11600 }
11601
11602
11603 static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate,
11604 Handle<JSObject> target,
11605 Handle<JSFunction> function,
11606 JavaScriptFrame* frame,
11607 int inlined_jsframe_index) {
11608 if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11609 // Optimized frames are not supported.
11610 // TODO(yangguo): make sure all code deoptimized when debugger is active
11611 // and assert that this cannot happen.
11612 return;
11613 }
11614
11615 Handle<SharedFunctionInfo> shared(function->shared());
11616 Handle<ScopeInfo> scope_info(shared->scope_info());
11617
11618 // Parameters.
11619 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11620 // Shadowed parameters were not materialized.
11621 Handle<String> name(scope_info->ParameterName(i));
11622 if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11623
11624 DCHECK(!frame->GetParameter(i)->IsTheHole());
11625 HandleScope scope(isolate);
11626 Handle<Object> value =
11627 Object::GetPropertyOrElement(target, name).ToHandleChecked();
11628 frame->SetParameterValue(i, *value);
11629 }
11630
11631 // Stack locals.
11632 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11633 if (scope_info->LocalIsSynthetic(i)) continue;
11634 if (frame->GetExpression(i)->IsTheHole()) continue;
11635 HandleScope scope(isolate);
11636 Handle<Object> value = Object::GetPropertyOrElement(
11637 target,
11638 handle(scope_info->StackLocalName(i), isolate)).ToHandleChecked();
11639 frame->SetExpression(i, *value);
11640 }
11641 }
11642
11643
11644 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext(
11645 Isolate* isolate,
11646 Handle<JSObject> target,
11647 Handle<JSFunction> function,
11648 JavaScriptFrame* frame) {
11649 HandleScope scope(isolate);
11650 Handle<SharedFunctionInfo> shared(function->shared());
11651 Handle<ScopeInfo> scope_info(shared->scope_info());
11652
11653 if (!scope_info->HasContext()) return target;
11654
11655 // Third fill all context locals.
11656 Handle<Context> frame_context(Context::cast(frame->context()));
11657 Handle<Context> function_context(frame_context->declaration_context());
11658 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11659 scope_info, function_context, target)) {
11660 return MaybeHandle<JSObject>();
11661 }
11662
11663 // Finally copy any properties from the function context extension.
11664 // These will be variables introduced by eval.
11665 if (function_context->closure() == *function) {
11666 if (function_context->has_extension() &&
11667 !function_context->IsNativeContext()) {
11668 Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11669 Handle<FixedArray> keys;
11670 ASSIGN_RETURN_ON_EXCEPTION(
11671 isolate, keys,
11672 JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
11673 JSObject);
11674
11675 for (int i = 0; i < keys->length(); i++) {
11676 // Names of variables introduced by eval are strings.
11677 DCHECK(keys->get(i)->IsString());
11678 Handle<String> key(String::cast(keys->get(i)));
11679 Handle<Object> value;
11680 ASSIGN_RETURN_ON_EXCEPTION(
11681 isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11682 RETURN_ON_EXCEPTION(
11683 isolate,
11684 Runtime::SetObjectProperty(isolate, target, key, value, SLOPPY),
11685 JSObject);
11686 }
11687 }
11688 }
11689
11690 return target;
11691 }
11692
11693
11694 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope(
11695 Isolate* isolate,
11696 JavaScriptFrame* frame,
11697 int inlined_jsframe_index) {
11698 FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
11699 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11700
11701 Handle<JSObject> local_scope =
11702 isolate->factory()->NewJSObject(isolate->object_function());
11703 ASSIGN_RETURN_ON_EXCEPTION(
11704 isolate, local_scope,
11705 MaterializeStackLocalsWithFrameInspector(
11706 isolate, local_scope, function, &frame_inspector),
11707 JSObject);
11708
11709 return MaterializeLocalContext(isolate, local_scope, function, frame);
11710 }
11711
11712
11713 // Set the context local variable value.
11714 static bool SetContextLocalValue(Isolate* isolate,
11715 Handle<ScopeInfo> scope_info,
11716 Handle<Context> context,
11717 Handle<String> variable_name,
11718 Handle<Object> new_value) {
11719 for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
11720 Handle<String> next_name(scope_info->ContextLocalName(i));
11721 if (String::Equals(variable_name, next_name)) {
11722 VariableMode mode;
11723 InitializationFlag init_flag;
11724 MaybeAssignedFlag maybe_assigned_flag;
11725 int context_index = ScopeInfo::ContextSlotIndex(
11726 scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag);
11727 context->set(context_index, *new_value);
11728 return true;
11729 }
11730 }
11731
11732 return false;
11733 }
11734
11735
11736 static bool SetLocalVariableValue(Isolate* isolate,
11737 JavaScriptFrame* frame,
11738 int inlined_jsframe_index,
11739 Handle<String> variable_name,
11740 Handle<Object> new_value) {
11741 if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11742 // Optimized frames are not supported.
11743 return false;
11744 }
11745
11746 Handle<JSFunction> function(frame->function());
11747 Handle<SharedFunctionInfo> shared(function->shared());
11748 Handle<ScopeInfo> scope_info(shared->scope_info());
11749
11750 bool default_result = false;
11751
11752 // Parameters.
11753 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11754 HandleScope scope(isolate);
11755 if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) {
11756 frame->SetParameterValue(i, *new_value);
11757 // Argument might be shadowed in heap context, don't stop here.
11758 default_result = true;
11759 }
11760 }
11761
11762 // Stack locals.
11763 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11764 HandleScope scope(isolate);
11765 if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) {
11766 frame->SetExpression(i, *new_value);
11767 return true;
11768 }
11769 }
11770
11771 if (scope_info->HasContext()) {
11772 // Context locals.
11773 Handle<Context> frame_context(Context::cast(frame->context()));
11774 Handle<Context> function_context(frame_context->declaration_context());
11775 if (SetContextLocalValue(
11776 isolate, scope_info, function_context, variable_name, new_value)) {
11777 return true;
11778 }
11779
11780 // Function context extension. These are variables introduced by eval.
11781 if (function_context->closure() == *function) {
11782 if (function_context->has_extension() &&
11783 !function_context->IsNativeContext()) {
11784 Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11785
11786 Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11787 DCHECK(maybe.has_value);
11788 if (maybe.value) {
11789 // We don't expect this to do anything except replacing
11790 // property value.
11791 Runtime::SetObjectProperty(isolate, ext, variable_name, new_value,
11792 SLOPPY).Assert();
11793 return true;
11794 }
11795 }
11796 }
11797 }
11798
11799 return default_result;
11800 }
11801
11802
11803 // Create a plain JSObject which materializes the closure content for the
11804 // context.
11805 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure(
11806 Isolate* isolate,
11807 Handle<Context> context) {
11808 DCHECK(context->IsFunctionContext());
11809
11810 Handle<SharedFunctionInfo> shared(context->closure()->shared());
11811 Handle<ScopeInfo> scope_info(shared->scope_info());
11812
11813 // Allocate and initialize a JSObject with all the content of this function
11814 // closure.
11815 Handle<JSObject> closure_scope =
11816 isolate->factory()->NewJSObject(isolate->object_function());
11817
11818 // Fill all context locals to the context extension.
11819 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11820 scope_info, context, closure_scope)) {
11821 return MaybeHandle<JSObject>();
11822 }
11823
11824 // Finally copy any properties from the function context extension. This will
11825 // be variables introduced by eval.
11826 if (context->has_extension()) {
11827 Handle<JSObject> ext(JSObject::cast(context->extension()));
11828 Handle<FixedArray> keys;
11829 ASSIGN_RETURN_ON_EXCEPTION(
11830 isolate, keys,
11831 JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS), JSObject);
11832
11833 for (int i = 0; i < keys->length(); i++) {
11834 HandleScope scope(isolate);
11835 // Names of variables introduced by eval are strings.
11836 DCHECK(keys->get(i)->IsString());
11837 Handle<String> key(String::cast(keys->get(i)));
11838 Handle<Object> value;
11839 ASSIGN_RETURN_ON_EXCEPTION(
11840 isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11841 RETURN_ON_EXCEPTION(
11842 isolate,
11843 Runtime::DefineObjectProperty(closure_scope, key, value, NONE),
11844 JSObject);
11845 }
11846 }
11847
11848 return closure_scope;
11849 }
11850
11851
11852 // This method copies structure of MaterializeClosure method above.
11853 static bool SetClosureVariableValue(Isolate* isolate,
11854 Handle<Context> context,
11855 Handle<String> variable_name,
11856 Handle<Object> new_value) {
11857 DCHECK(context->IsFunctionContext());
11858
11859 Handle<SharedFunctionInfo> shared(context->closure()->shared());
11860 Handle<ScopeInfo> scope_info(shared->scope_info());
11861
11862 // Context locals to the context extension.
11863 if (SetContextLocalValue(
11864 isolate, scope_info, context, variable_name, new_value)) {
11865 return true;
11866 }
11867
11868 // Properties from the function context extension. This will
11869 // be variables introduced by eval.
11870 if (context->has_extension()) {
11871 Handle<JSObject> ext(JSObject::cast(context->extension()));
11872 Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11873 DCHECK(maybe.has_value);
11874 if (maybe.value) {
11875 // We don't expect this to do anything except replacing property value.
11876 Runtime::DefineObjectProperty(
11877 ext, variable_name, new_value, NONE).Assert();
11878 return true;
11879 }
11880 }
11881
11882 return false;
11883 }
11884
11885
11886 // Create a plain JSObject which materializes the scope for the specified
11887 // catch context.
11888 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope(
11889 Isolate* isolate,
11890 Handle<Context> context) {
11891 DCHECK(context->IsCatchContext());
11892 Handle<String> name(String::cast(context->extension()));
11893 Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
11894 isolate);
11895 Handle<JSObject> catch_scope =
11896 isolate->factory()->NewJSObject(isolate->object_function());
11897 RETURN_ON_EXCEPTION(
11898 isolate,
11899 Runtime::DefineObjectProperty(catch_scope, name, thrown_object, NONE),
11900 JSObject);
11901 return catch_scope;
11902 }
11903
11904
11905 static bool SetCatchVariableValue(Isolate* isolate,
11906 Handle<Context> context,
11907 Handle<String> variable_name,
11908 Handle<Object> new_value) {
11909 DCHECK(context->IsCatchContext());
11910 Handle<String> name(String::cast(context->extension()));
11911 if (!String::Equals(name, variable_name)) {
11912 return false;
11913 }
11914 context->set(Context::THROWN_OBJECT_INDEX, *new_value);
11915 return true;
11916 }
11917
11918
11919 // Create a plain JSObject which materializes the block scope for the specified
11920 // block context.
11921 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope(
11922 Isolate* isolate,
11923 Handle<Context> context) {
11924 DCHECK(context->IsBlockContext());
11925 Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11926
11927 // Allocate and initialize a JSObject with all the arguments, stack locals
11928 // heap locals and extension properties of the debugged function.
11929 Handle<JSObject> block_scope =
11930 isolate->factory()->NewJSObject(isolate->object_function());
11931
11932 // Fill all context locals.
11933 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11934 scope_info, context, block_scope)) {
11935 return MaybeHandle<JSObject>();
11936 }
11937
11938 return block_scope;
11939 }
11940
11941
11942 // Create a plain JSObject which materializes the module scope for the specified
11943 // module context.
11944 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope(
11945 Isolate* isolate,
11946 Handle<Context> context) {
11947 DCHECK(context->IsModuleContext());
11948 Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11949
11950 // Allocate and initialize a JSObject with all the members of the debugged
11951 // module.
11952 Handle<JSObject> module_scope =
11953 isolate->factory()->NewJSObject(isolate->object_function());
11954
11955 // Fill all context locals.
11956 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11957 scope_info, context, module_scope)) {
11958 return MaybeHandle<JSObject>();
11959 }
11960
11961 return module_scope;
11962 }
11963
11964
11965 // Iterate over the actual scopes visible from a stack frame or from a closure.
11966 // The iteration proceeds from the innermost visible nested scope outwards.
11967 // All scopes are backed by an actual context except the local scope,
11968 // which is inserted "artificially" in the context chain.
11969 class ScopeIterator {
11970 public:
11971 enum ScopeType {
11972 ScopeTypeGlobal = 0,
11973 ScopeTypeLocal,
11974 ScopeTypeWith,
11975 ScopeTypeClosure,
11976 ScopeTypeCatch,
11977 ScopeTypeBlock,
11978 ScopeTypeModule
11979 };
11980
11981 ScopeIterator(Isolate* isolate,
11982 JavaScriptFrame* frame,
11983 int inlined_jsframe_index,
11984 bool ignore_nested_scopes = false)
11985 : isolate_(isolate),
11986 frame_(frame),
11987 inlined_jsframe_index_(inlined_jsframe_index),
11988 function_(frame->function()),
11989 context_(Context::cast(frame->context())),
11990 nested_scope_chain_(4),
11991 failed_(false) {
11992
11993 // Catch the case when the debugger stops in an internal function.
11994 Handle<SharedFunctionInfo> shared_info(function_->shared());
11995 Handle<ScopeInfo> scope_info(shared_info->scope_info());
11996 if (shared_info->script() == isolate->heap()->undefined_value()) {
11997 while (context_->closure() == *function_) {
11998 context_ = Handle<Context>(context_->previous(), isolate_);
11999 }
12000 return;
12001 }
12002
12003 // Get the debug info (create it if it does not exist).
12004 if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
12005 // Return if ensuring debug info failed.
12006 return;
12007 }
12008
12009 // Currently it takes too much time to find nested scopes due to script
12010 // parsing. Sometimes we want to run the ScopeIterator as fast as possible
12011 // (for example, while collecting async call stacks on every
12012 // addEventListener call), even if we drop some nested scopes.
12013 // Later we may optimize getting the nested scopes (cache the result?)
12014 // and include nested scopes into the "fast" iteration case as well.
12015 if (!ignore_nested_scopes) {
12016 Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
12017
12018 // Find the break point where execution has stopped.
12019 BreakLocationIterator break_location_iterator(debug_info,
12020 ALL_BREAK_LOCATIONS);
12021 // pc points to the instruction after the current one, possibly a break
12022 // location as well. So the "- 1" to exclude it from the search.
12023 break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12024
12025 // Within the return sequence at the moment it is not possible to
12026 // get a source position which is consistent with the current scope chain.
12027 // Thus all nested with, catch and block contexts are skipped and we only
12028 // provide the function scope.
12029 ignore_nested_scopes = break_location_iterator.IsExit();
12030 }
12031
12032 if (ignore_nested_scopes) {
12033 if (scope_info->HasContext()) {
12034 context_ = Handle<Context>(context_->declaration_context(), isolate_);
12035 } else {
12036 while (context_->closure() == *function_) {
12037 context_ = Handle<Context>(context_->previous(), isolate_);
12038 }
12039 }
12040 if (scope_info->scope_type() == FUNCTION_SCOPE) {
12041 nested_scope_chain_.Add(scope_info);
12042 }
12043 } else {
12044 // Reparse the code and analyze the scopes.
12045 Handle<Script> script(Script::cast(shared_info->script()));
12046 Scope* scope = NULL;
12047
12048 // Check whether we are in global, eval or function code.
12049 Handle<ScopeInfo> scope_info(shared_info->scope_info());
12050 if (scope_info->scope_type() != FUNCTION_SCOPE) {
12051 // Global or eval code.
12052 CompilationInfoWithZone info(script);
12053 if (scope_info->scope_type() == GLOBAL_SCOPE) {
12054 info.MarkAsGlobal();
12055 } else {
12056 DCHECK(scope_info->scope_type() == EVAL_SCOPE);
12057 info.MarkAsEval();
12058 info.SetContext(Handle<Context>(function_->context()));
12059 }
12060 if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12061 scope = info.function()->scope();
12062 }
12063 RetrieveScopeChain(scope, shared_info);
12064 } else {
12065 // Function code
12066 CompilationInfoWithZone info(shared_info);
12067 if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12068 scope = info.function()->scope();
12069 }
12070 RetrieveScopeChain(scope, shared_info);
12071 }
12072 }
12073 }
12074
12075 ScopeIterator(Isolate* isolate,
12076 Handle<JSFunction> function)
12077 : isolate_(isolate),
12078 frame_(NULL),
12079 inlined_jsframe_index_(0),
12080 function_(function),
12081 context_(function->context()),
12082 failed_(false) {
12083 if (function->IsBuiltin()) {
12084 context_ = Handle<Context>();
12085 }
12086 }
12087
12088 // More scopes?
12089 bool Done() {
12090 DCHECK(!failed_);
12091 return context_.is_null();
12092 }
12093
12094 bool Failed() { return failed_; }
12095
12096 // Move to the next scope.
12097 void Next() {
12098 DCHECK(!failed_);
12099 ScopeType scope_type = Type();
12100 if (scope_type == ScopeTypeGlobal) {
12101 // The global scope is always the last in the chain.
12102 DCHECK(context_->IsNativeContext());
12103 context_ = Handle<Context>();
12104 return;
12105 }
12106 if (nested_scope_chain_.is_empty()) {
12107 context_ = Handle<Context>(context_->previous(), isolate_);
12108 } else {
12109 if (nested_scope_chain_.last()->HasContext()) {
12110 DCHECK(context_->previous() != NULL);
12111 context_ = Handle<Context>(context_->previous(), isolate_);
12112 }
12113 nested_scope_chain_.RemoveLast();
12114 }
12115 }
12116
12117 // Return the type of the current scope.
12118 ScopeType Type() {
12119 DCHECK(!failed_);
12120 if (!nested_scope_chain_.is_empty()) {
12121 Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
12122 switch (scope_info->scope_type()) {
12123 case FUNCTION_SCOPE:
12124 DCHECK(context_->IsFunctionContext() ||
12125 !scope_info->HasContext());
12126 return ScopeTypeLocal;
12127 case MODULE_SCOPE:
12128 DCHECK(context_->IsModuleContext());
12129 return ScopeTypeModule;
12130 case GLOBAL_SCOPE:
12131 DCHECK(context_->IsNativeContext());
12132 return ScopeTypeGlobal;
12133 case WITH_SCOPE:
12134 DCHECK(context_->IsWithContext());
12135 return ScopeTypeWith;
12136 case CATCH_SCOPE:
12137 DCHECK(context_->IsCatchContext());
12138 return ScopeTypeCatch;
12139 case BLOCK_SCOPE:
12140 DCHECK(!scope_info->HasContext() ||
12141 context_->IsBlockContext());
12142 return ScopeTypeBlock;
12143 case EVAL_SCOPE:
12144 UNREACHABLE();
12145 }
12146 }
12147 if (context_->IsNativeContext()) {
12148 DCHECK(context_->global_object()->IsGlobalObject());
12149 return ScopeTypeGlobal;
12150 }
12151 if (context_->IsFunctionContext()) {
12152 return ScopeTypeClosure;
12153 }
12154 if (context_->IsCatchContext()) {
12155 return ScopeTypeCatch;
12156 }
12157 if (context_->IsBlockContext()) {
12158 return ScopeTypeBlock;
12159 }
12160 if (context_->IsModuleContext()) {
12161 return ScopeTypeModule;
12162 }
12163 DCHECK(context_->IsWithContext());
12164 return ScopeTypeWith;
12165 }
12166
12167 // Return the JavaScript object with the content of the current scope.
12168 MaybeHandle<JSObject> ScopeObject() {
12169 DCHECK(!failed_);
12170 switch (Type()) {
12171 case ScopeIterator::ScopeTypeGlobal:
12172 return Handle<JSObject>(CurrentContext()->global_object());
12173 case ScopeIterator::ScopeTypeLocal:
12174 // Materialize the content of the local scope into a JSObject.
12175 DCHECK(nested_scope_chain_.length() == 1);
12176 return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
12177 case ScopeIterator::ScopeTypeWith:
12178 // Return the with object.
12179 return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
12180 case ScopeIterator::ScopeTypeCatch:
12181 return MaterializeCatchScope(isolate_, CurrentContext());
12182 case ScopeIterator::ScopeTypeClosure:
12183 // Materialize the content of the closure scope into a JSObject.
12184 return MaterializeClosure(isolate_, CurrentContext());
12185 case ScopeIterator::ScopeTypeBlock:
12186 return MaterializeBlockScope(isolate_, CurrentContext());
12187 case ScopeIterator::ScopeTypeModule:
12188 return MaterializeModuleScope(isolate_, CurrentContext());
12189 }
12190 UNREACHABLE();
12191 return Handle<JSObject>();
12192 }
12193
12194 bool SetVariableValue(Handle<String> variable_name,
12195 Handle<Object> new_value) {
12196 DCHECK(!failed_);
12197 switch (Type()) {
12198 case ScopeIterator::ScopeTypeGlobal:
12199 break;
12200 case ScopeIterator::ScopeTypeLocal:
12201 return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
12202 variable_name, new_value);
12203 case ScopeIterator::ScopeTypeWith:
12204 break;
12205 case ScopeIterator::ScopeTypeCatch:
12206 return SetCatchVariableValue(isolate_, CurrentContext(),
12207 variable_name, new_value);
12208 case ScopeIterator::ScopeTypeClosure:
12209 return SetClosureVariableValue(isolate_, CurrentContext(),
12210 variable_name, new_value);
12211 case ScopeIterator::ScopeTypeBlock:
12212 // TODO(2399): should we implement it?
12213 break;
12214 case ScopeIterator::ScopeTypeModule:
12215 // TODO(2399): should we implement it?
12216 break;
12217 }
12218 return false;
12219 }
12220
12221 Handle<ScopeInfo> CurrentScopeInfo() {
12222 DCHECK(!failed_);
12223 if (!nested_scope_chain_.is_empty()) {
12224 return nested_scope_chain_.last();
12225 } else if (context_->IsBlockContext()) {
12226 return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
12227 } else if (context_->IsFunctionContext()) {
12228 return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
12229 }
12230 return Handle<ScopeInfo>::null();
12231 }
12232
12233 // Return the context for this scope. For the local context there might not
12234 // be an actual context.
12235 Handle<Context> CurrentContext() {
12236 DCHECK(!failed_);
12237 if (Type() == ScopeTypeGlobal ||
12238 nested_scope_chain_.is_empty()) {
12239 return context_;
12240 } else if (nested_scope_chain_.last()->HasContext()) {
12241 return context_;
12242 } else {
12243 return Handle<Context>();
12244 }
12245 }
12246
12247 #ifdef DEBUG
12248 // Debug print of the content of the current scope.
12249 void DebugPrint() {
12250 OFStream os(stdout);
12251 DCHECK(!failed_);
12252 switch (Type()) {
12253 case ScopeIterator::ScopeTypeGlobal:
12254 os << "Global:\n";
12255 CurrentContext()->Print(os);
12256 break;
12257
12258 case ScopeIterator::ScopeTypeLocal: {
12259 os << "Local:\n";
12260 function_->shared()->scope_info()->Print();
12261 if (!CurrentContext().is_null()) {
12262 CurrentContext()->Print(os);
12263 if (CurrentContext()->has_extension()) {
12264 Handle<Object> extension(CurrentContext()->extension(), isolate_);
12265 if (extension->IsJSContextExtensionObject()) {
12266 extension->Print(os);
12267 }
12268 }
12269 }
12270 break;
12271 }
12272
12273 case ScopeIterator::ScopeTypeWith:
12274 os << "With:\n";
12275 CurrentContext()->extension()->Print(os);
12276 break;
12277
12278 case ScopeIterator::ScopeTypeCatch:
12279 os << "Catch:\n";
12280 CurrentContext()->extension()->Print(os);
12281 CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os);
12282 break;
12283
12284 case ScopeIterator::ScopeTypeClosure:
12285 os << "Closure:\n";
12286 CurrentContext()->Print(os);
12287 if (CurrentContext()->has_extension()) {
12288 Handle<Object> extension(CurrentContext()->extension(), isolate_);
12289 if (extension->IsJSContextExtensionObject()) {
12290 extension->Print(os);
12291 }
12292 }
12293 break;
12294
12295 default:
12296 UNREACHABLE();
12297 }
12298 PrintF("\n");
12299 }
12300 #endif
12301
12302 private:
12303 Isolate* isolate_;
12304 JavaScriptFrame* frame_;
12305 int inlined_jsframe_index_;
12306 Handle<JSFunction> function_;
12307 Handle<Context> context_;
12308 List<Handle<ScopeInfo> > nested_scope_chain_;
12309 bool failed_;
12310
12311 void RetrieveScopeChain(Scope* scope,
12312 Handle<SharedFunctionInfo> shared_info) {
12313 if (scope != NULL) {
12314 int source_position = shared_info->code()->SourcePosition(frame_->pc());
12315 scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
12316 } else {
12317 // A failed reparse indicates that the preparser has diverged from the
12318 // parser or that the preparse data given to the initial parse has been
12319 // faulty. We fail in debug mode but in release mode we only provide the
12320 // information we get from the context chain but nothing about
12321 // completely stack allocated scopes or stack allocated locals.
12322 // Or it could be due to stack overflow.
12323 DCHECK(isolate_->has_pending_exception());
12324 failed_ = true;
12325 }
12326 }
12327
12328 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
12329 };
12330
12331
12332 RUNTIME_FUNCTION(Runtime_GetScopeCount) {
12333 HandleScope scope(isolate);
12334 DCHECK(args.length() == 2);
12335 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12336 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12337
12338 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12339
12340 // Get the frame where the debugging is performed.
12341 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12342 JavaScriptFrameIterator it(isolate, id);
12343 JavaScriptFrame* frame = it.frame();
12344
12345 // Count the visible scopes.
12346 int n = 0;
12347 for (ScopeIterator it(isolate, frame, 0);
12348 !it.Done();
12349 it.Next()) {
12350 n++;
12351 }
12352
12353 return Smi::FromInt(n);
12354 }
12355
12356
12357 // Returns the list of step-in positions (text offset) in a function of the
12358 // stack frame in a range from the current debug break position to the end
12359 // of the corresponding statement.
12360 RUNTIME_FUNCTION(Runtime_GetStepInPositions) {
12361 HandleScope scope(isolate);
12362 DCHECK(args.length() == 2);
12363 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12364 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12365
12366 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12367
12368 // Get the frame where the debugging is performed.
12369 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12370 JavaScriptFrameIterator frame_it(isolate, id);
12371 RUNTIME_ASSERT(!frame_it.done());
12372
12373 JavaScriptFrame* frame = frame_it.frame();
12374
12375 Handle<JSFunction> fun =
12376 Handle<JSFunction>(frame->function());
12377 Handle<SharedFunctionInfo> shared =
12378 Handle<SharedFunctionInfo>(fun->shared());
12379
12380 if (!isolate->debug()->EnsureDebugInfo(shared, fun)) {
12381 return isolate->heap()->undefined_value();
12382 }
12383
12384 Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
12385
12386 int len = 0;
12387 Handle<JSArray> array(isolate->factory()->NewJSArray(10));
12388 // Find the break point where execution has stopped.
12389 BreakLocationIterator break_location_iterator(debug_info,
12390 ALL_BREAK_LOCATIONS);
12391
12392 break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12393 int current_statement_pos = break_location_iterator.statement_position();
12394
12395 while (!break_location_iterator.Done()) {
12396 bool accept;
12397 if (break_location_iterator.pc() > frame->pc()) {
12398 accept = true;
12399 } else {
12400 StackFrame::Id break_frame_id = isolate->debug()->break_frame_id();
12401 // The break point is near our pc. Could be a step-in possibility,
12402 // that is currently taken by active debugger call.
12403 if (break_frame_id == StackFrame::NO_ID) {
12404 // We are not stepping.
12405 accept = false;
12406 } else {
12407 JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id);
12408 // If our frame is a top frame and we are stepping, we can do step-in
12409 // at this place.
12410 accept = additional_frame_it.frame()->id() == id;
12411 }
12412 }
12413 if (accept) {
12414 if (break_location_iterator.IsStepInLocation(isolate)) {
12415 Smi* position_value = Smi::FromInt(break_location_iterator.position());
12416 RETURN_FAILURE_ON_EXCEPTION(
12417 isolate,
12418 JSObject::SetElement(array, len,
12419 Handle<Object>(position_value, isolate),
12420 NONE, SLOPPY));
12421 len++;
12422 }
12423 }
12424 // Advance iterator.
12425 break_location_iterator.Next();
12426 if (current_statement_pos !=
12427 break_location_iterator.statement_position()) {
12428 break;
12429 }
12430 }
12431 return *array;
12432 }
12433
12434
12435 static const int kScopeDetailsTypeIndex = 0;
12436 static const int kScopeDetailsObjectIndex = 1;
12437 static const int kScopeDetailsSize = 2;
12438
12439
12440 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails(
12441 Isolate* isolate,
12442 ScopeIterator* it) {
12443 // Calculate the size of the result.
12444 int details_size = kScopeDetailsSize;
12445 Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
12446
12447 // Fill in scope details.
12448 details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
12449 Handle<JSObject> scope_object;
12450 ASSIGN_RETURN_ON_EXCEPTION(
12451 isolate, scope_object, it->ScopeObject(), JSObject);
12452 details->set(kScopeDetailsObjectIndex, *scope_object);
12453
12454 return isolate->factory()->NewJSArrayWithElements(details);
12455 }
12456
12457
12458 // Return an array with scope details
12459 // args[0]: number: break id
12460 // args[1]: number: frame index
12461 // args[2]: number: inlined frame index
12462 // args[3]: number: scope index
12463 //
12464 // The array returned contains the following information:
12465 // 0: Scope type
12466 // 1: Scope object
12467 RUNTIME_FUNCTION(Runtime_GetScopeDetails) {
12468 HandleScope scope(isolate);
12469 DCHECK(args.length() == 4);
12470 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12471 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12472
12473 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12474 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12475 CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12476
12477 // Get the frame where the debugging is performed.
12478 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12479 JavaScriptFrameIterator frame_it(isolate, id);
12480 JavaScriptFrame* frame = frame_it.frame();
12481
12482 // Find the requested scope.
12483 int n = 0;
12484 ScopeIterator it(isolate, frame, inlined_jsframe_index);
12485 for (; !it.Done() && n < index; it.Next()) {
12486 n++;
12487 }
12488 if (it.Done()) {
12489 return isolate->heap()->undefined_value();
12490 }
12491 Handle<JSObject> details;
12492 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12493 isolate, details, MaterializeScopeDetails(isolate, &it));
12494 return *details;
12495 }
12496
12497
12498 // Return an array of scope details
12499 // args[0]: number: break id
12500 // args[1]: number: frame index
12501 // args[2]: number: inlined frame index
12502 // args[3]: boolean: ignore nested scopes
12503 //
12504 // The array returned contains arrays with the following information:
12505 // 0: Scope type
12506 // 1: Scope object
12507 RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) {
12508 HandleScope scope(isolate);
12509 DCHECK(args.length() == 3 || args.length() == 4);
12510 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12511 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12512
12513 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12514 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12515
12516 bool ignore_nested_scopes = false;
12517 if (args.length() == 4) {
12518 CONVERT_BOOLEAN_ARG_CHECKED(flag, 3);
12519 ignore_nested_scopes = flag;
12520 }
12521
12522 // Get the frame where the debugging is performed.
12523 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12524 JavaScriptFrameIterator frame_it(isolate, id);
12525 JavaScriptFrame* frame = frame_it.frame();
12526
12527 List<Handle<JSObject> > result(4);
12528 ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes);
12529 for (; !it.Done(); it.Next()) {
12530 Handle<JSObject> details;
12531 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12532 isolate, details, MaterializeScopeDetails(isolate, &it));
12533 result.Add(details);
12534 }
12535
12536 Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length());
12537 for (int i = 0; i < result.length(); ++i) {
12538 array->set(i, *result[i]);
12539 }
12540 return *isolate->factory()->NewJSArrayWithElements(array);
12541 }
12542
12543
12544 RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) {
12545 HandleScope scope(isolate);
12546 DCHECK(args.length() == 1);
12547
12548 // Check arguments.
12549 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12550
12551 // Count the visible scopes.
12552 int n = 0;
12553 for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
12554 n++;
12555 }
12556
12557 return Smi::FromInt(n);
12558 }
12559
12560
12561 RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) {
12562 HandleScope scope(isolate);
12563 DCHECK(args.length() == 2);
12564
12565 // Check arguments.
12566 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12567 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12568
12569 // Find the requested scope.
12570 int n = 0;
12571 ScopeIterator it(isolate, fun);
12572 for (; !it.Done() && n < index; it.Next()) {
12573 n++;
12574 }
12575 if (it.Done()) {
12576 return isolate->heap()->undefined_value();
12577 }
12578
12579 Handle<JSObject> details;
12580 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12581 isolate, details, MaterializeScopeDetails(isolate, &it));
12582 return *details;
12583 }
12584
12585
12586 static bool SetScopeVariableValue(ScopeIterator* it, int index,
12587 Handle<String> variable_name,
12588 Handle<Object> new_value) {
12589 for (int n = 0; !it->Done() && n < index; it->Next()) {
12590 n++;
12591 }
12592 if (it->Done()) {
12593 return false;
12594 }
12595 return it->SetVariableValue(variable_name, new_value);
12596 }
12597
12598
12599 // Change variable value in closure or local scope
12600 // args[0]: number or JsFunction: break id or function
12601 // args[1]: number: frame index (when arg[0] is break id)
12602 // args[2]: number: inlined frame index (when arg[0] is break id)
12603 // args[3]: number: scope index
12604 // args[4]: string: variable name
12605 // args[5]: object: new value
12606 //
12607 // Return true if success and false otherwise
12608 RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) {
12609 HandleScope scope(isolate);
12610 DCHECK(args.length() == 6);
12611
12612 // Check arguments.
12613 CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12614 CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
12615 CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5);
12616
12617 bool res;
12618 if (args[0]->IsNumber()) {
12619 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12620 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12621
12622 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12623 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12624
12625 // Get the frame where the debugging is performed.
12626 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12627 JavaScriptFrameIterator frame_it(isolate, id);
12628 JavaScriptFrame* frame = frame_it.frame();
12629
12630 ScopeIterator it(isolate, frame, inlined_jsframe_index);
12631 res = SetScopeVariableValue(&it, index, variable_name, new_value);
12632 } else {
12633 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12634 ScopeIterator it(isolate, fun);
12635 res = SetScopeVariableValue(&it, index, variable_name, new_value);
12636 }
12637
12638 return isolate->heap()->ToBoolean(res);
12639 }
12640
12641
12642 RUNTIME_FUNCTION(Runtime_DebugPrintScopes) {
12643 HandleScope scope(isolate);
12644 DCHECK(args.length() == 0);
12645
12646 #ifdef DEBUG
12647 // Print the scopes for the top frame.
12648 StackFrameLocator locator(isolate);
12649 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
12650 for (ScopeIterator it(isolate, frame, 0);
12651 !it.Done();
12652 it.Next()) {
12653 it.DebugPrint();
12654 }
12655 #endif
12656 return isolate->heap()->undefined_value();
12657 }
12658
12659
12660 RUNTIME_FUNCTION(Runtime_GetThreadCount) {
12661 HandleScope scope(isolate);
12662 DCHECK(args.length() == 1);
12663 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12664 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12665
12666 // Count all archived V8 threads.
12667 int n = 0;
12668 for (ThreadState* thread =
12669 isolate->thread_manager()->FirstThreadStateInUse();
12670 thread != NULL;
12671 thread = thread->Next()) {
12672 n++;
12673 }
12674
12675 // Total number of threads is current thread and archived threads.
12676 return Smi::FromInt(n + 1);
12677 }
12678
12679
12680 static const int kThreadDetailsCurrentThreadIndex = 0;
12681 static const int kThreadDetailsThreadIdIndex = 1;
12682 static const int kThreadDetailsSize = 2;
12683
12684 // Return an array with thread details
12685 // args[0]: number: break id
12686 // args[1]: number: thread index
12687 //
12688 // The array returned contains the following information:
12689 // 0: Is current thread?
12690 // 1: Thread id
12691 RUNTIME_FUNCTION(Runtime_GetThreadDetails) {
12692 HandleScope scope(isolate);
12693 DCHECK(args.length() == 2);
12694 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12695 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12696
12697 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12698
12699 // Allocate array for result.
12700 Handle<FixedArray> details =
12701 isolate->factory()->NewFixedArray(kThreadDetailsSize);
12702
12703 // Thread index 0 is current thread.
12704 if (index == 0) {
12705 // Fill the details.
12706 details->set(kThreadDetailsCurrentThreadIndex,
12707 isolate->heap()->true_value());
12708 details->set(kThreadDetailsThreadIdIndex,
12709 Smi::FromInt(ThreadId::Current().ToInteger()));
12710 } else {
12711 // Find the thread with the requested index.
12712 int n = 1;
12713 ThreadState* thread =
12714 isolate->thread_manager()->FirstThreadStateInUse();
12715 while (index != n && thread != NULL) {
12716 thread = thread->Next();
12717 n++;
12718 }
12719 if (thread == NULL) {
12720 return isolate->heap()->undefined_value();
12721 }
12722
12723 // Fill the details.
12724 details->set(kThreadDetailsCurrentThreadIndex,
12725 isolate->heap()->false_value());
12726 details->set(kThreadDetailsThreadIdIndex,
12727 Smi::FromInt(thread->id().ToInteger()));
12728 }
12729
12730 // Convert to JS array and return.
12731 return *isolate->factory()->NewJSArrayWithElements(details);
12732 }
12733
12734
12735 // Sets the disable break state
12736 // args[0]: disable break state
12737 RUNTIME_FUNCTION(Runtime_SetDisableBreak) {
12738 HandleScope scope(isolate);
12739 DCHECK(args.length() == 1);
12740 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
12741 isolate->debug()->set_disable_break(disable_break);
12742 return isolate->heap()->undefined_value();
12743 }
12744
12745
12746 static bool IsPositionAlignmentCodeCorrect(int alignment) {
12747 return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
12748 }
12749
12750
12751 RUNTIME_FUNCTION(Runtime_GetBreakLocations) {
12752 HandleScope scope(isolate);
12753 DCHECK(args.length() == 2);
12754
12755 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12756 CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
12757
12758 if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12759 return isolate->ThrowIllegalOperation();
12760 }
12761 BreakPositionAlignment alignment =
12762 static_cast<BreakPositionAlignment>(statement_aligned_code);
12763
12764 Handle<SharedFunctionInfo> shared(fun->shared());
12765 // Find the number of break points
12766 Handle<Object> break_locations =
12767 Debug::GetSourceBreakLocations(shared, alignment);
12768 if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
12769 // Return array as JS array
12770 return *isolate->factory()->NewJSArrayWithElements(
12771 Handle<FixedArray>::cast(break_locations));
12772 }
12773
12774
12775 // Set a break point in a function.
12776 // args[0]: function
12777 // args[1]: number: break source position (within the function source)
12778 // args[2]: number: break point object
12779 RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) {
12780 HandleScope scope(isolate);
12781 DCHECK(args.length() == 3);
12782 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
12783 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12784 RUNTIME_ASSERT(source_position >= function->shared()->start_position() &&
12785 source_position <= function->shared()->end_position());
12786 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2);
12787
12788 // Set break point.
12789 RUNTIME_ASSERT(isolate->debug()->SetBreakPoint(
12790 function, break_point_object_arg, &source_position));
12791
12792 return Smi::FromInt(source_position);
12793 }
12794
12795
12796 // Changes the state of a break point in a script and returns source position
12797 // where break point was set. NOTE: Regarding performance see the NOTE for
12798 // GetScriptFromScriptData.
12799 // args[0]: script to set break point in
12800 // args[1]: number: break source position (within the script source)
12801 // args[2]: number, breakpoint position alignment
12802 // args[3]: number: break point object
12803 RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) {
12804 HandleScope scope(isolate);
12805 DCHECK(args.length() == 4);
12806 CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
12807 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12808 RUNTIME_ASSERT(source_position >= 0);
12809 CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
12810 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3);
12811
12812 if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12813 return isolate->ThrowIllegalOperation();
12814 }
12815 BreakPositionAlignment alignment =
12816 static_cast<BreakPositionAlignment>(statement_aligned_code);
12817
12818 // Get the script from the script wrapper.
12819 RUNTIME_ASSERT(wrapper->value()->IsScript());
12820 Handle<Script> script(Script::cast(wrapper->value()));
12821
12822 // Set break point.
12823 if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
12824 &source_position,
12825 alignment)) {
12826 return isolate->heap()->undefined_value();
12827 }
12828
12829 return Smi::FromInt(source_position);
12830 }
12831
12832
12833 // Clear a break point
12834 // args[0]: number: break point object
12835 RUNTIME_FUNCTION(Runtime_ClearBreakPoint) {
12836 HandleScope scope(isolate);
12837 DCHECK(args.length() == 1);
12838 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0);
12839
12840 // Clear break point.
12841 isolate->debug()->ClearBreakPoint(break_point_object_arg);
12842
12843 return isolate->heap()->undefined_value();
12844 }
12845
12846
12847 // Change the state of break on exceptions.
12848 // args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
12849 // args[1]: Boolean indicating on/off.
12850 RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) {
12851 HandleScope scope(isolate);
12852 DCHECK(args.length() == 2);
12853 CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12854 CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
12855
12856 // If the number doesn't match an enum value, the ChangeBreakOnException
12857 // function will default to affecting caught exceptions.
12858 ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12859 // Update break point state.
12860 isolate->debug()->ChangeBreakOnException(type, enable);
12861 return isolate->heap()->undefined_value();
12862 }
12863
12864
12865 // Returns the state of break on exceptions
12866 // args[0]: boolean indicating uncaught exceptions
12867 RUNTIME_FUNCTION(Runtime_IsBreakOnException) {
12868 HandleScope scope(isolate);
12869 DCHECK(args.length() == 1);
12870 CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12871
12872 ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12873 bool result = isolate->debug()->IsBreakOnException(type);
12874 return Smi::FromInt(result);
12875 }
12876
12877
12878 // Prepare for stepping
12879 // args[0]: break id for checking execution state
12880 // args[1]: step action from the enumeration StepAction
12881 // args[2]: number of times to perform the step, for step out it is the number
12882 // of frames to step down.
12883 RUNTIME_FUNCTION(Runtime_PrepareStep) {
12884 HandleScope scope(isolate);
12885 DCHECK(args.length() == 4);
12886 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12887 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12888
12889 if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
12890 return isolate->Throw(isolate->heap()->illegal_argument_string());
12891 }
12892
12893 CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]);
12894
12895 StackFrame::Id frame_id;
12896 if (wrapped_frame_id == 0) {
12897 frame_id = StackFrame::NO_ID;
12898 } else {
12899 frame_id = UnwrapFrameId(wrapped_frame_id);
12900 }
12901
12902 // Get the step action and check validity.
12903 StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
12904 if (step_action != StepIn &&
12905 step_action != StepNext &&
12906 step_action != StepOut &&
12907 step_action != StepInMin &&
12908 step_action != StepMin) {
12909 return isolate->Throw(isolate->heap()->illegal_argument_string());
12910 }
12911
12912 if (frame_id != StackFrame::NO_ID && step_action != StepNext &&
12913 step_action != StepMin && step_action != StepOut) {
12914 return isolate->ThrowIllegalOperation();
12915 }
12916
12917 // Get the number of steps.
12918 int step_count = NumberToInt32(args[2]);
12919 if (step_count < 1) {
12920 return isolate->Throw(isolate->heap()->illegal_argument_string());
12921 }
12922
12923 // Clear all current stepping setup.
12924 isolate->debug()->ClearStepping();
12925
12926 // Prepare step.
12927 isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
12928 step_count,
12929 frame_id);
12930 return isolate->heap()->undefined_value();
12931 }
12932
12933
12934 // Clear all stepping set by PrepareStep.
12935 RUNTIME_FUNCTION(Runtime_ClearStepping) {
12936 HandleScope scope(isolate);
12937 DCHECK(args.length() == 0);
12938 isolate->debug()->ClearStepping();
12939 return isolate->heap()->undefined_value();
12940 }
12941
12942
12943 // Helper function to find or create the arguments object for
12944 // Runtime_DebugEvaluate.
12945 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject(
12946 Isolate* isolate,
12947 Handle<JSObject> target,
12948 Handle<JSFunction> function) {
12949 // Do not materialize the arguments object for eval or top-level code.
12950 // Skip if "arguments" is already taken.
12951 if (!function->shared()->is_function()) return target;
12952 Maybe<bool> maybe = JSReceiver::HasOwnProperty(
12953 target, isolate->factory()->arguments_string());
12954 if (!maybe.has_value) return MaybeHandle<JSObject>();
12955 if (maybe.value) return target;
12956
12957 // FunctionGetArguments can't throw an exception.
12958 Handle<JSObject> arguments = Handle<JSObject>::cast(
12959 Accessors::FunctionGetArguments(function));
12960 Handle<String> arguments_str = isolate->factory()->arguments_string();
12961 RETURN_ON_EXCEPTION(
12962 isolate,
12963 Runtime::DefineObjectProperty(target, arguments_str, arguments, NONE),
12964 JSObject);
12965 return target;
12966 }
12967
12968
12969 // Compile and evaluate source for the given context.
12970 static MaybeHandle<Object> DebugEvaluate(Isolate* isolate,
12971 Handle<Context> context,
12972 Handle<Object> context_extension,
12973 Handle<Object> receiver,
12974 Handle<String> source) {
12975 if (context_extension->IsJSObject()) {
12976 Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
12977 Handle<JSFunction> closure(context->closure(), isolate);
12978 context = isolate->factory()->NewWithContext(closure, context, extension);
12979 }
12980
12981 Handle<JSFunction> eval_fun;
12982 ASSIGN_RETURN_ON_EXCEPTION(
12983 isolate, eval_fun,
12984 Compiler::GetFunctionFromEval(source,
12985 context,
12986 SLOPPY,
12987 NO_PARSE_RESTRICTION,
12988 RelocInfo::kNoPosition),
12989 Object);
12990
12991 Handle<Object> result;
12992 ASSIGN_RETURN_ON_EXCEPTION(
12993 isolate, result,
12994 Execution::Call(isolate, eval_fun, receiver, 0, NULL),
12995 Object);
12996
12997 // Skip the global proxy as it has no properties and always delegates to the
12998 // real global object.
12999 if (result->IsJSGlobalProxy()) {
13000 PrototypeIterator iter(isolate, result);
13001 // TODO(verwaest): This will crash when the global proxy is detached.
13002 result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
13003 }
13004
13005 // Clear the oneshot breakpoints so that the debugger does not step further.
13006 isolate->debug()->ClearStepping();
13007 return result;
13008 }
13009
13010
13011 static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) {
13012 Handle<JSObject> result =
13013 isolate->factory()->NewJSObject(isolate->object_function());
13014 Handle<Map> new_map = Map::Copy(Handle<Map>(result->map()));
13015 new_map->set_prototype(*isolate->factory()->null_value());
13016 JSObject::MigrateToMap(result, new_map);
13017 return result;
13018 }
13019
13020
13021 // Evaluate a piece of JavaScript in the context of a stack frame for
13022 // debugging. Things that need special attention are:
13023 // - Parameters and stack-allocated locals need to be materialized. Altered
13024 // values need to be written back to the stack afterwards.
13025 // - The arguments object needs to materialized.
13026 RUNTIME_FUNCTION(Runtime_DebugEvaluate) {
13027 HandleScope scope(isolate);
13028
13029 // Check the execution state and decode arguments frame and source to be
13030 // evaluated.
13031 DCHECK(args.length() == 6);
13032 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13033 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13034
13035 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
13036 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
13037 CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
13038 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
13039 CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5);
13040
13041 // Handle the processing of break.
13042 DisableBreak disable_break_scope(isolate->debug(), disable_break);
13043
13044 // Get the frame where the debugging is performed.
13045 StackFrame::Id id = UnwrapFrameId(wrapped_id);
13046 JavaScriptFrameIterator it(isolate, id);
13047 JavaScriptFrame* frame = it.frame();
13048 FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
13049 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
13050
13051 // Traverse the saved contexts chain to find the active context for the
13052 // selected frame.
13053 SaveContext* save = FindSavedContextForFrame(isolate, frame);
13054
13055 SaveContext savex(isolate);
13056 isolate->set_context(*(save->context()));
13057
13058 // Evaluate on the context of the frame.
13059 Handle<Context> context(Context::cast(frame_inspector.GetContext()));
13060 DCHECK(!context.is_null());
13061
13062 // Materialize stack locals and the arguments object.
13063 Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate);
13064
13065 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13066 isolate, materialized,
13067 MaterializeStackLocalsWithFrameInspector(
13068 isolate, materialized, function, &frame_inspector));
13069
13070 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13071 isolate, materialized,
13072 MaterializeArgumentsObject(isolate, materialized, function));
13073
13074 // Add the materialized object in a with-scope to shadow the stack locals.
13075 context = isolate->factory()->NewWithContext(function, context, materialized);
13076
13077 Handle<Object> receiver(frame->receiver(), isolate);
13078 Handle<Object> result;
13079 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13080 isolate, result,
13081 DebugEvaluate(isolate, context, context_extension, receiver, source));
13082
13083 // Write back potential changes to materialized stack locals to the stack.
13084 UpdateStackLocalsFromMaterializedObject(
13085 isolate, materialized, function, frame, inlined_jsframe_index);
13086
13087 return *result;
13088 }
13089
13090
13091 RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) {
13092 HandleScope scope(isolate);
13093
13094 // Check the execution state and decode arguments frame and source to be
13095 // evaluated.
13096 DCHECK(args.length() == 4);
13097 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13098 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13099
13100 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13101 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
13102 CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3);
13103
13104 // Handle the processing of break.
13105 DisableBreak disable_break_scope(isolate->debug(), disable_break);
13106
13107 // Enter the top context from before the debugger was invoked.
13108 SaveContext save(isolate);
13109 SaveContext* top = &save;
13110 while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
13111 top = top->prev();
13112 }
13113 if (top != NULL) {
13114 isolate->set_context(*top->context());
13115 }
13116
13117 // Get the native context now set to the top context from before the
13118 // debugger was invoked.
13119 Handle<Context> context = isolate->native_context();
13120 Handle<JSObject> receiver(context->global_proxy());
13121 Handle<Object> result;
13122 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13123 isolate, result,
13124 DebugEvaluate(isolate, context, context_extension, receiver, source));
13125 return *result;
13126 }
13127
13128
13129 RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) {
13130 HandleScope scope(isolate);
13131 DCHECK(args.length() == 0);
13132
13133 // Fill the script objects.
13134 Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
13135
13136 // Convert the script objects to proper JS objects.
13137 for (int i = 0; i < instances->length(); i++) {
13138 Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
13139 // Get the script wrapper in a local handle before calling GetScriptWrapper,
13140 // because using
13141 // instances->set(i, *GetScriptWrapper(script))
13142 // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
13143 // already have dereferenced the instances handle.
13144 Handle<JSObject> wrapper = Script::GetWrapper(script);
13145 instances->set(i, *wrapper);
13146 }
13147
13148 // Return result as a JS array.
13149 Handle<JSObject> result =
13150 isolate->factory()->NewJSObject(isolate->array_function());
13151 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13152 return *result;
13153 }
13154
13155
13156 // Helper function used by Runtime_DebugReferencedBy below.
13157 static int DebugReferencedBy(HeapIterator* iterator,
13158 JSObject* target,
13159 Object* instance_filter, int max_references,
13160 FixedArray* instances, int instances_size,
13161 JSFunction* arguments_function) {
13162 Isolate* isolate = target->GetIsolate();
13163 SealHandleScope shs(isolate);
13164 DisallowHeapAllocation no_allocation;
13165
13166 // Iterate the heap.
13167 int count = 0;
13168 JSObject* last = NULL;
13169 HeapObject* heap_obj = NULL;
13170 while (((heap_obj = iterator->next()) != NULL) &&
13171 (max_references == 0 || count < max_references)) {
13172 // Only look at all JSObjects.
13173 if (heap_obj->IsJSObject()) {
13174 // Skip context extension objects and argument arrays as these are
13175 // checked in the context of functions using them.
13176 JSObject* obj = JSObject::cast(heap_obj);
13177 if (obj->IsJSContextExtensionObject() ||
13178 obj->map()->constructor() == arguments_function) {
13179 continue;
13180 }
13181
13182 // Check if the JS object has a reference to the object looked for.
13183 if (obj->ReferencesObject(target)) {
13184 // Check instance filter if supplied. This is normally used to avoid
13185 // references from mirror objects (see Runtime_IsInPrototypeChain).
13186 if (!instance_filter->IsUndefined()) {
13187 for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd();
13188 iter.Advance()) {
13189 if (iter.GetCurrent() == instance_filter) {
13190 obj = NULL; // Don't add this object.
13191 break;
13192 }
13193 }
13194 }
13195
13196 if (obj != NULL) {
13197 // Valid reference found add to instance array if supplied an update
13198 // count.
13199 if (instances != NULL && count < instances_size) {
13200 instances->set(count, obj);
13201 }
13202 last = obj;
13203 count++;
13204 }
13205 }
13206 }
13207 }
13208
13209 // Check for circular reference only. This can happen when the object is only
13210 // referenced from mirrors and has a circular reference in which case the
13211 // object is not really alive and would have been garbage collected if not
13212 // referenced from the mirror.
13213 if (count == 1 && last == target) {
13214 count = 0;
13215 }
13216
13217 // Return the number of referencing objects found.
13218 return count;
13219 }
13220
13221
13222 // Scan the heap for objects with direct references to an object
13223 // args[0]: the object to find references to
13224 // args[1]: constructor function for instances to exclude (Mirror)
13225 // args[2]: the the maximum number of objects to return
13226 RUNTIME_FUNCTION(Runtime_DebugReferencedBy) {
13227 HandleScope scope(isolate);
13228 DCHECK(args.length() == 3);
13229
13230 // Check parameters.
13231 CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0);
13232 CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1);
13233 RUNTIME_ASSERT(instance_filter->IsUndefined() ||
13234 instance_filter->IsJSObject());
13235 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
13236 RUNTIME_ASSERT(max_references >= 0);
13237
13238
13239 // Get the constructor function for context extension and arguments array.
13240 Handle<JSFunction> arguments_function(
13241 JSFunction::cast(isolate->sloppy_arguments_map()->constructor()));
13242
13243 // Get the number of referencing objects.
13244 int count;
13245 // First perform a full GC in order to avoid dead objects and to make the heap
13246 // iterable.
13247 Heap* heap = isolate->heap();
13248 heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13249 {
13250 HeapIterator heap_iterator(heap);
13251 count = DebugReferencedBy(&heap_iterator,
13252 *target, *instance_filter, max_references,
13253 NULL, 0, *arguments_function);
13254 }
13255
13256 // Allocate an array to hold the result.
13257 Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13258
13259 // Fill the referencing objects.
13260 {
13261 HeapIterator heap_iterator(heap);
13262 count = DebugReferencedBy(&heap_iterator,
13263 *target, *instance_filter, max_references,
13264 *instances, count, *arguments_function);
13265 }
13266
13267 // Return result as JS array.
13268 Handle<JSFunction> constructor = isolate->array_function();
13269
13270 Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
13271 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13272 return *result;
13273 }
13274
13275
13276 // Helper function used by Runtime_DebugConstructedBy below.
13277 static int DebugConstructedBy(HeapIterator* iterator,
13278 JSFunction* constructor,
13279 int max_references,
13280 FixedArray* instances,
13281 int instances_size) {
13282 DisallowHeapAllocation no_allocation;
13283
13284 // Iterate the heap.
13285 int count = 0;
13286 HeapObject* heap_obj = NULL;
13287 while (((heap_obj = iterator->next()) != NULL) &&
13288 (max_references == 0 || count < max_references)) {
13289 // Only look at all JSObjects.
13290 if (heap_obj->IsJSObject()) {
13291 JSObject* obj = JSObject::cast(heap_obj);
13292 if (obj->map()->constructor() == constructor) {
13293 // Valid reference found add to instance array if supplied an update
13294 // count.
13295 if (instances != NULL && count < instances_size) {
13296 instances->set(count, obj);
13297 }
13298 count++;
13299 }
13300 }
13301 }
13302
13303 // Return the number of referencing objects found.
13304 return count;
13305 }
13306
13307
13308 // Scan the heap for objects constructed by a specific function.
13309 // args[0]: the constructor to find instances of
13310 // args[1]: the the maximum number of objects to return
13311 RUNTIME_FUNCTION(Runtime_DebugConstructedBy) {
13312 HandleScope scope(isolate);
13313 DCHECK(args.length() == 2);
13314
13315
13316 // Check parameters.
13317 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
13318 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
13319 RUNTIME_ASSERT(max_references >= 0);
13320
13321 // Get the number of referencing objects.
13322 int count;
13323 // First perform a full GC in order to avoid dead objects and to make the heap
13324 // iterable.
13325 Heap* heap = isolate->heap();
13326 heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13327 {
13328 HeapIterator heap_iterator(heap);
13329 count = DebugConstructedBy(&heap_iterator,
13330 *constructor,
13331 max_references,
13332 NULL,
13333 0);
13334 }
13335
13336 // Allocate an array to hold the result.
13337 Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13338
13339 // Fill the referencing objects.
13340 {
13341 HeapIterator heap_iterator2(heap);
13342 count = DebugConstructedBy(&heap_iterator2,
13343 *constructor,
13344 max_references,
13345 *instances,
13346 count);
13347 }
13348
13349 // Return result as JS array.
13350 Handle<JSFunction> array_function = isolate->array_function();
13351 Handle<JSObject> result = isolate->factory()->NewJSObject(array_function);
13352 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13353 return *result;
13354 }
13355
13356
13357 // Find the effective prototype object as returned by __proto__.
13358 // args[0]: the object to find the prototype for.
13359 RUNTIME_FUNCTION(Runtime_DebugGetPrototype) {
13360 HandleScope shs(isolate);
13361 DCHECK(args.length() == 1);
13362 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
13363 return *GetPrototypeSkipHiddenPrototypes(isolate, obj);
13364 }
13365
13366
13367 // Patches script source (should be called upon BeforeCompile event).
13368 RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) {
13369 HandleScope scope(isolate);
13370 DCHECK(args.length() == 2);
13371
13372 CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
13373 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13374
13375 RUNTIME_ASSERT(script_wrapper->value()->IsScript());
13376 Handle<Script> script(Script::cast(script_wrapper->value()));
13377
13378 int compilation_state = script->compilation_state();
13379 RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
13380 script->set_source(*source);
13381
13382 return isolate->heap()->undefined_value();
13383 }
13384
13385
13386 RUNTIME_FUNCTION(Runtime_SystemBreak) {
13387 SealHandleScope shs(isolate);
13388 DCHECK(args.length() == 0);
13389 base::OS::DebugBreak();
13390 return isolate->heap()->undefined_value();
13391 }
13392
13393
13394 RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) {
13395 HandleScope scope(isolate);
13396 #ifdef DEBUG
13397 DCHECK(args.length() == 1);
13398 // Get the function and make sure it is compiled.
13399 CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13400 if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13401 return isolate->heap()->exception();
13402 }
13403 OFStream os(stdout);
13404 func->code()->Print(os);
13405 os << endl;
13406 #endif // DEBUG
13407 return isolate->heap()->undefined_value();
13408 }
13409
13410
13411 RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) {
13412 HandleScope scope(isolate);
13413 #ifdef DEBUG
13414 DCHECK(args.length() == 1);
13415 // Get the function and make sure it is compiled.
13416 CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13417 if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13418 return isolate->heap()->exception();
13419 }
13420 OFStream os(stdout);
13421 func->shared()->construct_stub()->Print(os);
13422 os << endl;
13423 #endif // DEBUG
13424 return isolate->heap()->undefined_value();
13425 }
13426
13427
13428 RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) {
13429 SealHandleScope shs(isolate);
13430 DCHECK(args.length() == 1);
13431
13432 CONVERT_ARG_CHECKED(JSFunction, f, 0);
13433 return f->shared()->inferred_name();
13434 }
13435
13436
13437 static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
13438 Script* script,
13439 FixedArray* buffer) {
13440 DisallowHeapAllocation no_allocation;
13441 int counter = 0;
13442 int buffer_size = buffer->length();
13443 for (HeapObject* obj = iterator->next();
13444 obj != NULL;
13445 obj = iterator->next()) {
13446 DCHECK(obj != NULL);
13447 if (!obj->IsSharedFunctionInfo()) {
13448 continue;
13449 }
13450 SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
13451 if (shared->script() != script) {
13452 continue;
13453 }
13454 if (counter < buffer_size) {
13455 buffer->set(counter, shared);
13456 }
13457 counter++;
13458 }
13459 return counter;
13460 }
13461
13462
13463 // For a script finds all SharedFunctionInfo's in the heap that points
13464 // to this script. Returns JSArray of SharedFunctionInfo wrapped
13465 // in OpaqueReferences.
13466 RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) {
13467 HandleScope scope(isolate);
13468 CHECK(isolate->debug()->live_edit_enabled());
13469 DCHECK(args.length() == 1);
13470 CONVERT_ARG_CHECKED(JSValue, script_value, 0);
13471
13472 RUNTIME_ASSERT(script_value->value()->IsScript());
13473 Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
13474
13475 const int kBufferSize = 32;
13476
13477 Handle<FixedArray> array;
13478 array = isolate->factory()->NewFixedArray(kBufferSize);
13479 int number;
13480 Heap* heap = isolate->heap();
13481 {
13482 HeapIterator heap_iterator(heap);
13483 Script* scr = *script;
13484 FixedArray* arr = *array;
13485 number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13486 }
13487 if (number > kBufferSize) {
13488 array = isolate->factory()->NewFixedArray(number);
13489 HeapIterator heap_iterator(heap);
13490 Script* scr = *script;
13491 FixedArray* arr = *array;
13492 FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13493 }
13494
13495 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
13496 result->set_length(Smi::FromInt(number));
13497
13498 LiveEdit::WrapSharedFunctionInfos(result);
13499
13500 return *result;
13501 }
13502
13503
13504 // For a script calculates compilation information about all its functions.
13505 // The script source is explicitly specified by the second argument.
13506 // The source of the actual script is not used, however it is important that
13507 // all generated code keeps references to this particular instance of script.
13508 // Returns a JSArray of compilation infos. The array is ordered so that
13509 // each function with all its descendant is always stored in a continues range
13510 // with the function itself going first. The root function is a script function.
13511 RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) {
13512 HandleScope scope(isolate);
13513 CHECK(isolate->debug()->live_edit_enabled());
13514 DCHECK(args.length() == 2);
13515 CONVERT_ARG_CHECKED(JSValue, script, 0);
13516 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13517
13518 RUNTIME_ASSERT(script->value()->IsScript());
13519 Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
13520
13521 Handle<JSArray> result;
13522 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13523 isolate, result, LiveEdit::GatherCompileInfo(script_handle, source));
13524 return *result;
13525 }
13526
13527
13528 // Changes the source of the script to a new_source.
13529 // If old_script_name is provided (i.e. is a String), also creates a copy of
13530 // the script with its original source and sends notification to debugger.
13531 RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) {
13532 HandleScope scope(isolate);
13533 CHECK(isolate->debug()->live_edit_enabled());
13534 DCHECK(args.length() == 3);
13535 CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
13536 CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
13537 CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2);
13538
13539 RUNTIME_ASSERT(original_script_value->value()->IsScript());
13540 Handle<Script> original_script(Script::cast(original_script_value->value()));
13541
13542 Handle<Object> old_script = LiveEdit::ChangeScriptSource(
13543 original_script, new_source, old_script_name);
13544
13545 if (old_script->IsScript()) {
13546 Handle<Script> script_handle = Handle<Script>::cast(old_script);
13547 return *Script::GetWrapper(script_handle);
13548 } else {
13549 return isolate->heap()->null_value();
13550 }
13551 }
13552
13553
13554 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) {
13555 HandleScope scope(isolate);
13556 CHECK(isolate->debug()->live_edit_enabled());
13557 DCHECK(args.length() == 1);
13558 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
13559 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13560
13561 LiveEdit::FunctionSourceUpdated(shared_info);
13562 return isolate->heap()->undefined_value();
13563 }
13564
13565
13566 // Replaces code of SharedFunctionInfo with a new one.
13567 RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) {
13568 HandleScope scope(isolate);
13569 CHECK(isolate->debug()->live_edit_enabled());
13570 DCHECK(args.length() == 2);
13571 CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
13572 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
13573 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13574
13575 LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
13576 return isolate->heap()->undefined_value();
13577 }
13578
13579
13580 // Connects SharedFunctionInfo to another script.
13581 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) {
13582 HandleScope scope(isolate);
13583 CHECK(isolate->debug()->live_edit_enabled());
13584 DCHECK(args.length() == 2);
13585 CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0);
13586 CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1);
13587
13588 if (function_object->IsJSValue()) {
13589 Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
13590 if (script_object->IsJSValue()) {
13591 RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
13592 Script* script = Script::cast(JSValue::cast(*script_object)->value());
13593 script_object = Handle<Object>(script, isolate);
13594 }
13595 RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo());
13596 LiveEdit::SetFunctionScript(function_wrapper, script_object);
13597 } else {
13598 // Just ignore this. We may not have a SharedFunctionInfo for some functions
13599 // and we check it in this function.
13600 }
13601
13602 return isolate->heap()->undefined_value();
13603 }
13604
13605
13606 // In a code of a parent function replaces original function as embedded object
13607 // with a substitution one.
13608 RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) {
13609 HandleScope scope(isolate);
13610 CHECK(isolate->debug()->live_edit_enabled());
13611 DCHECK(args.length() == 3);
13612
13613 CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
13614 CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
13615 CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
13616 RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo());
13617 RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo());
13618 RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo());
13619
13620 LiveEdit::ReplaceRefToNestedFunction(
13621 parent_wrapper, orig_wrapper, subst_wrapper);
13622 return isolate->heap()->undefined_value();
13623 }
13624
13625
13626 // Updates positions of a shared function info (first parameter) according
13627 // to script source change. Text change is described in second parameter as
13628 // array of groups of 3 numbers:
13629 // (change_begin, change_end, change_end_new_position).
13630 // Each group describes a change in text; groups are sorted by change_begin.
13631 RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) {
13632 HandleScope scope(isolate);
13633 CHECK(isolate->debug()->live_edit_enabled());
13634 DCHECK(args.length() == 2);
13635 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13636 CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
13637 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array))
13638
13639 LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
13640 return isolate->heap()->undefined_value();
13641 }
13642
13643
13644 // For array of SharedFunctionInfo's (each wrapped in JSValue)
13645 // checks that none of them have activations on stacks (of any thread).
13646 // Returns array of the same length with corresponding results of
13647 // LiveEdit::FunctionPatchabilityStatus type.
13648 RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) {
13649 HandleScope scope(isolate);
13650 CHECK(isolate->debug()->live_edit_enabled());
13651 DCHECK(args.length() == 2);
13652 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13653 CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
13654 RUNTIME_ASSERT(shared_array->length()->IsSmi());
13655 RUNTIME_ASSERT(shared_array->HasFastElements())
13656 int array_length = Smi::cast(shared_array->length())->value();
13657 for (int i = 0; i < array_length; i++) {
13658 Handle<Object> element =
13659 Object::GetElement(isolate, shared_array, i).ToHandleChecked();
13660 RUNTIME_ASSERT(
13661 element->IsJSValue() &&
13662 Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo());
13663 }
13664
13665 return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
13666 }
13667
13668
13669 // Compares 2 strings line-by-line, then token-wise and returns diff in form
13670 // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
13671 // of diff chunks.
13672 RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) {
13673 HandleScope scope(isolate);
13674 CHECK(isolate->debug()->live_edit_enabled());
13675 DCHECK(args.length() == 2);
13676 CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
13677 CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
13678
13679 return *LiveEdit::CompareStrings(s1, s2);
13680 }
13681
13682
13683 // Restarts a call frame and completely drops all frames above.
13684 // Returns true if successful. Otherwise returns undefined or an error message.
13685 RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) {
13686 HandleScope scope(isolate);
13687 CHECK(isolate->debug()->live_edit_enabled());
13688 DCHECK(args.length() == 2);
13689 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13690 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13691
13692 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
13693 Heap* heap = isolate->heap();
13694
13695 // Find the relevant frame with the requested index.
13696 StackFrame::Id id = isolate->debug()->break_frame_id();
13697 if (id == StackFrame::NO_ID) {
13698 // If there are no JavaScript stack frames return undefined.
13699 return heap->undefined_value();
13700 }
13701
13702 JavaScriptFrameIterator it(isolate, id);
13703 int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
13704 if (inlined_jsframe_index == -1) return heap->undefined_value();
13705 // We don't really care what the inlined frame index is, since we are
13706 // throwing away the entire frame anyways.
13707 const char* error_message = LiveEdit::RestartFrame(it.frame());
13708 if (error_message) {
13709 return *(isolate->factory()->InternalizeUtf8String(error_message));
13710 }
13711 return heap->true_value();
13712 }
13713
13714
13715 // A testing entry. Returns statement position which is the closest to
13716 // source_position.
13717 RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) {
13718 HandleScope scope(isolate);
13719 CHECK(isolate->debug()->live_edit_enabled());
13720 DCHECK(args.length() == 2);
13721 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13722 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
13723
13724 Handle<Code> code(function->code(), isolate);
13725
13726 if (code->kind() != Code::FUNCTION &&
13727 code->kind() != Code::OPTIMIZED_FUNCTION) {
13728 return isolate->heap()->undefined_value();
13729 }
13730
13731 RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
13732 int closest_pc = 0;
13733 int distance = kMaxInt;
13734 while (!it.done()) {
13735 int statement_position = static_cast<int>(it.rinfo()->data());
13736 // Check if this break point is closer that what was previously found.
13737 if (source_position <= statement_position &&
13738 statement_position - source_position < distance) {
13739 closest_pc =
13740 static_cast<int>(it.rinfo()->pc() - code->instruction_start());
13741 distance = statement_position - source_position;
13742 // Check whether we can't get any closer.
13743 if (distance == 0) break;
13744 }
13745 it.next();
13746 }
13747
13748 return Smi::FromInt(closest_pc);
13749 }
13750
13751
13752 // Calls specified function with or without entering the debugger.
13753 // This is used in unit tests to run code as if debugger is entered or simply
13754 // to have a stack with C++ frame in the middle.
13755 RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) {
13756 HandleScope scope(isolate);
13757 DCHECK(args.length() == 2);
13758 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13759 CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
13760
13761 MaybeHandle<Object> maybe_result;
13762 if (without_debugger) {
13763 maybe_result = Execution::Call(isolate,
13764 function,
13765 handle(function->global_proxy()),
13766 0,
13767 NULL);
13768 } else {
13769 DebugScope debug_scope(isolate->debug());
13770 maybe_result = Execution::Call(isolate,
13771 function,
13772 handle(function->global_proxy()),
13773 0,
13774 NULL);
13775 }
13776 Handle<Object> result;
13777 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
13778 return *result;
13779 }
13780
13781
13782 // Sets a v8 flag.
13783 RUNTIME_FUNCTION(Runtime_SetFlags) {
13784 SealHandleScope shs(isolate);
13785 DCHECK(args.length() == 1);
13786 CONVERT_ARG_CHECKED(String, arg, 0);
13787 SmartArrayPointer<char> flags =
13788 arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
13789 FlagList::SetFlagsFromString(flags.get(), StrLength(flags.get()));
13790 return isolate->heap()->undefined_value();
13791 }
13792
13793
13794 // Performs a GC.
13795 // Presently, it only does a full GC.
13796 RUNTIME_FUNCTION(Runtime_CollectGarbage) {
13797 SealHandleScope shs(isolate);
13798 DCHECK(args.length() == 1);
13799 isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
13800 return isolate->heap()->undefined_value();
13801 }
13802
13803
13804 // Gets the current heap usage.
13805 RUNTIME_FUNCTION(Runtime_GetHeapUsage) {
13806 SealHandleScope shs(isolate);
13807 DCHECK(args.length() == 0);
13808 int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
13809 if (!Smi::IsValid(usage)) {
13810 return *isolate->factory()->NewNumberFromInt(usage);
13811 }
13812 return Smi::FromInt(usage);
13813 }
13814
13815
13816 #ifdef V8_I18N_SUPPORT
13817 RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) {
13818 HandleScope scope(isolate);
13819 Factory* factory = isolate->factory();
13820
13821 DCHECK(args.length() == 1);
13822 CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0);
13823
13824 v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str));
13825
13826 // Return value which denotes invalid language tag.
13827 const char* const kInvalidTag = "invalid-tag";
13828
13829 UErrorCode error = U_ZERO_ERROR;
13830 char icu_result[ULOC_FULLNAME_CAPACITY];
13831 int icu_length = 0;
13832
13833 uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY,
13834 &icu_length, &error);
13835 if (U_FAILURE(error) || icu_length == 0) {
13836 return *factory->NewStringFromAsciiChecked(kInvalidTag);
13837 }
13838
13839 char result[ULOC_FULLNAME_CAPACITY];
13840
13841 // Force strict BCP47 rules.
13842 uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error);
13843
13844 if (U_FAILURE(error)) {
13845 return *factory->NewStringFromAsciiChecked(kInvalidTag);
13846 }
13847
13848 return *factory->NewStringFromAsciiChecked(result);
13849 }
13850
13851
13852 RUNTIME_FUNCTION(Runtime_AvailableLocalesOf) {
13853 HandleScope scope(isolate);
13854 Factory* factory = isolate->factory();
13855
13856 DCHECK(args.length() == 1);
13857 CONVERT_ARG_HANDLE_CHECKED(String, service, 0);
13858
13859 const icu::Locale* available_locales = NULL;
13860 int32_t count = 0;
13861
13862 if (service->IsUtf8EqualTo(CStrVector("collator"))) {
13863 available_locales = icu::Collator::getAvailableLocales(count);
13864 } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) {
13865 available_locales = icu::NumberFormat::getAvailableLocales(count);
13866 } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) {
13867 available_locales = icu::DateFormat::getAvailableLocales(count);
13868 } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) {
13869 available_locales = icu::BreakIterator::getAvailableLocales(count);
13870 }
13871
13872 UErrorCode error = U_ZERO_ERROR;
13873 char result[ULOC_FULLNAME_CAPACITY];
13874 Handle<JSObject> locales =
13875 factory->NewJSObject(isolate->object_function());
13876
13877 for (int32_t i = 0; i < count; ++i) {
13878 const char* icu_name = available_locales[i].getName();
13879
13880 error = U_ZERO_ERROR;
13881 // No need to force strict BCP47 rules.
13882 uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error);
13883 if (U_FAILURE(error)) {
13884 // This shouldn't happen, but lets not break the user.
13885 continue;
13886 }
13887
13888 RETURN_FAILURE_ON_EXCEPTION(isolate,
13889 JSObject::SetOwnPropertyIgnoreAttributes(
13890 locales,
13891 factory->NewStringFromAsciiChecked(result),
13892 factory->NewNumber(i),
13893 NONE));
13894 }
13895
13896 return *locales;
13897 }
13898
13899
13900 RUNTIME_FUNCTION(Runtime_GetDefaultICULocale) {
13901 HandleScope scope(isolate);
13902 Factory* factory = isolate->factory();
13903
13904 DCHECK(args.length() == 0);
13905
13906 icu::Locale default_locale;
13907
13908 // Set the locale
13909 char result[ULOC_FULLNAME_CAPACITY];
13910 UErrorCode status = U_ZERO_ERROR;
13911 uloc_toLanguageTag(
13912 default_locale.getName(), result, ULOC_FULLNAME_CAPACITY, FALSE, &status);
13913 if (U_SUCCESS(status)) {
13914 return *factory->NewStringFromAsciiChecked(result);
13915 }
13916
13917 return *factory->NewStringFromStaticChars("und");
13918 }
13919
13920
13921 RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants) {
13922 HandleScope scope(isolate);
13923 Factory* factory = isolate->factory();
13924
13925 DCHECK(args.length() == 1);
13926
13927 CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0);
13928
13929 uint32_t length = static_cast<uint32_t>(input->length()->Number());
13930 // Set some limit to prevent fuzz tests from going OOM.
13931 // Can be bumped when callers' requirements change.
13932 RUNTIME_ASSERT(length < 100);
13933 Handle<FixedArray> output = factory->NewFixedArray(length);
13934 Handle<Name> maximized = factory->NewStringFromStaticChars("maximized");
13935 Handle<Name> base = factory->NewStringFromStaticChars("base");
13936 for (unsigned int i = 0; i < length; ++i) {
13937 Handle<Object> locale_id;
13938 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13939 isolate, locale_id, Object::GetElement(isolate, input, i));
13940 if (!locale_id->IsString()) {
13941 return isolate->Throw(*factory->illegal_argument_string());
13942 }
13943
13944 v8::String::Utf8Value utf8_locale_id(
13945 v8::Utils::ToLocal(Handle<String>::cast(locale_id)));
13946
13947 UErrorCode error = U_ZERO_ERROR;
13948
13949 // Convert from BCP47 to ICU format.
13950 // de-DE-u-co-phonebk -> de_DE@collation=phonebook
13951 char icu_locale[ULOC_FULLNAME_CAPACITY];
13952 int icu_locale_length = 0;
13953 uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY,
13954 &icu_locale_length, &error);
13955 if (U_FAILURE(error) || icu_locale_length == 0) {
13956 return isolate->Throw(*factory->illegal_argument_string());
13957 }
13958
13959 // Maximize the locale.
13960 // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook
13961 char icu_max_locale[ULOC_FULLNAME_CAPACITY];
13962 uloc_addLikelySubtags(
13963 icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13964
13965 // Remove extensions from maximized locale.
13966 // de_Latn_DE@collation=phonebook -> de_Latn_DE
13967 char icu_base_max_locale[ULOC_FULLNAME_CAPACITY];
13968 uloc_getBaseName(
13969 icu_max_locale, icu_base_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13970
13971 // Get original name without extensions.
13972 // de_DE@collation=phonebook -> de_DE
13973 char icu_base_locale[ULOC_FULLNAME_CAPACITY];
13974 uloc_getBaseName(
13975 icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY, &error);
13976
13977 // Convert from ICU locale format to BCP47 format.
13978 // de_Latn_DE -> de-Latn-DE
13979 char base_max_locale[ULOC_FULLNAME_CAPACITY];
13980 uloc_toLanguageTag(icu_base_max_locale, base_max_locale,
13981 ULOC_FULLNAME_CAPACITY, FALSE, &error);
13982
13983 // de_DE -> de-DE
13984 char base_locale[ULOC_FULLNAME_CAPACITY];
13985 uloc_toLanguageTag(
13986 icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error);
13987
13988 if (U_FAILURE(error)) {
13989 return isolate->Throw(*factory->illegal_argument_string());
13990 }
13991
13992 Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
13993 Handle<String> value = factory->NewStringFromAsciiChecked(base_max_locale);
13994 JSObject::AddProperty(result, maximized, value, NONE);
13995 value = factory->NewStringFromAsciiChecked(base_locale);
13996 JSObject::AddProperty(result, base, value, NONE);
13997 output->set(i, *result);
13998 }
13999
14000 Handle<JSArray> result = factory->NewJSArrayWithElements(output);
14001 result->set_length(Smi::FromInt(length));
14002 return *result;
14003 }
14004
14005
14006 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject) {
14007 HandleScope scope(isolate);
14008
14009 DCHECK(args.length() == 1);
14010
14011 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14012
14013 if (!input->IsJSObject()) return isolate->heap()->false_value();
14014 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14015
14016 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14017 Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14018 return isolate->heap()->ToBoolean(!tag->IsTheHole());
14019 }
14020
14021
14022 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType) {
14023 HandleScope scope(isolate);
14024
14025 DCHECK(args.length() == 2);
14026
14027 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14028 CONVERT_ARG_HANDLE_CHECKED(String, expected_type, 1);
14029
14030 if (!input->IsJSObject()) return isolate->heap()->false_value();
14031 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14032
14033 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14034 Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14035 return isolate->heap()->ToBoolean(
14036 tag->IsString() && String::cast(*tag)->Equals(*expected_type));
14037 }
14038
14039
14040 RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType) {
14041 HandleScope scope(isolate);
14042
14043 DCHECK(args.length() == 3);
14044
14045 CONVERT_ARG_HANDLE_CHECKED(JSObject, input, 0);
14046 CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
14047 CONVERT_ARG_HANDLE_CHECKED(JSObject, impl, 2);
14048
14049 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14050 JSObject::SetHiddenProperty(input, marker, type);
14051
14052 marker = isolate->factory()->intl_impl_object_string();
14053 JSObject::SetHiddenProperty(input, marker, impl);
14054
14055 return isolate->heap()->undefined_value();
14056 }
14057
14058
14059 RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject) {
14060 HandleScope scope(isolate);
14061
14062 DCHECK(args.length() == 1);
14063
14064 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14065
14066 if (!input->IsJSObject()) {
14067 Vector< Handle<Object> > arguments = HandleVector(&input, 1);
14068 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14069 NewTypeError("not_intl_object", arguments));
14070 }
14071
14072 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14073
14074 Handle<String> marker = isolate->factory()->intl_impl_object_string();
14075 Handle<Object> impl(obj->GetHiddenProperty(marker), isolate);
14076 if (impl->IsTheHole()) {
14077 Vector< Handle<Object> > arguments = HandleVector(&obj, 1);
14078 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14079 NewTypeError("not_intl_object", arguments));
14080 }
14081 return *impl;
14082 }
14083
14084
14085 RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat) {
14086 HandleScope scope(isolate);
14087
14088 DCHECK(args.length() == 3);
14089
14090 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14091 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14092 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14093
14094 Handle<ObjectTemplateInfo> date_format_template =
14095 I18N::GetTemplate(isolate);
14096
14097 // Create an empty object wrapper.
14098 Handle<JSObject> local_object;
14099 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14100 isolate, local_object,
14101 Execution::InstantiateObject(date_format_template));
14102
14103 // Set date time formatter as internal field of the resulting JS object.
14104 icu::SimpleDateFormat* date_format = DateFormat::InitializeDateTimeFormat(
14105 isolate, locale, options, resolved);
14106
14107 if (!date_format) return isolate->ThrowIllegalOperation();
14108
14109 local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format));
14110
14111 Factory* factory = isolate->factory();
14112 Handle<String> key = factory->NewStringFromStaticChars("dateFormat");
14113 Handle<String> value = factory->NewStringFromStaticChars("valid");
14114 JSObject::AddProperty(local_object, key, value, NONE);
14115
14116 // Make object handle weak so we can delete the data format once GC kicks in.
14117 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14118 GlobalHandles::MakeWeak(wrapper.location(),
14119 reinterpret_cast<void*>(wrapper.location()),
14120 DateFormat::DeleteDateFormat);
14121 return *local_object;
14122 }
14123
14124
14125 RUNTIME_FUNCTION(Runtime_InternalDateFormat) {
14126 HandleScope scope(isolate);
14127
14128 DCHECK(args.length() == 2);
14129
14130 CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14131 CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1);
14132
14133 Handle<Object> value;
14134 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14135 isolate, value, Execution::ToNumber(isolate, date));
14136
14137 icu::SimpleDateFormat* date_format =
14138 DateFormat::UnpackDateFormat(isolate, date_format_holder);
14139 if (!date_format) return isolate->ThrowIllegalOperation();
14140
14141 icu::UnicodeString result;
14142 date_format->format(value->Number(), result);
14143
14144 Handle<String> result_str;
14145 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14146 isolate, result_str,
14147 isolate->factory()->NewStringFromTwoByte(
14148 Vector<const uint16_t>(
14149 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14150 result.length())));
14151 return *result_str;
14152 }
14153
14154
14155 RUNTIME_FUNCTION(Runtime_InternalDateParse) {
14156 HandleScope scope(isolate);
14157
14158 DCHECK(args.length() == 2);
14159
14160 CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14161 CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1);
14162
14163 v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string));
14164 icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date));
14165 icu::SimpleDateFormat* date_format =
14166 DateFormat::UnpackDateFormat(isolate, date_format_holder);
14167 if (!date_format) return isolate->ThrowIllegalOperation();
14168
14169 UErrorCode status = U_ZERO_ERROR;
14170 UDate date = date_format->parse(u_date, status);
14171 if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14172
14173 Handle<Object> result;
14174 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14175 isolate, result,
14176 Execution::NewDate(isolate, static_cast<double>(date)));
14177 DCHECK(result->IsJSDate());
14178 return *result;
14179 }
14180
14181
14182 RUNTIME_FUNCTION(Runtime_CreateNumberFormat) {
14183 HandleScope scope(isolate);
14184
14185 DCHECK(args.length() == 3);
14186
14187 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14188 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14189 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14190
14191 Handle<ObjectTemplateInfo> number_format_template =
14192 I18N::GetTemplate(isolate);
14193
14194 // Create an empty object wrapper.
14195 Handle<JSObject> local_object;
14196 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14197 isolate, local_object,
14198 Execution::InstantiateObject(number_format_template));
14199
14200 // Set number formatter as internal field of the resulting JS object.
14201 icu::DecimalFormat* number_format = NumberFormat::InitializeNumberFormat(
14202 isolate, locale, options, resolved);
14203
14204 if (!number_format) return isolate->ThrowIllegalOperation();
14205
14206 local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format));
14207
14208 Factory* factory = isolate->factory();
14209 Handle<String> key = factory->NewStringFromStaticChars("numberFormat");
14210 Handle<String> value = factory->NewStringFromStaticChars("valid");
14211 JSObject::AddProperty(local_object, key, value, NONE);
14212
14213 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14214 GlobalHandles::MakeWeak(wrapper.location(),
14215 reinterpret_cast<void*>(wrapper.location()),
14216 NumberFormat::DeleteNumberFormat);
14217 return *local_object;
14218 }
14219
14220
14221 RUNTIME_FUNCTION(Runtime_InternalNumberFormat) {
14222 HandleScope scope(isolate);
14223
14224 DCHECK(args.length() == 2);
14225
14226 CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14227 CONVERT_ARG_HANDLE_CHECKED(Object, number, 1);
14228
14229 Handle<Object> value;
14230 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14231 isolate, value, Execution::ToNumber(isolate, number));
14232
14233 icu::DecimalFormat* number_format =
14234 NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14235 if (!number_format) return isolate->ThrowIllegalOperation();
14236
14237 icu::UnicodeString result;
14238 number_format->format(value->Number(), result);
14239
14240 Handle<String> result_str;
14241 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14242 isolate, result_str,
14243 isolate->factory()->NewStringFromTwoByte(
14244 Vector<const uint16_t>(
14245 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14246 result.length())));
14247 return *result_str;
14248 }
14249
14250
14251 RUNTIME_FUNCTION(Runtime_InternalNumberParse) {
14252 HandleScope scope(isolate);
14253
14254 DCHECK(args.length() == 2);
14255
14256 CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14257 CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1);
14258
14259 v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string));
14260 icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number));
14261 icu::DecimalFormat* number_format =
14262 NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14263 if (!number_format) return isolate->ThrowIllegalOperation();
14264
14265 UErrorCode status = U_ZERO_ERROR;
14266 icu::Formattable result;
14267 // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49
14268 // to be part of Chrome.
14269 // TODO(cira): Include currency parsing code using parseCurrency call.
14270 // We need to check if the formatter parses all currencies or only the
14271 // one it was constructed with (it will impact the API - how to return ISO
14272 // code and the value).
14273 number_format->parse(u_number, result, status);
14274 if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14275
14276 switch (result.getType()) {
14277 case icu::Formattable::kDouble:
14278 return *isolate->factory()->NewNumber(result.getDouble());
14279 case icu::Formattable::kLong:
14280 return *isolate->factory()->NewNumberFromInt(result.getLong());
14281 case icu::Formattable::kInt64:
14282 return *isolate->factory()->NewNumber(
14283 static_cast<double>(result.getInt64()));
14284 default:
14285 return isolate->heap()->undefined_value();
14286 }
14287 }
14288
14289
14290 RUNTIME_FUNCTION(Runtime_CreateCollator) {
14291 HandleScope scope(isolate);
14292
14293 DCHECK(args.length() == 3);
14294
14295 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14296 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14297 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14298
14299 Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate);
14300
14301 // Create an empty object wrapper.
14302 Handle<JSObject> local_object;
14303 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14304 isolate, local_object, Execution::InstantiateObject(collator_template));
14305
14306 // Set collator as internal field of the resulting JS object.
14307 icu::Collator* collator = Collator::InitializeCollator(
14308 isolate, locale, options, resolved);
14309
14310 if (!collator) return isolate->ThrowIllegalOperation();
14311
14312 local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator));
14313
14314 Factory* factory = isolate->factory();
14315 Handle<String> key = factory->NewStringFromStaticChars("collator");
14316 Handle<String> value = factory->NewStringFromStaticChars("valid");
14317 JSObject::AddProperty(local_object, key, value, NONE);
14318
14319 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14320 GlobalHandles::MakeWeak(wrapper.location(),
14321 reinterpret_cast<void*>(wrapper.location()),
14322 Collator::DeleteCollator);
14323 return *local_object;
14324 }
14325
14326
14327 RUNTIME_FUNCTION(Runtime_InternalCompare) {
14328 HandleScope scope(isolate);
14329
14330 DCHECK(args.length() == 3);
14331
14332 CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0);
14333 CONVERT_ARG_HANDLE_CHECKED(String, string1, 1);
14334 CONVERT_ARG_HANDLE_CHECKED(String, string2, 2);
14335
14336 icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder);
14337 if (!collator) return isolate->ThrowIllegalOperation();
14338
14339 v8::String::Value string_value1(v8::Utils::ToLocal(string1));
14340 v8::String::Value string_value2(v8::Utils::ToLocal(string2));
14341 const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1);
14342 const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2);
14343 UErrorCode status = U_ZERO_ERROR;
14344 UCollationResult result = collator->compare(u_string1,
14345 string_value1.length(),
14346 u_string2,
14347 string_value2.length(),
14348 status);
14349 if (U_FAILURE(status)) return isolate->ThrowIllegalOperation();
14350
14351 return *isolate->factory()->NewNumberFromInt(result);
14352 }
14353
14354
14355 RUNTIME_FUNCTION(Runtime_StringNormalize) {
14356 HandleScope scope(isolate);
14357 static const UNormalizationMode normalizationForms[] =
14358 { UNORM_NFC, UNORM_NFD, UNORM_NFKC, UNORM_NFKD };
14359
14360 DCHECK(args.length() == 2);
14361
14362 CONVERT_ARG_HANDLE_CHECKED(String, stringValue, 0);
14363 CONVERT_NUMBER_CHECKED(int, form_id, Int32, args[1]);
14364 RUNTIME_ASSERT(form_id >= 0 &&
14365 static_cast<size_t>(form_id) < arraysize(normalizationForms));
14366
14367 v8::String::Value string_value(v8::Utils::ToLocal(stringValue));
14368 const UChar* u_value = reinterpret_cast<const UChar*>(*string_value);
14369
14370 // TODO(mnita): check Normalizer2 (not available in ICU 46)
14371 UErrorCode status = U_ZERO_ERROR;
14372 icu::UnicodeString result;
14373 icu::Normalizer::normalize(u_value, normalizationForms[form_id], 0,
14374 result, status);
14375 if (U_FAILURE(status)) {
14376 return isolate->heap()->undefined_value();
14377 }
14378
14379 Handle<String> result_str;
14380 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14381 isolate, result_str,
14382 isolate->factory()->NewStringFromTwoByte(
14383 Vector<const uint16_t>(
14384 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14385 result.length())));
14386 return *result_str;
14387 }
14388
14389
14390 RUNTIME_FUNCTION(Runtime_CreateBreakIterator) {
14391 HandleScope scope(isolate);
14392
14393 DCHECK(args.length() == 3);
14394
14395 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14396 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14397 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14398
14399 Handle<ObjectTemplateInfo> break_iterator_template =
14400 I18N::GetTemplate2(isolate);
14401
14402 // Create an empty object wrapper.
14403 Handle<JSObject> local_object;
14404 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14405 isolate, local_object,
14406 Execution::InstantiateObject(break_iterator_template));
14407
14408 // Set break iterator as internal field of the resulting JS object.
14409 icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator(
14410 isolate, locale, options, resolved);
14411
14412 if (!break_iterator) return isolate->ThrowIllegalOperation();
14413
14414 local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator));
14415 // Make sure that the pointer to adopted text is NULL.
14416 local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL));
14417
14418 Factory* factory = isolate->factory();
14419 Handle<String> key = factory->NewStringFromStaticChars("breakIterator");
14420 Handle<String> value = factory->NewStringFromStaticChars("valid");
14421 JSObject::AddProperty(local_object, key, value, NONE);
14422
14423 // Make object handle weak so we can delete the break iterator once GC kicks
14424 // in.
14425 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14426 GlobalHandles::MakeWeak(wrapper.location(),
14427 reinterpret_cast<void*>(wrapper.location()),
14428 BreakIterator::DeleteBreakIterator);
14429 return *local_object;
14430 }
14431
14432
14433 RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText) {
14434 HandleScope scope(isolate);
14435
14436 DCHECK(args.length() == 2);
14437
14438 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14439 CONVERT_ARG_HANDLE_CHECKED(String, text, 1);
14440
14441 icu::BreakIterator* break_iterator =
14442 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14443 if (!break_iterator) return isolate->ThrowIllegalOperation();
14444
14445 icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>(
14446 break_iterator_holder->GetInternalField(1));
14447 delete u_text;
14448
14449 v8::String::Value text_value(v8::Utils::ToLocal(text));
14450 u_text = new icu::UnicodeString(
14451 reinterpret_cast<const UChar*>(*text_value), text_value.length());
14452 break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text));
14453
14454 break_iterator->setText(*u_text);
14455
14456 return isolate->heap()->undefined_value();
14457 }
14458
14459
14460 RUNTIME_FUNCTION(Runtime_BreakIteratorFirst) {
14461 HandleScope scope(isolate);
14462
14463 DCHECK(args.length() == 1);
14464
14465 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14466
14467 icu::BreakIterator* break_iterator =
14468 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14469 if (!break_iterator) return isolate->ThrowIllegalOperation();
14470
14471 return *isolate->factory()->NewNumberFromInt(break_iterator->first());
14472 }
14473
14474
14475 RUNTIME_FUNCTION(Runtime_BreakIteratorNext) {
14476 HandleScope scope(isolate);
14477
14478 DCHECK(args.length() == 1);
14479
14480 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14481
14482 icu::BreakIterator* break_iterator =
14483 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14484 if (!break_iterator) return isolate->ThrowIllegalOperation();
14485
14486 return *isolate->factory()->NewNumberFromInt(break_iterator->next());
14487 }
14488
14489
14490 RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent) {
14491 HandleScope scope(isolate);
14492
14493 DCHECK(args.length() == 1);
14494
14495 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14496
14497 icu::BreakIterator* break_iterator =
14498 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14499 if (!break_iterator) return isolate->ThrowIllegalOperation();
14500
14501 return *isolate->factory()->NewNumberFromInt(break_iterator->current());
14502 }
14503
14504
14505 RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType) {
14506 HandleScope scope(isolate);
14507
14508 DCHECK(args.length() == 1);
14509
14510 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14511
14512 icu::BreakIterator* break_iterator =
14513 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14514 if (!break_iterator) return isolate->ThrowIllegalOperation();
14515
14516 // TODO(cira): Remove cast once ICU fixes base BreakIterator class.
14517 icu::RuleBasedBreakIterator* rule_based_iterator =
14518 static_cast<icu::RuleBasedBreakIterator*>(break_iterator);
14519 int32_t status = rule_based_iterator->getRuleStatus();
14520 // Keep return values in sync with JavaScript BreakType enum.
14521 if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) {
14522 return *isolate->factory()->NewStringFromStaticChars("none");
14523 } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) {
14524 return *isolate->factory()->number_string();
14525 } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) {
14526 return *isolate->factory()->NewStringFromStaticChars("letter");
14527 } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) {
14528 return *isolate->factory()->NewStringFromStaticChars("kana");
14529 } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) {
14530 return *isolate->factory()->NewStringFromStaticChars("ideo");
14531 } else {
14532 return *isolate->factory()->NewStringFromStaticChars("unknown");
14533 }
14534 }
14535 #endif // V8_I18N_SUPPORT
14536
14537
14538 // Finds the script object from the script data. NOTE: This operation uses
14539 // heap traversal to find the function generated for the source position
14540 // for the requested break point. For lazily compiled functions several heap
14541 // traversals might be required rendering this operation as a rather slow
14542 // operation. However for setting break points which is normally done through
14543 // some kind of user interaction the performance is not crucial.
14544 static Handle<Object> Runtime_GetScriptFromScriptName(
14545 Handle<String> script_name) {
14546 // Scan the heap for Script objects to find the script with the requested
14547 // script data.
14548 Handle<Script> script;
14549 Factory* factory = script_name->GetIsolate()->factory();
14550 Heap* heap = script_name->GetHeap();
14551 HeapIterator iterator(heap);
14552 HeapObject* obj = NULL;
14553 while (script.is_null() && ((obj = iterator.next()) != NULL)) {
14554 // If a script is found check if it has the script data requested.
14555 if (obj->IsScript()) {
14556 if (Script::cast(obj)->name()->IsString()) {
14557 if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
14558 script = Handle<Script>(Script::cast(obj));
14559 }
14560 }
14561 }
14562 }
14563
14564 // If no script with the requested script data is found return undefined.
14565 if (script.is_null()) return factory->undefined_value();
14566
14567 // Return the script found.
14568 return Script::GetWrapper(script);
14569 }
14570
14571
14572 // Get the script object from script data. NOTE: Regarding performance
14573 // see the NOTE for GetScriptFromScriptData.
14574 // args[0]: script data for the script to find the source for
14575 RUNTIME_FUNCTION(Runtime_GetScript) {
14576 HandleScope scope(isolate);
14577
14578 DCHECK(args.length() == 1);
14579
14580 CONVERT_ARG_CHECKED(String, script_name, 0);
14581
14582 // Find the requested script.
14583 Handle<Object> result =
14584 Runtime_GetScriptFromScriptName(Handle<String>(script_name));
14585 return *result;
14586 }
14587
14588
14589 // Collect the raw data for a stack trace. Returns an array of 4
14590 // element segments each containing a receiver, function, code and
14591 // native code offset.
14592 RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
14593 HandleScope scope(isolate);
14594 DCHECK(args.length() == 2);
14595 CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
14596 CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
14597
14598 if (!isolate->bootstrapper()->IsActive()) {
14599 // Optionally capture a more detailed stack trace for the message.
14600 isolate->CaptureAndSetDetailedStackTrace(error_object);
14601 // Capture a simple stack trace for the stack property.
14602 isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
14603 }
14604 return isolate->heap()->undefined_value();
14605 }
14606
14607
14608 // Returns V8 version as a string.
14609 RUNTIME_FUNCTION(Runtime_GetV8Version) {
14610 HandleScope scope(isolate);
14611 DCHECK(args.length() == 0);
14612
14613 const char* version_string = v8::V8::GetVersion();
14614
14615 return *isolate->factory()->NewStringFromAsciiChecked(version_string);
14616 }
14617
14618
14619 // Returns function of generator activation.
14620 RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) {
14621 HandleScope scope(isolate);
14622 DCHECK(args.length() == 1);
14623 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14624
14625 return generator->function();
14626 }
14627
14628
14629 // Returns context of generator activation.
14630 RUNTIME_FUNCTION(Runtime_GeneratorGetContext) {
14631 HandleScope scope(isolate);
14632 DCHECK(args.length() == 1);
14633 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14634
14635 return generator->context();
14636 }
14637
14638
14639 // Returns receiver of generator activation.
14640 RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) {
14641 HandleScope scope(isolate);
14642 DCHECK(args.length() == 1);
14643 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14644
14645 return generator->receiver();
14646 }
14647
14648
14649 // Returns generator continuation as a PC offset, or the magic -1 or 0 values.
14650 RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) {
14651 HandleScope scope(isolate);
14652 DCHECK(args.length() == 1);
14653 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14654
14655 return Smi::FromInt(generator->continuation());
14656 }
14657
14658
14659 RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) {
14660 HandleScope scope(isolate);
14661 DCHECK(args.length() == 1);
14662 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14663
14664 if (generator->is_suspended()) {
14665 Handle<Code> code(generator->function()->code(), isolate);
14666 int offset = generator->continuation();
14667
14668 RUNTIME_ASSERT(0 <= offset && offset < code->Size());
14669 Address pc = code->address() + offset;
14670
14671 return Smi::FromInt(code->SourcePosition(pc));
14672 }
14673
14674 return isolate->heap()->undefined_value();
14675 }
14676
14677
14678 RUNTIME_FUNCTION(Runtime_Abort) {
14679 SealHandleScope shs(isolate);
14680 DCHECK(args.length() == 1);
14681 CONVERT_SMI_ARG_CHECKED(message_id, 0);
14682 const char* message = GetBailoutReason(
14683 static_cast<BailoutReason>(message_id));
14684 base::OS::PrintError("abort: %s\n", message);
14685 isolate->PrintStack(stderr);
14686 base::OS::Abort();
14687 UNREACHABLE();
14688 return NULL;
14689 }
14690
14691
14692 RUNTIME_FUNCTION(Runtime_AbortJS) {
14693 HandleScope scope(isolate);
14694 DCHECK(args.length() == 1);
14695 CONVERT_ARG_HANDLE_CHECKED(String, message, 0);
14696 base::OS::PrintError("abort: %s\n", message->ToCString().get());
14697 isolate->PrintStack(stderr);
14698 base::OS::Abort();
14699 UNREACHABLE();
14700 return NULL;
14701 }
14702
14703
14704 RUNTIME_FUNCTION(Runtime_FlattenString) {
14705 HandleScope scope(isolate);
14706 DCHECK(args.length() == 1);
14707 CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
14708 return *String::Flatten(str);
14709 }
14710
14711
14712 RUNTIME_FUNCTION(Runtime_NotifyContextDisposed) {
14713 HandleScope scope(isolate);
14714 DCHECK(args.length() == 0);
14715 isolate->heap()->NotifyContextDisposed();
14716 return isolate->heap()->undefined_value();
14717 }
14718
14719
14720 RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
14721 HandleScope scope(isolate);
14722 DCHECK(args.length() == 2);
14723 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
14724 CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
14725 RUNTIME_ASSERT((index->value() & 1) == 1);
14726 FieldIndex field_index =
14727 FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
14728 if (field_index.is_inobject()) {
14729 RUNTIME_ASSERT(field_index.property_index() <
14730 object->map()->inobject_properties());
14731 } else {
14732 RUNTIME_ASSERT(field_index.outobject_array_index() <
14733 object->properties()->length());
14734 }
14735 Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate);
14736 RUNTIME_ASSERT(raw_value->IsMutableHeapNumber());
14737 return *Object::WrapForRead(isolate, raw_value, Representation::Double());
14738 }
14739
14740
14741 RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
14742 HandleScope scope(isolate);
14743 DCHECK(args.length() == 1);
14744 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
14745 if (!object->IsJSObject()) return Smi::FromInt(0);
14746 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
14747 if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
14748 // This call must not cause lazy deopts, because it's called from deferred
14749 // code where we can't handle lazy deopts for lack of a suitable bailout
14750 // ID. So we just try migration and signal failure if necessary,
14751 // which will also trigger a deopt.
14752 if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
14753 return *object;
14754 }
14755
14756
14757 RUNTIME_FUNCTION(Runtime_GetFromCache) {
14758 SealHandleScope shs(isolate);
14759 // This is only called from codegen, so checks might be more lax.
14760 CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
14761 CONVERT_ARG_CHECKED(Object, key, 1);
14762
14763 {
14764 DisallowHeapAllocation no_alloc;
14765
14766 int finger_index = cache->finger_index();
14767 Object* o = cache->get(finger_index);
14768 if (o == key) {
14769 // The fastest case: hit the same place again.
14770 return cache->get(finger_index + 1);
14771 }
14772
14773 for (int i = finger_index - 2;
14774 i >= JSFunctionResultCache::kEntriesIndex;
14775 i -= 2) {
14776 o = cache->get(i);
14777 if (o == key) {
14778 cache->set_finger_index(i);
14779 return cache->get(i + 1);
14780 }
14781 }
14782
14783 int size = cache->size();
14784 DCHECK(size <= cache->length());
14785
14786 for (int i = size - 2; i > finger_index; i -= 2) {
14787 o = cache->get(i);
14788 if (o == key) {
14789 cache->set_finger_index(i);
14790 return cache->get(i + 1);
14791 }
14792 }
14793 }
14794
14795 // There is no value in the cache. Invoke the function and cache result.
14796 HandleScope scope(isolate);
14797
14798 Handle<JSFunctionResultCache> cache_handle(cache);
14799 Handle<Object> key_handle(key, isolate);
14800 Handle<Object> value;
14801 {
14802 Handle<JSFunction> factory(JSFunction::cast(
14803 cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
14804 // TODO(antonm): consider passing a receiver when constructing a cache.
14805 Handle<JSObject> receiver(isolate->global_proxy());
14806 // This handle is nor shared, nor used later, so it's safe.
14807 Handle<Object> argv[] = { key_handle };
14808 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14809 isolate, value,
14810 Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
14811 }
14812
14813 #ifdef VERIFY_HEAP
14814 if (FLAG_verify_heap) {
14815 cache_handle->JSFunctionResultCacheVerify();
14816 }
14817 #endif
14818
14819 // Function invocation may have cleared the cache. Reread all the data.
14820 int finger_index = cache_handle->finger_index();
14821 int size = cache_handle->size();
14822
14823 // If we have spare room, put new data into it, otherwise evict post finger
14824 // entry which is likely to be the least recently used.
14825 int index = -1;
14826 if (size < cache_handle->length()) {
14827 cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
14828 index = size;
14829 } else {
14830 index = finger_index + JSFunctionResultCache::kEntrySize;
14831 if (index == cache_handle->length()) {
14832 index = JSFunctionResultCache::kEntriesIndex;
14833 }
14834 }
14835
14836 DCHECK(index % 2 == 0);
14837 DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
14838 DCHECK(index < cache_handle->length());
14839
14840 cache_handle->set(index, *key_handle);
14841 cache_handle->set(index + 1, *value);
14842 cache_handle->set_finger_index(index);
14843
14844 #ifdef VERIFY_HEAP
14845 if (FLAG_verify_heap) {
14846 cache_handle->JSFunctionResultCacheVerify();
14847 }
14848 #endif
14849
14850 return *value;
14851 }
14852
14853
14854 RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
14855 SealHandleScope shs(isolate);
14856 DCHECK(args.length() == 1);
14857 CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14858 return Smi::FromInt(message->start_position());
14859 }
14860
14861
14862 RUNTIME_FUNCTION(Runtime_MessageGetScript) {
14863 SealHandleScope shs(isolate);
14864 DCHECK(args.length() == 1);
14865 CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14866 return message->script();
14867 }
14868
14869
14870 #ifdef DEBUG
14871 // ListNatives is ONLY used by the fuzz-natives.js in debug mode
14872 // Exclude the code in release mode.
14873 RUNTIME_FUNCTION(Runtime_ListNatives) {
14874 HandleScope scope(isolate);
14875 DCHECK(args.length() == 0);
14876 #define COUNT_ENTRY(Name, argc, ressize) + 1
14877 int entry_count = 0
14878 RUNTIME_FUNCTION_LIST(COUNT_ENTRY)
14879 INLINE_FUNCTION_LIST(COUNT_ENTRY)
14880 INLINE_OPTIMIZED_FUNCTION_LIST(COUNT_ENTRY);
14881 #undef COUNT_ENTRY
14882 Factory* factory = isolate->factory();
14883 Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
14884 int index = 0;
14885 bool inline_runtime_functions = false;
14886 #define ADD_ENTRY(Name, argc, ressize) \
14887 { \
14888 HandleScope inner(isolate); \
14889 Handle<String> name; \
14890 /* Inline runtime functions have an underscore in front of the name. */ \
14891 if (inline_runtime_functions) { \
14892 name = factory->NewStringFromStaticChars("_" #Name); \
14893 } else { \
14894 name = factory->NewStringFromStaticChars(#Name); \
14895 } \
14896 Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \
14897 pair_elements->set(0, *name); \
14898 pair_elements->set(1, Smi::FromInt(argc)); \
14899 Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \
14900 elements->set(index++, *pair); \
14901 }
14902 inline_runtime_functions = false;
14903 RUNTIME_FUNCTION_LIST(ADD_ENTRY)
14904 INLINE_OPTIMIZED_FUNCTION_LIST(ADD_ENTRY)
14905 inline_runtime_functions = true;
14906 INLINE_FUNCTION_LIST(ADD_ENTRY)
14907 #undef ADD_ENTRY
14908 DCHECK_EQ(index, entry_count);
14909 Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
14910 return *result;
14911 }
14912 #endif
14913
14914
14915 RUNTIME_FUNCTION(Runtime_IS_VAR) {
14916 UNREACHABLE(); // implemented as macro in the parser
14917 return NULL;
14918 }
14919
14920
14921 #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \
14922 RUNTIME_FUNCTION(Runtime_Has##Name) { \
14923 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14924 return isolate->heap()->ToBoolean(obj->Has##Name()); \
14925 }
14926
14927 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements)
14928 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)
14929 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements)
14930 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements)
14931 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements)
14932 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements)
14933 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(SloppyArgumentsElements)
14934 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements)
14935 // Properties test sitting with elements tests - not fooling anyone.
14936 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties)
14937
14938 #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION
14939
14940
14941 #define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size) \
14942 RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) { \
14943 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14944 return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements()); \
14945 }
14946
14947 TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14948
14949 #undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14950
14951
14952 #define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s) \
14953 RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) { \
14954 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14955 return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements()); \
14956 }
14957
14958 TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14959
14960 #undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14961
14962
14963 RUNTIME_FUNCTION(Runtime_HaveSameMap) {
14964 SealHandleScope shs(isolate);
14965 DCHECK(args.length() == 2);
14966 CONVERT_ARG_CHECKED(JSObject, obj1, 0);
14967 CONVERT_ARG_CHECKED(JSObject, obj2, 1);
14968 return isolate->heap()->ToBoolean(obj1->map() == obj2->map());
14969 }
14970
14971
14972 RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
14973 SealHandleScope shs(isolate);
14974 DCHECK(args.length() == 1);
14975 CONVERT_ARG_CHECKED(Object, obj, 0);
14976 return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
14977 }
14978
14979
14980 RUNTIME_FUNCTION(Runtime_IsObserved) {
14981 SealHandleScope shs(isolate);
14982 DCHECK(args.length() == 1);
14983
14984 if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
14985 CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
14986 DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed());
14987 return isolate->heap()->ToBoolean(obj->map()->is_observed());
14988 }
14989
14990
14991 RUNTIME_FUNCTION(Runtime_SetIsObserved) {
14992 HandleScope scope(isolate);
14993 DCHECK(args.length() == 1);
14994 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0);
14995 RUNTIME_ASSERT(!obj->IsJSGlobalProxy());
14996 if (obj->IsJSProxy()) return isolate->heap()->undefined_value();
14997 RUNTIME_ASSERT(!obj->map()->is_observed());
14998
14999 DCHECK(obj->IsJSObject());
15000 JSObject::SetObserved(Handle<JSObject>::cast(obj));
15001 return isolate->heap()->undefined_value();
15002 }
15003
15004
15005 RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) {
15006 HandleScope scope(isolate);
15007 DCHECK(args.length() == 1);
15008 CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0);
15009 isolate->EnqueueMicrotask(microtask);
15010 return isolate->heap()->undefined_value();
15011 }
15012
15013
15014 RUNTIME_FUNCTION(Runtime_RunMicrotasks) {
15015 HandleScope scope(isolate);
15016 DCHECK(args.length() == 0);
15017 isolate->RunMicrotasks();
15018 return isolate->heap()->undefined_value();
15019 }
15020
15021
15022 RUNTIME_FUNCTION(Runtime_GetObservationState) {
15023 SealHandleScope shs(isolate);
15024 DCHECK(args.length() == 0);
15025 return isolate->heap()->observation_state();
15026 }
15027
15028
15029 RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate) {
15030 HandleScope scope(isolate);
15031 DCHECK(args.length() == 0);
15032 // TODO(adamk): Currently this runtime function is only called three times per
15033 // isolate. If it's called more often, the map should be moved into the
15034 // strong root list.
15035 Handle<Map> map =
15036 isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
15037 Handle<JSWeakMap> weakmap =
15038 Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map));
15039 return *WeakCollectionInitialize(isolate, weakmap);
15040 }
15041
15042
15043 static bool ContextsHaveSameOrigin(Handle<Context> context1,
15044 Handle<Context> context2) {
15045 return context1->security_token() == context2->security_token();
15046 }
15047
15048
15049 RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) {
15050 HandleScope scope(isolate);
15051 DCHECK(args.length() == 3);
15052 CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0);
15053 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1);
15054 CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2);
15055
15056 Handle<Context> observer_context(observer->context()->native_context());
15057 Handle<Context> object_context(object->GetCreationContext());
15058 Handle<Context> record_context(record->GetCreationContext());
15059
15060 return isolate->heap()->ToBoolean(
15061 ContextsHaveSameOrigin(object_context, observer_context) &&
15062 ContextsHaveSameOrigin(object_context, record_context));
15063 }
15064
15065
15066 RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) {
15067 HandleScope scope(isolate);
15068 DCHECK(args.length() == 1);
15069 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15070
15071 Handle<Context> creation_context(object->GetCreationContext(), isolate);
15072 return isolate->heap()->ToBoolean(
15073 ContextsHaveSameOrigin(creation_context, isolate->native_context()));
15074 }
15075
15076
15077 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) {
15078 HandleScope scope(isolate);
15079 DCHECK(args.length() == 1);
15080 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15081
15082 Handle<Context> context(object->GetCreationContext(), isolate);
15083 return context->native_object_observe();
15084 }
15085
15086
15087 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) {
15088 HandleScope scope(isolate);
15089 DCHECK(args.length() == 1);
15090 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15091
15092 Handle<Context> context(object->GetCreationContext(), isolate);
15093 return context->native_object_get_notifier();
15094 }
15095
15096
15097 RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) {
15098 HandleScope scope(isolate);
15099 DCHECK(args.length() == 1);
15100 CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0);
15101
15102 Handle<Context> context(object_info->GetCreationContext(), isolate);
15103 return context->native_object_notifier_perform_change();
15104 }
15105
15106
15107 static Object* ArrayConstructorCommon(Isolate* isolate,
15108 Handle<JSFunction> constructor,
15109 Handle<AllocationSite> site,
15110 Arguments* caller_args) {
15111 Factory* factory = isolate->factory();
15112
15113 bool holey = false;
15114 bool can_use_type_feedback = true;
15115 if (caller_args->length() == 1) {
15116 Handle<Object> argument_one = caller_args->at<Object>(0);
15117 if (argument_one->IsSmi()) {
15118 int value = Handle<Smi>::cast(argument_one)->value();
15119 if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
15120 // the array is a dictionary in this case.
15121 can_use_type_feedback = false;
15122 } else if (value != 0) {
15123 holey = true;
15124 }
15125 } else {
15126 // Non-smi length argument produces a dictionary
15127 can_use_type_feedback = false;
15128 }
15129 }
15130
15131 Handle<JSArray> array;
15132 if (!site.is_null() && can_use_type_feedback) {
15133 ElementsKind to_kind = site->GetElementsKind();
15134 if (holey && !IsFastHoleyElementsKind(to_kind)) {
15135 to_kind = GetHoleyElementsKind(to_kind);
15136 // Update the allocation site info to reflect the advice alteration.
15137 site->SetElementsKind(to_kind);
15138 }
15139
15140 // We should allocate with an initial map that reflects the allocation site
15141 // advice. Therefore we use AllocateJSObjectFromMap instead of passing
15142 // the constructor.
15143 Handle<Map> initial_map(constructor->initial_map(), isolate);
15144 if (to_kind != initial_map->elements_kind()) {
15145 initial_map = Map::AsElementsKind(initial_map, to_kind);
15146 }
15147
15148 // If we don't care to track arrays of to_kind ElementsKind, then
15149 // don't emit a memento for them.
15150 Handle<AllocationSite> allocation_site;
15151 if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
15152 allocation_site = site;
15153 }
15154
15155 array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
15156 initial_map, NOT_TENURED, true, allocation_site));
15157 } else {
15158 array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
15159
15160 // We might need to transition to holey
15161 ElementsKind kind = constructor->initial_map()->elements_kind();
15162 if (holey && !IsFastHoleyElementsKind(kind)) {
15163 kind = GetHoleyElementsKind(kind);
15164 JSObject::TransitionElementsKind(array, kind);
15165 }
15166 }
15167
15168 factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
15169
15170 ElementsKind old_kind = array->GetElementsKind();
15171 RETURN_FAILURE_ON_EXCEPTION(
15172 isolate, ArrayConstructInitializeElements(array, caller_args));
15173 if (!site.is_null() &&
15174 (old_kind != array->GetElementsKind() ||
15175 !can_use_type_feedback)) {
15176 // The arguments passed in caused a transition. This kind of complexity
15177 // can't be dealt with in the inlined hydrogen array constructor case.
15178 // We must mark the allocationsite as un-inlinable.
15179 site->SetDoNotInlineCall();
15180 }
15181 return *array;
15182 }
15183
15184
15185 RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
15186 HandleScope scope(isolate);
15187 // If we get 2 arguments then they are the stub parameters (constructor, type
15188 // info). If we get 4, then the first one is a pointer to the arguments
15189 // passed by the caller, and the last one is the length of the arguments
15190 // passed to the caller (redundant, but useful to check on the deoptimizer
15191 // with an assert).
15192 Arguments empty_args(0, NULL);
15193 bool no_caller_args = args.length() == 2;
15194 DCHECK(no_caller_args || args.length() == 4);
15195 int parameters_start = no_caller_args ? 0 : 1;
15196 Arguments* caller_args = no_caller_args
15197 ? &empty_args
15198 : reinterpret_cast<Arguments*>(args[0]);
15199 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15200 CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
15201 #ifdef DEBUG
15202 if (!no_caller_args) {
15203 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
15204 DCHECK(arg_count == caller_args->length());
15205 }
15206 #endif
15207
15208 Handle<AllocationSite> site;
15209 if (!type_info.is_null() &&
15210 *type_info != isolate->heap()->undefined_value()) {
15211 site = Handle<AllocationSite>::cast(type_info);
15212 DCHECK(!site->SitePointsToLiteral());
15213 }
15214
15215 return ArrayConstructorCommon(isolate,
15216 constructor,
15217 site,
15218 caller_args);
15219 }
15220
15221
15222 RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
15223 HandleScope scope(isolate);
15224 Arguments empty_args(0, NULL);
15225 bool no_caller_args = args.length() == 1;
15226 DCHECK(no_caller_args || args.length() == 3);
15227 int parameters_start = no_caller_args ? 0 : 1;
15228 Arguments* caller_args = no_caller_args
15229 ? &empty_args
15230 : reinterpret_cast<Arguments*>(args[0]);
15231 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15232 #ifdef DEBUG
15233 if (!no_caller_args) {
15234 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
15235 DCHECK(arg_count == caller_args->length());
15236 }
15237 #endif
15238 return ArrayConstructorCommon(isolate,
15239 constructor,
15240 Handle<AllocationSite>::null(),
15241 caller_args);
15242 }
15243
15244
15245 RUNTIME_FUNCTION(Runtime_NormalizeElements) {
15246 HandleScope scope(isolate);
15247 DCHECK(args.length() == 1);
15248 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
15249 RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
15250 !array->HasFixedTypedArrayElements());
15251 JSObject::NormalizeElements(array);
15252 return *array;
15253 }
15254
15255
15256 RUNTIME_FUNCTION(Runtime_MaxSmi) {
15257 SealHandleScope shs(isolate);
15258 DCHECK(args.length() == 0);
15259 return Smi::FromInt(Smi::kMaxValue);
15260 }
15261
15262
15263 // TODO(dcarney): remove this function when TurboFan supports it.
15264 // Takes the object to be iterated over and the result of GetPropertyNamesFast
15265 // Returns pair (cache_array, cache_type).
15266 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
15267 SealHandleScope scope(isolate);
15268 DCHECK(args.length() == 2);
15269 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15270 // Not worth creating a macro atm as this function should be removed.
15271 if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
15272 Object* error = isolate->ThrowIllegalOperation();
15273 return MakePair(error, isolate->heap()->undefined_value());
15274 }
15275 Handle<JSReceiver> object = args.at<JSReceiver>(0);
15276 Handle<Object> cache_type = args.at<Object>(1);
15277 if (cache_type->IsMap()) {
15278 // Enum cache case.
15279 if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
15280 0) {
15281 // 0 length enum.
15282 // Can't handle this case in the graph builder,
15283 // so transform it into the empty fixed array case.
15284 return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
15285 }
15286 return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
15287 *cache_type);
15288 } else {
15289 // FixedArray case.
15290 Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
15291 return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
15292 }
15293 }
15294
15295
15296 // TODO(dcarney): remove this function when TurboFan supports it.
15297 RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
15298 SealHandleScope shs(isolate);
15299 DCHECK(args.length() == 2);
15300 CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
15301 CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
15302 int length = 0;
15303 if (cache_type->IsMap()) {
15304 length = Map::cast(*cache_type)->EnumLength();
15305 } else {
15306 DCHECK(cache_type->IsSmi());
15307 length = array->length();
15308 }
15309 return Smi::FromInt(length);
15310 }
15311
15312
15313 // TODO(dcarney): remove this function when TurboFan supports it.
15314 // Takes (the object to be iterated over,
15315 // cache_array from ForInInit,
15316 // cache_type from ForInInit,
15317 // the current index)
15318 // Returns pair (array[index], needs_filtering).
15319 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
15320 SealHandleScope scope(isolate);
15321 DCHECK(args.length() == 4);
15322 int32_t index;
15323 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15324 // Not worth creating a macro atm as this function should be removed.
15325 if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
15326 !args[2]->IsObject() || !args[3]->ToInt32(&index)) {
15327 Object* error = isolate->ThrowIllegalOperation();
15328 return MakePair(error, isolate->heap()->undefined_value());
15329 }
15330 Handle<JSReceiver> object = args.at<JSReceiver>(0);
15331 Handle<FixedArray> array = args.at<FixedArray>(1);
15332 Handle<Object> cache_type = args.at<Object>(2);
15333 // Figure out first if a slow check is needed for this object.
15334 bool slow_check_needed = false;
15335 if (cache_type->IsMap()) {
15336 if (object->map() != Map::cast(*cache_type)) {
15337 // Object transitioned. Need slow check.
15338 slow_check_needed = true;
15339 }
15340 } else {
15341 // No slow check needed for proxies.
15342 slow_check_needed = Smi::cast(*cache_type)->value() == 1;
15343 }
15344 return MakePair(array->get(index),
15345 isolate->heap()->ToBoolean(slow_check_needed));
15346 }
15347
15348
15349 // ----------------------------------------------------------------------------
15350 // Reference implementation for inlined runtime functions. Only used when the
15351 // compiler does not support a certain intrinsic. Don't optimize these, but
15352 // implement the intrinsic in the respective compiler instead.
15353
15354 // TODO(mstarzinger): These are place-holder stubs for TurboFan and will
15355 // eventually all have a C++ implementation and this macro will be gone.
15356 #define U(name) \
15357 RUNTIME_FUNCTION(RuntimeReference_##name) { \
15358 UNIMPLEMENTED(); \
15359 return NULL; \
15360 }
15361
15362 U(IsStringWrapperSafeForDefaultValueOf)
15363 U(DebugBreakInOptimizedCode)
15364
15365 #undef U
15366
15367
15368 RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
15369 SealHandleScope shs(isolate);
15370 DCHECK(args.length() == 1);
15371 CONVERT_ARG_CHECKED(Object, obj, 0);
15372 return isolate->heap()->ToBoolean(obj->IsSmi());
15373 }
15374
15375
15376 RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
15377 SealHandleScope shs(isolate);
15378 DCHECK(args.length() == 1);
15379 CONVERT_ARG_CHECKED(Object, obj, 0);
15380 return isolate->heap()->ToBoolean(obj->IsSmi() &&
15381 Smi::cast(obj)->value() >= 0);
15382 }
15383
15384
15385 RUNTIME_FUNCTION(RuntimeReference_IsArray) {
15386 SealHandleScope shs(isolate);
15387 DCHECK(args.length() == 1);
15388 CONVERT_ARG_CHECKED(Object, obj, 0);
15389 return isolate->heap()->ToBoolean(obj->IsJSArray());
15390 }
15391
15392
15393 RUNTIME_FUNCTION(RuntimeReference_IsRegExp) {
15394 SealHandleScope shs(isolate);
15395 DCHECK(args.length() == 1);
15396 CONVERT_ARG_CHECKED(Object, obj, 0);
15397 return isolate->heap()->ToBoolean(obj->IsJSRegExp());
15398 }
15399
15400
15401 RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) {
15402 SealHandleScope shs(isolate);
15403 DCHECK(args.length() == 0);
15404 JavaScriptFrameIterator it(isolate);
15405 JavaScriptFrame* frame = it.frame();
15406 return isolate->heap()->ToBoolean(frame->IsConstructor());
15407 }
15408
15409
15410 RUNTIME_FUNCTION(RuntimeReference_CallFunction) {
15411 SealHandleScope shs(isolate);
15412 return __RT_impl_Runtime_Call(args, isolate);
15413 }
15414
15415
15416 RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) {
15417 SealHandleScope shs(isolate);
15418 DCHECK(args.length() == 0);
15419 JavaScriptFrameIterator it(isolate);
15420 JavaScriptFrame* frame = it.frame();
15421 return Smi::FromInt(frame->GetArgumentsLength());
15422 }
15423
15424
15425 RUNTIME_FUNCTION(RuntimeReference_Arguments) {
15426 SealHandleScope shs(isolate);
15427 return __RT_impl_Runtime_GetArgumentsProperty(args, isolate);
15428 }
15429
15430
15431 RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
15432 SealHandleScope shs(isolate);
15433 DCHECK(args.length() == 1);
15434 CONVERT_ARG_CHECKED(Object, obj, 0);
15435 if (!obj->IsJSValue()) return obj;
15436 return JSValue::cast(obj)->value();
15437 }
15438
15439
15440 RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
15441 SealHandleScope shs(isolate);
15442 DCHECK(args.length() == 2);
15443 CONVERT_ARG_CHECKED(Object, obj, 0);
15444 CONVERT_ARG_CHECKED(Object, value, 1);
15445 if (!obj->IsJSValue()) return value;
15446 JSValue::cast(obj)->set_value(value);
15447 return value;
15448 }
15449
15450
15451 RUNTIME_FUNCTION(RuntimeReference_DateField) {
15452 SealHandleScope shs(isolate);
15453 DCHECK(args.length() == 2);
15454 CONVERT_ARG_CHECKED(Object, obj, 0);
15455 CONVERT_SMI_ARG_CHECKED(index, 1);
15456 if (!obj->IsJSDate()) {
15457 HandleScope scope(isolate);
15458 THROW_NEW_ERROR_RETURN_FAILURE(
15459 isolate,
15460 NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
15461 }
15462 JSDate* date = JSDate::cast(obj);
15463 if (index == 0) return date->value();
15464 return JSDate::GetField(date, Smi::FromInt(index));
15465 }
15466
15467
15468 RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
15469 SealHandleScope shs(isolate);
15470 return __RT_impl_Runtime_CharFromCode(args, isolate);
15471 }
15472
15473
15474 RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
15475 SealHandleScope shs(isolate);
15476 DCHECK(args.length() == 2);
15477 if (!args[0]->IsString()) return Smi::FromInt(0);
15478 if (!args[1]->IsNumber()) return Smi::FromInt(0);
15479 if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
15480 Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15481 if (code->IsNaN()) return isolate->heap()->empty_string();
15482 return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
15483 }
15484
15485
15486 RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
15487 SealHandleScope shs(isolate);
15488 DCHECK(args.length() == 3);
15489 CONVERT_INT32_ARG_CHECKED(index, 0);
15490 CONVERT_INT32_ARG_CHECKED(value, 1);
15491 CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
15492 string->SeqOneByteStringSet(index, value);
15493 return string;
15494 }
15495
15496
15497 RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
15498 SealHandleScope shs(isolate);
15499 DCHECK(args.length() == 3);
15500 CONVERT_INT32_ARG_CHECKED(index, 0);
15501 CONVERT_INT32_ARG_CHECKED(value, 1);
15502 CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
15503 string->SeqTwoByteStringSet(index, value);
15504 return string;
15505 }
15506
15507
15508 RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
15509 SealHandleScope shs(isolate);
15510 DCHECK(args.length() == 2);
15511 CONVERT_ARG_CHECKED(Object, obj1, 0);
15512 CONVERT_ARG_CHECKED(Object, obj2, 1);
15513 return isolate->heap()->ToBoolean(obj1 == obj2);
15514 }
15515
15516
15517 RUNTIME_FUNCTION(RuntimeReference_IsObject) {
15518 SealHandleScope shs(isolate);
15519 DCHECK(args.length() == 1);
15520 CONVERT_ARG_CHECKED(Object, obj, 0);
15521 if (!obj->IsHeapObject()) return isolate->heap()->false_value();
15522 if (obj->IsNull()) return isolate->heap()->true_value();
15523 if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
15524 Map* map = HeapObject::cast(obj)->map();
15525 bool is_non_callable_spec_object =
15526 map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
15527 map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
15528 return isolate->heap()->ToBoolean(is_non_callable_spec_object);
15529 }
15530
15531
15532 RUNTIME_FUNCTION(RuntimeReference_IsFunction) {
15533 SealHandleScope shs(isolate);
15534 DCHECK(args.length() == 1);
15535 CONVERT_ARG_CHECKED(Object, obj, 0);
15536 return isolate->heap()->ToBoolean(obj->IsJSFunction());
15537 }
15538
15539
15540 RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
15541 SealHandleScope shs(isolate);
15542 DCHECK(args.length() == 1);
15543 CONVERT_ARG_CHECKED(Object, obj, 0);
15544 return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
15545 }
15546
15547
15548 RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
15549 SealHandleScope shs(isolate);
15550 DCHECK(args.length() == 1);
15551 CONVERT_ARG_CHECKED(Object, obj, 0);
15552 return isolate->heap()->ToBoolean(obj->IsSpecObject());
15553 }
15554
15555
15556 RUNTIME_FUNCTION(RuntimeReference_MathPow) {
15557 SealHandleScope shs(isolate);
15558 return __RT_impl_Runtime_MathPowSlow(args, isolate);
15559 }
15560
15561
15562 RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) {
15563 SealHandleScope shs(isolate);
15564 DCHECK(args.length() == 1);
15565 CONVERT_ARG_CHECKED(Object, obj, 0);
15566 if (!obj->IsHeapNumber()) return isolate->heap()->false_value();
15567 HeapNumber* number = HeapNumber::cast(obj);
15568 return isolate->heap()->ToBoolean(IsMinusZero(number->value()));
15569 }
15570
15571
15572 RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
15573 SealHandleScope shs(isolate);
15574 DCHECK(args.length() == 1);
15575 return isolate->heap()->false_value();
15576 }
15577
15578
15579 RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
15580 SealHandleScope shs(isolate);
15581 DCHECK(args.length() == 1);
15582 return isolate->heap()->undefined_value();
15583 }
15584
15585
15586 RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
15587 SealHandleScope shs(isolate);
15588 DCHECK(args.length() == 2);
15589 return isolate->heap()->undefined_value();
15590 }
15591
15592
15593 RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) {
15594 UNREACHABLE(); // Optimization disabled in SetUpGenerators().
15595 return NULL;
15596 }
15597
15598
15599 RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) {
15600 UNREACHABLE(); // Optimization disabled in SetUpGenerators().
15601 return NULL;
15602 }
15603
15604
15605 RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
15606 SealHandleScope shs(isolate);
15607 DCHECK(args.length() == 1);
15608 CONVERT_ARG_CHECKED(Object, obj, 0);
15609 if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
15610 return JSReceiver::cast(obj)->class_name();
15611 }
15612
15613
15614 RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
15615 SealHandleScope shs(isolate);
15616 DCHECK(args.length() == 2);
15617 if (!args[0]->IsString()) return isolate->heap()->undefined_value();
15618 if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
15619 if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
15620 return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15621 }
15622
15623
15624 RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
15625 SealHandleScope shs(isolate);
15626 return __RT_impl_Runtime_StringAdd(args, isolate);
15627 }
15628
15629
15630 RUNTIME_FUNCTION(RuntimeReference_SubString) {
15631 SealHandleScope shs(isolate);
15632 return __RT_impl_Runtime_SubString(args, isolate);
15633 }
15634
15635
15636 RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
15637 SealHandleScope shs(isolate);
15638 return __RT_impl_Runtime_StringCompare(args, isolate);
15639 }
15640
15641
15642 RUNTIME_FUNCTION(RuntimeReference_RegExpExec) {
15643 SealHandleScope shs(isolate);
15644 return __RT_impl_Runtime_RegExpExecRT(args, isolate);
15645 }
15646
15647
15648 RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult) {
15649 SealHandleScope shs(isolate);
15650 return __RT_impl_Runtime_RegExpConstructResult(args, isolate);
15651 }
15652
15653
15654 RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
15655 HandleScope scope(isolate);
15656 DCHECK(args.length() == 2);
15657 CONVERT_SMI_ARG_CHECKED(id, 0);
15658 args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
15659 return __RT_impl_Runtime_GetFromCache(args, isolate);
15660 }
15661
15662
15663 RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
15664 SealHandleScope shs(isolate);
15665 return __RT_impl_Runtime_NumberToStringRT(args, isolate);
15666 }
15667
15668
15669 RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
15670 SealHandleScope shs(isolate);
15671 return Smi::FromInt(isolate->debug()->is_active());
15672 }
15673
15674
15675 // ----------------------------------------------------------------------------
15676 // Implementation of Runtime
15677
15678 #define F(name, number_of_args, result_size) \
15679 { \
15680 Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \
15681 number_of_args, result_size \
15682 } \
15683 ,
15684
15685
15686 #define I(name, number_of_args, result_size) \
15687 { \
15688 Runtime::kInline##name, Runtime::INLINE, "_" #name, \
15689 FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \
15690 } \
15691 ,
15692
15693
15694 #define IO(name, number_of_args, result_size) \
15695 { \
15696 Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \
15697 FUNCTION_ADDR(Runtime_##name), number_of_args, result_size \
15698 } \
15699 ,
15700
15701
15702 static const Runtime::Function kIntrinsicFunctions[] = {
15703 RUNTIME_FUNCTION_LIST(F)
15704 INLINE_OPTIMIZED_FUNCTION_LIST(F)
15705 INLINE_FUNCTION_LIST(I)
15706 INLINE_OPTIMIZED_FUNCTION_LIST(IO)
15707 };
15708
15709 #undef IO
15710 #undef I
15711 #undef F
15712
15713
15714 void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate,
15715 Handle<NameDictionary> dict) {
15716 DCHECK(dict->NumberOfElements() == 0);
15717 HandleScope scope(isolate);
15718 for (int i = 0; i < kNumFunctions; ++i) {
15719 const char* name = kIntrinsicFunctions[i].name;
15720 if (name == NULL) continue;
15721 Handle<NameDictionary> new_dict = NameDictionary::Add(
15722 dict,
15723 isolate->factory()->InternalizeUtf8String(name),
15724 Handle<Smi>(Smi::FromInt(i), isolate),
15725 PropertyDetails(NONE, NORMAL, Representation::None()));
15726 // The dictionary does not need to grow.
15727 CHECK(new_dict.is_identical_to(dict));
15728 }
15729 }
15730
15731
15732 const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
15733 Heap* heap = name->GetHeap();
15734 int entry = heap->intrinsic_function_names()->FindEntry(name);
15735 if (entry != kNotFound) {
15736 Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
15737 int function_index = Smi::cast(smi_index)->value();
15738 return &(kIntrinsicFunctions[function_index]);
15739 }
15740 return NULL;
15741 }
15742
15743
15744 const Runtime::Function* Runtime::FunctionForEntry(Address entry) {
15745 for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) {
15746 if (entry == kIntrinsicFunctions[i].entry) {
15747 return &(kIntrinsicFunctions[i]);
15748 }
15749 }
15750 return NULL;
15751 }
15752
15753
15754 const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
15755 return &(kIntrinsicFunctions[static_cast<int>(id)]);
15756 }
15757
15758 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/runtime.h ('k') | src/runtime/runtime.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698