| Index: src/gpu/GrDrawState.cpp
|
| diff --git a/src/gpu/GrDrawState.cpp b/src/gpu/GrDrawState.cpp
|
| index 168cf0b9c3b0c2962c65e4c8e1dd38f6ae45c9dd..872d20a1ab48cb0c9ae6b0e93fb066a4a3e9fa7c 100644
|
| --- a/src/gpu/GrDrawState.cpp
|
| +++ b/src/gpu/GrDrawState.cpp
|
| @@ -16,14 +16,16 @@ GrOptDrawState* GrDrawState::createOptState(const GrDrawTargetCaps& caps) const
|
| if (NULL == fCachedOptState || caps.getUniqueID() != fCachedCapsID) {
|
| GrBlendCoeff srcCoeff;
|
| GrBlendCoeff dstCoeff;
|
| - BlendOptFlags blendFlags = this->getBlendOpts(false, &srcCoeff, &dstCoeff);
|
| + GrOptDrawState::BlendOptFlags blendFlags =
|
| + (GrOptDrawState::BlendOptFlags) this->getBlendOpts(false, &srcCoeff, &dstCoeff);
|
| fCachedOptState = SkNEW_ARGS(GrOptDrawState, (*this, blendFlags, srcCoeff, dstCoeff, caps));
|
| fCachedCapsID = caps.getUniqueID();
|
| } else {
|
| #ifdef SK_DEBUG
|
| GrBlendCoeff srcCoeff;
|
| GrBlendCoeff dstCoeff;
|
| - BlendOptFlags blendFlags = this->getBlendOpts(false, &srcCoeff, &dstCoeff);
|
| + GrOptDrawState::BlendOptFlags blendFlags =
|
| + (GrOptDrawState::BlendOptFlags) this->getBlendOpts(false, &srcCoeff, &dstCoeff);
|
| SkASSERT(GrOptDrawState(*this, blendFlags, srcCoeff, dstCoeff, caps) == *fCachedOptState);
|
| #endif
|
| }
|
| @@ -33,6 +35,66 @@ GrOptDrawState* GrDrawState::createOptState(const GrDrawTargetCaps& caps) const
|
|
|
| //////////////////////////////////////////////////////////////////////////////s
|
|
|
| +bool GrDrawState::isEqual(const GrDrawState& that) const {
|
| + bool usingVertexColors = this->hasColorVertexAttribute();
|
| + if (!usingVertexColors && this->fColor != that.fColor) {
|
| + return false;
|
| + }
|
| +
|
| + if (this->getRenderTarget() != that.getRenderTarget() ||
|
| + this->fColorStages.count() != that.fColorStages.count() ||
|
| + this->fCoverageStages.count() != that.fCoverageStages.count() ||
|
| + !this->fViewMatrix.cheapEqualTo(that.fViewMatrix) ||
|
| + this->fSrcBlend != that.fSrcBlend ||
|
| + this->fDstBlend != that.fDstBlend ||
|
| + this->fBlendConstant != that.fBlendConstant ||
|
| + this->fFlagBits != that.fFlagBits ||
|
| + this->fVACount != that.fVACount ||
|
| + this->fVAStride != that.fVAStride ||
|
| + memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib)) ||
|
| + this->fStencilSettings != that.fStencilSettings ||
|
| + this->fDrawFace != that.fDrawFace) {
|
| + return false;
|
| + }
|
| +
|
| + bool usingVertexCoverage = this->hasCoverageVertexAttribute();
|
| + if (!usingVertexCoverage && this->fCoverage != that.fCoverage) {
|
| + return false;
|
| + }
|
| +
|
| + bool explicitLocalCoords = this->hasLocalCoordAttribute();
|
| + if (this->hasGeometryProcessor()) {
|
| + if (!that.hasGeometryProcessor()) {
|
| + return false;
|
| + } else if (!GrProcessorStage::AreCompatible(*this->getGeometryProcessor(),
|
| + *that.getGeometryProcessor(),
|
| + explicitLocalCoords)) {
|
| + return false;
|
| + }
|
| + } else if (that.hasGeometryProcessor()) {
|
| + return false;
|
| + }
|
| +
|
| + for (int i = 0; i < this->numColorStages(); i++) {
|
| + if (!GrProcessorStage::AreCompatible(this->getColorStage(i), that.getColorStage(i),
|
| + explicitLocalCoords)) {
|
| + return false;
|
| + }
|
| + }
|
| + for (int i = 0; i < this->numCoverageStages(); i++) {
|
| + if (!GrProcessorStage::AreCompatible(this->getCoverageStage(i), that.getCoverageStage(i),
|
| + explicitLocalCoords)) {
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + SkASSERT(0 == memcmp(this->fFixedFunctionVertexAttribIndices,
|
| + that.fFixedFunctionVertexAttribIndices,
|
| + sizeof(this->fFixedFunctionVertexAttribIndices)));
|
| +
|
| + return true;
|
| +}
|
| +
|
| GrDrawState::CombinedState GrDrawState::CombineIfPossible(
|
| const GrDrawState& a, const GrDrawState& b, const GrDrawTargetCaps& caps) {
|
|
|
| @@ -218,11 +280,54 @@ void GrDrawState::setFromPaint(const GrPaint& paint, const SkMatrix& vm, GrRende
|
|
|
| ////////////////////////////////////////////////////////////////////////////////
|
|
|
| +bool GrDrawState::validateVertexAttribs() const {
|
| + // check consistency of effects and attributes
|
| + GrSLType slTypes[kMaxVertexAttribCnt];
|
| + for (int i = 0; i < kMaxVertexAttribCnt; ++i) {
|
| + slTypes[i] = static_cast<GrSLType>(-1);
|
| + }
|
| +
|
| + if (this->hasGeometryProcessor()) {
|
| + const GrGeometryStage& stage = *this->getGeometryProcessor();
|
| + const GrGeometryProcessor* gp = stage.getGeometryProcessor();
|
| + SkASSERT(gp);
|
| + // make sure that any attribute indices have the correct binding type, that the attrib
|
| + // type and effect's shader lang type are compatible, and that attributes shared by
|
| + // multiple effects use the same shader lang type.
|
| + const GrGeometryProcessor::VertexAttribArray& s = gp->getVertexAttribs();
|
| +
|
| + int effectIndex = 0;
|
| + for (int index = 0; index < fVACount; index++) {
|
| + if (kGeometryProcessor_GrVertexAttribBinding != fVAPtr[index].fBinding) {
|
| + // we only care about effect bindings
|
| + continue;
|
| + }
|
| + SkASSERT(effectIndex < s.count());
|
| + GrSLType effectSLType = s[effectIndex].getType();
|
| + GrVertexAttribType attribType = fVAPtr[index].fType;
|
| + int slVecCount = GrSLTypeVectorCount(effectSLType);
|
| + int attribVecCount = GrVertexAttribTypeVectorCount(attribType);
|
| + if (slVecCount != attribVecCount ||
|
| + (static_cast<GrSLType>(-1) != slTypes[index] && slTypes[index] != effectSLType)) {
|
| + return false;
|
| + }
|
| + slTypes[index] = effectSLType;
|
| + effectIndex++;
|
| + }
|
| + // Make sure all attributes are consumed and we were able to find everything
|
| + SkASSERT(s.count() == effectIndex);
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| static void validate_vertex_attribs(const GrVertexAttrib* attribs, int count, size_t stride) {
|
| // this works as long as we're 4 byte-aligned
|
| #ifdef SK_DEBUG
|
| uint32_t overlapCheck = 0;
|
| - SkASSERT(count <= GrRODrawState::kMaxVertexAttribCnt);
|
| + SkASSERT(count <= GrDrawState::kMaxVertexAttribCnt);
|
| for (int index = 0; index < count; ++index) {
|
| size_t attribSize = GrVertexAttribTypeSize(attribs[index].fType);
|
| size_t attribOffset = attribs[index].fOffset;
|
| @@ -305,11 +410,39 @@ bool GrDrawState::couldApplyCoverage(const GrDrawTargetCaps& caps) const {
|
| GrBlendCoeff srcCoeff;
|
| GrBlendCoeff dstCoeff;
|
| BlendOptFlags flag = this->getBlendOpts(true, &srcCoeff, &dstCoeff);
|
| - return GrRODrawState::kNone_BlendOpt != flag ||
|
| + return GrDrawState::kNone_BlendOpt != flag ||
|
| (this->willEffectReadDstColor() &&
|
| kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff);
|
| }
|
|
|
| +bool GrDrawState::hasSolidCoverage() const {
|
| + // If we're drawing coverage directly then coverage is effectively treated as color.
|
| + if (this->isCoverageDrawing()) {
|
| + return true;
|
| + }
|
| +
|
| + GrColor coverage;
|
| + uint32_t validComponentFlags;
|
| + // Initialize to an unknown starting coverage if per-vertex coverage is specified.
|
| + if (this->hasCoverageVertexAttribute()) {
|
| + validComponentFlags = 0;
|
| + } else {
|
| + coverage = fCoverage;
|
| + validComponentFlags = kRGBA_GrColorComponentFlags;
|
| + }
|
| +
|
| + // Run through the coverage stages and see if the coverage will be all ones at the end.
|
| + if (this->hasGeometryProcessor()) {
|
| + const GrGeometryProcessor* gp = fGeometryProcessor->getGeometryProcessor();
|
| + gp->getConstantColorComponents(&coverage, &validComponentFlags);
|
| + }
|
| + for (int s = 0; s < this->numCoverageStages(); ++s) {
|
| + const GrProcessor* processor = this->getCoverageStage(s).getProcessor();
|
| + processor->getConstantColorComponents(&coverage, &validComponentFlags);
|
| + }
|
| + return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff == coverage);
|
| +}
|
| +
|
| //////////////////////////////////////////////////////////////////////////////
|
|
|
| GrDrawState::AutoVertexAttribRestore::AutoVertexAttribRestore(GrDrawState* drawState) {
|
| @@ -323,6 +456,22 @@ GrDrawState::AutoVertexAttribRestore::AutoVertexAttribRestore(GrDrawState* drawS
|
|
|
| //////////////////////////////////////////////////////////////////////////////s
|
|
|
| +bool GrDrawState::willEffectReadDstColor() const {
|
| + if (!this->isColorWriteDisabled()) {
|
| + for (int s = 0; s < this->numColorStages(); ++s) {
|
| + if (this->getColorStage(s).getFragmentProcessor()->willReadDstColor()) {
|
| + return true;
|
| + }
|
| + }
|
| + }
|
| + for (int s = 0; s < this->numCoverageStages(); ++s) {
|
| + if (this->getCoverageStage(s).getFragmentProcessor()->willReadDstColor()) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| void GrDrawState::AutoRestoreEffects::set(GrDrawState* ds) {
|
| if (fDrawState) {
|
| // See the big comment on the class definition about GPs.
|
| @@ -360,6 +509,28 @@ void GrDrawState::AutoRestoreEffects::set(GrDrawState* ds) {
|
|
|
| ////////////////////////////////////////////////////////////////////////////////
|
|
|
| +// Some blend modes allow folding a fractional coverage value into the color's alpha channel, while
|
| +// others will blend incorrectly.
|
| +bool GrDrawState::canTweakAlphaForCoverage() const {
|
| + /*
|
| + The fractional coverage is f.
|
| + The src and dst coeffs are Cs and Cd.
|
| + The dst and src colors are S and D.
|
| + We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha
|
| + we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second
|
| + term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we
|
| + find that only 1, ISA, and ISC produce the correct destination when applied to S' and D.
|
| + Also, if we're directly rendering coverage (isCoverageDrawing) then coverage is treated as
|
| + color by definition.
|
| + */
|
| + return kOne_GrBlendCoeff == fDstBlend ||
|
| + kISA_GrBlendCoeff == fDstBlend ||
|
| + kISC_GrBlendCoeff == fDstBlend ||
|
| + this->isCoverageDrawing();
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| void GrDrawState::AutoViewMatrixRestore::restore() {
|
| if (fDrawState) {
|
| SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
|
| @@ -462,6 +633,22 @@ void GrDrawState::AutoViewMatrixRestore::doEffectCoordChanges(const SkMatrix& co
|
|
|
| ////////////////////////////////////////////////////////////////////////////////
|
|
|
| +void GrDrawState::convertToPendingExec() {
|
| + fRenderTarget.markPendingIO();
|
| + fRenderTarget.removeRef();
|
| + for (int i = 0; i < fColorStages.count(); ++i) {
|
| + fColorStages[i].convertToPendingExec();
|
| + }
|
| + if (fGeometryProcessor) {
|
| + fGeometryProcessor->convertToPendingExec();
|
| + }
|
| + for (int i = 0; i < fCoverageStages.count(); ++i) {
|
| + fCoverageStages[i].convertToPendingExec();
|
| + }
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| void GrDrawState::invalidateOptState() const {
|
| SkSafeSetNull(fCachedOptState);
|
| }
|
| @@ -473,3 +660,150 @@ GrDrawState::~GrDrawState() {
|
| SkASSERT(0 == fBlockEffectRemovalCnt);
|
| }
|
|
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
|
| + GrBlendCoeff* srcCoeff,
|
| + GrBlendCoeff* dstCoeff) const {
|
| + GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
|
| + if (NULL == srcCoeff) {
|
| + srcCoeff = &bogusSrcCoeff;
|
| + }
|
| + if (NULL == dstCoeff) {
|
| + dstCoeff = &bogusDstCoeff;
|
| + }
|
| +
|
| + *srcCoeff = this->getSrcBlendCoeff();
|
| + *dstCoeff = this->getDstBlendCoeff();
|
| +
|
| + if (this->isColorWriteDisabled()) {
|
| + *srcCoeff = kZero_GrBlendCoeff;
|
| + *dstCoeff = kOne_GrBlendCoeff;
|
| + }
|
| +
|
| + bool srcAIsOne = this->srcAlphaWillBeOne();
|
| + bool dstCoeffIsOne = kOne_GrBlendCoeff == *dstCoeff ||
|
| + (kSA_GrBlendCoeff == *dstCoeff && srcAIsOne);
|
| + bool dstCoeffIsZero = kZero_GrBlendCoeff == *dstCoeff ||
|
| + (kISA_GrBlendCoeff == *dstCoeff && srcAIsOne);
|
| +
|
| + // When coeffs are (0,1) there is no reason to draw at all, unless
|
| + // stenciling is enabled. Having color writes disabled is effectively
|
| + // (0,1).
|
| + if ((kZero_GrBlendCoeff == *srcCoeff && dstCoeffIsOne)) {
|
| + if (this->getStencil().doesWrite()) {
|
| + return kEmitCoverage_BlendOptFlag;
|
| + } else {
|
| + *dstCoeff = kOne_GrBlendCoeff;
|
| + return kSkipDraw_BlendOptFlag;
|
| + }
|
| + }
|
| +
|
| + bool hasCoverage = forceCoverage || !this->hasSolidCoverage();
|
| +
|
| + // if we don't have coverage we can check whether the dst
|
| + // has to read at all. If not, we'll disable blending.
|
| + if (!hasCoverage) {
|
| + if (dstCoeffIsZero) {
|
| + if (kOne_GrBlendCoeff == *srcCoeff) {
|
| + // if there is no coverage and coeffs are (1,0) then we
|
| + // won't need to read the dst at all, it gets replaced by src
|
| + *dstCoeff = kZero_GrBlendCoeff;
|
| + return kNone_BlendOpt;
|
| + } else if (kZero_GrBlendCoeff == *srcCoeff) {
|
| + // if the op is "clear" then we don't need to emit a color
|
| + // or blend, just write transparent black into the dst.
|
| + *srcCoeff = kOne_GrBlendCoeff;
|
| + *dstCoeff = kZero_GrBlendCoeff;
|
| + return kEmitTransBlack_BlendOptFlag;
|
| + }
|
| + }
|
| + } else if (this->isCoverageDrawing()) {
|
| + // we have coverage but we aren't distinguishing it from alpha by request.
|
| + return kCoverageAsAlpha_BlendOptFlag;
|
| + } else {
|
| + // check whether coverage can be safely rolled into alpha
|
| + // of if we can skip color computation and just emit coverage
|
| + if (this->canTweakAlphaForCoverage()) {
|
| + return kCoverageAsAlpha_BlendOptFlag;
|
| + }
|
| + if (dstCoeffIsZero) {
|
| + if (kZero_GrBlendCoeff == *srcCoeff) {
|
| + // the source color is not included in the blend
|
| + // the dst coeff is effectively zero so blend works out to:
|
| + // (c)(0)D + (1-c)D = (1-c)D.
|
| + *dstCoeff = kISA_GrBlendCoeff;
|
| + return kEmitCoverage_BlendOptFlag;
|
| + } else if (srcAIsOne) {
|
| + // the dst coeff is effectively zero so blend works out to:
|
| + // cS + (c)(0)D + (1-c)D = cS + (1-c)D.
|
| + // If Sa is 1 then we can replace Sa with c
|
| + // and set dst coeff to 1-Sa.
|
| + *dstCoeff = kISA_GrBlendCoeff;
|
| + return kCoverageAsAlpha_BlendOptFlag;
|
| + }
|
| + } else if (dstCoeffIsOne) {
|
| + // the dst coeff is effectively one so blend works out to:
|
| + // cS + (c)(1)D + (1-c)D = cS + D.
|
| + *dstCoeff = kOne_GrBlendCoeff;
|
| + return kCoverageAsAlpha_BlendOptFlag;
|
| + }
|
| + }
|
| +
|
| + return kNone_BlendOpt;
|
| +}
|
| +
|
| +
|
| +bool GrDrawState::srcAlphaWillBeOne() const {
|
| + uint32_t validComponentFlags;
|
| + GrColor color;
|
| + // Check if per-vertex or constant color may have partial alpha
|
| + if (this->hasColorVertexAttribute()) {
|
| + if (fHints & kVertexColorsAreOpaque_Hint) {
|
| + validComponentFlags = kA_GrColorComponentFlag;
|
| + color = 0xFF << GrColor_SHIFT_A;
|
| + } else {
|
| + validComponentFlags = 0;
|
| + color = 0; // not strictly necessary but we get false alarms from tools about uninit.
|
| + }
|
| + } else {
|
| + validComponentFlags = kRGBA_GrColorComponentFlags;
|
| + color = this->getColor();
|
| + }
|
| +
|
| + // Run through the color stages
|
| + for (int s = 0; s < this->numColorStages(); ++s) {
|
| + const GrProcessor* processor = this->getColorStage(s).getProcessor();
|
| + processor->getConstantColorComponents(&color, &validComponentFlags);
|
| + }
|
| +
|
| + // Check whether coverage is treated as color. If so we run through the coverage computation.
|
| + if (this->isCoverageDrawing()) {
|
| + // The shader generated for coverage drawing runs the full coverage computation and then
|
| + // makes the shader output be the multiplication of color and coverage. We mirror that here.
|
| + GrColor coverage;
|
| + uint32_t coverageComponentFlags;
|
| + if (this->hasCoverageVertexAttribute()) {
|
| + coverageComponentFlags = 0;
|
| + coverage = 0; // suppresses any warnings.
|
| + } else {
|
| + coverageComponentFlags = kRGBA_GrColorComponentFlags;
|
| + coverage = this->getCoverageColor();
|
| + }
|
| +
|
| + // Run through the coverage stages
|
| + for (int s = 0; s < this->numCoverageStages(); ++s) {
|
| + const GrProcessor* processor = this->getCoverageStage(s).getProcessor();
|
| + processor->getConstantColorComponents(&coverage, &coverageComponentFlags);
|
| + }
|
| +
|
| + // Since the shader will multiply coverage and color, the only way the final A==1 is if
|
| + // coverage and color both have A==1.
|
| + return (kA_GrColorComponentFlag & validComponentFlags & coverageComponentFlags) &&
|
| + 0xFF == GrColorUnpackA(color) && 0xFF == GrColorUnpackA(coverage);
|
| +
|
| + }
|
| +
|
| + return (kA_GrColorComponentFlag & validComponentFlags) && 0xFF == GrColorUnpackA(color);
|
| +}
|
| +
|
|
|