| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2014 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "GrRODrawState.h" | |
| 9 | |
| 10 #include "GrDrawTargetCaps.h" | |
| 11 #include "GrRenderTarget.h" | |
| 12 | |
| 13 //////////////////////////////////////////////////////////////////////////////// | |
| 14 | |
| 15 GrRODrawState::GrRODrawState(const GrRODrawState& drawState) : INHERITED() { | |
| 16 fRenderTarget.setResource(SkSafeRef(drawState.fRenderTarget.getResource()), | |
| 17 GrIORef::kWrite_IOType); | |
| 18 } | |
| 19 | |
| 20 bool GrRODrawState::isEqual(const GrRODrawState& that) const { | |
| 21 bool usingVertexColors = this->hasColorVertexAttribute(); | |
| 22 if (!usingVertexColors && this->fColor != that.fColor) { | |
| 23 return false; | |
| 24 } | |
| 25 | |
| 26 if (this->getRenderTarget() != that.getRenderTarget() || | |
| 27 this->fColorStages.count() != that.fColorStages.count() || | |
| 28 this->fCoverageStages.count() != that.fCoverageStages.count() || | |
| 29 !this->fViewMatrix.cheapEqualTo(that.fViewMatrix) || | |
| 30 this->fSrcBlend != that.fSrcBlend || | |
| 31 this->fDstBlend != that.fDstBlend || | |
| 32 this->fBlendConstant != that.fBlendConstant || | |
| 33 this->fFlagBits != that.fFlagBits || | |
| 34 this->fVACount != that.fVACount || | |
| 35 this->fVAStride != that.fVAStride || | |
| 36 memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib
)) || | |
| 37 this->fStencilSettings != that.fStencilSettings || | |
| 38 this->fDrawFace != that.fDrawFace) { | |
| 39 return false; | |
| 40 } | |
| 41 | |
| 42 bool usingVertexCoverage = this->hasCoverageVertexAttribute(); | |
| 43 if (!usingVertexCoverage && this->fCoverage != that.fCoverage) { | |
| 44 return false; | |
| 45 } | |
| 46 | |
| 47 bool explicitLocalCoords = this->hasLocalCoordAttribute(); | |
| 48 if (this->hasGeometryProcessor()) { | |
| 49 if (!that.hasGeometryProcessor()) { | |
| 50 return false; | |
| 51 } else if (!GrProcessorStage::AreCompatible(*this->getGeometryProcessor(
), | |
| 52 *that.getGeometryProcessor()
, | |
| 53 explicitLocalCoords)) { | |
| 54 return false; | |
| 55 } | |
| 56 } else if (that.hasGeometryProcessor()) { | |
| 57 return false; | |
| 58 } | |
| 59 | |
| 60 for (int i = 0; i < this->numColorStages(); i++) { | |
| 61 if (!GrProcessorStage::AreCompatible(this->getColorStage(i), that.getCol
orStage(i), | |
| 62 explicitLocalCoords)) { | |
| 63 return false; | |
| 64 } | |
| 65 } | |
| 66 for (int i = 0; i < this->numCoverageStages(); i++) { | |
| 67 if (!GrProcessorStage::AreCompatible(this->getCoverageStage(i), that.get
CoverageStage(i), | |
| 68 explicitLocalCoords)) { | |
| 69 return false; | |
| 70 } | |
| 71 } | |
| 72 | |
| 73 SkASSERT(0 == memcmp(this->fFixedFunctionVertexAttribIndices, | |
| 74 that.fFixedFunctionVertexAttribIndices, | |
| 75 sizeof(this->fFixedFunctionVertexAttribIndices))); | |
| 76 | |
| 77 return true; | |
| 78 } | |
| 79 | |
| 80 //////////////////////////////////////////////////////////////////////////////// | |
| 81 | |
| 82 bool GrRODrawState::validateVertexAttribs() const { | |
| 83 // check consistency of effects and attributes | |
| 84 GrSLType slTypes[kMaxVertexAttribCnt]; | |
| 85 for (int i = 0; i < kMaxVertexAttribCnt; ++i) { | |
| 86 slTypes[i] = static_cast<GrSLType>(-1); | |
| 87 } | |
| 88 | |
| 89 if (this->hasGeometryProcessor()) { | |
| 90 const GrGeometryStage& stage = *this->getGeometryProcessor(); | |
| 91 const GrGeometryProcessor* gp = stage.getGeometryProcessor(); | |
| 92 SkASSERT(gp); | |
| 93 // make sure that any attribute indices have the correct binding type, t
hat the attrib | |
| 94 // type and effect's shader lang type are compatible, and that attribute
s shared by | |
| 95 // multiple effects use the same shader lang type. | |
| 96 const GrGeometryProcessor::VertexAttribArray& s = gp->getVertexAttribs()
; | |
| 97 | |
| 98 int effectIndex = 0; | |
| 99 for (int index = 0; index < fVACount; index++) { | |
| 100 if (kGeometryProcessor_GrVertexAttribBinding != fVAPtr[index].fBindi
ng) { | |
| 101 // we only care about effect bindings | |
| 102 continue; | |
| 103 } | |
| 104 SkASSERT(effectIndex < s.count()); | |
| 105 GrSLType effectSLType = s[effectIndex].getType(); | |
| 106 GrVertexAttribType attribType = fVAPtr[index].fType; | |
| 107 int slVecCount = GrSLTypeVectorCount(effectSLType); | |
| 108 int attribVecCount = GrVertexAttribTypeVectorCount(attribType); | |
| 109 if (slVecCount != attribVecCount || | |
| 110 (static_cast<GrSLType>(-1) != slTypes[index] && slTypes[index] !
= effectSLType)) { | |
| 111 return false; | |
| 112 } | |
| 113 slTypes[index] = effectSLType; | |
| 114 effectIndex++; | |
| 115 } | |
| 116 // Make sure all attributes are consumed and we were able to find everyt
hing | |
| 117 SkASSERT(s.count() == effectIndex); | |
| 118 } | |
| 119 | |
| 120 return true; | |
| 121 } | |
| 122 | |
| 123 bool GrRODrawState::hasSolidCoverage() const { | |
| 124 // If we're drawing coverage directly then coverage is effectively treated a
s color. | |
| 125 if (this->isCoverageDrawing()) { | |
| 126 return true; | |
| 127 } | |
| 128 | |
| 129 GrColor coverage; | |
| 130 uint32_t validComponentFlags; | |
| 131 // Initialize to an unknown starting coverage if per-vertex coverage is spec
ified. | |
| 132 if (this->hasCoverageVertexAttribute()) { | |
| 133 validComponentFlags = 0; | |
| 134 } else { | |
| 135 coverage = fCoverage; | |
| 136 validComponentFlags = kRGBA_GrColorComponentFlags; | |
| 137 } | |
| 138 | |
| 139 // Run through the coverage stages and see if the coverage will be all ones
at the end. | |
| 140 if (this->hasGeometryProcessor()) { | |
| 141 const GrGeometryProcessor* gp = fGeometryProcessor->getGeometryProcessor
(); | |
| 142 gp->getConstantColorComponents(&coverage, &validComponentFlags); | |
| 143 } | |
| 144 for (int s = 0; s < this->numCoverageStages(); ++s) { | |
| 145 const GrProcessor* processor = this->getCoverageStage(s).getProcessor(); | |
| 146 processor->getConstantColorComponents(&coverage, &validComponentFlags); | |
| 147 } | |
| 148 return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff =
= coverage); | |
| 149 } | |
| 150 | |
| 151 //////////////////////////////////////////////////////////////////////////////// | |
| 152 | |
| 153 bool GrRODrawState::willEffectReadDstColor() const { | |
| 154 if (!this->isColorWriteDisabled()) { | |
| 155 for (int s = 0; s < this->numColorStages(); ++s) { | |
| 156 if (this->getColorStage(s).getFragmentProcessor()->willReadDstColor(
)) { | |
| 157 return true; | |
| 158 } | |
| 159 } | |
| 160 } | |
| 161 for (int s = 0; s < this->numCoverageStages(); ++s) { | |
| 162 if (this->getCoverageStage(s).getFragmentProcessor()->willReadDstColor()
) { | |
| 163 return true; | |
| 164 } | |
| 165 } | |
| 166 return false; | |
| 167 } | |
| 168 | |
| 169 //////////////////////////////////////////////////////////////////////////////// | |
| 170 | |
| 171 GrRODrawState::BlendOptFlags GrRODrawState::getBlendOpts(bool forceCoverage, | |
| 172 GrBlendCoeff* srcCoeff, | |
| 173 GrBlendCoeff* dstCoeff)
const { | |
| 174 GrBlendCoeff bogusSrcCoeff, bogusDstCoeff; | |
| 175 if (NULL == srcCoeff) { | |
| 176 srcCoeff = &bogusSrcCoeff; | |
| 177 } | |
| 178 if (NULL == dstCoeff) { | |
| 179 dstCoeff = &bogusDstCoeff; | |
| 180 } | |
| 181 | |
| 182 *srcCoeff = this->getSrcBlendCoeff(); | |
| 183 *dstCoeff = this->getDstBlendCoeff(); | |
| 184 | |
| 185 if (this->isColorWriteDisabled()) { | |
| 186 *srcCoeff = kZero_GrBlendCoeff; | |
| 187 *dstCoeff = kOne_GrBlendCoeff; | |
| 188 } | |
| 189 | |
| 190 bool srcAIsOne = this->srcAlphaWillBeOne(); | |
| 191 bool dstCoeffIsOne = kOne_GrBlendCoeff == *dstCoeff || | |
| 192 (kSA_GrBlendCoeff == *dstCoeff && srcAIsOne); | |
| 193 bool dstCoeffIsZero = kZero_GrBlendCoeff == *dstCoeff || | |
| 194 (kISA_GrBlendCoeff == *dstCoeff && srcAIsOne); | |
| 195 | |
| 196 // When coeffs are (0,1) there is no reason to draw at all, unless | |
| 197 // stenciling is enabled. Having color writes disabled is effectively | |
| 198 // (0,1). | |
| 199 if ((kZero_GrBlendCoeff == *srcCoeff && dstCoeffIsOne)) { | |
| 200 if (this->getStencil().doesWrite()) { | |
| 201 return kEmitCoverage_BlendOptFlag; | |
| 202 } else { | |
| 203 *dstCoeff = kOne_GrBlendCoeff; | |
| 204 return kSkipDraw_BlendOptFlag; | |
| 205 } | |
| 206 } | |
| 207 | |
| 208 bool hasCoverage = forceCoverage || !this->hasSolidCoverage(); | |
| 209 | |
| 210 // if we don't have coverage we can check whether the dst | |
| 211 // has to read at all. If not, we'll disable blending. | |
| 212 if (!hasCoverage) { | |
| 213 if (dstCoeffIsZero) { | |
| 214 if (kOne_GrBlendCoeff == *srcCoeff) { | |
| 215 // if there is no coverage and coeffs are (1,0) then we | |
| 216 // won't need to read the dst at all, it gets replaced by src | |
| 217 *dstCoeff = kZero_GrBlendCoeff; | |
| 218 return kNone_BlendOpt; | |
| 219 } else if (kZero_GrBlendCoeff == *srcCoeff) { | |
| 220 // if the op is "clear" then we don't need to emit a color | |
| 221 // or blend, just write transparent black into the dst. | |
| 222 *srcCoeff = kOne_GrBlendCoeff; | |
| 223 *dstCoeff = kZero_GrBlendCoeff; | |
| 224 return kEmitTransBlack_BlendOptFlag; | |
| 225 } | |
| 226 } | |
| 227 } else if (this->isCoverageDrawing()) { | |
| 228 // we have coverage but we aren't distinguishing it from alpha by reques
t. | |
| 229 return kCoverageAsAlpha_BlendOptFlag; | |
| 230 } else { | |
| 231 // check whether coverage can be safely rolled into alpha | |
| 232 // of if we can skip color computation and just emit coverage | |
| 233 if (this->canTweakAlphaForCoverage()) { | |
| 234 return kCoverageAsAlpha_BlendOptFlag; | |
| 235 } | |
| 236 if (dstCoeffIsZero) { | |
| 237 if (kZero_GrBlendCoeff == *srcCoeff) { | |
| 238 // the source color is not included in the blend | |
| 239 // the dst coeff is effectively zero so blend works out to: | |
| 240 // (c)(0)D + (1-c)D = (1-c)D. | |
| 241 *dstCoeff = kISA_GrBlendCoeff; | |
| 242 return kEmitCoverage_BlendOptFlag; | |
| 243 } else if (srcAIsOne) { | |
| 244 // the dst coeff is effectively zero so blend works out to: | |
| 245 // cS + (c)(0)D + (1-c)D = cS + (1-c)D. | |
| 246 // If Sa is 1 then we can replace Sa with c | |
| 247 // and set dst coeff to 1-Sa. | |
| 248 *dstCoeff = kISA_GrBlendCoeff; | |
| 249 return kCoverageAsAlpha_BlendOptFlag; | |
| 250 } | |
| 251 } else if (dstCoeffIsOne) { | |
| 252 // the dst coeff is effectively one so blend works out to: | |
| 253 // cS + (c)(1)D + (1-c)D = cS + D. | |
| 254 *dstCoeff = kOne_GrBlendCoeff; | |
| 255 return kCoverageAsAlpha_BlendOptFlag; | |
| 256 } | |
| 257 } | |
| 258 | |
| 259 return kNone_BlendOpt; | |
| 260 } | |
| 261 | |
| 262 //////////////////////////////////////////////////////////////////////////////// | |
| 263 | |
| 264 // Some blend modes allow folding a fractional coverage value into the color's a
lpha channel, while | |
| 265 // others will blend incorrectly. | |
| 266 bool GrRODrawState::canTweakAlphaForCoverage() const { | |
| 267 /* | |
| 268 The fractional coverage is f. | |
| 269 The src and dst coeffs are Cs and Cd. | |
| 270 The dst and src colors are S and D. | |
| 271 We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the sou
rce color's alpha | |
| 272 we're replacing S with S'=fS. It's obvious that that first term will always
be ok. The second | |
| 273 term can be rearranged as [1-(1-Cd)f]D. By substituting in the various poss
ibilities for Cd we | |
| 274 find that only 1, ISA, and ISC produce the correct destination when applied
to S' and D. | |
| 275 Also, if we're directly rendering coverage (isCoverageDrawing) then coverag
e is treated as | |
| 276 color by definition. | |
| 277 */ | |
| 278 return kOne_GrBlendCoeff == fDstBlend || | |
| 279 kISA_GrBlendCoeff == fDstBlend || | |
| 280 kISC_GrBlendCoeff == fDstBlend || | |
| 281 this->isCoverageDrawing(); | |
| 282 } | |
| 283 | |
| 284 void GrRODrawState::convertToPendingExec() { | |
| 285 fRenderTarget.markPendingIO(); | |
| 286 fRenderTarget.removeRef(); | |
| 287 for (int i = 0; i < fColorStages.count(); ++i) { | |
| 288 fColorStages[i].convertToPendingExec(); | |
| 289 } | |
| 290 if (fGeometryProcessor) { | |
| 291 fGeometryProcessor->convertToPendingExec(); | |
| 292 } | |
| 293 for (int i = 0; i < fCoverageStages.count(); ++i) { | |
| 294 fCoverageStages[i].convertToPendingExec(); | |
| 295 } | |
| 296 } | |
| 297 | |
| 298 bool GrRODrawState::srcAlphaWillBeOne() const { | |
| 299 uint32_t validComponentFlags; | |
| 300 GrColor color; | |
| 301 // Check if per-vertex or constant color may have partial alpha | |
| 302 if (this->hasColorVertexAttribute()) { | |
| 303 if (fHints & kVertexColorsAreOpaque_Hint) { | |
| 304 validComponentFlags = kA_GrColorComponentFlag; | |
| 305 color = 0xFF << GrColor_SHIFT_A; | |
| 306 } else { | |
| 307 validComponentFlags = 0; | |
| 308 color = 0; // not strictly necessary but we get false alarms from to
ols about uninit. | |
| 309 } | |
| 310 } else { | |
| 311 validComponentFlags = kRGBA_GrColorComponentFlags; | |
| 312 color = this->getColor(); | |
| 313 } | |
| 314 | |
| 315 // Run through the color stages | |
| 316 for (int s = 0; s < this->numColorStages(); ++s) { | |
| 317 const GrProcessor* processor = this->getColorStage(s).getProcessor(); | |
| 318 processor->getConstantColorComponents(&color, &validComponentFlags); | |
| 319 } | |
| 320 | |
| 321 // Check whether coverage is treated as color. If so we run through the cove
rage computation. | |
| 322 if (this->isCoverageDrawing()) { | |
| 323 // The shader generated for coverage drawing runs the full coverage comp
utation and then | |
| 324 // makes the shader output be the multiplication of color and coverage.
We mirror that here. | |
| 325 GrColor coverage; | |
| 326 uint32_t coverageComponentFlags; | |
| 327 if (this->hasCoverageVertexAttribute()) { | |
| 328 coverageComponentFlags = 0; | |
| 329 coverage = 0; // suppresses any warnings. | |
| 330 } else { | |
| 331 coverageComponentFlags = kRGBA_GrColorComponentFlags; | |
| 332 coverage = this->getCoverageColor(); | |
| 333 } | |
| 334 | |
| 335 // Run through the coverage stages | |
| 336 for (int s = 0; s < this->numCoverageStages(); ++s) { | |
| 337 const GrProcessor* processor = this->getCoverageStage(s).getProcesso
r(); | |
| 338 processor->getConstantColorComponents(&coverage, &coverageComponentF
lags); | |
| 339 } | |
| 340 | |
| 341 // Since the shader will multiply coverage and color, the only way the f
inal A==1 is if | |
| 342 // coverage and color both have A==1. | |
| 343 return (kA_GrColorComponentFlag & validComponentFlags & coverageComponen
tFlags) && | |
| 344 0xFF == GrColorUnpackA(color) && 0xFF == GrColorUnpackA(coverage
); | |
| 345 | |
| 346 } | |
| 347 | |
| 348 return (kA_GrColorComponentFlag & validComponentFlags) && 0xFF == GrColorUnp
ackA(color); | |
| 349 } | |
| 350 | |
| OLD | NEW |